
Handling Duplicated Tasks in Process Discovery
by Refining Event Labels

Xixi Lu1(B), Dirk Fahland1, Frank J.H.M. van den Biggelaar2,
and Wil M.P. van der Aalst1

1 Eindhoven University of Technology, Eindhoven, The Netherlands
{x.lu,d.fahland,w.m.p.v.d.aalst}@tue.nl

2 Maastricht University Medical Center, Maastricht, The Netherlands
f.vanden.biggelaar@mumc.nl

Abstract. Processes may require to execute the same activity in differ-
ent stages of the process. A human modeler can express this by creating
two different task nodes labeled with the same activity name (thus dupli-
cating the task). However, as events in an event log often are labeled with
the activity name, discovery algorithms that derive tasks based on labels
only cannot discover models with duplicate labels rendering the results
imprecise. For example, for a log where “payment” events occur at the
beginning and the end of a process, a modeler would create two differ-
ent “payment” tasks, whereas a discovery algorithm introduces a loop
around a single “payment” task. In this paper, we present a general app-
roach for refining labels of events based on their context in the event log
as a preprocessing step. The refined log can be input for any discovery
algorithm. The approach is implemented in ProM and was evaluated in
a controlled setting. We were able to improve the quality of up to 42 % of
the models compared to using a log with imprecise labeling using default
parameters and up to 87 % using adaptive parameters. Moreover, using
our refinement approach significantly increased the similarity of the dis-
covered model to the original process with duplicate labels allowing for
better rediscoverability. We also report on a case study conducted for a
Dutch hospital.

1 Introduction

Real-life processes may require that the same activity occurs at different stages
or branches of the process [1–4]. A human modeler would use different nodes in
a model (e.g., different transitions in a Petri net) labeled with the same activity
to express different occurrences of an activity in the process. We call each node
labeled with an activity a task. Thus, there could be many tasks referring to the
same activity, which are known as duplicated tasks. In a log, events are usually
labeled with activity names instead of tasks. As a result, two different events
with the same activity label may originate from the same task or from different
tasks, i.e., the labeling in the event log is imprecise.

Process discovery aims at creating an accurate representation of the real
process from an event log helping users to understand the executed process [3,5].
c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 90–107, 2016.
DOI: 10.1007/978-3-319-45348-4 6

Handling Duplicated Tasks in Process Discovery by Refining Event Labels 91

Fig. 1. The imprecise label problem settings and the running example.

However, most existing discovery algorithms assume the labels of events to be
precise and consider for each label as one task represented by a single task node
in the model. In case of event logs with imprecise labels, these discovery algo-
rithms tend to return over-generalized models that allow much more behavior
than in the event log [2,3]. Such models may be misleading or even incorrect,
obstructing users to use the models for understanding the real processes or per-
forming accurate process analysis. A better solution would be to discover models
where two tasks carry the same label, i.e., duplicate tasks [1,2].

We exemplify the problem using an example shown in Fig. 1. The original
system (a) has five activities “r”, “d”, “c”, “b” and “x” and ten tasks; activities
“c”, “b” and “x” occur at multiple different tasks, which result in an imprecise log
(b), in which the events only refer to activities “c”, “b” and “x” rather than the
different tasks in the system. Using a standard discovery algorithm, we discover
for the imprecise log (b) an imprecise model (c) that states “b” could be skipped
and has a loop that allows “c” and “x” to be executed an arbitrary number of
times, even though every trace in the log has an event labeled “b” and only one
event labeled “x”. Overall, model (c) is imprecise as it contains many behaviors
neither seen in the log (b), nor in the original system (a). Refining the labels
of events could yield the refined log (d), from which a refined model (e) can
be discovered that corresponds to the original model (a) while using the same
discovery algorithm. However, the trivial refinement where each event gets its
own unique label is not desired as it would lead to models that overfit the event
log. Thus, our goal is to refine an imprecise log in such a way that a discovery
algorithm finds a better model which is more precise and closer to the original
model.

In this paper, we investigate the problem of imprecise labels of events for
process discovery and propose an approach to resolve the problem through log
preprocessing. In particular, we introduce an approach for refining labels and
relabeling events in the log such that any existing or future process discovery
algorithm can infer duplicated tasks from the refined labels. As the optimal
refined log or model may be unknown, our approach aims at adding more alter-
native representations of a process into the solution space of process discovery
algorithms to help users find better models systematically.

92 X. Lu et al.

Our approach has three steps: (1) identify one or multiple candidates
for imprecise event labels; then refine imprecise labels (2) across traces and
(3) within traces. Here, we leverage previous work on trace matching technique
which groups events based on similarities in their context [6]; dissimilar groups
of events are labeled differently.

The approach is implemented in ProM1 and has been evaluated in a con-
trolled setting and in a real life case study. In the controlled experiment, we
investigated how well our approach can detect and refine labels in imprecise
event logs generated from a large set of synthetic process models with duplicated
tasks. We analyzed model quality with respect to the event log and the similarity
to the original model. For 87 % of the processes having duplicated tasks outside
of loops, our approach automatically refined imprecise logs so that a discovery
algorithm returned a more precise model. For processes having duplicated tasks
in a loop, label refinement improved precision for 61 % of the imprecise logs.

In the remainder, we first discuss related work in Sect. 2. In Sect. 3, we recall
the concepts used for defining the problem, the measures used in the evalua-
tion, and the methods used in the approach. In Sect. 4, we formalize problems
and aims. Section 5 explains the proposed approach. The evaluation results are
presented in Sect. 6, and Sect. 7 concludes the paper.

2 Related Work

Process Model Elements Labeling or Relabeling. Many studies have inves-
tigated the problem of labeling or relabeling process elements (e.g., activities,
flow relations) in process models [7,8]. These works assume that a collection of
structurally correct process models is available and use additional domain knowl-
edge or other semantically correct labels to then suggest or revise the incorrect
labels of elements in these models. Here, we assume no models to be available
and operate solely on event logs, in order to discover structurally correct models.
One then may apply [7,8] on the discovered models to revise and improve their
labels.

