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Abstract Nowadays, the modern technologies and processes demand a big amount
of information in order to be optimised. As the consequence, a huge amount of data
is being generated. This is the main cause of the current boom for the so called Big
Data. There are a lot of systems and sensors capable of generating such data but the
processing of these data is currently becoming an arduous task. This chapter is
focused on the analysis of the Big Data associated with the maintenance of wind
farms. An analysis of the data coming from Condition Monitoring and Supervisory
Control and Data Acquisition Systems will be carried out. This analysis will be
done using two methods whose objectives are to reduce the amount of data and,
therefore, to facilitate the data processing. Two case studies will be presented in
order to clarify how these methods should be applied.

1 Introduction

Nowadays, the amount of data generated by all sectors of the economy and the
society is growing exponentially. The information and the communication tech-
nologies and the automation of the industrial processes are currently some of the
most important generators of data. For instance, the internet has become the biggest
producer of data in the entire history of humanity.
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The comprehension of data is an activity that has always accompanied to the
human beings. However, in this “Information Age”, the capacity and the necessity
of acquiring, producing and generating data have reached unimaginable dimen-
sions. As a result, the conventional data processing methodologies have become
obsoletes. This is the reason why the new concept of “Big Data” is emerging. Big
Data can be considered as a modern socio-technical phenomenon [1] that appears as
a consequence of the current massive data generation. Some well-known companies
that employ Big Data to obtain useful information are Google, eBay, Amazon,
Facebook, Twitter, IBM, LinkedIn, AOL, etc. [2]. For example, it is estimated that
Google processes more than 25 petabytes (25 � 1015 bytes) every day.

The Big Data has been defined in the industrial field by six dimensions that can
be called “The 6 Vs” (see Fig. 1). This term concerns the following dimensions [3,
4]: Volume (the amount of data), Velocity (the speed at which data is created),
Variety (the different natures of the data), Veracity (the certainty of data meaning),
Validity (accuracy of data) and Volatility (how long the data need to be stored).

These dimensions will determine the type of Big Data that is being considered.
The complexity of the Big Data analysis is further defined by the volume, the
velocity, the variety and the volatility. The usefulness of the analysis is usually
dependent on the validity and the veracity of the data.

Besides the communication systems, social networks and companies that operate
online, there is a significant source of Big Data related to the digital sensors
worldwide in industrial equipment, automobiles, electrical meters and shipping
crates. These sensors are capable of evaluating locations, movements, voltages,
vibrations, magnetic fields and countless variables of a certain system. This con-
cerns not only the volume of data that is generated but also the variety of such data.

This chapter is focused on the particular case of the Big Data generated by the
equipment of the wind farms.

Fig. 1 Dimensions of Big
Data
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2 Big Data and Wind Turbines

The large number of data generated by the monitoring systems results in complex
scenarios when they need to be treated. Data can come from different sources and
their content can be completely random. Even so, the information can be correlated
and their sorting can be useful for decision making. This situation is a common link
in almost all industrial sectors where the incorporation of new technologies and the
emergence of Condition Monitoring Systems (CMS) supported by Supervisory
Control and Data Acquisition (SCADA) systems make the data processing a critical
factor [5].

The field of the renewable energies is one of those sectors where the previous
issue arises. The high volumes of data used in the operations and maintenance
(O&M) tasks makes the introduction of Big Data a key factor. Wind farms usually
divide the data analysis in three categories for decision making: descriptive anal-
ysis, post-event diagnostics and prognostics. The first category identifies the fea-
tures with statistical calculations and graphics. The second category analyses the
cause-effect of any change from a threshold. Finally, the prognostics predict the
system changes [6].

Descriptive analysis is the basis of the following steps. Data collection must be
as wide as possible to obtain a first approach. One of the first relationships that wind
farms consider is the wind speed and power output connection. This is due to the
fact that different wind farms can have wind turbines with similar specifications and
their comparison can reveal the most efficient conditions.

The prognostic analysis is based on predictive modelling where several tech-
niques such as regression trees or neural networks can be introduced to have an
accurate model. Diverse inputs can be considered, e.g. speeds, electromagnetic data
or vibration, to develop the model. The application of the techniques will entail the
detection of degraded performances at earlier stages [7].

2.1 Condition Monitoring Approaches for Wind Turbines

Most of the wind turbines (WTs) are three-blade units [8, 9]. The energy generated
by the blades is redirected from the main shaft to the generator through the gearbox.
At the top of the tower, assembled on the foundation, the nacelle is found. A yaw
system controls its alignment from the direction of the wind. The pitch system is
mounted in each blade to position them depending on the wind. It also acts as an
aerodynamic brake when needed. Finally, a meteorological unit provides infor-
mation about the wind (speed and direction) to the control system.

Condition monitoring (CM) is implemented from basic operations of the
equipment to study [10]. The system provides the “condition”, the state of a
characteristic parameter that represents the health of the component(s) being
monitored. CM operates from different sensors and signal processing equipment in
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WTs. The main purpose is to monitor components ranging from blades, gearboxes,
generators to bearings or towers.

CM reduces interferences during the features transport. Data processing, sorting
and manipulation according to the objectives pursued, are usually performed by a
digital signal processor. Then it can be shown, stored or transmitted to another
system. One of the advantages for these systems is, therefore, that monitoring can
be processed online or in certain time intervals. Thus, it is possible to maximise the
productivity, to minimise downtimes, and to increase the Reliability, Availability,
Maintainability and Safety (RAMS) levels [11].

Different techniques are available for CM:

• Vibration analysis [12].
• Acoustic emission [13].
• Ultrasonic testing techniques [14].
• Oil analysis [15].
• Thermography [16].
• Other methods.

The accurate data acquisition is critical to determine the occurrence of a failure
and the subsequent solution. This can be achieved with the optimal type, number
and placement of sensors. Data acquisition is always the first step of the CM
process and includes the measurement of the required conditions (e.g. sound,
vibration, voltage, temperature or speed), turning them into electronic signals.
Then, signal processing introduces the handling (e.g. fast Fourier transform,
wavelet transforms, hidden Markov models, statistical methods and trend analysis)
and storage of data.

2.2 Supervisory Control and Data Acquisition Systems
for Wind Turbines

SCADA systems are currently being introduced in WTs due to their effectiveness
has been proved in other industries for detection and diagnostics of failures [17].
They are presented as an inexpensive and optimal solution to [18] control feedback
for the health monitoring while reducing the O&M costs [19]. Nevertheless, they
also present some minor disadvantages due to the operational or reliability condi-
tions [20].

The SCADA system considers a large amount of measurements such as tem-
peratures or wind and energy conversion parameters [21]. These data have raised
considerable interest in different areas, e.g. wind power forecasting [22], production
assessment [23] and of course, for fault detection [24].

In the case of the WTs, the introduction of SCADA systems verifies the effi-
ciency when their components deteriorate. This degradation can indicate problems
of different nature such as misalignments in the drive-train, friction caused by
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bearing or gear faults. The basic elements of the performance monitoring consist of
a first collection of raw values by the sensors. After the application of the appro-
priate filters, anomalies are detected. Finally, a diagnosis will be provided. The
anomaly detection includes a series of techniques that range from simple threshold
checks to statistical analyses [25].

3 Data Reduction Techniques

As aforementioned, the wind farms are becoming a source of massive data. The
purpose of these data is to describe the condition of the systems. However, the data
are useless by themselves, they are only valuable when information can be gathered
from them. It is necessary to process the data in order to extract useful information,
but this is an arduous task when there is a very large amount of data. For this
reason, it is essential to employ some techniques that allow for reducing the amount
of data without losing the main information that they can provide. With this pur-
pose, two procedures are proposed in the following sections. The first one is to
analyse a continuous signal coming from a CMS by extracting feature parameters
and, the second one provides a reduction for SCADA systems by filtering the
unnecessary data.

3.1 Feature Parameters for CMSs Signals

The CMSs installed in WTs are employed to evaluate variables such as vibration,
lubrication oil or generator current signal. These systems usually provide a con-
tinuous monitoring of the variables. For this reason, it is important to develop
algorithms capable of detecting possible abnormal behaviours of the variables over
the time [26].

The main goal of this section is to perform a statistical study of the historical data
of a CMS in order to achieve some feature parameters. These parameters facilitate
to focus the analysis on the information that is really significant. Consequently, an
important reduction of the amount of data is obtained. The feature parameters that
will be used in this chapter are explained below [27–32]:

• Average: the average can be useful for those signals without abrupt changes, i.e.
signals that are almost constant. For example, it could be useful for humidity or
temperature signals.

• Peaks: The more representative peaks are usually those that correspond to a
maximum value of the signal within a certain time interval. These peaks can be
referred to the time domain or to the different harmonics in the frequency
domain. Other feature parameter related to the peaks is the peak to peak value
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that is defined as the distance between the maximum and the minimum
amplitude of the signal.

• Correlation coefficient (r): This coefficient is a statistical procedure used to
determine the relationship between several signals. This parameter can be used
to identify important changes between a received signal and the historical data.
It can run from −1 (perfect negative correlation) to 1 (perfect positive correla-
tion). It is 0 when the signals are totally independent. The correlation coefficient
between two signals x and y can be obtained as follows:

r ¼ N
PN

n¼1 xy
� �� PN

n¼1 x
� � PN

n¼1 y
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

N
PN

n¼1 x
2 � PN

n¼1 x
� �2� �

N
PN

n¼1 y
2 � PN

n¼1 y
� �2� �r

• Root Mean Square (RMS): This is a time analysis feature that corresponds to the
measure of the signal power. It can be useful for detecting some out-of-balance
in rotating systems. It can be calculated by:

RMS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

n¼1 y nð Þð Þ2
N

s

being N the total number of discrete values of the signal y. Other common
parameter is the Delta RMS that is the difference between the current RMS and the
previous value.

• Standard Deviation: This parameter is used to obtain the dispersion of a data set.
It can be calculated by:

SD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PN

n¼1 y nð Þ �Meanð Þ2
N � 1

s

• Skewness: This parameter is an indicator of the signal symmetry. It is defined
by:

Skewness ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN

n¼1 y nð Þ �Meanð Þ3
N � 1ð ÞS3

s

• Kurtosis: This parameter corresponds to the scaled fourth moment of the signal.
It is a measure of how concentrated the data are around a central zone of the
distribution. It is calculated by:

Kurtosis ¼
PN

n¼1 y nð Þ �Meanð Þ4
N � 1ð ÞS4
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• Crest Factor: This parameter is capable of detecting abnormal behaviours in an
early stage. It is defined by:

Crest Factor ¼ Peak
RMS

• Shape Indicator: This factor is affected by the shape of the signal but it is
independent of its dimensions. It is obtained as follows:

Shape Indicator ¼ RMS
1
N

PN
n¼1 yðnÞj j

• Other parameters: Other parameters are widely used such as enveloping,
demodulation, FM0, NA4, FM4, M6A, M8A, NB4, sideband level factor,
sideband index, zero-order figure of merit, impulse indicator, clearance factor
etc.

These parameters can be only evaluated on finite signals. For this reason, it is
necessary to choose some pieces of the continuous signal. The goal is to obtain the
main features of the entire signal analysing only some pieces. Therefore, there are
two factors why the data are reduced: firstly, a continuous signal is converted into
several finite signals and, secondly some parameters of these finite signals are
saved.

Table 1 shows a general structure of the data using the method proposed.
The element ekij corresponds to the j parameter of the k piece collected at the time

(date) i.
The main objective of this method is to determine the condition of the WT by

making a comparison between the historic data and the data that is being receiving.
With this purpose, the historical data will be subjected to a pattern recognition
analysis to determine what features are significant. There are a lot of models for
pattern recognition analysis, i.e. statistical model, structural model, template
matching model, neural network based model, fuzzy based model, hybrid models,
etc. [33, 34].

A neural network (NN) based model will be implemented to analyse the data in
this chapter. The NN are complex structures based on the biological neurons. These
structures provide a good solution for those problems that cannot be analytically
defined. Basically, the NN receives a dataset that is used into a training process to

Table 1 Association of data of the CMS and the condition of the WT

Signal 1 Signal k Signal M WT condition

P1 Pj PJ P1 Pj PJ P1 Pj PJ

Date1 e111 e11j e11j ek11 ek1j ek1j eM11 eM1j eM1j C1

Date2 e121 e12j e12j ek21 ek2j ek2j eM21 eM2j eM2j C2

Datei e1i1 e1ij e1ij eki1 ekij ekij eMi1 eMij eMij Ci
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recognise the parameters. In this process, some weights are adapted to provide an
adequate output. The different parameters of the signals will be considered as
inputs, whereas the condition of the WT will correspond to the desired output of the
NN. Further information about NN can be found in Refs. [35, 36]. A case study is
developed in Sect. 4.1 in order to clarify the procedure hereby explained.

3.2 Data Analysis for the SCADA System

Besides the evaluation of the variables cited in the previous section, other signals
can be collected to complete the data acquisition of a CMS, such as power, pres-
sures, speeds and temperatures among others. With all these data, it is possible to
track and analyse the set from the emergence of incipient failures. A SCADA
system consisting of different processing tools that transform the data received into
real-time analysable information is involved. The displays that comprise the system
are configurable to obtain the information when and where it is needed (see Fig. 2).

One of the main advantages of the SCADA system that will be presented for the
cases studies is that allows almost infinite storage data in the original resolution.
The software included can create and analyse process flow diagrams and graphics.
The settings can be adapted to any operating system through menus and toolbars. In
addition, the information can be exported to other formats, such as spreadsheets.

The second purpose in this research is to identify alarms from their location in a
power curve. Likewise, it is interesting to know how many of those alarms go
unnoticed by the system for being within the prediction bounds. The main problem
associated to this task will be the definition of the curve. Due to the high number of
data, a previous pre-processing will be done to remove non-significant data. This
case could also be extended to other stored signals besides the wind speed and the
power.

wind turbines 

interface for data 
acquisition

servers other systems  applications 

clients

Fig. 2 SCADA system
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4 Case Studies

In the former section, two methodologies for processing the Big Data coming from
WTs have been proposed and explained. Both methodologies are aimed to reduce
the amount of data without losing the main information. In order to clarify how
these procedures have to be applied, this section presents two case studies.

4.1 Case Study for CMSs Signals

A drive-train CMS is considered for this case study. This system provides a con-
tinuous vibration signal of 8 different points of the drive-train, attending to the point
of the drive train that is being monitoring. The sampling rate of the CMS is 1000
samples/s. Therefore, a total of 8000 samples are received per second. The data
have been collected during two years, therefore, more than 5� 1011 samples have
been generated by this CMS along that period of time.

In order to apply the methodology explained in Sect. 3.1, pieces of one second
each three hours have been considered. Considering the sampling rate of the CMS,
a total of 4.6 � 107. As can be observed, this is the first reduction of the amount of
data and it corresponds to a reduction of 99.99%. Therefore, the computational
costs will be drastically reduced.

Once the set of pieces has been chosen, the following parameters are calculated
attending to the definitions in Sect. 3.1: RMS, average, standard deviation, maxi-
mum peak, kurtosis, crest factor, shape factor and impulse indicator. The evaluation
of these parameters allows for a further reduction of the amount of data to analyse.
Concretely, a total of 46,720 data will be used to determine the patterns in the CMS
data.

The different conditions of the WT are defined in an alarm report where the state
of the WT is collected along the last two years. In this case study, the NN designed
is able to differentiate between 4 possible states: “Alarm 1”, “Alarm 2”, “Alarm 3”
or “No Alarms”. Each set of inputs is associated with a specific condition of the WT
and the relationships are established by the NN. Therefore, the purpose of the NN is
to determine the state of the WT when a new set of data is available, i.e. to predict
the condition of the WT attending to a new set of inputs. The following Fig. 3
shows the NN designed for this case study.

The NN is formed by three layers. The input layer has 64 neurons that corre-
sponds to the amount of inputs (8 signals by 8 parameters). The output layer is
composed by 4 neurons according to the possible outputs considered for this case
study. Finally, the hidden layer is composed by 16 neurons because the pyramid
rule has been applied [37]. The pyramid rule suggests that the number of neuron of
the hidden layer must be equal to the square root of the product between the number
of input neurons and the number of output neurons.
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Figure 4 shows the outcomes of the NN through a confusion matrix. The con-
fusion matrix indicates the output provided by the NN (output class) compared with
the real condition of the system (target class). The diagonal of the points those cases
in which the outcomes of the NN are right (green cells). The values placed in the
grey cells provide the percentages of successes and error for each type of output.
The percentages in the fifth row provide information about how many conditions of
each type the NN is detecting. However, the percentages in the fifth column express
the degree of success when a certain condition has been detected. Finally the blue
cell shows a summary of the results that determine the goodness of the NN.

Figure 4 shows that the real condition of the WT can be successfully determined
by using this method in 71.7% of cases. This is a very good result considering that
only the 0.00001% of the total available data have been employed.

Once the patterns have been recognised by the NN, the new data from CMS can
be pre-processed in order to achieve the mentioned parameters. These new data
should be introduced in the NN and the output can provide information of the state

Fig. 3 Neural network designed for the case study

Fig. 4 Confusion matrix.
Results of the neural network
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of the WT. In this process the amount of data will be reduced from 8000 samples/s
to only 64 samples/s. This technique can reduce the 99.2% of the data. Therefore,
this method can result very useful to treat Big Data.

4.2 Case Study for the SCADA Systems Using Wind
Speed-Power Curves

This second case study will focused on the information related to the wind speed
and the power. Both features will be connected from the power curve. The power
curve of a wind turbine indicates the electrical power that is available for these
devices depending on the wind speed. It is usually close to zero for low speeds.
Then, it quickly increases until reaching 10–15 m/s. From those speeds, the curve
keeps constant as the result of the limitation devices attached to the turbine. This
maximum power is often referred as the nominal power. Once speeds of 20–25 m/s
are reached, the wind turbine operation is cancelled due to the activation of pro-
tection mechanisms. Therefore, power curves are often not represented at speeds
exceeding these limits. In short, it can be said that the power curve is a useful
indicator to evaluate the efficiency of a wind turbine.

Power curves are obtained from actual measurements on a wind turbine where
an anemometer is strategically positioned. It must be located at certain distance
from the rotor to avoid turbulences and therefore, to lose reliability for the stored
speed. One of the main constraints of any wind-power curve is that, in practice, the
speed fluctuates; so it is important to work with mean values to represent the curve
effectively. A non-proper designed curve may show errors of up to 10% between
the wind-power ratios.

Regarding the study, the SCADA system stores signals of wind speed and power
every ten minutes, i.e. 52,560 samples per year; and subdivides them into sampled,
maximum, minimum and average collections, as well as the standard deviation.
Once the data are extracted and converted into a readable format by software, it is
reordered, from lowest to highest, to get the curve (see Fig. 5). The first repre-
sentation should fit to the theoretical model expected with minor exceptions (high
wind speeds and power outputs).

Figure 6 (left) is the result of introducing Big Data in the case study. This task
has been carried out with a curve fitting tool, doing a previous data selection where
the appropriate samples are identified from statistical calculations. An exploratory
data analysis is used to remove outliers (alarms in some cases) as well as redundant
information. This way, it can be seen a reduction of the initial 52,560 to an 841
samples, representing a decrease of the processed data up to 80% of the total
amount (Table 2). Figure 6 also represents the data resulting from the descriptive
analysis (left) versus the 904 samples indicating the occurrence of an alarm (right).
It can be noted that the sum of both graphics still gives an accurate insight to the
data registered by the sensors.
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A second regression analysis is conducted to finally obtain Fig. 7. Once the
curve that best describes data series is selected, a post processing analysis can be
performed. This enables the creation of a graphic with prediction bounds and the
calculation of the 95% confidence intervals for the coefficient estimates.

The prior step is critical for the development of further analysis where alarms
and operating states are linked to the power curve. The importance of this research
is that some of the considered alarms have been found when the drive-train was
monitored. The idea, still in development, is to create a pattern recognition where
alarms can be identified from their location. Something similar could happen with
the information that is not detectable for being within the prediction bounds.

Through a first approach, some unusual performances have been found such as
data being positioned above the power curve. This behaviour corresponds to alarms
where currents and temperatures are involved and it results in an uncommon

Fig. 5 Initial scenario

Fig. 6 Post-processed curve (left) versus alarms (right)
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speed-power ratio. However, this situation occurs in the 2% of the cases studied.
The general trend is to locate the failures up to 500 kW and from 8 to 15 m/s, but
usually below the curve. In quantitative terms, this can be translated into up to the
58% of the failures detected in terms of wind speed, and up to the 35% in terms of
power. Moreover, it should be mentioned that approximately the 53% of the failures
are within the prediction bounds and may go unnoticed if they are based on this
technique.

5 Conclusions

This chapter has deepened the analysis of the Big Data generated by the systems
associated with the maintenance of wind farms. An introduction about the current
importance of Big has been included and Data An analysis of the data coming from
Condition Monitoring and Supervisory Control and Data Acquisition Systems has
been carried out. Two methods has been proposed in order to facilitate the analysis.

The first one is based on the extraction of feature parameter from the signals
provided by the Condition Monitoring System. Once the feature parameters have
been obtained, a neural network is designed for pattern recognition. It has been
demonstrated that only using less than 1% of the data, it is possible to determine the
condition of the WT with a 70% of accuracy.

Table 2 Descriptive analysis

Initial data Data after the exploratory data analysis Alarms

Samples 52,560 841 904

Percentage (%) 100 1.6 1.72

Fig. 7 Wind-power curve

Big Data and Wind Turbines Maintenance Management 123



The second methodology is to analyse the data coming from a SCADA system
by prior filtering and selection of the adequate data. An analysis of the wind-power
curve has been performed by using data of a real SCADA. The data has been
filtered and divided into two groups. The first group correspond to points fitting into
the normal levels of wind-power. These points can be used to obtain statistical
information about the adequate performance of the Wind Turbine. The second
group can be used for detecting failures of certain components. This methodology
allows a reduction of data up to the 98% of the total for further analysis without
losing precision.

Acknowledgements The work reported herewith has been financially supported by the Spanish
Ministerio de Economía y Competitividad, under Research Grants DPI2015-67264-P and
RTC-2016-5694-3.

References

1. Boyd D, Crawford K (2012) Critical questions for Big Data: provocations for a cultural,
technological, and scholarly phenomenon. Inform Commun Soc 15(5):662–679

2. Jara J (2012) Big Data & web intelligence
3. Ohlhorst F (2013) Turning Big Data into Big Money. Wiley, Hoboken, New Jersey, pp 1–10
4. Zikopoulos P, Eaton C (2011) Understanding Big Data: analytics for enterprise class hadoop

and streaming data. McGraw-Hill Osborne Media, IBM
5. Kezunovic M, Xie L, Grijalva S (2013) The role of Big Data in improving power system

operation and protection. In: IREP symposium—bulk power system dynamics and control—
IX (IREP), Rethymnon, Greece

6. Bosse E, Solaiman B (2016) Information fusion and analytics for Big Data and IoT. Artech
House

7. Li K-C, Jiang H, Yang LT, Cuzzocrea A (2015) Big Data: algorithms, analytics, and
applications. CRC Press

8. Novaes G, Alencar E, Kraj A. Remote conditioning monitoring system for a hybrid wind
diesel system-application at Fernando de Naronha Island. http://www.ontario-sea.org.
Accessed April 2012

9. Pinar JM, García FP, Tobias A, Papaelias M (2013) Wind turbine reliability analysis. Renew
Sustain Energy Rev 23:463–472

10. García FP, Pinar JM, Papaelias M, Ruiz de la Hermosa R (2012) Wind turbines maintenance
management based on FTA and BDD. Renew Energy Power Qual J (10). ISSN 2172-038X
(Online)

11. García FP, Pedregal DJ, Roberts C (2010) Time series methods applied to failure prediction
and detection. Reliab Eng Syst Saf 95(6):698–703

12. Ozbek M, Meng F, Rixen DJ (2013) Challenges in testing and monitoring the inoperation
vibration characteristics of wind turbines. Mech Syst Signal Process 41(1–2):649–666

13. Molina C (2014) Effects of operating conditions on the acoustic emissions (AE) from
planetary gearboxes. Appl Acoust 77:150–158

14. Ruiz de la Hermosa R, García FP, Dimlaye V, Ruiz-Hernández D (2014) Pattern recognition
by wavelet transforms using macro fibre composites transducers. Mech Syst Signal Process 48
(1–2):339–350

15. Nie M, Wang L (2013) Review of condition monitoring and fault diagnosis technologies for
wind turbine gearbox. Procedia CIRP 11:287–290

124 A. Pliego et al.

http://www.ontario-sea.org


16. Zeng Z, Tao N, Feng L, Li Y, Ma Y, Zhang C (2014) Breakpoint detection of heating wire in
wind blade moulds using infrared thermography. Infrared Phys Technol 64:73–78

17. Mylaraswamy D, Olson L, Nwadiogbu E (2007) Engine performance trending. In:
AIAC12-HUMS Conference

18. Yang W, Court R, Jiang J (2013) Wind turbine condition monitoring by the approach of
SCADA data analysis. Renew Energy 53(C):365–376

19. Wymore ML, Van Dam JE, Ceylan H, Qiao D (2015) A survey of health monitoring systems
for wind turbines. Renew Sustain Energy Rev 52:976–990

20. Yang W, Court R, Jiang J (2013) Wind turbine condition monitoring by the approach of
SCADA data analysis. Renew Energy 53:365–376

21. Sun P, Li J, Wang C, Lei X (2016) A generalized model for wind turbine anomaly
identification based on SCADA data. Appl Energy 168(15):550–567

22. Song Z, Jiang Y, Zhang ZJ (2014) Short-term wind speed forecasting with Markov switching
model. Appl Energy 130:103–112

23. Zhang H, Yu YJ, Liu ZY (2014) Study on the maximum entropy principle applied to the
annual wind speed probability distribution: a case study for observations of intertidal zone
anemometer towers of Rudong in East China Sea. Appl Energy 114:931–938

24. Kusiak A, Verma A (2011) The prediction and diagnosis of wind turbine faults. IEEE Trans
Sustain Energy 2:87–96

25. Kim K, Parthasarathy G, Uluyol O, Foslien W, Sheng S, Fleming P (2011) Use of SCADA
data for failure detection in wind turbines. In: ASME 2011 5th international conference on
energy sustainability. American Society of Mechanical Engineers, pp 2071–2079

26. Yang W, Tavner PJ, Crabtree CJ, Wilkinson M (2010) Cost-effective condition monitoring
for wind turbines. IEEE Trans Indus Electron 57(1):263–271

27. Lebold M, McClintic K, Campbell R, Byington C, Maynard K (2000) Review of vibration
analysis methods for gearbox diagnostics and prognostics. In: Proceedings of the 54th
meeting of the society for machinery failure prevention technology, vol 634, p 16

28. Sadegh H, Mehdi AN, Mehdi A (2016) Classification of acoustic emission signals generated
from journal bearing at different lubrication conditions based on wavelet analysis in
combination with artificial neural network and genetic algorithm. Tribol Int 95:426–434

29. Sheng S (2012) Wind turbine gearbox condition monitoring round robin study—vibration
analysis. Contract 303:275–300

30. Večeř P, Kreidl M, Šmíd R (2005) Condition indicators for gearbox condition monitoring
systems. Acta Polytechnica 45(6)

31. Wentao S, Changhou L, Dan Z (2008) Bearing fault diagnosis based on feature weighted
FCM cluster analysis. In: 2008 international conference on computer science and software
engineering, vol 5. IEEE

32. Zhu J, Nostrand T, Spiegel C, Morton B (2014) Survey of condition indicators for condition
monitoring systems. In: Annual conference of the prognostics and health management
society, vol 5, pp 1–13

33. García Márquez FP, Chacón JM (2012) A pattern recognition and data analysis method for
maintenance management. Int J Syst Sci 43(6)1014–1028

34. Asht S, Dass R (2012) Pattern recognition techniques: a review. Int J Comput Sci
Telecommun 3(8)

35. Bishop CM (1995) Neural networks for pattern recognition. Oxford University Press
36. Schmidhuber J (2015) Deep learning in neural networks: an overview. Neural Netw 61:85–117
37. Masters T (1993) Practical neural network recipes in C++. Academic Press. ISBN

978-0124790407

Big Data and Wind Turbines Maintenance Management 125


	8 Big Data and Wind Turbines Maintenance Management
	Abstract
	1 Introduction
	2 Big Data and Wind Turbines
	2.1 Condition Monitoring Approaches for Wind Turbines
	2.2 Supervisory Control and Data Acquisition Systems for Wind Turbines

	3 Data Reduction Techniques
	3.1 Feature Parameters for CMSs Signals
	3.2 Data Analysis for the SCADA System

	4 Case Studies
	4.1 Case Study for CMSs Signals
	4.2 Case Study for the SCADA Systems Using Wind Speed-Power Curves

	5 Conclusions
	Acknowledgements
	References


