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Abstract. An extensive amount of work has addressed the evaluation
of process discovery techniques and the process models they discover
based on concepts like fitness, precision, generalization and simplicity.
In this paper, we claim that stability could be considered as an impor-
tant supplementary evaluation dimension for process discovery next to
accuracy and comprehensibility, with ties to the generalization concept.
As such, our core contribution is a new framework to measure stabil-
ity of process discovery techniques. In this paper, the design choices of
the different components of the framework are explained. Furthermore,
using an experimental evaluation involving both artificial and real-life
event logs, the appropriateness and relevance of the stability assessment
framework is demonstrated.
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1 Introduction

In unsupervised learning, where there is no straightforward way to evaluate dis-
covered solutions, an important question is whether or not a specific solution
is valid [12]. Common domains of unsupervised learning are clustering, latent
variable methods such as Gaussian Mixture Models, and certain neural network
models such as Self-Organizing Maps. Applications can be found in bioinfor-
matics, data mining and pattern recognition, among others. Process discovery,
i.e. the automated construction of process models from event logs, is essentially
an unsupervised learning task as well. Admittedly, discovered process models
can be evaluated structurally, e.g. on soundness [21], or based on the event log
through conformance checking (for an overview see [7]). Nonetheless, there is no
strict variable or label to predict, hence the discovery of a process model should
be considered an unsupervised learning task.

The importance of validity of unsupervised learning algorithms is addressed
in [12] as follows: ‘It is difficult to ascertain the validity of inferences drawn
from the output of most unsupervised learning algorithms. One must resort to
heuristic arguments not only for motivating the algorithms, as is often the case in
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supervised learning as well, but also for judgements as to the quality of the results.
This uncomfortable situation has led to heavy proliferation of proposed methods,
since effectiveness is a matter of opinion and cannot be verified directly.’.

While validity of process discovery techniques is partially addressed by the
whole plethora of conformance checking techniques, it is argued in this paper that
evaluation of process discovery algorithms lacks a thorough methodology to assess
the stability of these algorithms. In clustering research, a stability-based assess-
ment of validity has received plenty of attention [12,17]. It is argued in this paper
that this stability dimension is missing to a large extent and should complement
the already understood evaluation dimensions in process discovery, i.e. accuracy
(recall, precision, generalization) and comprehensibility (simplicity).

Conceptually, the stability of a process discovery technique can be defined
as the consistency of process discovery solutions obtained using this technique
from perturbed sets of input data or settings. This consistency is measured as
the similarity between the discovered process models for each of the perturbed
data sets or deviating settings. The different constructs will be elaborated on
in Sect. 2. Stability as a dimension could be further refined into different types,
for instance log perturbation stability or parameter stability, depending on the
method of perturbation (perturbing the event log versus perturbing the parame-
ter settings of the discovery technique). Most likely, there is an interdependency
between both: the same technique with different parameter settings could be
more stable with regards to log perturbations. Parameter sensitivity of process
discovery techniques has been partially addressed in [2], based on fitness and
precision rather than stability.

Observe that log-perturbation stability, as it is defined and constructed here,
is conceptually related to existing dimensions for the evaluation of discovered
process models, specifically generalization. Generalization is defined as measur-
ing the probability that, given an event log and a process model, a next batch
of process instances not in the original event log will invalidate a process model
[20]. For an overview and evaluation of existing generalization metrics, we refer
to [23]. The log-perturbation could be seen as a variation on this ’next batch’ of
behaviour, and similarity between the discovered process model could be seen
as a quantification of the validity of baseline process model.

In this paper, we propose a new framework for measuring the stability of
process discovery techniques through a stability index, inspired by the approach
in [15]. Although the framework could be adapted for measuring different types of
stability, we focus on log perturbation stability, which is a variant with regards to
repeatedly resampled or perturbed input data. The framework has been imple-
mented as a ProM-plugin1 and can be used by process miners to assess the
stability of different process discovery techniques, given an event log of their
interest.

Given this objective, the rest of this paper is structured as follows: in Sect. 2,
a general approach for assessing stability is proposed. In Sect. 3, the approach

1 The plugin, screenshots and additional information can be found at http://www.
processmining.be/PDStability/.

http://www.processmining.be/PDStability/
http://www.processmining.be/PDStability/
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is extensively evaluated considering two applications: evaluating the stability of
discovered process models with regards to correctness, and evaluating the stabil-
ity of process models with regards to completeness. Finally, in Sect. 4, conclusions
are formulated and an outlook to future adaptations is presented.

2 A Stability Assessment Framework

The approach proposed in this paper is based on a methodology for stability-
based validation of clustering solutions in [14], which was adapted for biclustering
solutions in [15]. As discussed in Sect. 1, clustering is one of the most well-
known unsupervised learning techniques. As such, it suffers from the same issues
regarding solution validity as other unsupervised learning techniques.

In [14,15], resampling/perturbation strategies, learning algorithms, and
solution similarity metrics are proposed that are specifically designed for
(bi)clustering problems. In this domain, stability was shown to be an effective
metric for assessing the validity of a clustering solution, e.g. with regards to
cluster size or clustering technique. An advantage of the clustering domain as
compared to process discovery is the existence of alternative validity indices,
such as entropy or gap statistics, which can be used as a reference for com-
paring a stability-based approach. In process discovery, solution validity is a
more complex construct, since it is already partially addressed by existing met-
rics. Specifically, our approach is related to the generalization sub-dimension of
accuracy, as explained in the previous section. Nonetheless, we claim that a sup-
plementary dimension to existing interpretations of process discovery validity
should be considered, i.e. stability.

As such, this paper contributes by proposing a stability assessment framework
for process discovery techniques. The framework is tailored to measure so-called
‘log perturbation stability’, however it can be reconfigured for assessing other
types of stability, such as parameter stability.

In Fig. 1, our stability assessment framework is depicted. Tailoring the frame-
work to process discovery entails the configuration of three main components, i.e.
the perturbation strategy (step 1), the solution similarity computation (step 3),
and a stability index calculation (step 4). In addition, a process discovery tech-
nique should be chosen (step 2).

The steps of our approach thus become:

1. Step 1: Given an event log L, and a log perturbation function P (), create n
perturbed versions of the event log: P1(L) to Pn(L).

2. Step 2: Discover a process model PM by applying a process discovery tech-
nique PD() to the original event log: PM = PD(L) and to the perturbed
event logs: PMi = PD(Pi(L)) with i ∈ {1..n}.

3. Step 3: Given a similarity index I(PMx, PMy), quantify the similarity
between the discovered process model on the original dataset and the dis-
covered process model on the perturbed dataset as I(PM,PMi).
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Fig. 1. A visualization of the proposed approach for calculating the stability of a
discovered process model, based on a similar diagram in [15].

4. Step 4: Average these similarity measures to create a stability metric for
event log L and discovery technique PD() as

SPD =
1
n

n∑

i=1

I(PM,PMi) (1)

Observe that a higher value for SPD indicates a better stability of the solution.
As such, this metric can be used for evaluating a process discovery outcome.
In the remainder of this section, we describe the three main components of our
framework: a perturbation strategy based on resampling and noise induction
(Sect. 2.1), computation of solution similarity based on process model similarity
metrics (Sect. 2.2), and calculation of the stability index based on a window-
based approach (Sect. 2.3).

2.1 Step 1: Log Perturbation Strategy

Perturbing event logs essentially boils down to three options: either some behav-
iour is removed, or some behaviour is added, or a combination of both. There
are many different ways to do this. Regarding the removal of behaviour, event
log perturbation can be approached through case-level resampling in a random
fashion, which is closely related to classical bootstrapping [5]. Note that case-
level bootstrapping an event log becomes trace-level bootstrapping. When deal-
ing with event logs, an important consideration is whether to bootstrap process
instances or distinct process instances (i.e. the effect of imbalance on the boot-
strap sample). An alternative to random resampling is systematic leave-one-out
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cross-validation. Cross-validation has been proposed briefly in [20], in the context
of generalization for process-mining techniques, where generalization is measured
by leave-one-out cross-validation as follows: leave out one process instance, and
count the percentage of instances that can still be replayed on the discovered
process model. Observe that our approach deliberately does not incorporate any
form of replay.

Secondly, regarding the addition of behaviour, small perturbations of event
logs strongly relates to the idea of adding noise to the log. In [18], four types of
noise were initially defined: remove head, remove tail, remove body, and swap
tasks. In [6], the removal of a single task was added as a noise induction scheme,
together with the combination of all previous noise types. These noise induction
types were already used to evaluate robustness of process discovery techniques,
for instance in [11]. However, in contrast to our paper, this work evaluated the
robustness to noise of process discovery techniques directly based on traditional
accuracy metrics. Here, we propose a framework for assessing the stability of
process discovery techniques that is independent from the actual accuracy or
comprehensibility of the outcome. As such, it is an orthogonal evaluation dimen-
sion that should be taken into account.

Taking these aspects into consideration, the log perturbation strategy under-
lying our stability assessment framework is as follows. First behaviour can be
removed through a resampling procedure, which is essentially undersampling
at the level of distinct process instances. However, to make the resampling a
bit less naive, the probability that a distinct process instance is removed, is
inversely proportional to the frequency with which this distinct process instance
is present in the event log. Secondly, behaviour can be added through noise
induction. Albeit the several noise types already available [18], we opt to include
three types of noise: remove a single event, swap two events, and add a random
single event (from the log activity alphabet) at a random place in the process
instance. Noise addition is performed at process instance level. For both removal
(undersampling at distinct process instance level) and addition (noise induction
at process instance level), a percentage of affected instances should be chosen.
Observe that in case both perturbation options are applied, the resampling is
performed first and the noise induction is applied second.

2.2 Step 3: Solution Similarity Computation

An extensive overview of similarity metrics for the pairwise comparison of busi-
ness process models is presented in [8]. Three distinct categories of similarity
metrics are proposed: first, node matching similarity, where similarity is based
on the labels and attributes attributed to the different elements of a process
model; secondly, structural similarity, where the labels of these elements are
compared as well as the topology of the process models; and thirdly, behav-
ioural similarity, where the labels of the elements are compared as well as causal
relations captured in the process model.

Given our context of process discovery from an event log, node match-
ing similarity is irrelevant. However, both structural as well as behavioural
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similarity metrics can be of use within the stability assessment framework.
Regarding structural similarity, a so-called graph edit distance similarity is
defined in [8], based on the amount of insertions and deletions that are nec-
essary to transform one process graph into the other. Other structural metrics
such as tree edit distance are available as well [1]. Looking at behavioural sim-
ilarity, a common approach relies on causal footprints [9,10], referred to as the
causal footprint similarity. Other options are transition adjacency-based simi-
larity [29], or behavioral profile-based similarity [13,24,25]. A final category of
process model similarity can be described as event-log based. Such metrics are
based on the principle that not all pathways in a process model are equally
important, and that behaviour that is more likely given the event log should be
represented as such in a similarity metrics. Examples can be found in [19].

The current stability assessment framework incorporates three similarity
metrics: (1) Graph-edit Distance (GED) [8], (2) causal footprint-based simi-
larity (CF) [9], and (3) behavioural profile-based similarity (BP) [24]. In Sect. 3,
the suitability of these metrics is assessed in an experimental evaluation.

2.3 Step 4: Stability Index Computation

Finally, in step 4 of our framework, the stability index is computed as an average
over a number of iterations, as detailed in Algorithm1. Hereto, three extra input
parameters are necessary: a minimal number of iterations rmin, a review window
Δr and a maximal stability error εS . Typical values for these parameters are 20,
10, and 0.005 respectively. This iterative approach serves a double purpose: on
the one hand, it ensures that the final stability is robust and sufficiently precise,
by enforcing an upper bound on the stability error; on the other hand, it prevents
unnecessary computation, by terminating once the stability error is sufficiently
small and the minimal number of iterations have been performed.

3 Experimental Evaluation

In this section, the configurations of the proposed stability assessment frame-
work are analyzed, together with an investigation of the effects of the level of
perturbation added and the specific characteristics of an event log. The objec-
tive is to show the appropriateness of the proposed constructs for the evaluation
of process discovery techniques. Therefore, this section is structured as follows:
first, in Sect. 3.1, the global setup of the evaluation is discussed, with regard
to the datasets, process discovery techniques, similarity metrics and perturba-
tion strategies used. Section 3.2 discusses the effect of the level of perturbation
to which the event log is exposed. Section 3.3 provides the global results, while
Sect. 3.4 takes a closer look at the effects of the characteristics of the event log
on the stability.
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Algorithm 1. Stability evaluation
Input: L := Event log, PD := Process discovery algorithm, P := Perturbation strategy, s := simi-

larity metric;
Input: rmin := 20, Δr := 10, εS := 0.005; % Configuration
Output: S := Stability measure for the combination of event log L and discovery algorithm PD

1: function Stability( L, PD, P , s,rmin, Δr, εS )
2: r := 1 % Iteration
3: PM := PD(L) % Baseline discovered process model
4: u() := {} % List of similarity results per iteration
5: w() := {} % List of stability results per iteration

6: while (r < rmin) ∨ [maxp,q|w(p) − w(q)| > εS ; ∀p, q : r − Δr < p < q ≤ r)] do
7: Lr := Pr(L) % Perturb the log
8: PMr := PD(Lr) % Discovered process model from perturbed log
9: u(r) := s(PM, PMr) % Calculate similarity with baseline model

10: w(r) :=
(r−1)∗w(r−1)+u(r)

r % Calculate stability
11: r := r + 1
12: end while
13: return S := w(r − 1)

14: end function

3.1 Setup

Five aspects of the experimental setup are of interest: the effect of character-
istics of the event log on stability, the differences regarding process discovery
techniques with regards to stability, the similarity metric used to compute the
stability, the chosen perturbation strategy, and the level of perturbation induced
by this strategy.

Firstly, the event log characteristics. We have set up experiments with 20
artificial event logs, as shown in Table 1. These datasets are taken from [3], to
make our results compatible with other findings in the process mining domain.
With regards to the characteristics of the event log, three measures are under
scrutiny: the number of distinct process instances, the number of distinct events
in the log, and the average number of events per process instance. The differ-
ent activity structures on the underlying process models leveraged to create the
artificial logs in [3], such as the presence loops of length 1 or 2, arbitrary or
structured loops, invisible tasks are not considered here, since we are not con-
cerned with rediscovering the artificial process model. As shown in Table 1, these
characteristics vary sufficiently across the different event logs. Furthermore, we
have repeated our setup on 5 real-life event logs [7], also listed in Table 1, to test
whether similar results can be found using realistic event logs.

Secondly, the 8 process discovery techniques that are included in our study are
the following, with default settings, and converted to Petri Nets where necessary:
(1) Alpha miner [21], (2) Alpha++ miner [27], (3) Fodina [22], (4) Heuristics
Miner [26], (5) ILPMiner [28], (6) Inductive Miner [16], (7) Flower miner, a
technique that produces an underfitting flower model; (8) Naive [22], a discovery
technique that naively models a connection between two transitions if they ever
follow each other directly in the event log, unless these events overlap in time,
in which case a connection is made to the closest non-overlappping transition.

Thirdly, three similarity metrics were used for comparing models discov-
ered from perturbed event logs to the baseline discovered model, as described
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Table 1. Characteristics of the artifical and real-life event logs used for the evaluation:
number of process instances (#PI), distinct process instances (#DPI), number of
different events (#EV) and average number of events per process instance (#EV

PI
).

Logname #PI #DPI #EV #EV/PI Artificial Real-life

grpd g22pi300 300 24 26 10.32 �
groupedFollowsl1l 500 500 29 8 11.79 �
grpd g19pi300 300 32 25 13.69 �
grpd g13pi300 300 35 24 16.69 �
grpd g12pi300 300 38 28 16.14 �
grpd g24pi300 300 46 23 13.77 �
grpd g4pi300 300 48 31 19.92 �
grouped g2pi300 300 65 24 15.00 �
grpd g5pi300 300 66 22 20.57 �
driveClass 700 700 87 13 21.00 �
grpd g6pi300 300 92 25 18.06 �
grpd g9pi300 300 102 28 18.93 �
groupedFollowsparallel5 700 700 109 12 12.00 �
grpd g10pi300 300 110 25 13.72 �
grpd g15pi300 300 135 27 13.26 �
herbstFig6p37 700 700 135 20 20.00 �
grpd g14pi300 300 157 26 37.80 �
grpd g20pi300 300 187 23 20.64 �
grpd g7pi300 300 231 31 48.17 �
grpd g3pi300 300 239 31 48.66 �
MOA 2004 71 49 6.20 �
KP2P 10487 76 23 9.33 �
ICP 6407 155 18 5.99 �
MCRM 956 212 22 11.73 �
KIM 1541 251 18 5.62 �

in Sect. 2.2: Graph-edit Distance [8], causal footprint based similarity [9], and
behavioural profile based similarity [24]. The latter is measured as a weighted
sum between exclusiveness similarity, order similarity, interleaving order simi-
larity, extended order similarity and extended interleaving similarity, as it was
implemented in JBPT -library.

Fourthly, three different strategies for generating perturbations are consid-
ered here. On the one hand, a resampling method, where p % distinct process
instances are randomly removed from the event log. The probability of removal is
the inverse of the frequency of that distinct process instance in the event log. On
the other hand, a noise induction method, where q % process instances have one
random event removed, added or two events swapped. One of these three per-
turbations is randomly chosen with equal probabilities. Finally, a third setting
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is included that combines both methods: first, p % distinct process instances are
removed; second, q % process instances have one random event removed, added
or two events swapped. Both strategies are tested with p and/or q equal to 10 %.

Finally, a small note on the specific calculations and environment of the
experiments: all experiments were run on a Intel XEon E5-2699 v3 processor of
a Windows Server 2012 R2. For the calculation of stability, 20 fixed iterations
where taken, rather than the adaptive strategy described in Algorithm 1. The
duration of 1 set of specifications (i.e. 20 iterations) was restricted to 10 min. Of
the 480 configurations on artificial logs that were evaluated using three differ-
ent similarity metrics, 62 did not finish the mining task within the time limit:
44 combinations with Alpha++, 16 combinations of ILP, 1 combination with
Fodina and 1 combination with Inductive miner. On the real-life datasets, 120
configurations were tested of which 9 resulted in a timeout: three configurations
with Alpha++ and two with Alpha, Fodina and ILP.

3.2 Effect of the Percentage of Perturbation

Figures 2 and 3 show the effects of varying percentages of noise, when using
Causal Footprint similarity as an underlying metric and, respectively, Heuristics
Miner and Alpha miner as process discovery algorithm. The points represent
average stability over 5 of the artificial event logs. A couple of observations can
be made from these figures. First, observe that, as expected, the average stability
declines as it is exposed to higher percentages of noise, all other things equal. The
same observation holds for resampling percentages, at least when combined with
a noise percentage smaller than 40 %. Secondly, remark that the stability appears
to be a lot more sensitive to the level of noise than the level of resampling. This
observation should be kept in mind regarding the results in Sect. 3.3, as the same
percentage of noise induction has a greater effect than the resampling. Thirdly,
observe that the curve for the results using Heuristics miner (Fig. 2) declines less
rapidly than the one using Alpha miner (Fig. 3). Finally, even at high levels of
noise induction, the resulting stability when using Heuristics miner lies around
0.85, whereas the resulting stability using Alpha miner performs significantly
worse, even at lower percentages of noise.

3.3 Results of the Experimental Evaluation

Before interpreting the results, a note should be made regarding the compatibil-
ity of the similarity metrics and some of the process discovery techniques. The
technique based on behavioural profiles, for example, requires that there are no
unconnected transitions. Some techniques, however, do not guarantee that no
unconnected transitions will be mined. Therefore, in some combinations with
BP, no result could be obtained. Specifically, for the artificial logs, this is the
case in 33 configurations with Alpha miner, 12 configurations with ILP, and
2 configurations with Alpha++. For the real-life logs, this was the case in 11
combinations of Alpha with BP.
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Fig. 2. Scatterplot based on noise percentage of the average stability over 5 artificial
event logs using Heuristics Miner and a stability based on Causal Footprints, for resam-
pling and noise induction percentages equal to 0 % or ranging from 5 to 75 % with 10 %
intervals
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Fig. 3. Scatterplot based on noise percentage of the average stability over 5 artificial
event logs using Alpha Miner and a stability based on Causal Footprints, for resampling
and noise induction percentages equal to 0 % or ranging from 5 to 75 % with 10 %
intervals
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Fig. 4. Visualization of the average stability results when applying a noise induction
strategy. Averages over 20 artificial event logs.

Fig. 5. Visualization of the average stability results when applying a resampling-based
strategy. Averages over 20 artificial event logs.

The results can be found in Table 2. For a more intuitive representation of
the results of the approaches only based on noise and only based on resampling,
we refer to Figs. 4 and 5. Several observations can be made. First, it is clear
that the results of the combined approach and the approach that only uses noise
induction are highly similar. This was also touched upon in the previous section,
and is likely due to the different impact of a 10 % noise induction compared to a
10 % resampling. Secondly, when comparing similarity metrics in Figs. 4 and 5,
the ranges of the average stability appear to be similar across similarity metrics,
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Table 2. Average and standard deviation of stability over 20 artificial and 5 real-
life event logs, with a resampling and/or noise induction percentage of 10 %, where
stability is being calculated using Behavioural Profiles (BP), Causal Footprints (CF)
or Graph-edit Distance (GED).

Discovery

technique

Perturbation

strategy

Artificial stab(sd) Real-life stab(sd)

BP CF GED BP CF GED

Alpha Resampling 0.17(0.27) 0.99(0.02) 0.83(0) 0.16(0.36) 0.86(0.05) 0.8(0.01)

Alpha++ Resampling 0.65(0.41) 0.99(0.02) 0.55(0.06) 0.76(0.15) 0.69(0.05) 0.62(0.09)

Flower Resampling 0.98(0.1) 1(0) 0.83(0) 0.99(0.01) 0.99(0.01) 0.83(0)

Fodina Resampling 0.84(0.2) 0.95(0.06) 0.69(0.05) 0.84(0.07) 0.9(0.04) 0.64(0.02)

Heuristic Resampling 0.32(0.29) 0.99(0.02) 0.83(0) 0.72(0.16) 0.89(0.06) 0.78(0.04)

ILP Resampling 0.5(0.49) 0.97(0.07) 0.77(0.09) 0.61(0.12) 0.62(0.18) 0.64(0.06)

Inductive Resampling 0.7(0.15) 0.98(0.06) 0.51(0.06) 0.64(0.07) 0.91(0.1) 0.55(0.07)

Naive Resampling 0.2(0) 1(0) 0.52(0.02) 0.21(0) 1(0) 0.53(0.05)

Alpha Noise 0.04(0.06) 0.45(0.13) 0.56(0.05) 0(0) 0.35(0.19) 0.58(0.05)

Alpha++ Noise 0.05(0.08) 0(0.18) 0.39(0.05) 0.15(0.02) −0.1(0.12) 0.42(0.04)

Flower Noise 1(0) 1(0) 0.83(0) 0.83(0.05) 0.84(0.05) 0.83(0)

Fodina Noise 0.52(0.3) 0.82(0.1) 0.65(0.06) 0.45(0.12) 0.68(0.12) 0.6(0.03)

Heuristic Noise 0.3(0.27) 0.93(0.03) 0.81(0.01) 0.27(0.2) 0.59(0.17) 0.71(0.07)

ILP Noise 0.14(0.23) 0.01(0.17) 0.51(0.02) 0.13(0.04) −0.05(0.12) 0.56(0.05)

Inductive Noise 0.24(0.08) −0.03(0.13) 0.47(0.02) 0.35(0.1) 0(0.3) 0.51(0.02)

Naive Noise 0.2(0.01) 1(0) 0.45(0.03) 0.2(0) 1(0) 0.51(0.04)

Alpha Combined 0.03(0.06) 0.46(0.13) 0.56(0.05) 0(0) 0.33(0.17) 0.57(0.04)

Alpha++ Combined 0.08(0.08) 0(0.13) 0.38(0.05) 0.14(0.02) −0.1(0.1) 0.42(0.04)

Flower Combined 1(0) 1(0) 0.83(0) 0.82(0.04) 0.83(0.04) 0.83(0)

Fodina Combined 0.53(0.29) 0.8(0.11) 0.64(0.06) 0.43(0.1) 0.65(0.11) 0.6(0.02)

Heuristic Combined 0.3(0.27) 0.93(0.04) 0.81(0.01) 0.18(0.07) 0.57(0.17) 0.67(0.05)

ILP Combined 0.13(0.19) 0.01(0.17) 0.51(0.02) 0.13(0.04) −0.03(0.11) 0.57(0.04)

Inductive Combined 0.24(0.07) −0.02(0.13) 0.47(0.02) 0.34(0.11) 0.02(0.3) 0.51(0.02)

Naive Combined 0.2(0.01) 1(0) 0.45(0.03) 0.2(0) 1(0) 0.51(0.04)

except for the combination of a resampling-based perturbation strategy with an
underlying similarity metric based on causal footprints.

Regarding the different process discovery techniques, observe why we chose to
incorporate flower miner and naive miner. A flower model is the least restrictive
model one can imagine, where any activity can be executed in any order. It is
clear that such a discovery technique should be very stable with regards to noise
induction and resampling, and a very high stability is expected. Observe from
Table 2 that this is indeed the case on the artificial logs. The inverse is true
for the naive discovery technique, which naively incorporates any relationship
between two activities seen in the log as long as they do not overlap in time.
One would expect such a technique to score quite poorly on stability, which
is the case when calculating its stability using behavioural profiles or Graph-
edit Distance, but not using Causal Footprints. Apart from the results on the
naive discovery technique, the results of the noise induction strategy are within
expectations: techniques that were originally developed with robustness in mind,
such as Heuristics miner and Fodina, achieve higher stability than techniques
that are expected to be more sensitive to noise, such as ILP and Alpha.
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Furthermore, Table 2 includes the standard deviation of the stability, which
characterises the discrepancies across the 20 artificial and 5 real-life event logs,
respectively. In general, the pure resampling-based perturbation strategy leads
to more consistent results than the noise induction-approach. The stability based
on GED appears to be the most consistent across event logs when combined with
noise induction or a combined approach. When combined with resampling, the
stability based on Causal Footprints and the stability based on GED perform
equally consistent.

3.4 Effect of Log Characteristics

To show the effect of event log characteristics, we fit a number of regression mod-
els: a full and reduced one, for each perturbation strategy and each underlying
similarity metric. All data is taken at a 10 %-level of perturbation. The full fit-
ted models are of the form represented in Eq. 2, where xpd are dummy variables
indicating the process discovery technique and xdpi, xev, xtl are numerical vari-
ables representing the number of distinct process instances, number of distinct
events and average trace length of the event log under scrutiny. In the restricted
model (Eq. 3) the log characteristics are removed from the model. A lack-of-fit
test is performed to show whether these log characteristics can be removed with-
out substantial decrease in the fitness of the regression model. The results are
represented in Table 3.

Spd = β0 +
Naive∑

pd=Alpha

βpdxpd + βdpixdpi + βevxev + βtlxtl (2)

Spd = β0 +
Naive∑

pd=Alpha

βpdxpd (3)

Table 3. Fitness values and degrees of freedom for full and reduced linear model of
stability over 20 artificial event logs, with a resampling or noise induction percent-
age of 10 %, with similarity being calculated using Behavioural Profiles (BP), Causal
Footprints (CF) or Graph-edit Distance (GED). P values correspond to a chi-squared
likelihood-ratio test on 3 degrees of freedom, and indicate whether the full model has
a significantly higher goodness-of-fit than the reduced model.

Strategy BP CF GED

R2 LogLik df R2 LogLik df R2 LogLik df

Noise: full 0.82 66 123 0.95 125.6 123 0.96 269.7 123

Noise: red 0.77 48.8 126 0.95 125 126 0.96 263.7 126

LRT: p-value <0.001 0.80 0.008

R2 LogLik df R2 LogLik df R2 LogLik df

Resampling: full 0.70 26 137 0.18 230 137 0.90 251 137

Resampling: red 0.65 13 140 0.15 226.8 140 0.90 248.8 140

LRT: p-value <0.001 0.114 0.21
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From Table 3, it is clear that excluding all log characteristics leads to a sig-
nificant reduction in goodness-of-fit in the noise-induction case, except when
combining this perturbation with causal footprints. This does not mean that all
log characteristics are significantly related to the stability in all models: when
combining noise induction with GED as similarity metric, only the average trace
length is significantly related to the stability (p-value < 0.05), with a higher aver-
age trace length leading to lower stability. When combining noise induction or
resampling with BP, the number of distinct activities is the only variable that is
significant at a 5 %-level, with a higher number of activities leading to a lower
expected stability, all other things equal.

4 Discussion and Future Work

Overview. The purpose of this paper is to propose a new dimension for the
evaluation of process discovery techniques, stability, and a framework for its
assessment. Specifically, a log-perturbation stability framework based on model
similarity is extensively described, and its components are thoroughly evaluated
using both artificial and real-life event logs. Two resampling strategies, one based
on noise induction and one based on trace resampling, are proposed, and the
strategy based on noise induction is shown to lead to the highest discriminating
power, even at low percentages of noise induction. Three underlying similarity
metrics are proposed, one based on behavioural profiles, one based on causal
footprints, and one based on Graph-edit Distance.

Main Findings. Overall, there are three key takeaways from the experimen-
tal evaluation: (1) stability, as it was defined here, is a concept that can help
differentiate between different process discovery techniques. (2) Different con-
figurations of the stability framework lead to different results, however, making
general conclusions about the process discovery techniques difficult. Both the
type of perturbation and type of similarity metric influence these results. (3)
The stability results are influenced by the specific characteristics of the event
logs used, such as number of activities in this log, or the average trace length,
apart from the configurations with Causal Footprints.

Limitations. Several limitations exist with regard to our framework and its
evaluation, and these limitations should be addressed more thoroughly in future
work. First of all, there is the question of the desirability of certain types of
perturbation, especially noise induction. Although noise induction is shown to
lead to interesting results, it may not be an accurate representation of reality,
given that most information systems record events rather faithfully nowadays.
Secondly, a limitation exists regarding the evaluation of discovery algorithms:
since our approach requires a number of iterations in order to create valid
results, we disregarded discovery algorithms that don’t scale well (e.g. the genetic
approaches of [3,6]). Moreover, it should be noted that the results presented here
are valid only for the distinct configurations of the algorithms. Clearly, the results
would be different for Inductive miner, for example, given that a more inclusive
or exclusive configuration is be used. Therefore, ‘parameter stability’ and ‘log
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perturbation stability’ are interrelated concepts. Nonetheless, applying an eval-
uation on the default settings of an algorithm is justifiable, given that users of
these implementations rarely change the default settings [4]. Thirdly, the choice
of Petri nets as an underlying construct for discovered process models leads to
an inherent bias, especially with regards to the conversion of techniques that
produce results in an other modelling notation. Fourthly, the current implemen-
tation is limited to existing process similarity metrics. However, these metrics
were not conceived with discovered process models in mind. Therefore, future
work could look into the construction of a process similarity metric geared
specifically towards stability of process discovery techniques. An alternative to
this approach would be to quantify similarity in a more event-log driven way, by
incorporating conformance checking metrics into the similarity. An example of
this could be behavioural precision and recall as defined in [19].

Finally, two relationships should be quantified in continuing work: on the
one hand, the relationship between the stability results and specific behavioural
structures present in event logs, or the models used to generate these event logs,
such as loops of a certain length and invisible transitions; on the other hand, the
relationships between the proposed approach and related conformance checking
metrics for quality metrics like cross-validation-based generalization [20].
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