Process Discovery and Duplicated Tasks. Process discovery algorithms
aim at discovering “good” models from an event log to help users to understand
real-life processes. Most existing discovery algorithms map each unique event
label to one task, making it impossible to discover processes with two tasks
with the same label. Some discovery algorithms can refine labels during model
construction to some extent [1,2,4,5,9]. However, these internal mechanism to
handle duplicated tasks can not be used in other discovery algorithms. Moreover,
these algorithms have other limitations such as they do not guarantee sound
models or fitting models. To be able to benefit from current and future progress
in process discovery techniques [10,11], we propose to refine labels in the event
log itself, which then can be used by any process discovery algorithm.

1
http://www.promtools.org/.

http://www.promtools.org/

Handling Duplicated Tasks in Process Discovery by Refining Event Labels 93

Trace Clustering and Clone Detection. As duplicated tasks may also man-
ifest themselves as multiple variants of executing a set of activities within the
same process, trace clustering was proposed as a way to distinguish these vari-
ants [12,13]. However, clustering techniques always consider entire traces and
thus also unnecessary duplicate tasks which are the same in all variants. In [14],
the authors proposed a top-down approach that clusters the traces, discovers
models for each cluster separately and uses clone detection to find tasks that are
the same in all variants, preventing unnecessary duplicating tasks [15]. However,
trace clustering techniques are unable to distinguish two events having the same
label within a trace or a variant [12]. In this paper, we aim at tackling both
problems.

Data Quality and Noise/Deviation Filtering. Imprecise labels could also
be seen as data quality problem, i.e., events having incorrect labels. To the best
of our knowledge, no existing work investigated this problem from this point of
view. Other existing work on log preprocessing such as noise/deviation filtering
would change input logs, both structurally and behaviorally, e.g., by removing
events [6]. Such changes would also affect fitness of the discovered model with
respect to the original log as a process discovery algorithm can only guarantee
fitness for the filtered log. In this paper, we propose to not change the event log
but only the labeling of events, which help us to preserve fitness if the discovery
algorithm has such a guarantee.

Model Quality of Discovered Models. Dozens criteria and measures have
been proposed for assessing the quality of discovered models, which may be
discussed in three categories. Measures that evaluate the quality of the model
using the input log often consider fitness, precision, and generalization [3,5]; we
use the fitness defined in [16] and precision in [17]. In the context of controlled
experiments, the quality of a discovered model can be evaluated against the
original system in terms of how much of the behavior of the system can be
reproduced by the discovered model and how precise the model describes the
system [18]. When evaluating the quality of model irrespective of the log, then
soundness and simplicity are often considered [5,19]. In the next section, we
further discuss the measures used in this paper.

3 Preliminaries

In this section, we present (1) the input for our approach, (2) the quality mea-
sures used, and (3) the key concepts of a technique for finding events with a
similar context.

Event, Label, and Event Log. Let E be the universe of unique events, i.e., the
set of all possible event identifiers. A trace σ ∈ E∗ is a finite sequence of events.
An event log C = {σ1, σ2, · · · , σn} ⊆ E∗ is a set of traces. Here we assume no
event appears twice in the same trace nor in different traces. We use EC for the
set of events in log C. Let A be a set of activities and C a log. A labeling function

94 X. Lu et al.

l : EC → A is surjective and assigns to each event e ∈ EC a label l(e) = a ∈ A.
We call L = (C, l) a labeled event log over activities A.

Process Discovery and Model Quality. Let L = (C, l) be a labeled log over
A. A discovery algorithm D returns a model M (i.e. D(L) = M) such that the
activities A(M) occurring in model M are A, i.e., A(M) = A. The quality of the
discovered model D(L) = M may be evaluated in two ways. First, with respect
to the input log L, the log fitness(L,M) and log precision(L,M) of the model
can be computed, for which we use the measures defined in [16,17], respectively.
Both return a value between 0 and 1: if log fitness(L,M) = 1, every trace in
the log can be replayed by the model perfectly. When log precision(L,M) is
close to 1, most (alternative) behavior allowed by the model is also observed in
the log.

In addition, we compare the discovered M = D(L) to the original system
in terms of system recall and system precision to evaluate the generalization
and discoverability of our approach. Let S be the system that generated L. The
system recall sys recall(S,M,L) and system precision sys precision(S,M,L) of
the discovered model are computed according to [18]. For example, in Fig. 1(b),
after executing events “r” and “x” in trace t2, tasks “b” and “c” are enabled in
the original system; in model (c), “b” and “c” but also “x” are enabled, which has
100 % recalled all enabled activities in the system but is less precise (an additional
“x” not enabled in the system); a trace model would only allow “b” (the next
event in the trace), which is precise but has bad recall. Note that the recall
with respect to system thus also captures the aforementioned generalization
quality [5]. Furthermore, note that the system precision is different from the log
precision, as the system could be imprecise with respect to the log (when the
log is incomplete), but system is always precise with respect to to itself.

Similar Events, Mapping, and Cost Function. We build on existing con-
cepts [6] to identify events that carry the same label but occur in different con-
texts. Let σ, σ′ be two traces. A mapping λ(σ,σ′) ⊆ Eσ × Eσ′ between σ and σ′

is a binary, injective relation; (e, e′) ∈ λ(σ,σ′) is a matched pair. We write λ(σ,σ′)

for the set of events having not match in λ(σ,σ′), i.e. λ(σ,σ′) = {e ∈ E | ¬∃e′ ∈
E′ : (e, e′) ∈ λ(σ,σ′)} ∪ {e′ ∈ E′ | ¬∃e ∈ E : (e, e′) ∈ λ(σ,σ′)}. In this paper, we
assume for all (e, e′) ∈ λ(σ,σ′), l(e) = l(e′).

cr dc xb

dr x cb

Neighbors
Distance = 4

Distance = 3 Similar = Matched
Dissimilar = No Match

e1 e2 e3 e4 e5 e6
e7 e8 e9 e11

e10

Fig. 2. An example of a map-
ping between two traces.

