
Untrusted Business Process Monitoring
and Execution Using Blockchain

Ingo Weber1,2(B), Xiwei Xu1,2, Régis Riveret3, Guido Governatori3,
Alexander Ponomarev1, and Jan Mendling4

1 Data61, CSIRO, Eveleigh, NSW, Australia
{Ingo.Weber,Xiwei.Xu,Alexander.Ponomarev}@data61.csiro.au

2 School of Computer Science and Engineering, UNSW, Sydney, Australia
3 Data61, CSIRO, Spring Hill, QLD, Australia

{Regis.Riveret,Guido.Governatori}@data61.csiro.au
4 Wirtschaftsuniversität Wien, Vienna, Austria

jan.mendling@wu.ac.at

Abstract. The integration of business processes across organizations is
typically beneficial for all involved parties. However, the lack of trust
is often a roadblock. Blockchain is an emerging technology for decen-
tralized and transactional data sharing across a network of untrusted
participants. It can be used to find agreement about the shared state of
collaborating parties without trusting a central authority or any particu-
lar participant. Some blockchain networks also provide a computational
infrastructure to run autonomous programs called smart contracts. In
this paper, we address the fundamental problem of trust in collaborative
process execution using blockchain. We develop a technique to integrate
blockchain into the choreography of processes in such a way that no cen-
tral authority is needed, but trust maintained. Our solution comprises
the combination of an intricate set of components, which allow monitor-
ing or coordination of business processes. We implemented our solution
and demonstrate its feasibility by applying it to three use case processes.
Our evaluation includes the creation of more than 500 smart contracts
and the execution over 8,000 blockchain transactions.

Keywords: Business process · Blockchain · Choreography ·
Orchestration

1 Introduction

The integration of business processes, e.g., along the supply chain, has been
found to contribute both to better operational and business performance [4,10].
A lack of trust, however, may hamper the innovativeness of further developing
the collaborative process and its performance altogether [13]. Once service-level
agreements are in place, it becomes a highly delicate question which partner
should serve as a hub for controlling the collaborative process of several parties,
or where a mediator process is hosted. While control asymmetries can be avoided
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by a decentralized choreography instead of central orchestration, it does not solve
the general problem of trust in controlling the collaborative business process.

The described lack-of-trust problem can be addressed with novel blockchain
technology. Instead of agreeing on one trusted party, participants share trans-
actional data across a large network of untrusted nodes (i.e., machines). This is
achieved using a timestamped list of blocks which record, share, and aggregate
data about transactions that have ever occurred within the blockchain network.
Cryptographic proofs make this data storage immutable. As long as a majority
share of the blockchain is not compromised, transactions can only be inserted;
updating or deleting existing transactions is prohibitively expensive, making
the blockchain tamper-proof. Blockchain also provides a global computational
infrastructure, which can run programs: so-called smart contracts [12] execute
across the blockchain network and automatically enforce the conditions defined
in the transactions to enable, for example, conditional payment.

In this paper, we adopt blockchain technology to address the lack-of-trust
problem in collaborative business processes. More specifically, we develop an
approach to map a business process onto a peer-to-peer execution infrastructure
that stores transactions in a blockchain, offering the following benefits. First,
we provide a monitoring facility that integrates an automatic and immutable
transaction history. Second, smart contracts can be used as a direct implemen-
tation of the mediator process control logic. Third, we obtain an audit trail for
the complete collaborative business processes, for which payments, escrow, and
conflict resolution can be enforced automatically. Our contribution is the first
approach and implementation that leverages blockchain for collaborative process
execution and monitoring. We evaluate our approach for feasibility by prototyp-
ing three use case processes on top of it. To this end, we ran of more than 500
process instances by creating as many smart contracts, and executed over 8,000
blockchain transactions that interact with the smart contracts.

