
Predictive Business Process Monitoring
with Structured and Unstructured Data

Irene Teinemaa1,2(B), Marlon Dumas1, Fabrizio Maria Maggi1,
and Chiara Di Francescomarino3

1 University of Tartu, Tartu, Estonia
{irheta,marlon.dumas,f.m.maggi}@ut.ee

2 STACC, Tartu, Estonia
irene.teinemaa@gmail.com
3 FBK-IRST, Trento, Italy

dfmchiara@fbk.eu

Abstract. Predictive business process monitoring is concerned with
continuously analyzing the events produced by the execution of a busi-
ness process in order to predict as early as possible the outcome of each
ongoing case thereof. Previous work has approached the problem of pre-
dictive process monitoring when the observed events carry structured
data payloads consisting of attribute-value pairs. In practice, structured
data often comes in conjunction with unstructured (textual) data such as
emails or comments. This paper presents a predictive process monitoring
framework that combines text mining with sequence classification tech-
niques so as to handle both structured and unstructured event payloads.
The framework has been evaluated with respect to accuracy, prediction
earliness and efficiency on two real-life datasets.

Keywords: Process monitoring · Predictive monitoring · Text mining

1 Introduction

Business process monitoring is concerned with the analysis of events produced
during the execution of a process in order to assess the fulfillment of its com-
pliance requirements and performance objectives [7]. Monitoring can take place
offline (e.g., based on periodically produced reports) or online via dashboards
displaying the performance of currently running cases of a process [3].

Predictive business process monitoring [15] refers to a family of online process
monitoring methods that seek to predict as early as possible the outcome of each
case given its current (incomplete) execution trace and given a set of traces of
previously completed cases. In this context, an outcome may be the fulfillment of
a compliance rule, a performance objective (e.g., maximum allowed cycle time)
or business goal, or any other characteristic of a case that can be determined
upon its completion. For example, in a sales process, a possible outcome is the
placement of a purchase order by a potential customer, whereas in a debt recov-
ery process, a possible outcome is the receipt of a debt repayment.
c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 401–417, 2016.
DOI: 10.1007/978-3-319-45348-4 23

402 I. Teinemaa et al.

Existing approaches to predictive process monitoring [5,13,15,16] consider
that a trace consists of a sequence of events with a structured data payload,
such as a payload consisting of attribute-value pairs. For example, in a loan
application process, one event could be the receipt of a new loan application.
This event may carry structured data such as the name, date of birth and other
personal details of the applicant, the type of loan requested, and the requested
amount and valuation of the collateral. Each subsequent event in this process
may then carry additional or updated data such as the credit score assigned to
the applicant, the maximum loan amount allowed, the interest rate, etc.

In practice, not all data generated during the execution of a process is struc-
tured. For example, in said loan application process, the customer may include
a free-text description of the purpose of the loan. Later, a customer service
representative may attach to the case the text of an email exchanged with the
customer regarding her employment details, while a credit officer may add a
comment to the loan application following a conversation with the customer.
Comments like these ones are common for example in application-to-approval
processes, issue-to-resolution and claim-to-settlement processes, where the exe-
cution of the process involves unstructured interactions with the customer.

This paper studies the problem of jointly exploiting unstructured (free-text)
and structured data for predictive process monitoring. The contribution is a
predictive process monitoring framework that combines text mining techniques
to extract features from textual payload, with (early) sequence classification
techniques for structured data. The proposed framework is evaluated on two real-
life datasets: a debt recovery process, where the outcomes are either a (partial)
repayment or the referral of the case to an external agency for encashment, and
a lead-to-contract process, where the outcome conveys whether or not a sales
contract is signed with a potential customer.

The rest of the paper is structured as follows. Section 2 introduces the text
mining techniques upon which our proposal builds. Section 3 presents the pre-
dictive process monitoring framework, while Sect. 4 presents the evaluation.
Section 5 discusses related work while Sect. 6 summarizes the contribution and
outlines future work directions.

2 Background: Text Mining

The central object in text mining is a document — a unit of textual data such
as a comment or an e-mail. Natural language processing can be used to derive
representative feature vectors for individual documents, which can thereupon be
used in various (predictive) data mining tasks. In order to construct reasonable
representations, the textual data should be preprocessed. Firstly, the text needs
to be tokenized — segmented into meaningful pieces. In the simplest approach,
text is split into tokens on the white space character. More sophisticated tok-
enization techniques can be used to obtain multi-word tokens (e.g., “New York”)
or to separate words such as “it’s” into two tokens “it” and “is”.

Tokens can also be normalized so that tokens with small differences (e.g.,
“e-mail” and “email”) are equated. In addition, inflected forms of words can be

Predictive Monitoring with Structured and Unstructured Data 403

grouped together using stemming or lemmatization. For instance, lemmatization
can group words “good”, “better”, and “best” under a single lemma.

A document can be represented by using frequencies of single words as fea-
tures. For example, the document “The fox jumps over the dog” is represented
as {“the”:2, “fox”:1, “jumps”:1, “over”:1, “dog”:1}. This representation ignores
the order of words – a limitation that can be overcome by using sequences of
two (bigrams), three (trigrams), or n (n-grams) contiguous words instead of or
in addition to single words (unigrams). The bigrams in the above document are:
{“the fox”:1, “fox jumps”:1, “jumps over”:1, “over the”:1, “the dog”:1}. Fea-
tures that are constructed based on words that occur in the document are called
terms, while the corresponding representation is called bag-of-n-grams (BoNG).