Given any two traces σ and σ′, there are
many possible mappings between them. An
optimal mapping that maximizes the pairs of
mapped events with large similarity in their con-
text can be selected using a cost function with
three weighted components: (1) the differences in
the (direct or indirect) neighbors of the matched
pairs (using costMatched), (2) the differences in
the distances between a matched pair (e, e′) and
other matched pairs (using costStruc), and (3)
the non-matched events e ∈ λ (using costNoMatch). Formally, cost(σ, σ′, λ) =
wM ∗ ∑

(e,e′)∈λ costMatched(e, e′, λ) + wS ∗ ∑
(e,e′)∈λ costStruc(e, e′, λ) + wN ∗

Handling Duplicated Tasks in Process Discovery by Refining Event Labels 95

∑
e∈λ costNoMatch(e), in which wM , wS , wN are the weights for the components.

Figure 2 shows an example of a mapping between traces t1 and t2 of log Llab of
Fig. 1 (see [6] for a detailed explanation). As the traces σ and σ′ are finite, one
may simply enumerate all possible mappings between two traces, compute the
cost of each mapping, and select the optimal ones. In [6], a greedy algorithm is
proposed to find a locally optimal mapping in polynomial time. The results of
this paper have been obtained with the greedy variant.

4 Problem Definition and Analysis

In this section, we first formally define our research problem and then discuss the
related complications and our design decisions. In essence, given an imprecisely
labeled log L = (C, lA) over the set of activities A, we would like to return a
more refined labeling function lB for the events EC in order to help a discovery
algorithm find better models.

Definition 1 (Refined Labeling Function). For a labeled log LA over the
set of labels A, the log LB over an arbitrary set of labels B is a refined log iff
(1) they have the same traces, i.e., LA = (C, lA), LB = (C, lB), and (2) for each
two events e, e′ ∈ Ec, e and e′ can only have the same label according to lB, if
they also have the same label by lA, i.e., (lB(e) = lB(e′)) ⇒ (lA(e) = lA(e′)).
We call lB a refined labeling function for LA.

Note that the model MB discovered from LB has a different set of activ-
ity labels (i.e., A(MB) = B) than the model MA discovered from LA (i.e.,
A(MA) = A). However, for comparing MA and MB w.r.t. various measures,
both models should have the same set of activities. To allow for this comparison,
we introduce some notions that allow replacing the refined labels B of MB with
the original labels in A. Each refined log LB = (C, lB) of LA = (C, lA) induces
the label abstraction function β : B → A with β =

⋃
e∈E{lB(e) 	→ lA(e)}.

The inverse β−1(a) = {b ∈ B|β(b) = a} gives the set of refined labels for
original label a ∈ A. Note that β(lB(e)) = lA(e) for all events e ∈ E.
For example, in Fig. 1, the refined log Lre of Llab induces the abstraction
β = {r → r, c1 → c, c2 → c, c3 → c, b1 → b, b2 → b, x1 → x, x2 → x, d → d},
label c is refined into the set β−1(c) = {c1, c2, c3}.

Using β, we can abstract model MB by replacing each label b in MB with
β(b). Let β(MB) denote the resulting model. Lemma 1 then follows immediately
from the definitions.

Lemma 1 (MB and β(MB) have the Same Behaviors). Let LA be an event
log and LB be a refined log of LA. Let MB be a model discovered from LB such
that each trace of LB is a trace of MB. Let β be the label abstraction induced by
LB. Then each trace of LA is a trace of β(MB).

Through β we can now compare models MA and β(MB) respectively dis-
covered from both original log LA and refined log LB and formally define our
problem.

96 X. Lu et al.

Problem Definition. Let Llab = (C, l) be an (imprecisely) labeled event log
over the set of activities A. Let S denote the system model that generated Llab

with A(S) = A. Given discovery algorithm D, let Mlab = D(Llab) be the model
discovered on the labeled log. We would like to find a refined labeling function l′ of
l that with induced label abstraction β such that for the refined log Lre = (C, l′)
and the discovered, abstracted model Mre = β(D(Lre)) over A, the following
properties hold:

(1) Fitness and precision of Mre improves over Mlab w.r.t. the given labeled log:
– log precision(Mre, Llab) ≥ log precision(Mlab, Llab) and
– log fitness(Mre, Llab) ≥ log fitness(Mlab, Llab)

(2) Recall and precision of behavior of Mre should be higher than Mlab w.r.t. S,
i.e.,
– sys precision(S,Mre, Llab) ≥ sys precision(S,Mlab, Llab) and
– sys recall(S,Mre, Llab) ≥ sys recall(S,Mlab, Llab)

When the system S is unknown, we consider our third aim as providing
different refined labeling functions that satisfy the first requirement which allows
users to explore different representations of the input log.

Related Issues and Design Decisions. We discuss three complications
related to the research problem to motivate our design decisions and assump-
tion. First, there is a large combinatorial number of possible solutions, since in
principle any label can be refined into an arbitrary number of refined labels. In
addition, we have no criteria nor metrics that define when a refinement is optimal
for the algorithm D. This depends on the discovery algorithm used. Furthermore,
when the system is unknown, the same process may have different equally good
representations depending on the stakeholder, the context, and decisions made
in the formalization of the model. Since one can not deduce the optimal log nor
the optimal model, we have to base the decisions for refining event labels on the
behavioral structure of the event log and some basic principles and heuristics we
discuss later.