The paper proceeds with a discussion of the research problem, related
work, and blockchain technology in Sect. 2. Section 3 presents the details of
our approach. Section 4 evaluates our approach using several real-world busi-
ness scenarios, and Sect. 5 concludes. Technical details and evaluation use cases
are described in a technical report (TR) [23]. Finally, a screencast video is
available.1

2 Background

This section discusses the research problem we address, related work, and the
background of blockchain technology as a solution.

2.1 Challenges of Collaborative Business Process Execution

We illustrate challenges of executing collaborative business processes by the help
of a supply chain scenario reported in [3] that we simplify in Fig. 1. The process
1 https://youtu.be/1SNn9c5HHQs.

https://youtu.be/1SNn9c5HHQs
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Fig. 1. Supply chain scenario from [3] (simplified)

starts with the Bulk Buyer placing an order with the Manufacturer. The latter
calculates the demand and places an order for materials via a Middleman. This
Middleman forwards the order to a Supplier and arranges transportation by a
Special Carrier. Once the materials are produced, the Carrier picks them up
at the Supplier site and delivers them to the Manufacturer. The Manufacturer
produces the goods and delivers to the Bulk Buyer. The process is a choreogra-
phy since there is no party that sees all messages. If all messages were sent and
received by the Manufacturer, it would be an orchestration with the Manufac-
turer serving as a mediator [7].

Conflict Example. This simple scenario already involves five participants who
would likely blame each other in case of delays and errors. Consider the case
that the Manufacturer receives the materials three days later than agreed, with
eight pallets being delivered instead of ten. The Supplier might argue that this
is exactly in line with what was ordered by the Middleman while the Middleman
would claim the fault to be on the side of the Supplier. The situation is delicate
for the Carrier since the Manufacturer refuses to accept the delivery. The Carrier
is now eligible for a compensation by the Supplier or the Middleman depending
on who is responsible for the fault.

2.2 Prior Research on Collaborative Business Processes

Prior research on collaborative business processes has intensively investigated
different notions of compatibility between the local processes of different partners
and between local processes and a global process. Such compatibility can be
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achieved by design, for instance using a P2P approach [20], transformations
from a global choreography [7,22], or interaction modeling [2].

Business processes involve different trust issues (see e.g. [21] for a summary)
which can be addressed in different ways. For example, [1] relaxed the assumption
that the broker hosting the process engine has to be trusted: using selective
encryption, data access for both the broker and the service partners can be
restricted. [8] designed a trust service for cross-company collaboration based on
a hybrid architecture mixing a trusted centralized control with untrusted peer-
to-peer components. [6] put forward an agent-based architecture that can remove
the scalability bottleneck of a centralized orchestration engine, and provides more
efficiencies by executing portions of processes close to the data they operate
on. In virtual organizations, [15] proposed to select partners on the basis of
disclosure policies and credentials (i.e. identity attributes issued by a “Credential
Authority”).

Various important concepts such as conformance [19], reliability [16] and
quality of services [24] have been investigated for centrally controlled business
process execution. However, these works do not solve the trust issue: a collabo-
rating party might have corrupted their historic files to their advantage. Tech-
nologies such as shared data stores provide solutions via consensus protocols to
synchronize replicas [5] in a fully trusted environment. In this paper, we build
our approach on blockchain technology for reasons explained next.

2.3 Blockchain Technology

Blockchain is the technology that supports Bitcoin [9]. The Bitcoin blockchain
is a public ledger, which stores all transactions of the Bitcoin network. This
concept has been generalized to distributed ledger systems that verify and store
any transactions without coins or tokens [17]. A key feature of a blockchain-based
system is that it does not rely on any central trusted authority, like traditional
banking or payment systems. Instead, trust is achieved as an emergent property
from the interactions between nodes within the network.

The blockchain data structure is an ordered list of blocks. Blocks are contain-
ers aggregating transactions. Every block is identifiable and linked to the pre-
vious block in the chain. Transactions are identifiable data packages that store
parameters (such as monetary value in case of Bitcoin) and results of function
calls in smart contracts. The integrity is ensured by cryptographic techniques.
Once created, a transaction is signed with the signature of the transaction’s ini-
tiator, which indicates e.g. the authorization to spend the money, create a smart
contract, or pass the data parameters associated with the transactions.