Terms that occur frequently in a document collection are not representative
of a particular document, yet they receive misleadingly high values in the basic
BoNG model. This problem can be addressed by normalizing the term frequen-
cies (tf) with the inverse document frequencies (idf) — the number of all docu-
ments divided by the number of documents that contain the term, scaled loga-
rithmically. Thus, rare terms receive higher weights, while frequent words (like
“with” or “the”) receive lower weights. In text classification scenarios, weighing
the term frequencies with Naive Bayes (NB) log count ratios may improve the
accuracy of the predictions [19]. The BoNG model also suffers from high dimen-
sionality, as each document is represented by as many features as the number of
terms in the vocabulary (the set of all terms in the document collection). Com-
mon practice is to apply feature selection techniques, such as mutual information
or Chi-square test, and retain only the most relevant terms.

Alternative approaches to the BoNG model are continuous representations
of documents. These techniques represent text with real-valued low-dimensional
feature vectors, where each feature is typically a latent variable — inferred from
the observed variables. One such approach is topic modeling, which extracts
abstract topics from a collection of documents. The most widely used topic
modeling technique, Latent Dirichlet Allocation (LDA) [1], is a generative sta-
tistical model, which assumes that each document entails a mixture of topics
and each word in the document is drawn from one of the underlying topics.

Continuous representations of words using neural network-based language
models have also shown high performance in natural language processing tasks.
These language models are trained to predict a missing word, given its con-
text — words in the proximity of the word to be predicted. Techniques have
been proposed that extend these approaches from word-level to sentence-, or
document-level. For instance, Paragraph Vector (PV) [12] generates fixed-length
feature representations for documents of variable length.

3 Framework

The proposed framework takes as input a set of traces and a labeling function
that assigns a label (e.g., positive vs.negative) to each trace. Given this labeled
set of traces, and the incomplete trace of a running case, it returns as output a

404 I. Teinemaa et al.

prediction on the outcome (label) of the running case. Each trace consists of a
sequence of events carrying a payload consisting of structured and unstructured
data. For example, the following is a possible event (Call) in a debt collection
process, carrying structured data (revenue and debt sum) and unstructured data
(the associated textual description).

Call {revenue : 34555, debt sum : 500} {Please send a warning. 1234567: “Gave

extension of 5 days and issued a warning about sending it to encashment.

An encashment warning letter sent on the 06/10, 11:10 deadline.”}
(1)

The framework embodies two different components. An offline component uses
historical traces to train classifiers that are used to make predictions about
running cases through an online component. The following subsections explain
each of these components in more detail.

3.1 Offline Component

Figure 1 illustrates the offline component of our proposed predictive monitor-
ing framework. At the core of the framework, there are text models and classi-
fiers. Both are trained using prefixes of historical cases. In particular, one text
model and one classifier is trained for each possible prefix length (from 1 to m).
From all prefixes of a certain length, unstructured sequences (sequences of events
with their associated textual description) and structured sequences (sequences
of events with their structured data payload) are extracted (Extract sequences
in Fig. 1). A textual model is trained by using the unstructured data (Construct
text model in Fig. 1). The purpose of a textual model is to transform a variable
length textual description associated to an event into a fixed length numerical
feature vector. Each textual description extracted from the considered prefixes
is translated into a feature vector (Extract textual features in Fig. 1). A classifier
is then trained by encoding each prefix as a complex sequence, combining (i) con-
trol flow, (ii) structured data payload, and (iii) features extracted from textual
data. Therefore, the number of features depends on the prefix length k (from 1
to m) and thus different classifiers need to be trained for different prefix lengths.
We now describe in more detail the main phases in the offline component.

Fig. 1. The offline component of the proposed framework

Predictive Monitoring with Structured and Unstructured Data 405

Construct Text Models and Extract Textual Features: In the proposed
framework, the text associated to each event is considered as a document and
a feature vector is extracted from it. We compare 4 different techniques for
extracting feature vectors from text: BoNG model with and without NB log
count ratios, LDA topic modeling, and PV.

Before feature extraction, some preprocessing is done on the unstructured
data. We start with tokenizing the documents, using simple white space tok-
enization. In the case of the running example (1), the tokenization produces
a vector of tokens, e.g., “Please”, “send”, “a”, “warning”, Moreover, we
generate equivalence classes for different types of numerals by replacing them
with a corresponding tag (phone number, date, or other). For example, in (1),
token “1234567” would be replaced by token “phone number”, token “06/10”
by “date” and token “11:10” by “time”. Lastly, we lemmatize the text, i.e., we
group together different inflected forms of a word and we refer to such a group
with its base form or lemma. For example, in our running example, tokens
“send”, “sent” and “sending” will be clustered together into a “send” cluster
(where “send” is the lemma), whereas “deadlin” is the base form of “deadline”
and “deadlines”.

In the following paragraphs, we illustrate in detail the techniques for extract-
ing feature vectors from text we use in this paper.

Bag-of-n-grams (n, idf): This method is based on the BoNG model and takes
as inputs two parameters: n, which is the maximum size of the n-grams; and
idf , that is a boolean variable specifying whether the BoNG model is normalized
with idf. In this method, the documents from historical prefixes are used to build
a vocabulary of n-grams, V (n). Given a vocabulary V (n) of size |V (n)| = v, a
document j is represented as a vector d(j) = (g(j)t1 , g

(j)
t2 , ..., g

(j)
tv), where:

g
(j)
ti =

{
tfidf(ti(j)) if idf

f
(j)
ti otherwise

f
(j)
ti represents the frequency of n-gram ti in document d(j), i.e., f

(j)
ti = tf(ti(j)).

For instance, in our running example (1), if n = 1, idf = false and the vocab-
ulary is V (1) = {about, agenc, collect, commun, date, deadlin, encash, extens,
gave, issu, letter, number, phonenumb, pleas, send, time,warn,warning}, the
vector encoding the textual description would be:

d(j̄) = (1, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 3) (2)

where the word “send” (and its variations) occur three times in the document,
the word “about” occurs once and the word “agency” does not occur.

Naive Bayes log count ratios (n, α): In this method, features are still based
on the BoNG model, but they are weighted with NB log count ratios, d(j) =
(f (j)

t1 · r1, f
(j)
t2 · r2, ..., f

(j)
tv · rv). The parameter α is a smoothing parameter for

the weights [19], while n is, as in BoNG, the maximum size of the n-grams. For
instance, if the vocabulary (and hence the term frequency) is the same as the

406 I. Teinemaa et al.

one in (2) and the NB log count ratios vector is r = (0.85, 1.02, 0.76, 0.76, 1.52,
2.03, 1.19, 1.02, 0.45, 0.89, 1.02, 1.4, 1.39, 0.41, 1.02, 1.38, 1.27, 1.83), d(j̄) would
be:

d
(j̄)

= (0.85, 0, 0, 0, 1.52, 2.03, 1.19, 1.02, 0.45, 0.89, 1.02, 1.4, 1.39, 0.41, 3.06, 1.38, 1.27, 5.49) (3)

Latent Dirichlet Allocation topic modeling (num topics, idf): In this method, the
text model is represented by topics covered by the documents. The method takes
as input the number of topics to be obtained and, similarly to BoNG, a boolean
parameter idf that determines whether the term frequencies should be weighted
with idf before applying topic modeling. A topic is expressed as a probability
distribution over words, where words that are characteristic to a particular topic
possess higher values. Each document is represented as a probability vector over
topics, d(j) = (p(j)1 , p

(j)
2 , ..., p

(j)
c), where c is the number of topics and p

(j)
i is

the probability that document j concerns topic pi. For instance, if the three
following topics have been identified by applying topic modeling to the textual
descriptions of the historical unstructured data:

topic1 :(immediately : 0.4, phone : 0.2, pay : 0.1, ...) (immediate payment)

topic2 :(mobile : 0.3, answer : 0.2, switched : 0.15, off : 0.15, ...) (not accessible by phone)

topic3 :(send : 0.35, letter : 0.2, warning : 0.1, ...) (warning letter sent)

(each topic can be abstracted by using textual descriptions like the ones reported
on the right-hand side of the list of topics), the textual description in (1) will be
represented as a vector of three items. Each item corresponds to the probability
that the document concerns topic1, topic2 and topic3, respectively. In particular,
the document is not very related to topic1, a bit more to topic2 and closer to
the warning letter scenario. The resulting vector is:

d(j̄) = (0.1, 0.2, 0.7) (4)

Paragraph Vector (vector size, window size): In this method, not only terms
but also the sequence of terms are exploited for the construction of the model.
Namely, the method slides a window of size window size over the documents,
using each of such windows of words as the context. Once trained, the model is
able to provide for each document a vector of features of a fixed length (specified
by vector size).

For the methods based on the BoNG model with and without NB log count
ratios, before the textual features can be used for the complex sequence encoding,
a feature selection step is required to reduce the number of features extracted.
In particular, for the method based on the basic BoNG model the Chi-square
test is used, while for the method based on the BoNG model with NB log count
ratios the most discriminative features (i.e., the terms that achieve the top lowest
and top highest NB log ratio scores) are selected. Both these feature selection
techniques take as input the number of features to select, so that BoNG and NB
also require such a number as additional input parameter.

Predictive Monitoring with Structured and Unstructured Data 407

Encode as Feature Vector: Our approach utilizes the index-based encoding
for complex sequences [13]. This encoding scheme differentiates between static
and dynamic (structured) data. Case attributes are static since they do not
change as the case progresses. On the other hand, dynamic attributes may take
new values during the execution of a case. Event attributes can hence be con-
sidered either as static (only the most recent value is used) or dynamic (the
sequence of values up to a given point is used). Given a sequence σi of length k,
with u static features s1i , ..., s

u
i , and r dynamic features h1

i , ..., h
r
i , the index-based

feature vector gi of σi is:

gi = (s1i , ..., s
u
i , eventi1, ..., eventik, h

1
i1, ..., h

1
ik, ..., h

r
i1, ..., h

r
ik).

We enhance the index-based encoding with textual features by concatenating
them to the feature vector. Textual data can be of both static and dynamic
nature. When text contains static information, the derived v features t1i , ..., t

v
i

are added to the feature vector of σi as follows:

gi = (s1i , ..., s
u
i , eventi1, ..., eventik, h

1
i1, ..., h

1
ik, ..., h

r
i1, ..., h

r
ik, t

1
i , ..., t

v
i).

On the other hand, if textual data changes throughout the case, it should be
handled in the same way as dynamic structured data:

gi = (s
1
i , ..., s

u
i , eventi1, ..., eventik, h

1
i1, ..., h

1
ik, ..., h

r
i1, ..., h

r
ik, t

1
i1, ..., t

1
ik, ..., t

v
i1, ..., t

v
ik).

For instance, if the case containing the event in the example (1) does not
contain any static structured and unstructured data, using the topic model vector
in (4), the complex sequence would be:

g
i
= (..., call, ..., 34555, 500, ..., 0.1, 0.2, 0.7, ...) (5)

Train Classifier: We use random forest [2] and logistic regression [9] to build
the classifiers. Random forest has been shown to be a solid classifier in various
problem settings, including credit scoring applications [14]. On the other hand,
logistic regression, one among the most popular linear classifiers in text classifi-
cation tasks, suites well to cases in which data are very sparse (this is the case
when the BoNG model is used).

3.2 Online Component

The structure of the online component of our predictive monitoring framework
is presented in Fig. 2. When predicting the outcome for a running case of prefix
length k, the pre-built textual model and classifier for length k are retrieved and
applied to the running case at hand. If the prefix length of the running case is
larger than the maximum prefix length m used in the training process, only the
first m events of the running case are used.

Threshold minConf is an input parameter of the framework. If the classifier
returns a probability higher than minConf for the positive class, the framework
outputs a positive prediction. If the probability is lower than the threshold, no

408 I. Teinemaa et al.

Fig. 2. The online component of the proposed framework

prediction is made and the framework continues to monitor the case. When the
observed event is a terminal event, the final prediction is negative.

This setting, where the framework focuses only on making positive predic-
tions, follows closely most real-life scenarios. Indeed, it is important for the
stakeholders to filter the cases that may become deviant in the future, so that
preventive actions can be taken. On the other hand, in cases that will likely have
a normal outcome, no specific action is taken and they are allowed to continue
in their own path. Still, our framework is easily extensible to early prediction of
both positive and negative outcomes.

4 Evaluation

We have implemented the proposed methods in Python1 and evaluated their per-
formance on two datasets using an existing technique for predictive process mon-
itoring with structured data as a baseline [13]. Below we describe the datasets,
evaluation method and findings.

4.1 Datasets

We evaluated our framework on two real-life datasets pertaining to: (i) the debt
recovery (DR) process of an Estonian company that provides credit management
service for its customers (creditors), and (ii) the lead-to-contract (LtC) process
of a due diligence service provider in Estonia.

The debt recovery process starts when the creditor transfers a delinquent debt
to the company. This means that the debtor has already defaulted — failed to
repay the debt to the creditor in due time. Usually, the collection specialist makes
a phone call to the debtor. If the phone is not answered, an inquiry/reminder
letter is sent. If the phone is answered, the debtor may provide an expected pay-
ment date, in which case no additional action is taken during the present week.
Alternatively, the specialist and the debtor can agree on a payment schedule
that outlines the repayments over a longer time period. If the collection special-
ist considers the case to be irreparable, she makes a suggestion to the creditor

1 Scripts available at https://github.com/irhete/PredictiveMonitoringWithText.

https://github.com/irhete/PredictiveMonitoringWithText

Predictive Monitoring with Structured and Unstructured Data 409

about forwarding the debt to an outside debt collection agency (send to encash-
ment) or about sending a warning letter to the debtor on the same matter. The
final decision about issuing an encashment warning to the debtor and/or send-
ing the debt to encashment is made by the creditor. If there is no advancement
in collecting the debt after 7 days (e.g., the payment was not received on the
provided date or the debtor has neither answered the phone nor the reminder
letter), the procedure is repeated.

It is in the interest of the creditor to discover, as early as possible, cases
that will not lead to any payment in a reasonable timeframe. The earlier the
debt is recovered, the more value it entails for the creditor. Moreover, such
cases are likely irreparable and could be sent to encashment without further
delay. Therefore, our prediction goal is to determine cases where no payment is
received within 8 weeks after the beginning of the debt recovery process.

The lead-to-contract process is logged through a customer relationship man-
agement system (CRM). The process begins when the sales manager selects
companies as “cold leads” and loads them into CRM. Based on personal expe-
rience, the sales manager selects leads that qualify for an opportunity, or alter-
natively, makes a phonecall to the company in order to determine qualification.
Then, when a case is in the qualification stage, a phonecall is initiated with the
purpose of scheduling a meeting with the potential customer’s representatives.
If a meeting is scheduled, the opportunity enters the presentation stage. The
goal of a sales person is to get the contract signed during the presentation. If she
succeeds, the opportunity is marked as won and the case terminates. If the offer
made during the meeting was acceptable, but the signing of the contract is post-
poned, the opportunity enters the contract stage. If the offer was not accepted
during the meeting, an offer is sent via e-mail, and the opportunity moves to the
offer stage. Any time during the process additional phonecalls can be made and
follow-up meetings scheduled. When it becomes clear that the company is not
interested in collaboration, the opportunity is marked as lost.

The number of potential customers is very high and it is not feasible for the
sales people to deeply explore all of the possible leads. Thus, the process would
benefit from a support system that estimates if an opportunity will likely end
with a signed contract (opportunity won) or not (opportunity lost). If an oppor-
tunity is likely to be lost, the sales person can close it at an early stage (or assign
it a lower priority), becoming able to focus on other leads with higher potential.
Given this motivation, in the following experiments we aim at predicting, as
early as possible, if an opportunity will be lost.

Table 1. Evaluation datasets

Data # Normal cases # Deviant cases Avg. # words/doc # Lemmas

DR 13608 417 11 11822

LtC 385 390 8 2588

410 I. Teinemaa et al.

In the debt recovery dataset, events are not explicitly logged. Instead, this
information is captured in the collector’s notes, which are written down in
unstructured textual format. The collector’s notes constitute a dynamic feature,
which may describe the activity taken by the collection specialist, as well as the
answer of the debtor and the assessment of the specialist. In the second dataset,
the phonecall summaries are written down in unstructured format. The text in
both datasets is written in Estonian language. Statistics about both datasets are
given in Table 1.

Based on the structured data available, we identify 8 static and 69 dynamic
features in the debt recovery dataset, and 3 static and 65 dynamic features in
the lead-to-contract dataset. The static features are general statistics about the
company, for instance, the size of equity, the net profit, and field of activity. The
dynamic features in the first dataset are mostly related to the debt, e.g., the
number of days past due, the expected repayment amount until the next 7 days,
and the sum of other debts of the debtor. In the second dataset, the dynamic
features include activity name, resource, and expected revenue. For both datasets,
we use dynamic features that reflect the company’s (either the debtor’s or the
potential customer’s) risk score, calculated at 6 different months prior to the
given event. Moreover, as the first dataset contains a considerable amount of
missing values, additional 16 (static) features are added that express whether
the value of a particular feature is present or missing. In the given datasets, we
decide to use unstructured data as static information, i.e., to encode only the
last available text, given a specific prefix length.

4.2 Research Questions and Evaluation Measures

In our evaluation, we address the following three research questions:

RQ1 Do the features derived from textual data (using different methods)
increase the prediction accuracy of index-based sequence encoding?

RQ2 Do the features derived from textual data (using different methods)
increase the prediction earliness of index-based sequence encoding?

RQ3 Is the proposed predictive monitoring framework efficient?

For evaluating prediction accuracy (RQ1) of our framework, we use precision,
recall, and F-score, as suggested in [16]. We do not use accuracy, as it can lead to
misleading results in case of imbalanced data [18]. Also, we do not report about
specificity, as our main goal is to predict the positive class as accurately as pos-
sible. All metrics are based on the possible combinations of actual and predicted
outcomes. True positives (TP) are positive cases, which are correctly predicted as
positive. True negatives (TN) are negative cases, which are correctly predicted as
negative. False positives (FP) are negative cases, which are incorrectly predicted
as positives. False negatives (FN) are positive cases, which are incorrectly pre-
dicted as negatives. Given these notions, precision is defined as TP/(TP +FP),
recall as TP/(TP +FN), and F-score as 2·precision·recall/(precision+recall).

To answer RQ2, we measure the earliness of predictions [6]. Earliness is
calculated for cases that are predicted as positive, as the ratio of length of the

Predictive Monitoring with Structured and Unstructured Data 411

case when the final prediction was made/total length of the case. For instance, if
the case was predicted as positive after 2 events, while the actual total length of
the case was 8 events, earliness = 0.25. Low earliness values are better, as the
aim of predictive monitoring is to provide predictions as early as possible.

Finally, the computation time is measured in order to estimate the efficiency
of the framework (RQ3). For evaluating the offline component of the framework,
we differentiate between the time for data processing (text model construction,
textual feature extraction, and sequence encoding) and classifier training. Times
are summed up over all prefix lengths, in order to evaluate the total time that
is needed to set up the framework. For evaluating the online component, we
combine the time for encoding the running case as a feature vector and the time
for prediction. Times are averaged over the total number of processed events.

4.3 Evaluation Procedure

We split each dataset randomly in two parts, so that 4/5 of it is used for training
the offline component, while the remaining 1/5 is used for testing the online com-
ponent. For tuning the parameters of the text modeling methods, we perform a
grid-search over all combinations of selected parameter values using 5-fold cross-
validation on the training set. In the DC dataset, where only 3 % of cases are
deviant, we use oversampling on the training data in order to alleviate the imbal-
ance problem. The final Paragraph Vector models are trained for 10 epochs. The
optimal parameters are chosen based on F-score, for each combination of text
modeling method, classification method, and confidence threshold. The com-
putation times are calculated as the average of 10 equivalent executions with
minConf = 0.6. The probability estimates returned by the classifier are used as
confidence values.

The optimal parameters found when using random forest and logistic regres-
sion are different. However, in the following, we discuss the values obtained using
random forest only, since random forest performs better than logistic regression
in all cases. We optimize the parameters described in Sect. 3 and use the default
values for all the parameters not mentioned.

For the method based on the basic BoNG model, we explore 43 parameter
settings (varying maximum n-gram size, idf , and number of selected features).
In most cases, tf-idf weights perform slightly better than simple tf. Moreover,
bigrams and trigrams gain similar performance, while both are better than uni-
grams. The best number of selected features stays between 100 and 1000. In the
DR dataset, only 100 features are often sufficient to gain a good accuracy, while
more features are needed in the LtC dataset (usually 750 or 1000).

For the method based on the BoNG model with NB log count ratios, we try
84 combinations of parameters (varying α, maximum n-gram size and number
of selected features). Changing the α value has almost no effect on the results,
usually a small value (either 0.01 or 0.1) is chosen. The best number of selected
features tends to be higher than in the BoNG case, usually between 250 and
1000 features in the DR dataset and between 1000 and 5000 in the LtC dataset.
In most cases, trigrams outperform bi- and unigrams.

412 I. Teinemaa et al.

In case of LDA (we vary the number of topics and idf), we try 6 different
numbers of topics (12 combinations in total). In general, the larger the confi-
dence, the higher the number of topics that achieves the best results. In the DR
dataset, idf normalization does not improve the outcome, while changing the
parameters has very little effect on the results in the LtC dataset.

For PV, we explore 91 combinations, varying the size of the feature vector and
the window size. The best results are obtained with a small 10- or 25-dimensional
vector. The optimal window size varies a lot across the experiments, but stays
between 5 and 9, in general.

Experiments were run in Python 3.5 using scikit-learn (BoNG and classifiers),
gensim (LDA and PV) and estnltk (lemmatization) libraries on a single core of
a 64-bit 2.3 GHz AMD Opteron Processor 6376 with 378 GB of RAM.

4.4 Results

The F-scores of the random forest classifiers are shown in Fig. 3a (debt recovery
dataset) and c (lead-to-contract dataset). We observe that in both datasets, the
methods that utilize unstructured data almost always outperform the baseline.
In the DR dataset, BoNG and NB achieve considerably better results than the
other methods, while in the LtC dataset, the best results are produced by LDA.
Although the proportion of unstructured vs. structured data in the LtC dataset
is much smaller than in the DR dataset, the improvement of the results is still
substantial. The highest F-score in the DR dataset (0.791) is achieved by NB with
minConf = 0.55, while LDA achieves F-score of 0.753 with minConf = 0.65 in
the LtC dataset.

Figure 3b and d show the prediction earliness achieved with random forest.
The model with the best F-score in the DR dataset tends to make predictions
when 59 % of a case has finished, while the best model in the LtC dataset is
predicted after 40 % of a case has been seen.

In order to further explore the importance of unstructured data in making
predictions, we performed additional experiments using unstructured data only.
In the DR dataset, the NB model achieves F-score of 0.66 (instead of 0.791 as
in Fig. 3a), while in the LtC dataset, the LDA model reaches F-score of 0.70
(instead of 0.75 as in Fig. 3c). In both datasets, the model trained with only
structured data (the baseline) outperforms all unstructured data models in terms
of precision, while falls behind in terms of recall. Thus, unstructured features
have some predictive power on their own, but in order to get the most out of
the data, they should be combined with structured data. In addition, we observe
that using the best model (NB, conf = 0.55) of the DR dataset, 3 out of the
top 5 features ranked according to Gini impurity are derived from textual data.
On the other hand, in the LtC dataset (LDA, conf = 0.65), the first 9 features
according to importance are structured features. This implies that in best model
of the LtC dataset, textual features are less relevant than structured features.

Table 2 reports the computation time required by the offline component for
data processing and for classification, as well as the computation time required
by the online component for providing a prediction with a minimum confidence

Predictive Monitoring with Structured and Unstructured Data 413

(a) F-score in DR dataset (b) Earliness in DR dataset

(c) F-score in LtC dataset (d) Earliness in LtC dataset

Fig. 3. Predictive monitoring results with random forest

of 0.6. The most expensive technique, in terms of computation time for setting
up the offline component, is LDA, which requires more than 4 min for data
processing in the DR dataset and 28 s in the LtC dataset (Table 2). The difference
between the time required by the two datasets is likely due to their different size.
In case of PV, the processing time of the offline component depends highly on the
number of epochs used for training the paragraph vectors. In our experiments,
we used 10 epochs, which results in relatively high processing time. BoNG is the
most efficient method, taking only little over a second in the smaller dataset and
over 5 s in the larger one. On the other hand, the current implementation of NB
does not scale well as the size of the data increases.

Classifier training times remain between 24 and 83 s, depending on the
dataset size and number of features. In the online component, all the meth-
ods are extremely fast in processing a running case (in the order of milliseconds
per event). The slowest is LDA which takes 7 ms on average in the DR dataset.

Depending on the application, some additional time may be needed to pre-
pare the data into a suitable format. Preprocessing the entire dataset took
2.3 min in case of DR and 14 s in case of LtC. The most time-consuming proce-
dure was lemmatization that took 1.5 min in DR (12 s in LtC).

414 I. Teinemaa et al.

Table 2. Computation times, minConf = 0.6

total proc offline (s) total cls offline (s) avg online (ms)

Data Base BoNG NB LDA PV Base BoNG NB LDA PV Base BoNG NB LDA PV

DR 0.5 5.1 54.0 262 212 41.3 50.0 53.9 83.6 61.3 0.1 0.4 2.9 7.0 2.0

LtC 0.5 1.4 1.7 28.0 14.7 28.1 29.9 35.2 24.5 27.3 0.3 0.4 0.5 0.7 0.5

We also ran the same experiments with logistic regression instead of random
forest. We omit these results since logistic regression performed worse in all cases.
A possible explanation is that the dataset contains both sparse (textual features
in case of BoNG and NB) and dense features (structured data payload), and the
dense features carry substantial predictive power. Logistic regression is generally
more suitable for sparse data.

4.5 Discussion

According to our results, BoNG performs well on both datasets over all confi-
dence thresholds. This indicates that there exists a set of n-grams that carry
enough information to classify cases. NB is able to outperform BoNG in a few
cases, but the implementation is not as scalable.

In the LtC dataset, the best results are produced by LDA. The reason for
this might be that LDA combines the information captured in textual data into
topics, instead of using specific words. Thus, it is able to perform well even in
the case of few available textual data, which is the case in the LtC dataset.
Also, supported by previous studies where topic modeling methods have shown
to perform well on short texts, such as tweets [10], LDA is less affected by the
fact that individual notes in the LtC data set contain only 8 words on average.

A possible reason for PV performing worse than the other methods is that
PV computes the feature vector for an unseen document via inference. Therefore,
in order to produce reliable results, it requires a fairly large document collection
for training. Moreover, the benefits of PV become more evident in heterogenous
datasets, where a variety of words is used to express similar concepts.

One limitation of our evaluation is its low generalizability. While the eval-
uation datasets come from two real-life processes with different deviant case
ratios (balanced vs. imbalanced), the textual notes in both datasets are written
by members of a small team of debt recovery specialists and salespeople respec-
tively. The observations might be different if these notes were written by a larger
team or if they included emails sent by customers (higher heterogeneity). Also,
the results may be affected by the amount of textual data available. Another
limitation is the reduced set of classification algorithms employed (random for-
est and logistic regression). While these algorithms are representative and widely
used in text mining, other classifiers might be equally or more suitable.

Predictive Monitoring with Structured and Unstructured Data 415

5 Related Work

Predictive monitoring is relevant in a range of domains where actors are inter-
ested in understanding the future performance of a system in order to take
preventive measures. Predictive monitoring applications can be found in a wide
range of settings, including for example industrial processes [11] and medical
diagnosis [4]. One recurrent task addressed in this field is that of failure predic-
tion [18] – i.e., detecting that a given type of failure will occur in the near-term.

While the predictive monitoring problems addressed in the above fields share
common traits with the problem addressed in this paper, business process event
logs have a specific characteristics that call for specialized predictive monitoring
methods, chiefly: (i) business process event logs are structured into cases and
each case can have a different outcome; hence, the problem is that of monitoring
multiple concurrent streams of events rather than one; (ii) every event in a case
refers to a given activity or external stimulus; (iii) every event has a payload;
(iv) the payload may contain both structured data and text, and the structured
part of the data includes both discrete and numerical attributes. In contrast,
in other application domains [4,11,18], events in a given stream are generally
of homogeneous types and carry numerical attributes (e.g., measurements taken
by a device), this requiring a different type of techniques compared to predictive
business process monitoring.

A range of methods have been proposed in the literature to deal with this
specific combination of characteristics. These methods differ in terms of the
object of prediction, the type of data employed, and the approach used for feature
encoding. With respect to the former, some approaches focus on predicting time
or other performance measures. For example, [17] uses stochastic Petri nets to
predict the remaining execution time of a case, while [16] addresses the problem
of predicting process performance violations in general and deadline violations in
particular. Other approaches focus on predicting the outcome of a process, such
as predicting failures or other types of negative outcomes (a.k.a. deviance). For
example, [5] presents a technique to predict risks, while [15] focuses on predicting
binary outcomes (normal vs. deviant cases).

Predictive process monitoring approaches also differ depending on the type
of data they use. Some approaches only use control-flow data [16,17], others use
control-flow and structured data [5,8,13,15]. When building predictive process
monitoring models that take into account both control-flow and data payloads,
a key issue is how to encode a given trace in the log (or a prefix thereof) as
a feature vector. In this respect, a comparison feature encoding approaches is
given in [13], which empirically shows that an index-based encoding approach
provides higher performance.

None of the above studies have taken into account textual data. Yet, textual
data is generated in a range of customer-facing processes and as shown in this
paper, can enhance the performance of predictive process monitoring models.

416 I. Teinemaa et al.

6 Conclusion

We outlined a framework for predictive process monitoring that combines
text mining methods to extract features from textual documents, with (early)
sequence classification techniques designed for structured data. We studied dif-
ferent combinations of text mining and classification techniques and evaluated
them on two datasets pertaining to a debt recovery process and a sales process.

In the reported evaluation, BoNG and NB, in combination with random for-
est, outperform other techniques when the amount of textual data is sufficiently
large. In the presence of a smaller document collection, LDA exhibits better
performance. An avenue for future work is to further validate these observations
on other datasets exhibiting different characteristics, for example, datasets con-
taining longer or more heterogeneous documents. Another future work avenue is
to produce interpretable explanations of the predictions made, so that process
workers and analysts can understand the reasons why a given case is likely to
end up with a given outcome. Last but not least, we are planning to integrate
our tool in the operational support of the process mining tool ProM to provide
predictions starting from an online stream of events.

Acknowledgments. This research is funded by the EU FP7 Programme (project
SO-PC-Pro) and by the Estonian Research Council and by ERDF via the Software
Technology and Applications Competence Centre (STACC).

References

1. Blei, D.M., Ng, A.Y., Jordan, M.I.: Latent Dirichlet allocation. J. Mach. Learn.
Res. 3, 993–1022 (2003)

2. Breiman, L.: Random forests. Mach. Learn. 45(1), 5–32 (2001)
3. Castellanos, M., Casati, F., Dayal, U., Shan, M.: A comprehensive and auto-

mated approach to intelligent business processes execution analysis. Distrib. Par-
allel Databases 16(3), 239–273 (2004)

4. Clifton, L.A., Clifton, D.A., Pimentel, M.A.F., Watkinson, P., Tarassenko, L.: Pre-
dictive monitoring of mobile patients by combining clinical observations with data
from wearable sensors. IEEE J. Biomed. Health Inf. 18(3), 722–730 (2014)

5. Conforti, R., de Leoni, M., Rosa, M.L., van der Aalst, W.M.P., ter Hofstede,
A.H.M.: A recommendation system for predicting risks across multiple business
process instances. Decis. Support Syst. 69, 1–19 (2015)

6. Di Francescomarino, C., Dumas, M., Maggi, F.M., Teinemaa, I.: Clustering-Based
Predictive Process Monitoring. arXiv preprint (2015)

7. Dumas, M., La Rosa, M., Mendling, J., Reijers, H.A.: Fundamentals of Business
Process Management. Springer, Heidelberg (2013)

8. Folino, F., Guarascio, M., Pontieri, L.: Discovering context-aware models for pre-
dicting business process performances. In: Meersman, R., Panetto, H., Dillon, T.,
Rinderle-Ma, S., Dadam, P., Zhou, X., Pearson, S., Ferscha, A., Bergamaschi,
S., Cruz, I.F. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 287–304. Springer,
Heidelberg (2012)

9. Freedman, D.: Statistical Models: Theory and Practice. Cambridge University
Press, Cambridge (2005)

Predictive Monitoring with Structured and Unstructured Data 417

10. Hong, L., Davison, B.D.: Empirical study of topic modeling in Twitter. In: Pro-
ceedings of the First Workshop on Social Media Analytics, pp. 80–88. ACM (2010)

11. Juriceka, B.C., Seborga, D.E., Larimore, W.E.: Predictive monitoring for abnormal
situation management. J. Process Control 11(2), 111–128 (2001)

12. Le, Q.V., Mikolov, T.: Distributed representations of sentences and documents.
arXiv preprint arXiv:1405.4053 (2014)

13. Leontjeva, A., Conforti, R., Di Francescomarino, C., Dumas, M., Maggi, F.M.:
Complex symbolic sequence encodings for predictive monitoring of business
processes. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M. (eds.) BPM 2015.
LNCS, vol. 9253, pp. 297–313. Springer, Switzerland (2015)

14. Lessmann, S., Baesens, B., Seow, H.V., Thomas, L.C.: Benchmarking state-of-the-
art classification algorithms for credit scoring: an update of research. Eur. J. Oper.
Res. 247(1), 124–136 (2015)

15. Maggi, F.M., Di Francescomarino, C., Dumas, M., Ghidini, C.: Predictive moni-
toring of business processes. In: Jarke, M., Mylopoulos, J., Quix, C., Rolland, C.,
Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) CAiSE 2014. LNCS, vol. 8484,
pp. 457–472. Springer, Heidelberg (2014)

16. Metzger, A., Leitner, P., Ivanovic, D., Schmieders, E., Franklin, R., Carro, M.,
Dustdar, S., Pohl, K.: Comparing and combining predictive business process mon-
itoring techniques. IEEE Trans. SMC 45(2), 276–290 (2015)

17. Rogge-Solti, A., Weske, M.: Prediction of remaining service execution time using
stochastic petri nets with arbitrary firing delays. In: Basu, S., Pautasso, C., Zhang,
L., Fu, X. (eds.) ICSOC 2013. LNCS, vol. 8274, pp. 389–403. Springer, Heidelberg
(2013)

18. Salfner, F., Lenk, M., Malek, M.: A survey of online failure prediction methods.
ACM Comput. Surv. (CSUR) 42(3), 10 (2010)

19. Wang, S., Manning, C.D.: Baselines and bigrams: simple, good sentiment and topic
classification. In: Annual Meeting of the Association for Computational Linguistics,
pp. 90–94 (2012)

http://arxiv.org/abs/1405.4053

	Predictive Business Process Monitoring with Structured and Unstructured Data
	1 Introduction
	2 Background: Text Mining
	3 Framework
	3.1 Offline Component
	3.2 Online Component

	4 Evaluation
	4.1 Datasets
	4.2 Research Questions and Evaluation Measures
	4.3 Evaluation Procedure
	4.4 Results
	4.5 Discussion

	5 Related Work
	6 Conclusion
	References