The second complication is posed by the discovery algorithms and mea-
sures used for evaluation. Ideally, a more precise log would result in a more
precise model, independent of the discovery algorithm and the measures we
applied. However, this is not the case. A discovery algorithm may return a less
precise model while the log is more refined (for example to avoid overfitting).
Therefore, we decided to propose a backup plan. If log precision(Mre, Llab) <
log precision(Mlab, Llab), we simply return the log with its imprecise labeling.
This guarantees that at least using the refined log would not lead to discovering
a model worse than using the imprecise log.

Finally, in this paper, we assume the discovered model is sound and fitting
for the following reasons. Most state-of-art measures assume a fitting log when
evaluating the quality of a model. We observed in our own experiments that the
measures become rather unreliable and difficult to compare or to understand the
improvements when the models are not sound and fitting. Moreover, as fitness is
defined in terms of the number of events that can be replayed by a model and we

Handling Duplicated Tasks in Process Discovery by Refining Event Labels 97

are not adding or removing any events (which would have direct influence on the
fitness), changes in fitness are merely a quality of the discovery algorithms used.
For example, if the algorithm guarantees to return a fitting model, relabeling
events would not change this property.

5 Approach

We decompose the label refinement problem into three subproblems. First, we
identify one or multiple labels as candidates for imprecise labels. Then, we con-
sider a group of traces that have similar behavior to be a variant of the process
and refine the imprecise label candidates (horizontally) into different variants
and (vertically) within a variant. Figure 3 shows an overview of the three sub-
problems using an example.

5.1 Detecting Imprecise Labels

The first step is to identify one or multiple candidates for imprecise labels. This
step helps to limit the search scope to those events that have an imprecise label
and to avoid splitting non-duplicated tasks. Furthermore, it helps to consolidate
the context information of events with imprecise labels. One may also consider all
labels, however, this may unnecessarily complicate the label refinement process.

Formally, we define the problem as follows. Let L = (C, lA) be a labeled
event log and A the set of labels used. We would like to identify a subset of
labels A′ ⊆ A and consider them as candidates for imprecise labels. In other
words, the labels in A\A′ are precise labels, and there is no need to refine them,
i.e., for e ∈ EC and lA(e) = a ∈ A\A′, any refined labeling function lB of lA
with its β implies lB(e) = a, and β−1(a) = {a}.

There are many different ways to detect imprecise labels. We discuss two
methods (used in the evaluation) and consider other possibilities as future work.
The optimal case is to have an oracle that returns the truly imprecise labels
as candidates. For example, domain experts indicate a particular label to be
imprecise. In the remainder, we refer to this as Oracle Detection (OD).

Besides having an oracle, we propose an automated method that uses prop-
erties of Inductive Miner (IM) [11]. IM systematically parses an event log and

Fig. 3. The proposed approach for refining imprecise label as log preprocessing.

98 X. Lu et al.

finds a locally optimal “subprocess” recursively. If IM fails to find an accurate
subprocess, it returns a generic subprocess that can replay any trace over the
events in the corresponding sublog (i.e., a local “flower loop”). In this paper,
we consider this type of subprocess to be imprecise. We choose to select the
smallest imprecise subprocess (i.e., local “flower loop”) and return the activity
labels in the subprocess as imprecise label candidates. For instance, applying IM
on the running example, IM returns a process model of Fig. 1(c) containing a
flower loop with activity labels c, b and x, and this set {c, b, x} is returned as
candidates for imprecise labels. We use the IM Detection (IMD) to refer to this
method. In principle, any subprocess or multiple subprocesses can be selected.

5.2 Intermediate Step - Matching Events

After finding imprecise label candidates, we propose an intermediate step before
refining these labels. The objective of this intermediate step is to identify similar-
ities between events across traces. Similar events should carry the same refined
label whereas dissimilar events should carry a different label.

In essence, the procedure for computing the similarity of events of differ-
ent traces uses the existing trace matching technique of Sect. 3 and goes as
follows. Given a labeled log L = (C, l), for each two traces σ, σ′ ∈ C, we
find an optimal mapping λσ,σ′ ∈ Eσ × Eσ′ between their events for a given
cost function. This way we get the distance between any two traces σ and
σ′ as cost(σ, σ′, λσ,σ′). This distance can be normalized w.r.t. the highest cost
maxCost = maxσ,σ′∈C cost(σ, σ′, λσ,σ′).

To obtain the distance between any two events, we project the normalized
distance between traces onto the individual pairs of events. Formally, we con-
struct an undirected weighted graph G = (EC , R, l, w) where nodes EC are the
events of L = (C, l) with labeling l. For each pair (σ, σ′) of traces in L and a best
matching λσ,σ′ and for each pair (e, e′) ∈ λσ,σ′ of events, we add the edge (e, e′)
to R with weight w(e, e′) = cost(σ, σ′, λσ,σ′)/maxCost. Note that in G a single
event may have many weighted edges describing how close it is to the most sim-
ilar event in other traces. When mapping the costs from pairs of traces to pairs
of events in G, any edge between events with a precise label a (i.e., a /∈ A′) gets
cost 0. This way, we will enforce that these labels are not refined. The higher
the cost between two events, the more likely that they receive different labels.
Searching for a mapping with least cost ensures we group the most similar events
and give them together the same label during refinement. Figure 4(a) shows an
example of a weighted graph of events for an imprecise log that consists of four
traces. Note that the graph is incomplete; the mappings between t0 and t2, t1
and t3, and t0 and t3 are not shown for the sake of simplicity.