If the signed transaction is properly formed, valid and complete, it is sent to
a few other nodes on the blockchain network, which will further validate it and
send it to their peers until it reaches every node in the network. This flooding
approach guarantees that a valid transaction will reach all the connected nodes
in the network within a few seconds. The senders do not need to trust the nodes
they use to broadcast the transactions, as long as they use more than one to
ensure that it propagates. The recipient nodes do not need to trust the sender
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either because the transaction is signed. When a transaction reaches a mining
node, it is verified and included in a block. Blockchain networks rely on miners to
aggregate transactions into blocks and append them to the blockchain. Once the
transaction is confirmed by a sufficient number of blocks, it becomes a permanent
part of the ledger and is accepted as valid by all nodes.

A smart contract is a user-defined program executed on the blockchain net-
work [12]. It can be used to reach agreement and solve common problems.
Smart contracts can be enforced as part of transactions, and are executed
across the blockchain network by all connected nodes. The blockchain platform
Ethereum views smart contract as a first-class element, and offers a built-in
Turing-complete scripting language for writing smart contracts, called Solidity.
Its execution environment, the Ethereum Virtual Machine (EVM), comprises all
full nodes on the network and executes bytecode compiled from Solidity scripts.
Trust in the correct execution of smart contracts extends directly from regu-
lar transactions, since (i) they are deployed as data in a transaction, and hence
immutable; (ii) all their inputs are through transactions; and (iii) their execution
is deterministic. Deployed contracts should be tested. Whether the bytecode can
be trusted is a separate matter, which we discuss for our approach in Sect. 4.5.

3 Blockchain-Based Collaborative Process Execution

In the following, we propose a blockchain-based system to address the lack-of-
trust problem in collaborative business processes. A number of technical chal-
lenges arise during the adoption of blockchain for this purpose. For example,
since transactions, computation, and data storage in blockchain platforms are
not cost-free, not all aspects of collaborative processes should be dealt with inside
smart contracts. However, smart contracts cannot call external APIs outside the
blockchain environment or directly create blockchain transactions. This section
presents our approach and how it addresses the challenges encountered.

3.1 Overview of the Approach

An overview of our approach is shown in Fig. 2. We use blockchain to facilitate
the collaborative processes in either of two ways:

(i) As a choreography monitor, it stores the process execution status across
all involved participants by observing the message exchanges. In this setting,
blockchain serves as an immutable data storage to share the process execution
status and create an audit trail. Smart contracts check if interactions are con-
forming to the choreography model. In addition, a choreography monitor can be
used to manage automated payment points and escrow.

(ii) As an active mediator among the participants, it coordinates the col-
laborative process execution. This includes all the above as well as using smart
contracts to drive the process and implement data transformation or calcula-
tions.

These options are supported by the following main components:
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– At design time, a translator derives from a process specification described
in, e.g., Business Process Model and Notation (BPMN), a smart contract in a
script language (such as Solidity). The generated smart contract is a factory
for mediators or choreography monitors.

– For Option (i), a Choreography monitor or C-Monitor uses smart con-
tracts to monitor the collaborative business processes. The C-Monitor is split
into a factory and case-specific instance C-Monitors. The factory instantiates
the case-specific monitors as needed, and contains the blueprint for instance
C-Monitors. The C-Monitor instance tracks the interactions of a choreography
instance and combines them into a consolidated view of the current state of
the execution. Optionally, it can trigger automatic conditional payment from
escrow, when certain points in the choreography are reached.

– For Option (ii), an active mediator uses a smart contract to implement the
collaborative business processes. As with the C-Monitor, it is split between a
factory and a set of instances and offers a consolidated view of the process
state. In contrast to the C-Monitor, the mediator always plays an active role,
receiving and sending messages according to the business logic defined in the
process model. It also may transform data or execute other computations.

– