
P3-Folder: Optimal Model Simplification
for Improving Accuracy in Process Performance

Prediction

Arik Senderovich1, Alexander Shleyfman1, Matthias Weidlich2(B),
Avigdor Gal1, and Avishai Mandelbaum1

1 Technion–Israel Institute of Technology, Haifa, Israel
{sariks,alesh}@tx.technion.ac.il,
{avigal,avim}@ie.technion.ac.il

2 Humboldt-Universität zu Berlin, Berlin, Germany
matthias.weidlich@hu-berlin.de

Abstract. Operational process models such as generalised stochastic
Petri nets (GSPNs) are useful when answering performance queries on
business processes (e.g. ‘how long will it take for a case to finish?’).
Recently, methods for process mining have been developed to discover
and enrich operational models based on a log of recorded executions
of processes, which enables evidence-based process analysis. To avoid a
bias due to infrequent execution paths, discovery algorithms strive for a
balance between over-fitting and under-fitting regarding the originating
log. However, state-of-the-art discovery algorithms address this balance
solely for the control-flow dimension, neglecting possible over-fitting in
terms of performance annotations. In this work, we thus offer a technique
for performance-driven model reduction of GSPNs, using structural sim-
plification rules. Each rule induces an error in performance estimates
with respect to the original model. However, we show that this error is
bounded and that the reduction in model parameters incurred by the
simplification rules increases the accuracy of process performance pre-
diction. We further show how to find an optimal sequence of applying
simplification rules to obtain a minimal model under a given error bud-
get for the performance estimates. We evaluate the approach with a real-
world case in the healthcare domain, showing that model simplification
indeed yields significant improvements in time prediction accuracy.

1 Introduction

Performance analysis is an important pillar of business process management ini-
tiatives in diverse domains, reaching from telecommunication, through health-
care, to finance. Taking healthcare as an example, it involves the ability to answer
questions such as ‘how long will it take for a patient to get treatment?’, and
‘how many nurses do we need to staff to accommodate the incoming demand?’.
Answers to these questions are key in running an organization successfully and
deliver value to its clients [1].
c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 418–436, 2016.
DOI: 10.1007/978-3-319-45348-4 24

P3-Folder: Optimal Model Simplification for Improving Accuracy 419

Operational process models such as generalised stochastic Petri nets and
queueing networks are useful in answering the aforementioned performance ques-
tions [2,3]. In particular, these models enable testing of re-design and improve-
ment initiatives with respect to the as-is model. For instance, by changing staffing
levels and altering the control-flow, the impact of operational changes on the per-
formance characteristics of the process can be explored.

Process mining enables automatic discovery and enrichment of operational
process models from logs, which record process executions [4]. Data-driven
model discovery improves beyond the manual model elicitation in its ability
to reflect the process as it is actually executed. However, automatically discov-
ered models tend to incorporate infrequent process executions, which may result
in over-fitting with respect to the originating log. Recently proposed discovery
algorithms attempt to balance between over-fitting and under-fitting in the
control-flow dimension [5–7,35]. Yet, the question of how to avoid over-fitting in
terms of performance annotations of operational models has not been addressed
in the literature.

This work approaches the problem of over-fitting of operational process mod-
els with P3 − Folder, a method for automated simplification of generalised sto-
chastic Petri nets (GSPNs) for process performance prediction. Starting with an
over-fitting GSPN discovered from a log, the idea behind P3 −Folder is that sim-
plification reduces the number of model parameters. This, in turn, increases the
accuracy of performance estimates, even though simplification generalises the
model by introducing an estimation error regarding the original model. More
specifically, our contribution is twofold. As a first step, P3 − Folder defines a
set of structural simplification rules for GSPNs, referred to as foldings. Unlike
existing proposals for model simplification [8], these rules are local (affecting
only a subnet of the GSPN), come with formal bounds regarding the introduced
estimation error, and their applicability is identified automatically by structural
decomposition of the GSPN. Second, P3−Folder formulates model simplification
as an optimization problem that aims at attaining a minimal model for a given
budget for the introduced estimation error. This problem is cast as an Integer
Linear Programming (ILP) problem, which enables efficient computation of the
optimal sequence of folding operations.

We evaluate P3 − Folder with a case in the healthcare domain. Our exper-
iments show that simplification of a GSPN discovered from a real-world log
yields a significant improvement in time prediction accuracy compared to the
original GSPN.

The remainder of the paper is structured as follows. The next section dis-
cusses the methods and challenges in performance-oriented process mining.
Section 3 recalls the GSPN formalism. Foldings of GSPNs are introduced in
Sect. 4. The model simplification problem and its encoding as an ILP program is
proposed in Sect. 5. Evaluation results are presented in Sect. 6. Section 7 reviews
related work, before Sect. 8 concludes the paper.

420 A. Senderovich et al.

2 Background: Performance-Oriented Process Mining

Process Mining for Operational Analysis. We consider a setting in which
a log L of recorded process executions is given and analysis questions regarding
the performance of process execution shall be answered. Specifically, let Y be a
performance measure, e.g., the total runtime of a process instance. Further, let
q(Y) be a performance query over Y , e.g., the expected value of Y , which we
aim at answering based on L. In general, we distinguish two types of process
mining techniques to quantify q(Y).

First, machine learning (ML) techniques may be exploited. That is, process
executions (including their data) are encoded as a feature vector X. Common
ML methods such as regression or decision trees are used to construct an esti-
mator q̂(Y) conditioned on X. Examples for such methods are found in [9–11].
While such an approach is often accurate in predicting q(Y), it has two major
drawbacks. Given a performance measure Z that is not directly observable in the
log, one needs to quantify q(Z), since ML methods require labelled observations
of q(Z) in the training phase. For instance, Z may be the waiting time for a
specific resource. If it is not recorded in the log, q(Z) must be estimated. This
estimation procedure may introduce an error, which will reduce the accuracy
of the learning technique. In addition, exploring to-be processes and sensitivity
analysis of current process parameters is impossible due to lack of data that
describes the effect of X on Y under the new terms.

A second angle to answer performance question is to use operational process
models. Given the log L, operational models such as GSPNs can automatically
be discovered and enriched with performance information [12,13]. To quantify
q(Y), a corresponding query qM (Y) is evaluated over the model, e.g., with the
help of simulation [13] or queueing theory approximations [3,8]. A model-based
approach overcomes the aforementioned limitations. It supports queries for mea-
sures that were not directly recorded in the log and enables to-be performance
analyses and sensitivity analysis (e.g., by changing the control-flow and altering
activity durations).

However, a model-based approach also suffers from a major drawback, namely
over-fitting of the estimated q(Y) with respect to L [8]. ML-based methods
balance over-fitting of q̂ to L by means of regularization methods (e.g., pruning
the regression tree [10]). A model-based approach for regularizing, in turn, does
not exist.

We illustrate this problem with two models that were discovered from a
real-world case in the healthcare domain (see our evaluation results for details).
Figure 1 depicts the two process models discovered using the Inductive Miner [14]
with different noise thresholds: 0% for model (a) and 20% for model (b). We
observe that noise filtering balances over- and under-fitting of the control-flow
regarding the log, yielding a more sequential model when filtering more noise
events. However, the trade-off between over- and under-fitting is not addressed
for the performance perspective. Enriching both models with performance infor-
mation based on [12] and testing them against a month of operational data not

P3-Folder: Optimal Model Simplification for Improving Accuracy 421

(a) 0% noise filter. (b) 20% noise filter.

Fig. 1. Automatically discovered model of a hospital process.

used in model construction shows that model (b) is only slightly more accurate
than model (a). As we later demonstrate experimentally, a principled approach
based on model simplification, in turn, alleviates over-fitting in the performance
dimension, thereby significantly improving prediction accuracy.
Resolving Performance Overfitting by Model Simplification. The idea
followed in this work is to avoid over-fitting in the performance dimension by
model simplification. We balance model size (number of model parameters) and
proximity of the performance estimates of the simplified model to those of the
original model (and thus the log).

To explain this idea in more detail, we adopt a statistical perspective on
discovery and enrichment of operational process models. We assume that the
performance measure Y is governed by a (parametric and stochastic) process
model M , i.e., Y ∼ M . Then, an estimation of q(Y) translates into an estimation
of q(M). Hence, it is sufficient to estimate the model M to obtain q(Y).

Common process discovery and enrichment techniques yield an initial model
M0 of the model parameters. Then, our P3 − Folder method applies a sequence
of simplification rules to M0, each introducing an estimation error with respect
to q(Y). What prevents the model from collapsing into a single node is an error
budget B. P3 − Folder generates a model M∗ as the most simple one in terms
of size that is still with the specified error bound from M0 with respect to q(Y).
Tuning the error budget B for a specific measure Y is performed via a cross-
validation procedure on L. The resulting model M∗ ‘enjoys’ the benefits of a
model-based performance analysis, while being more general compared to M0. As
such, P3−Folder can be viewed as a regularization of process models, transferring
the analogy of machine learning into the world of model-based performance
analysis.

422 A. Senderovich et al.

3 Performance Analysis with Generalised Stochastic
Petri Nets

GSPN Syntax and Semantics. Generalised Stochastic Petri Nets
(GSPNs) [15] are a class of Petri nets that incorporate stochastic information
on time behaviour: transitions are either immediate, representing atomic logi-
cal actions, or timed, representing units of work. Below, we recall a notion of
GSPNs that includes weights of immediate transitions, and resource capacities
and expected durations of timed transitions.

Definition 1 (GSPN). A GSPN is a tuple G = 〈P, T, F, γ, δ, ω〉 where:

• P is the set of places,
• T = Ti ∪Tt is the set of transitions consisting of immediate transitions Ti and

timed transitions Tt, respectively,
• F ⊆ (P × T) ∪ (T × P) is the flow relation,
• γ : Tt → R

+
0 assigns capacities to timed transitions (work units per time unit).

• δ : Tt → R
+
0 assigns expected durations to timed transitions.

• ω : Ti → [0, 1] assigns weights to immediate transitions.

We refer to the tuple 〈P, T, F 〉 as the structure of the GSPN, and to 〈γ, δ, ω〉
as its functional component. The set X = P ∪ T denotes all nodes and the size
of a GSPN is defined as |X|. For a node x, •x = {y ∈ X | (y, x) ∈ F} and
x• = {y ∈ X | (x, y) ∈ F} denote its preset and postset, respectively. Further,
F ∗ is the transitive closure of F .

Semantics of a GSPN are defined as a ‘token game’: A marking M : P → N0

assigns to each place a number of tokens, thereby representing a GSPN state.
A transition t ∈ T is enabled in M , if all places in its preset are marked, i.e.,
∀ p ∈ •t : M(p) > 0.

An immediate transition that is enabled, can fire. Firing of a timed transition
t depends on its capacity and expected duration: Once it is enabled, a single
exponential clock with rate λ(t) = γ(t)

δ(t) is started and the transition can fire
when the clock is elapsed. That is, we assume a single-server semantics: there is
one exponential clock per enabling.

Firing a transition t in a marking M yields a marking M ′, such that
M ′(p) = M(p) − 1 for all p ∈ •t \ t•; M ′(p) = M(p) + 1 for all p ∈ t • \ • t;
and M ′(p) = M(p) otherwise. Although tokens are indistinguishable, for perfor-
mance analysis, we shall assume that the tokens that enable a timed transition
are selected on a First-Come First-Served (FCFS) policy. Since first-order per-
formance measures (e.g., average waiting times and average number of tokens in
a place) are indifferent to the selection policy [15], the assumed FCFS policy is
indeed plausible.

Semantics of a GSPN further depend on types of transitions and their
assigned rates (capacity over expected duration) and weights as follows.
Let t1, ..., tk ∈ T be transitions that are enabled in a marking M , i.e., they
compete for firing. If transitions t1, ..., tk are either all immediate or all timed,

P3-Folder: Optimal Model Simplification for Improving Accuracy 423

the assigned rates or weights determine the likelihood of each of the transitions
being fired. This likelihood is defined for transition tj , 1 ≤ j ≤ k, as λ(tj)∑k

i=1 λ(ti)

(only timed transitions) or ω(tj)∑k
i=1 ω(ti)

(only immediate transitions), respectively.
If some transitions are immediate and some are timed, the immediate transi-
tions have priority and the likelihood model is applied only to the immediate
transitions.
Process Performance Analysis. A business process is described by an open
GSPN, which is a GSPN G = 〈P, T, F, γ, δ, ω〉 that has a dedicated timed tran-
sition τ0 ∈ Tt, called arrival transition, which represents external arrivals into
the system [16]. Specifically, it holds that •τ0 = ∅ (and for all t ∈ Tt \ {τ0} it
holds •t �= ∅), γ(τ0) = 1, and δ(τ0) = 1

β0
, so that β0 represents the arrival rate

of the open GSPN. In the remainder, we assume all GSPNs to be open GSPNs.
The arrival transition τ0 is enabled in any marking and thus, also in the empty

marking M0 with M0(p) = 0 for all p ∈ P , which serves as the initial marking.
Then, the reachability graph of G is a graph comprising all reachable markings,
denoted R(M0), i.e., markings that can be obtained by firing of transitions of G,
starting in M0 (here, the empty marking). To perform steady-state analysis, it
was shown that the reachability graph of a GSPN is isomorphic (after reduction)
to a Continuous-Time Markov Chain (CTMC) [15]. The transition rates between
the CTMC states correspond to the rates λ(t) = γ(t)

δ(t) assigned to the respective
timed transitions in the GSPN. Exploiting this transformation, performance
analysis of a GSPN is based on techniques of CTMC analysis: global balance
equations of the CTMC are solved or, to alleviate the complexity of solving
these equations, queueing theory approximations can be used. In this work, we
use such an approximation technique presented in [17].

4 Foldings of GSPN

P3 − Folder employs folding operations (aka foldings) to simplify GSPNs. We
first elaborate on the general notion of foldings, before providing a detailed
discussion of an exemplary folding. Finally, we show how to identify applicable
foldings based on structural decomposition of a GSPN.

4.1 The Notion of a Folding

A folding operation is a contraction of a GSPN, which yields a GSPN that is
equal or smaller in size. Yet, not all contractions are reasonable when aiming
at improved accuracy of performance prediction. It is important that foldings
preserve stability to ensure that the resulting model has a finite expected waiting
time value. In GSPN terminology, a timed transition t ∈ Tt of a GSPN G =
〈P, T, F, γ, δ, ω〉 is stable, if the marking Mh(p) = 0 ,∀ p ∈ •t is a home marking
for M0 in G, i.e., ∀ M ′ ∈ R(M0) : Mh ∈ R(M ′). We call G stable, if all its timed
transitions Tt are stable.

424 A. Senderovich et al.

Let G be the universe of GSPNs. Then, we define foldings as follows:

Definition 2 (Folding). A folding is a function ψ : G → G, such that for all
G ∈ G it holds that |ψ(G)| ≤ |G|. A folding ψ is called proper, if for all G ∈ G it
holds that G being stable implies that ψ(G) is stable.

The preservation of stability, termed properness, can be seen as a correctness
criterion for the definition of foldings. Aiming at a contraction of the original
GSPN, however, most foldings are actually abstractions that imply a certain
bias in any performance analysis done with the resulting model. To control the
application of foldings, therefore, we assign each folding a cost that bounds the
possible estimation error. Clearly, this cost is specific to a particular performance
measure and, thus, the type of performance analysis that shall be conducted with
the folded model. As a prominent example measure, we consider the sojourn time
of a GSPN: the total time it takes for the tokens produced by a single firing of
the arrival transition τ0 to reach a deadlocking marking (a marking in which no
transition is enabled).

Let G be a GSPN and G′ = ψ(G) for some folding ψ. Let S and S′ be random
variables for the sojourn times of G, and G′, respectively. The cost of applying
folding ψ to G is defined as the absolute deviation in expectation between the
sojourn times: c(G,ψ) = |ES′ − ES|. Note that, since firing delays are given
in the GSPN, the main challenge in evaluating sojourn times is obtaining good
estimates for waiting times.

In this work, we consider five foldings: (1) sequence-folding, (2) race-folding
(3) XOR-folding, (4) AND-folding, and (5) loop-folding. These foldings relate to
common behavioural structures in business process models [18]. Each of them
yields a simple GSPN comprising the arrival transition and a second timed tran-
sitions, as illustrated in Fig. 2. Note that the race-folding and XOR-folding relate
to different semantic concepts: the former folds a net that represents resources
working in parallel on jobs that arrive as tokens in the respective place. The
XOR-folding, in turn, relates to probabilistic selection of activities, i.e., a prob-
abilistic selection among different timed transitions.

All the five foldings are proper and their costs can be computed by exploiting
results from queueing theory. Due to space limitations, however, we limit the
discussion of properness and costs in this work to XOR-folding.

4.2 The XOR-folding

The XOR-folding, denoted by ψX , takes as input a GSPN G = 〈P, T, F, γ, δ, ω〉
of the structure visualised in Fig. 2(D): it comprises the τ0 transition (with rate
β0), a single place pi with •pi = {τ0} and a single place po with po• = ∅ that are
connected by sequential structures, each comprising two immediate transitions
and a timed transition.

Applying the folding yields a GSPN G′ = ψX(G) = 〈P ′, T ′, F ′, γ′, δ′, ω′〉,
where the structure 〈P ′, T ′, F ′〉 is a trivial net comprising the τ0 transition
(γ′(τ0) = γ(τ0) and δ′(τ0) = δ(τ0)), and two places that are connected via a
timed transition, t, see Fig. 2.

P3-Folder: Optimal Model Simplification for Improving Accuracy 425

Fig. 2. Overview of foldings.

The functional part of G′, that is 〈γ′, δ′, ω′〉, is constructed as follows. First,
weights (ω′) become irrelevant, since G′ does not contain immediate transitions.
The capacity (γ) and expected duration (δ) of the timed transition t of G′ are
set as:

• γ′(t) =
∑

tt∈Tt\{τ0} γ(tt), i.e., the new transition is allocated the total capac-
ity of the internal timed transitions in G;

• δ′(t) =
∑

tt∈Tt\{τ0},ti∈Ti,(ti,tt)∈F ∗ w(ti)δ(tt), i.e., the new transition is
assigned an expected duration that is the weighted average of the durations
of the timed transitions in G, where the weights stem from the respective
immediate transitions.

Theorem 1 ascertains the XOR-folding properness.

Theorem 1 If G is stable, then ψX(G) is stable.

Proof By [19], the stability condition for G is that for all tt ∈ Tt \ {τ0} it holds
that β0w(ti) < γ(tt)

δ(tt)
with ti ∈ Ti such that (ti, tt) ∈ F ∗. Hence, the sum of these

inequalities yields β0 <
∑

tt∈Tt\{τ0}
γ(tt)
δ(tt)

. Due to

n∑

i=1

ai

bi
<

∑n
i=1 ai∑n
i=1 bi

,

for ai, bi > 0, we arrive at

∑

tt∈Tt

γ(tt)
δ(tt)

<

∑
tt∈Tt\{τ0} γ(tt)

∑
tt∈Tt\{τ0},ti∈Ti,(ti,tt)∈F ∗ w(ti)δ(tt)

,

which proves stability of G′. �

426 A. Senderovich et al.

To calculate the cost of the XOR-folding, we compute the expected sojourn
times, SX in G, and S′

X in G′ = ψX(G). Since arrivals into the systems (by firing
the arrival transition τ0) are Poisson arrivals, the arrival of timed transitions
tt ∈ Tt \ {τ0} in G are also Poisson (due to the ‘Poisson splitting’ property [26]).
The arrival rate for tt ∈ Tt \ {τ0} is given as w(ti)β0 with ti ∈ Ti such that
(ti, tt) ∈ F ∗. Note that for GSPNs showing concurrency, the ‘Poisson splitting’
property does not hold true and a refinement of the above approximation can
be made by using Eq. (24) in [17].

The firing delays for each of the timed transitions, tt ∈ Tt \{τ0} are assumed
to be independent of the arrival process, and have exponential durations. These
assumptions enable the use of the M/M/1 formula for each timed transition to
calculate the sojourn times [16]. We write the expected value of SX as:

ESX =
∑

tt∈Tt\{τ0},ti∈Ti,(ti,tt)∈F ∗
w(ti)EStt

X , (1)

Since it is known that

EStt
X =

1
λ(tt) − w(ti)β0

=
δ(tt)

γ(tt) − β0w(ti)δ(tt)
, (2)

for tt ∈ Tt \ {τ0}, ti ∈ Ti, (ti, tt) ∈ F ∗, see [16], the sojourn time is given by:

ESX =
∑

tt∈Tt\{τ0},ti∈Ti,(ti,tt)∈F ∗

w(ti)δ(tt)
γ(tt) − β0w(ti)δ(tt)

. (3)

We now turn to the calculation of the sojourn time S′
X for G′ = ψX(G):

ES′
X =

1
λ′(t) − β0

, (4)

with λ′(t) = γ′(t)
δ′(t) . In primitives of G, the expected sojourn time is given as:

ES′
X =

∑
tt∈Tt\{τ0},ti∈Ti,(ti,tt)∈F ∗ w(ti)δ(tt)

∑
tt∈Tt\{τ0},ti∈Ti,(ti,tt)∈F ∗ γ(tt) − β0w(ti)δ(tt)

. (5)

The resulting cost for the XOR-folding is: c(G,ψ) = |ES′
X −ESX |, which is easy

to compute as it comprises only of primitives of G, the originating GSPN.

4.3 Finding Foldings by GSPN Decomposition

So far, we discussed the foldings shown in Fig. 2 as a transformation of a complete
GSPN of the according structure. However, P3 − Folder employs foldings also to
transform parts (aka subnets) of a GSPN, which may enable iterative application
of foldings. This holds in particular, as the foldings can be applied to any part of
a GSPN that has one of the structures shown in Fig. 2, when removing the arrival
transitions τ0. The reason is that the rate of token arrival into the structures, as
encoded by the arrival transitions, can be precomputed by solving the (linear)

P3-Folder: Optimal Model Simplification for Improving Accuracy 427

‘traffic equations’ [17,20], which tie the external arrival rate of the entire GSPN
to the internal arrival rates of places of the GSPN.

Observing that the structures in Fig. 2, once the arrival transitions have
been removed, correspond to common single-entry/single-exit (SESE) con-
trolflow structures, P3 − Folder employs structural decomposition of the GSPN
to identify applicable foldings. Specifically, the Refined Process Structure Tree
(RPST) [21,22] is used to parse a GSPN into a hierarchy of SESE fragments.
Then, the RPST is a containment hierarchy of canonical fragments of the graph,
which is unique and can be computed in linear time [22]. Fragments can be clas-
sified to one out of four structural classes: trivial fragments consists of a single
edge; polygons (P) that are sequences of fragments; bonds (B) that are collec-
tions of fragments that share entry and exit nodes; and rigids representing any
other structure.

To identify which of the foldings outlined in Fig. 2 can be applied to a given
GSPN, we rely on the RPST of the GSPN as follows:

Sequence-Folding: The folding can be applied to any polygon fragment that
has only trivial fragments as children and comprises at least two timed transi-
tions. Assuming that the GSPN has been normalised (immediate transitions
may occur only as the first child, as they are redundant at any other position
in a polygon), the folding applies to the maximal sequence of timed transi-
tions.
Race-Folding/XOR-Folding/AND-Folding: The foldings apply to place-
bordered (Race, XOR) or transition-bordered (AND) bond fragments that
contain only polygons of single timed transitions (Race, AND) or polygons of

Fig. 3. Example for the decomposition of a GSPN using the RPST.

428 A. Senderovich et al.

three children, a timed transitions that is preceded and succeeded by imme-
diate transitions (XOR).
Loop-Folding: The folding applies to place-bordered bonds that are cyclic
and part of a polygon. The bonds needs to be followed by an immediate
transition in the parent polygon and show the structure visualised in Fig. 2.
That is, the children of the bond are polygons of single transitions that are
either immediate (if flows in the child lead from the bond entry to the bond
exit) or timed (otherwise).

The above rules identify foldings iteratively: whenever an applicable folding
was found, the respective part of the GSPN is replaced by a timed transition
and the rules are checked again. This way, given a GSPN, P3 − Folder obtains
a set of folding instantiations F = {f1, . . . , fn}, each being defined by a folding
and the GSPN that is folded. Further, a precedence function ν : F → (℘(F)∪∅)
defines, given f ∈ F , the set of all folding instantiations that must be applied
before f , to generate the GSPN on which f is applied.

We illustrate this approach with a GSPN derived by annotating the model of
Fig. 1b. Figure 3a shows an excerpt of this model. The RPST of the highlighted
part is depicted in Fig. 3b. Here, loop-foldings can be applied to all the bond frag-
ments B3-B6, since they comprise polygons of single transitions of the required
types. Applying the loop-folding to bond B4 yields the net partially shown in
Fig. 3c. Once loop-foldings have been applied to bonds B3-B6, an XOR-folding
can be applied to bond B2, which now comprises polygons, each built of an
immediate transition followed by a timed transition.

5 Optimal Simplification of GSPN

Using the foldings proposed above, this section shows how P3 − Folder identifies
the cost-optimal sequence of foldings to simplify a given GSPN. To this end, we
define the problem of optimal folding simplification, show how it is encoded as
an Integer Linear Program, and elaborate on a method to select an appropriate
cost budget.
Optimal Folding Simplification. Let G be a GSPN, F be a set of folding
instantiations, and ν the respective precedence function. The cost of every folding
instantiation fi ∈ F is denoted ci, calculated as described in Sect. 4. Further,
P3 − Folder works with a real-valued budget, B ∈ R

+, which corresponds to the
cumulative error (sum of all costs) that is incurred by the foldings with respect
to some performance query q(Y), e.g., the total sojourn time. Last, the utility
of every folding instantiation fi ∈ F , denoted by ui, is defined as the difference
in the number of transitions before and after folding.

The Optimal Folding Simplification (OFS) problem involves finding a
sequence of folding instantiations of F that respects ν, such that the utility
is maximised (the GSPN size is minimised) and the total cost of these foldings
does not exceed B.

P3-Folder: Optimal Model Simplification for Improving Accuracy 429

ILP Encoding. OSF is a tree-knapsack problem, a generalised 0-1 knapsack
problem, that is known to be NP-complete. In this problem all items are sub-
jected to a partial ordering represented by a rooted tree [23]. In our case, this
partial ordering is induced by the precedence function defined over the folding
instantiations.

In what follows, we show a simple reduction from the tree-knapsack problem
to an Integer Linear Program (ILP). The ILP problem is well-studied and many
tools exist for its solution. We instantiate the ILP as follows. Let xi be a decision
variable that receives 1 if the folding instantiation fi is applied to G, and 0
otherwise. Then, the ILP representation of the OSF problem is:

maximize
xi

n∑

i=1

uixi

subject to:

n∑

i=1

cixi ≤ B ∧ ∀ i, j ∈ {1, . . . , n}, fj ∈ ν(fi) : xi ≥ xj .

Here, the score function ensures that total utility is maximized, while the con-
straints ensure that folding errors do not exceed budget B and that the prece-
dence ν is respected.
Budget Selection. The only input of the OSF problem that is not based on
the originating model, G, is the budget B. The budget can be interpreted as the
amount of trust in G: B should be small if trust is high, and vice versa.

When applying P3−Folder to a model G that was constructed based on some
event log L, the budget can be set in the spirit of model selection techniques
that are often used in machine-learning [24]. Specifically, one may elicit the ‘best’
budget for a given log via K-fold cross-validation [24, Ch. 7]: The event log is
partitioned into K parts, and the budget is determined based on random K−1

K
parts that are treated as training logs, and tested on the remaining part. All
budgets between 0 (no folding) and

∑n
i=1 ci (unlimited folding) are considered

and the budget that yields the most accurate answer to the performance query
q(Y) under a certain criteria (e.g., sampled root-mean squared error) is selected
for the OSF problem.

6 Evaluation

We evaluated P3 − Folder with a real-world case from the healthcare domain.
P3 − Folder 1 is implemented in the Python programming language, and uses
Gurobi [36], for solving the ILP. The input is a process model (GSPN), and an
event log; the method produces a folded GSPN model. Our results indicate that
our simplification technique helps to avoid over-fitting of GSPN. P3−Folder yields
up-to a 15% improvement in accuracy when predicting the total sojourn times,
with respect to a GSPN discovered from log data using state-of-the-art mining
algorithms.
1 https://github.com/ArikSenderovich/P3Folding/.

https://github.com/ArikSenderovich/P3Folding/

430 A. Senderovich et al.

6.1 Datasets and Setup

Our experiments were based on five months (April–August, 2014) of real-world
operational data stemming from the treatment process of a large outpatient
hospital in the United States. The hospital treats approximately 1000 patients
a day, with patients arriving and leaving on the same day. The average length-
of-stay per visit is 4.4 h (standard deviation of 2 h) with the highest number of
patients arriving between 8:00 and 11:00 in the morning. The dataset includes
the following attributes: case identifier, activity start time, activity end time,
and resource performing the activity.

We selected April as our training set for discovering a GSPN and enriching
it with data, as well as for the error budget selection (outlined in Sect. 5). The
other four months were used as separate test sets, to validate the results.

To discover an initial Petri net, we applied the Inductive Miner [14] on the
training set, with resources being treated as activities and a 20% noise thresh-
old (see Fig. 1b). We enriched the model based on the training set using the
techniques described in [12], thus turning it into the initial GSPN.

As the performance query q(Y), we selected the determination of total sojour
times. To estimate q(Y) for a given GSPN, we implemented a GSPN-to-queueing
networks transformation and used the queueing network analyzer [17].

We focused on three evaluation aspects: (1) We explored the impact of the
error budget on the accuracy of the resulting models. To this end, we varied
the budget between 0 (no folding) and

∑n
i=1 ci (unlimited folding). (2) We

studied the sensitivity of the approach to patient volumes, i.e., exploring the
improvement in prediction accuracy caused by foldings as a function of time-
of-day. We varied the time periods for which the original GSPN was obtained
and then selected the best budget with respect to the training set by cross-
validation (Sect. 5). (3) We considered the interplay of methods to over-fitting in
the control-flow dimension (i.e., noise filtering in the initial GSPN discovery) and
our approach. We altered the noise filtering threshold in the Inductive Miner,
and estimated the prediction accuracy of an unfolded model. We compared the
obtained results to those achieved with a folded model.

To quantify the accuracy of models, we used the sample root-mean squared
error (sRMSE), which is a standard statistical accuracy measure, defined as
follows. Let {Yk}K

k=1 be the sample of K total sojourn times as observed in the
log (training or test). Then, the sRMSE is defined as:

sRMSE =

√
√
√
√ 1

K

K∑

i=1

[q̂(Y) − Yk]2.

As a baseline method, we used the historical average, which is an unbiased
estimator. For the total sojourn time query q(Y), it is the standard deviation
of the length of stay, 120 min for the entire five months. In sum, controlled
variables in our experiments were the budget, the time-of-day, and the noise
filtering threshold of the Inductive Miner, while the sRMSE is the response
variable.

P3-Folder: Optimal Model Simplification for Improving Accuracy 431

(a) All-day. (b) 9:00-10:00 in the morning.

Fig. 4. sRMSE in relation to the error budget used for folding.

6.2 Results

First, even though the tree-knapsack problem is known to be NP-complete [23],
modern ILP solvers enable efficient reasoning on the OFS problem. Specifically,
the run-time of P3 − Folder when considering the entire days of the training
data and all budget configurations, turned out to be 152 s. This run-time is in
the same range as the model discovery, which demonstrates feasibility of the
approach.

Next, we turn to the evaluation of the accuracy improvement achieved by
P3 − Folder . Figure 4 shows the sRMSE as a function of the error budget for
two time frames, namely all-day and 9:00–10:00 in the morning. Here, the solid
blue line corresponds to the training data (April) and the dashed red line to one
of the test datasets (May). We demonstrate a single test month, since for fixed
time-of-day intervals we did not observe a difference in sRMSE shape or value
for all four months used as test datasets. The two additional flat lines correspond
to the irreducible sRMSE (i-sRMSE) for the training and test sets, respectively.
The irreducible error represents a bound for the prediction as it is essentially
the noise, the variance of the total sojourn time in the data. Consequently,
one cannot improve the sRMSE beyond the i-sRMSE without adding additional
predictive features to the model (e.g. number of patients in the system or patient
attributes).

We observe that the shape of sRMSE as a function of budget differs for
the different time frames. For the all-day scenario, we observe that while low-
budget folding improves the sRMSE, high budget folding causes the accuracy
to deteriorate. On the other hand, for the busy period of 9:00–10:00, we notice
a monotone improvement in the sRMSE as the budget grows and more folding
is allowed (with 15% improvement for the maximal budget). Furthermore, for
the busy period, our method is able to approach the irreducible error. Lastly, we
see that the model trained on the April data has a higher accuracy for the May
data, which indicates that P3 − Folder does not suffer from over-fitting the log.

432 A. Senderovich et al.

(a) Absolute sRMSE. (b) Improvement over original model.

Fig. 5. sRMSE in relation to time-of-day.

Further, we select the error budget by cross-validation using the training
dataset and explore the sensitivity to patient volumes. Figure 5a depicts the
sRMSE as a function of the time-of-day. Figure 5b shows the absolute improve-
ment in sRMSE, i.e., the difference (in %) between the sRMSE of the original
and the folded model. The sRMSE changes over the day. Specifically, Fig. 5b
illustrates that our technique is most effective during the morning hours, where
the load is highest. This can be the result of our queueing approximation tech-
nique [17], as it has accuracy guarantees for heavy-traffic periods.

Finally, we explore the impact of noise filtering in the initial discovery (bal-
ancing over-fitting and under-fitting in control-flow) on our method. We alter
the noise threshold for the Inductive Miner between 15% and 40% and com-
pute the sRMSE of its unfolded prediction for the 9:00–10:00 interval, and
compare the result to the sRMSE of the model obtained by P3−Folder when fold-
ing the 20% noise model. Figure 6 illustrates that the sRMSE for the unfolded

Fig. 6. sRMSE in relation to noise filtering threshold in initial model discovery.

P3-Folder: Optimal Model Simplification for Improving Accuracy 433

model improves and deteriorates, while the sRMSE of the model obtained
by P3 − Folder (Best Model) remains constant. Hence, P3 − Folder finds the
optimal level of generalisation for answering the respective performance query.

7 Related Work

Previous work on business process simplification (synonymous to abstraction),
considers manual ad-hoc rules that simplify the model while preserving similarity
to the originating model [25]. Works on automated model simplification proposed
to aggregate and eliminate components according to user-defined rules [27].
These rules were concerned mainly with visualization, and preserving behav-
ioural relations between the various components. In [28], process abstraction is
consistent, automatic, and preserves behavioural similarities, while in [35] the
authors rely on Petri net unfolding into branching processes to balance behav-
ioural over-fitting and under-fitting of a discovered model. However, none of
these works considered performance preserving simplifications. Another related
approach is to filter the data, prior to applying automated discovery, therefore
creating simple models based on partial set of the data [14].

Existing performance-oriented model simplification techniques approximate
typical process patterns (e.g., sequence, choice) via queueing theory, and guaran-
teed certain notion of equivalence between the original model and the resulting
simplifications [29,30]. However, these techniques did not propose a method of
locating typical patterns, and thus were not automated. Moreover, these works
did not suggest how to order the simplifying operations, and some of the pro-
posed performance bounds are not well-grounded [30].

Manual simplification of GSPN models has been considered before. In [31],
GSPNs are simplified by using ad-hoc rules, not providing any error bounds.
A simplification technique that provides bounds for specific performance mea-
sures between the original model and the resulting simple model includes decom-
position and aggregation of the GSPN [32,33]. The first step (decomposition)
refers to partitioning the GSPN into subnets, such that the subnets are weakly
dependent. Every subnet can then be efficiently analysed without unfolding the
underlying CTMC [30,34]. The second step (aggregation) aggregates the subnet
according to performance-preserving rules.

Our approach takes up the ideas of model aggregation based on folding
steps [8]. However, the steps in [8] incorporate ad-hoc assumptions and violat-
ing them may yield an unbounded estimation error with respect to the original
model. In this work, we formulate an optimization problem aiming at a maxi-
mal number of folding instantiations, subject to guarantees regarding an error
budget. This enables us to balance performance fitness and generalization of the
resulting model in a principled manner.

8 Conclusion

In this work, we presented P3 − Folder as a novel technique for automated sim-
plification of models that aim at improving performance analysis of business

434 A. Senderovich et al.

processes. Specifically, we proposed foldings of GSPNs and showed how to find
an optimal sequence of applying them to obtain a minimal model under a given
error budget for the performance estimates. This results in a model that gener-
alises in the performance dimension, while preserving the process perspective of
the original model. The evaluation of our technique showed a significant increase
in the model’s predictive power, with respect to the unfolded model that was
discovered from a real-world event log. The proposed technique can be viewed
as regularization method for process models, in analogy to pruning and other
model selection methods in machine learning.

In future work, we aim at integrating behavioural fitness and performance
fitness. Specifically, optimal simplification can be modified to include both
the control-flow and time perspective. We further aim at testing the accuracy
improvements achieved by our technique on other queries, such as outcome pre-
diction and resource utilisation.

Acknowledgments. This work was partially supported by the German Research
Foundation (DFG), grant WE 4891/1-1.

References

1. Dumas, M., Rosa, M.L., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer, Heidelberg (2013)

2. Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using
stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang,
L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg
(2013)

3. Senderovich, A., Weidlich, M., Gal, A., Mandelbaum, A.: Queue mining – predict-
ing delays in service processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland,
C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol.
8484, pp. 42–57. Springer, Heidelberg (2014)

4. van der Aalst, W.M.P.: Process Mining: Discovery, Conformance and Enhancement
of Business Processes. Springer, Heidelberg (2011)

5. van der Aalst, W.M.P., Rubin, V., Verbeek, H., van Dongen, B.F., Kindler, E.,
Günther, C.W.: Process mining: a two-step approach to balance between underfit-
ting and overfitting. Softw. Syst. Model. 9(1), 87–111 (2010)

6. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness,
precision, generalization and simplicity in process discovery. In: Meersman, R.,
Panetto, H., Dillon, T., Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha,
A., Bergamaschi, S., Cruz, I.F. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 305–
322. Springer, Heidelberg (2012)

7. van Zelst, S.J., van Dongen, B.F., van der Aalst, W.M.P.: Avoiding over-fitting in
ILP-based process discovery. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M.
(eds.) BPM. LNCS, vol. 9253, pp. 163–171. Springer, Heidelberg (2015)

8. Senderovich, A., Rogge-Solti, A., Gal, A., Mendling, J., Mandelbaum, A., Kadish,
S., Bunnell, C.A.: Data-driven performance analysis of scheduled processes. In:
Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM. LNCS, vol. 9253,
pp. 35–52. Springer, Heidelberg (2015)

P3-Folder: Optimal Model Simplification for Improving Accuracy 435

9. van der Aalst, W.M.P., Schonenberg, M., Song, M.: Time prediction based on
process mining. Inf. Syst. 36(2), 450–475 (2011)

10. de Leoni, M., van der Aalst, W.M., Dees, M.: A general process mining framework
for correlating, predicting and clustering dynamic behavior based on event logs.
Inf. Syst. 56, 235–257 (2016)

11. Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.:
Complex symbolic sequence encodings for predictive monitoring of business
processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM, vol.
9253, pp. 297–313. Springer, Heidelberg (2015)

12. Rogge-Solti, A., van der Aalst, W.M., Weske, M.: Discovering stochastic petri nets
with arbitrary delay distributions from event logs. In: Lohmann, N., Song, M.,
Wohed, P. (eds.) BPM 2013, vol. 171, pp. 15–27. Springer, Heidelberg (2013)

13. Rozinat, A., Mans, R., Song, M., van der Aalst, W.M.P.: Discovering simulation
models. Inf. Syst. 34(3), 305–327 (2009)

14. Leemans, S.J., Fahland, D., van der Aalst, W.M.: Discovering block-structured
process models from event logs containing infrequent behaviour. In: Lohmann,
N., Song, M., Wohed, P. (eds.) BPM Workshops, vol. 171, pp. 66–78. Springer,
Heidelberg (2014)

15. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling
with Generalized Stochastic Petri Nets. Wiley, Hoboken (1994)

16. Bolch, G., Greiner, S., de Meer, H., Trivedi, K.S.: Queueing Networks and Markov
Chains - Modeling and Performance Evaluation with Computer Science Applica-
tions. Wiley, Hoboken (2006)

17. Whitt, W.: The queueing network analyzer. Bell Syst. Tech. J. 62(9), 2779–2815
(1983)

18. van der Aalst, W.M., Ter Hofstede, A.H., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

19. Hall, R.W.: Queueing methods for services and manufacturing (1990)
20. Balsamo, S., Marin, A.: Composition of product-form generalized stochastic petri

nets: a modular approach. In: Proceedings of the ESM, pp. 26–28 (2009)
21. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure tree. Data

Knowl. Eng. (DKE) 68(9), 793–818 (2009)
22. Polyvyanyy, A., Vanhatalo, J., Völzer, H.: Simplified computation and general-

ization of the refined process structure tree. In: Bravetti, M. (ed.) WS-FM 2010.
LNCS, vol. 6551, pp. 25–41. Springer, Heidelberg (2011)

23. Shaw, D.X., Cho, G.: The critical-item, upper bounds, and a branch-and-bound
algorithm for the tree knapsack problem. Networks 31(4), 205–216 (1998)

24. Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning.
Springer Series in Statistics. Springer New York Inc., New York (2001)

25. Smirnov, S., Reijers, H.A., Weske, M., Nugteren, T.: Business process model
abstraction: a definition, catalog, and survey. Distrib. Parallel Databases 30(1),
63–99 (2012)

26. Resnick, S.I.: Adventures in Stochastic Processes. Springer Science & Business
Media, New York (2013)

27. Günther, C.W., van der Aalst, W.M.P.: Fuzzy mining – adaptive process simplifi-
cation based on multi-perspective metrics. In: Alonso, G., Dadam, P., Rosemann,
M. (eds.) BPM 2007. LNCS, vol. 4714, pp. 328–343. Springer, Heidelberg (2007)

28. Mafazi, S., Grossmann, G., Mayer, W., Schrefl, M., Stumptner, M.: Consistent
abstraction of business processes based on constraints. J. Data Semant. 4(1), 59–
78 (2014)

436 A. Senderovich et al.

29. Zerguini, L.: On the estimation of the response time of the business process. In:
17th UK Performance Engineering Workshop, University of Leeds. Citeseer (2001)

30. Zerguini, L., van Hee, K.M.: A new reduction method for the analysis of large
workflow models. In: Promise, pp. 188–201 (2002)

31. Balbo, G., Bruell, S.C., Ghanta, S.: Combining queueing networks and generalized
stochastic petri nets for the solution of complex models of system behavior. IEEE
Trans. Comput. 37(10), 1251–1268 (1988)

32. Ciardo, G., Trivedi, K.S.: A decomposition approach for stochastic petri net mod-
els. In: Petri Nets and Performance Models, pp. 74–83. IEEE (1991)

33. Woodside, C.M., Li, Y.: Performance petri net analysis of communications protocol
software by delay-equivalent aggregation. In: Petri Nets and Performance Models,
pp. 64–73. IEEE (1991)

34. Freiheit, J., Billington, J.: New developments in closed-form computation for GSPN
aggregation. In: Dong, J.S., Woodcock, J. (eds.) ICFEM 2003. LNCS, vol. 2885,
pp. 471–490. Springer, Heidelberg (2003)

35. Fahland, D., Van Der Aalst, W.M.P.: Simplifying discovered process models in a
controlled manner. Inf. Syst. 38(4), 585–605 (2013)

36. Gurobi Optimization Inc: Gurobi Optimizer Reference Manual (2015). http://
www.gurobi.com

http://www.gurobi.com
http://www.gurobi.com

	P3-Folder: Optimal Model Simplification for Improving Accuracy in Process Performance Prediction
	1 Introduction
	2 Background: Performance-Oriented Process Mining
	3 Performance Analysis with Generalised Stochastic Petri Nets
	4 Foldings of GSPN
	4.1 The Notion of a Folding
	4.2 The XOR-folding
	4.3 Finding Foldings by GSPN Decomposition

	5 Optimal Simplification of GSPN
	6 Evaluation
	6.1 Datasets and Setup
	6.2 Results

	7 Related Work
	8 Conclusion
	References