5.3 Refining Labels Horizontally Across Variants

We can now identify variants within a process by grouping events across traces
based on their similarity. The reason for distinguishing variants is the following.
If two very different variants of a part of the process are considered together, a

Handling Duplicated Tasks in Process Discovery by Refining Event Labels 99

cr dc xb

dr x cb

e6 e7 e8 e9 e10 e11

e12 e13 e14 e16e15

r dc xbe1 e2 e3 e4 e5

dr x bce17 e18 e19 e21e20

Trace t 0

Trace t 1

Trace t 2

Trace t 3

0.5 0.5 0.5

0.5 0.50.5

0 0

0

0

0

0 0.7 0.7 0.7

c2r dc2 x2b2

dr x1 c1b1

e6 e7 e8 e9 e10 e11

e12 e13 e14 e16e15

r dc2 x2b2e1 e2 e3 e4 e5

dr x1 b1c1e17 e18 e19 e21e20

0.5 0.5 0.5

0.5 0.50.5

0 0

0

0

0

0

Horizontal refinement zv = 0.6

c3r dc2 x2b2

dr x1 c1b1

e6 e7 e8 e9 e10 e11

e12 e13 e14 e16e15

r dc2 x2b2e1 e2 e3 e4 e5

dr x1 b1c1e17 e18 e19 e21e20

0.5 0.5 0.5

0.5 0.50.5

0 0

0

0

0

0

Vertical refinement zf = 0.4(a) (b) (c)

Fig. 4. A graph of labeled events with weighted edges denoting the dissimilarity (a),
for which the labels are refined horizontally (b) and then vertically (c).

discovery algorithm may return a more general structure than exists in reality.
Consider for example the two traces σ = 〈..., c, b, x, ...〉 and σ′ = 〈..., x, b, c, ...〉.
One may consider them a single variant and return for example a model with
activities b, c and x in parallel (i.e. can be executed in any order). However, an
alternative would be having a precise model that only allows these two variants.
The “optimal” model depends on the particular case. When the original model
for the system is unknown, we cannot claim one of them is better, therefore
we simply want to add the alternative with both variants to the solution space
of existing discovery algorithms allowing user to explore both representations.
Label refinement allows us to achieve this systematically.

The similarity measure enables us to be flexible when considering which
variants to split by introducing a variant threshold zv. We say, two traces
σ and σ′ are in the same variant, written σ ∼ σ′ iff their normalized
cost(σ, σ′, λσ,σ′)/maxCost ≤ zv or there exists σ′′ with σ ∼ σ′′ ∼ σ′. Note
that ∼ is an equivalence relation where two very dissimilar traces may become
equivalent if there is a “chain” of similar traces between them. Thus, two events
e ∈ σ, e′ ∈ σ′ that have imprecise labels (i.e., l(e), l(e′) ∈ A′) are in the same
variant iff σ ∼ σ′. In our graph G, we materialize (dis-)similarity by removing
any edge (e, e′) with weight w(e, e′) > zv. As all mappings between events of the
same two traces σ and σ′ carry the same weight, all events of a trace are kept in
the same variant. Note that edges between the events that carry precise labels
have weight 0 and are not split into multiple variants.

For example, setting the variant threshold for the event distance graph G
of Fig. 4(a) to 0.6 yields the graph G′ of Fig. 4(b) showing two variants in the
part of the process involving labels c, b, x. Labels r and d are not refined into
multiple variants.

5.4 Refining Labels Vertically Within Variant

After refining labels horizontally to distinguish different variants, there can still
be multiple events carrying the same label within a single variant indicating
either a loop or different tasks. Assuming in 50 % of cases activity c is executed

100 X. Lu et al.

once and in the other 50 % of the cases, c is executed twice, we could infer that
there are two c tasks (one optional), or just one c task in a loop. In the following,
we again use label refinement to add both alternatives to the solution space.

For refining labels within a single variant, we assume the following character-
istics of a proper loop: when the number of iterations increases, the probability
of executing this iteration decreases. For example, one may always execute the
first iteration, whereas the second iteration is only executed in 20 % of the cases.
In contrast, a duplicated task in a sequence would show similar numbers of
executions in all traces of the same variant.

Based on this assumption, we introduce an unfolding threshold parameter
zf . For each imprecise label candidate a ∈ A′, let G1

a, ..., Gm
a be the connected

components of G in which all events have label a. Gi
a and Gj

a are in the same
variant iff for any two events ei ∈ Gi

a and ej ∈ Gj
a, ei and ej are in the same

variant (see Sect. 5.3). For example, Fig. 4(c) highlights for imprecise label c
the three connected components G1

c = {e2, e7}, G2
c = {e10}, G3

c = {e15, e19}, in
which G1

c and G2
c in the same variant. Next, let #Gi

a denote the average position
of the events of #Gi

a in their respective traces. Let G1
a ... Gk

a be in the same
variant ordered by #Gi

a. Let maxSize = max1≤i≤k

∣
∣Gi

a

∣
∣ be the size of largest

component (w.r.t. its events). For 1 ≤ i ≤ k, if i = 1 or
∣
∣Gi

a

∣
∣ ≥ vf ∗ maxSize,

then all events in Gi
a get a new label, otherwise Gi

a get the label of the events
of Gi−1

a . For example, for imprecise label c, for the two connected components
G1

c = {e2, e7} and G2
c = {e10} that are in the same variant, #G1

c = 2, #G2
c = 5,

and maxSize = 2. Therefore, if the unfolding threshold vf is 0.6, then the events
in G2

c get the same label as the events in G1
c . If vf is 0.4, then both G1

c and G2
c

each get a new label.

6 Experimental Evaluation and Case Study

We implemented the techniques of Sect. 5 in the process mining toolkit ProM
and conducted controlled experiments and a real-life case study to evaluate our
approach. Plugins and experiments are available in the TraceMatching package
of ProM. We first explain the experimental setup and then discuss the result.

Experimental Setup. The experimental setup is shown in Fig. 5. We randomly
generated block structured models as systems with n number of visible tasks.
Each system has k tasks that have the same activity label (here we consider just
one duplicated label). For each system, we generate one imprecisely labeled log
Llab = (C, llab) of a 1000 cases each. From the imprecise log Llab, we discover
Mlab = D(Llab). For the same log, we also apply our approach of Sect. 5 to
obtain a refined log Lre = (C, lre) (note that β(Lre) = Llab), for which we dis-
cover model Mre. Two algorithms are used: IM [11], i.e., Mre,IM = β(DIM (Lre)),
and ILP [10], i.e., Mre,ILP = β(DILP (Lre)). The quality of each of the models is
compared with the corresponding model Mlab for evaluating to what extent our
aims has been achieved. In all experiments, the same cost configuration is used
for matching events. To speed up the experiments, the events that have precise

Handling Duplicated Tasks in Process Discovery by Refining Event Labels 101

Compute Model Qualities

Label

refinement

L_lab

Generator

System S,

in which k number of

transitions have

the same label

L_re
M _lab

M _re

D

D qualities of

M _lab (LB)

qualities of

M _re

D = IM , ILP
Model qualities = Log_fitness , Log_precision ,

Sys_fitness , Sys_precision

improved

For Sys_recall and Sys _precision

For Log_fitness and Log _precision

Fig. 5. An overview of the experimental design.

The refined models (c)(e) shows that the duplicated tasks were rediscovered
in their respective positions, but unable to identify the concurrency between
two consecutive duplicated tasks.

(a) System

(b)

Log_precision improved by 0.55

Sys_precision improved by 0.68

Syst_recall is 1

Log_precision improved by 0.58

Sys_precision improved by 0.51

Syst_recall is 1

(d)

(c)

(e)

B
B

B
B

B

B B B B

B

B B B

B

Fig. 6. Original model with duplicate tasks (a), results of IM on imprecise log (b) and
on refined log (c), same for ILP (d) and (e).

labels, i.e. l(e) = l(e′) /∈ A′, are matched naively based on their labels and order-
ing in their respective traces. All models, logs and results can be downloaded2.

(Exp. 1) When Imprecise Labels are not in a Loop, What are the
Improvements? In this experiment, we used the default parameters: the variant
threshold zv is 0.05 and the unfolding threshold zf is 0.60 for all models. We
generated for size n = [10, 15, 20] 200 models (600 models in total). For each
model, there are k = 4 transitions having the same label and that are not in a
loop.

We show two examples of the refined models compared to their imprecise
models in Figs. 6 and 7 to illustrate our results: Fig. 6 shows an improvement
in log precision of more than 0.50 and Fig. 7 an improvement of 0.10. In Fig. 6,
the original model (a) has four duplicated tasks labeled “B”; applying IM and
ILP on the imprecise log respectively results in discovering an imprecise model
(b), which has a flower subprocess consisting of 5 activities, or an imprecise
2 doi:10.4121/uuid:ea90c4be-64b6-4f4b-b27c-10ede28da6b6

or https://svn.win.tue.nl/repos/prom/Documentation/TraceMatching/BPM2016.zip.

http://dx.doi.org/10.4121/uuid:ea90c4be-64b6-4f4b-b27c-10ede28da6b6
https://svn.win.tue.nl/repos/prom/Documentation/TraceMatching/BPM2016.zip

102 X. Lu et al.

Log_precision improved by 0.10,

Sys_precisionimproved by 0.22, Sys_recall= 1

(a) System

(b)

The refined model (c) shows that the large
flower loop in (b) is unfolded by correctly
identifying the duplicated task t 1 , but
unable to completely rediscover t2 , t3 and t 4.

(c)

A
A

A

A

A

A A
A

Fig. 7. Original model (a), result of IM on imprecise log (b) and on refined log (c).

88
50

32

112
81

57

112
150

168

88
119

143

0

50

100

150

200

10 15 20 10 15 20

ILP IM

(a) Number of logs

refined (IMD)

TRUE FALSE

71

31 25 14 12 11 6

139

54

34 11 8 4

0

50

100

150

200

250

300

(0,

0.1]

(0.1,

0.2]

(0.2,

0.3]

(0.3,

0.4]

(0.4,

0.5]

(0.5,

0.6]

(0.6,

0.7]

(0.7,

0.8]

(0.8,

0.9]

(0.9,

1.0]

(b) Frequency of improvements in

Log_Precision (IMD)

ILP IM

1

91

151

123

49

51

35

76

104

132

72

0

50

100

150

200

[0,

0.5]

(0.5,

0.6]

(0.6,

0.7]

(0.7,

0.8]

(0.8,

0.9]

(0.9,

1.0)

[1.0]

(c) Shift in System F1-Score

(IMD)

#M_lab #M_re

Fig. 8. Number of refined log (a), frequency of improvements in log precision (b) and
shifts in system scores (c).

model (d), which has two unconnected activities; on the refined log, for both
ILP and IM, the refined models (c) and (e) shows that the four duplicated tasks
were correctly discovered in their respective positions in the process, however,
our approach is unable to identify the concurrency between two consecutive
duplicated tasks t2 and and t3 in (a).

Overall, Fig. 8(a) shows the number of systems for which our approach was
able to find a refinement for its log that leads to discovering a better model
with a higher log precision, while using automated detection of imprecise labels
(IMD). In general, in 35 % (420 of 1200) of the logs, we were able to find a
refinement with default parameters using IMD; using domain knowledge (OD)
increased this number by 3 %. For 42 % of the refined logs, IM discovered an
improved model, which is 14 % more than for ILP.

Figure 8(b) shows the histogram of frequencies of actual log precision
improvements using IMD. As can be seen, for both ILP and IM, our approach
is able to help discover models with significant improvements. For ILP, the app-
roach was able to find for 99 out of 600 models an improvement between 0.1 and
0.7 (using OD, this number increased by 9 %); similar for IM, 111 out of 600
refined models had such an improvement (using OD, this number is increased
by 20 %). The average log precision is increased by 0.15.

Handling Duplicated Tasks in Process Discovery by Refining Event Labels 103

Figure 8(c) shows the absolute F1-score (which is the harmony average of
sys precision and sys recall) for Mlab (discovered on imprecise logs) versus Mre

(discovered on the successfully refined logs using IM and ILP); our refinement
clearly shifts the F1-score towards 1. When using automated detection (IMD),
16 % (67 out of 420) of the improved logs were refined in such way that F1-
score becomes 1, which indicates that the resulting model have exactly the same
alternative behavior as the original system enabled by the log (using OD we
obtain 77 out of 516). Performance-wise, the average running time for computing
one refined log varies between 8 and 14 s. depending on the model size.

(Exp. 2) Influence of Our Parameters. Next, we investigated whether
adjusting parameters improves the quality of label refinement and whether such
parameters can be found automatically for each model. For this, we repeated the
above experiment for IM and OD and changed variant threshold (from 0.08 to
0.00 in steps of 0.01) and unfolding threshold (from 0.00 to 0.60 in steps of 0.10).
We stopped when getting a log where Mre had higher log precision than Mlab.
The average running time for computing one such refined log has increased to
between 53 and 111 sec. depending on the model size.

Figure 9(a) shows the number of imprecise logs improved, (b) shows the
actual improvements in log precision, and (c) shows the F1-scores of sys recall
and sys precision. It is worthwhile to note that, using the adaptive parameters,
for 87 % of the imprecise logs, we were able to refine the log helping IM discover
a better model. The average log precision is increased by 0.12. Compared to the

Fig. 9. The same types of result as Fig. 8 when using adaptive parameters.

Fig. 10. The same types of result as Fig. 8, if a duplicated task is found in a loop.

104 X. Lu et al.

46 % (when using default parameters and OD), the number is increased by more
than 89 %. Another notable result is that the number of Mre that has an increase
in log precision between 0.2 and 0.7 is also increased by 72.2 % compared to the
default parameter. This states for over one out of five logs, the adaptive app-
roach is able to find a rather significant improvement, if the imprecise labels are
not in a loop.

We manually inspected the models that could not be improved by using
adjusted parameters. We found that this mostly concerned models that either
have a large loop or have duplicated tasks concurrent to many other tasks. The
difference in the corresponding components (i.e. such loops increase the cost of
structure and such concurrency increases the cost of neighbors) becomes domi-
nant in the cost returned by trace matching, resulting in splitting the imprecise
labels wrongly even though the matching may be correct.

(Exp. 3) What if Imprecise Labels Appear in a Loop? We again generated
600 models, 200 for each n = 10, 15, 20. We used OD and set k = 2 transitions
that have imprecise label: one inside and one outside of a loop. We used adaptive
parameter selection and IM as discovery algorithm. Figure 10 shows the results.
In 60.5 % of the models, the approach could find an improvement (32 % less
compared to the results when no duplicated task is in a loop), which indicates
that the approach has more difficulties to distinguish imprecise labels in loops.
Another interesting result is that although the approach could improve fewer
logs, the improvements achieved were considerable in some cases; 20 models
have increased log precision by more than 0.5. Figure 11 shows an example of
the model discovered using the refined log, which rediscovered the original model
Fig. 11(a).

Inspecting the models, we observe that the approach is able to to distinguish
loops if an imprecise transition t outside of a loop is followed by an imprecise
transition inside of a loop. We found three patterns where our approach failed:
(1) distinguishing a second iteration of a loop from a choice for a duplicate
activity, (2) distinguishing a duplicate activity at the end of a loop body from
one immediately after the loop, (3) one duplicate activity is concurrent to another
duplicate activity within a loop. We plan to address these issues in our future
work.

Real-Life Case Study. We conducted a case study involving a healthcare
process. The log was provided by Maastricht University Medical Center
(MUMC+), a large academic hospital in the Netherlands. We used existing
approaches to filter the known deviating cases and events. The cleaned hospital log
contains 1039 cases and 6213 events having five distinct labels. Since the log still
contains imprecise labels and misses some events, applying the Inductive Visual
Miner (IvM) yields an imprecise model with two self loops, as shown in Fig. 12(a).
Using the default parameter, the approach was unable to refine the log. Therefore,
we took an iterative approach.

We first refined events labeled with “surgery”, i.e., the imprecise label can-
didate is “surgery”. In the second and third iteration we refined events labeled
with “consultation”. The resulting model shows the sequential behavior expected

Handling Duplicated Tasks in Process Discovery by Refining Event Labels 105

(a) = System

(b)The original model (a) has the second duplicate task in a loop.
Without refinement a large flower loop is discovered (b). Using
our approach refines labels so that model (a) is rediscovered.

Log_precisionimproved by 0.67,

Sys_precisionimproved by 0.79,

Sys_recall= 1

T

T

T

Fig. 11. Original model with duplicate tasks and rediscovered by IM on refined log
(a), result of IM on imprecise log (b).

by domain experts. An interesting result is that after refining the labels, the
discovered model is now suitable for computing performance. For example, a
domain expert stated that within 2 months after the measurements, the first
surgery should be executed, and the model shows on avg. 59 days. After the first
surgery, a post-surgery consultation should take place within a week, and the
model shows on avg. 8 days. If a second surgery should take place, then it should
be performed after two weeks, and the model shows on avg. 14 days. Note that
such performance diagnostics are difficult to obtain using the model discovered
from the imprecise log Fig. 12(a).

Iteration 1 :

refine “surgery” events

Iteration 2 :

refine “consultation” events

Iteration 3 :

refine “consultation” events

“1 st surgery” (~59 days

after the last

test or consultation)

3 types of measurements and measurement result consultation

“after surgery

consultation” (~8 days

after the surgery)

“2 nd surgery”

(~14 days after

1st surgery or last

consultation)

(a)

(b)

(c)

(d)

Fig. 12. Real-life log obtained from a Dutch hospital that was refined our approach;
the resulting model better reflects reality and can be used to diagnose performance.

106 X. Lu et al.

7 Discussion and Conclusion

In this paper, we investigated the problem of imprecise labels and proposed a
fresh look at the problem from a log preprocessing point of view. We used context
and structural information of events in a log to find dissimilar groups of events
that have the same label and refined their labels accordingly.

The results of our evaluation provide interesting insights. When imprecise
labels are not in a loop, our approach is able to improve logs by refining labels
in 35 % of the cases using a default parameter, which increased to 87 % if the
parameter is automatically adapted to the log and the discovery algorithm. If
one imprecise label is in a loop, we could still improve 61 % of the logs. The
case study demonstrated that the approach can be used iteratively (i.e., refining
labels in multiple steps) in practice to obtain more accurate and precise models.
Interestingly, such a model can be used to derive reliable performance diagnostic.
Future research aims at investigating and tackling the limitations of the approach
found during the experiments.

References

1. Herbst, J.: A machine learning approach to workflow management. In: Proceedings
11th European Conference on Machine Learning, pp. 183–194 (2000)

2. van der Aalst, W.M.P., Rubin, V., Verbeek, H.M.W., van Dongen, B.F., Kindler,
E., Günther, C.W.: Process mining: a two-step approach to balance between under-
fitting and overfitting. Soft. Syst. Model. 9(1), 87–111 (2010)

3. De Weerdt, J., De Backer, M., Vanthienen, J., Baesens, B.: A multi-dimensional
quality assessment of state-of-the-art process discovery algorithms using real-life
event logs. Inf. Syst. 37(7), 654–676 (2012)

4. vanden Broucke, S.K.L.M.: Advances in process mining: artificial negative events
and other techniques. Ph.D. thesis, KU Leuven (2014)

5. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: Quality dimensions in
process discovery: the importance of fitness, precision, generalization and simplic-
ity. Int. J. Coop. Inf. Syst. 23(1), 1–39 (2014)

6. Lu, X., Fahland, D., van den Biggelaar, F.J.H.M., van der Aalst, W.M.P.: Detect-
ing deviating behaviors without models. In: Reichert, M., Reijers, H. (eds.) BPM
Workshops 2015. LNBIP, vol. 256, pp. 126–139. Springer, Heidelberg (2016). doi:10.
1007/978-3-319-42887-1 11

7. Pittke, F., Richetti, P.H.P., Mendling, J., Baião, F.A.: Context-sensitive textual
recommendations for incomplete process model elements. In: BPM 2015, Proceed-
ings, pp. 189–197 (2015)

8. Koschmider, A., Ullrich, M., Heine, A., Oberweis, A.: Revising the vocabulary of
business process element labels. In: Zdravkovic, J., Kirikova, M., Johannesson, P.
(eds.) CAiSE 2015. LNCS, vol. 9097, pp. 69–83. Springer, Heidelberg (2015)

9. de Medeiros, A.K.A., Weijters, A.J.M.M., van der Aalst, W.M.P.: Genetic process
mining: an experimental evaluation. Data Min. Knowl. Discov. 14(2), 245–304
(2007)

10. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: ILP-based process dis-
covery using hybrid regions. In: Proceedings of the International Workshop on
Algorithms and Theories for the Analysis of Event Data, ATAED 2015, pp. 47–61
(2015)

http://dx.doi.org/10.1007/978-3-319-42887-1_11
http://dx.doi.org/10.1007/978-3-319-42887-1_11

Handling Duplicated Tasks in Process Discovery by Refining Event Labels 107

11. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013)

12. Greco, G., Guzzo, A., Pontieri, L., Saccà, D.: Discovering expressive process models
by clustering log traces. IEEE Trans. Knowl. Data Eng. 18(8), 1010–1027 (2006)

13. De Weerdt, J., vanden Broucke, S.K.L.M., Vanthienen, J., Baesens, B.: Active trace
clustering for improved process discovery. IEEE Trans. Knowl. Data Eng. 25(12),
2708–2720 (2013)

14. Garćıa-Bañuelos, L., Dumas, M., La Rosa, M., De Weerdt, J., Ekanayake, C.C.:
Controlled automated discovery of collections of business process models. Inf. Syst.
46, 85–101 (2014)

15. La Rosa, M., Dumas, M., Ekanayake, C.C., Garćıa-Bañuelos, L., Recker, J.,
ter Hofstede, A.H.M.: Detecting approximate clones in business process model
repositories. Inf. Syst. 49, 102–125 (2015)

16. van der Aalst, W.M.P., Adriansyah, A., van Dongen, B.F.: Replaying history on
process models for conformance checking and performance analysis. Wiley Inter-
disc. Rev.: Data Min. Knowl. Discov. 2(2), 182–192 (2012)

17. Munoz-Gama, J.: Conformance checking and diagnosis in process mining. Ph.D.
thesis, Universitat Politècnica de Catalunya (2014)

18. van der Aalst, W.M.P., de Medeiros, A.K.A., Weijters, A.J.M.M.T.: Process equiv-
alence: comparing two process models based on observed behavior. In: Dustdar,
S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 129–144.
Springer, Heidelberg (2006)

19. van der Aalst, W.M.P., van Hee, K.M., ter Hofstede, A.H.M., Sidorova, N., Verbeek,
H.M.W., Voorhoeve, M., Wynn, M.T.: Soundness of workflow nets: classification,
decidability, and analysis. Formal Aspects Comput. 23(3), 333–363 (2011)

	Handling Duplicated Tasks in Process Discovery by Refining Event Labels
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Problem Definition and Analysis
	5 Approach
	5.1 Detecting Imprecise Labels
	5.2 Intermediate Step - Matching Events
	5.3 Refining Labels Horizontally Across Variants
	5.4 Refining Labels Vertically Within Variant

	6 Experimental Evaluation and Case Study
	7 Discussion and Conclusion
	References

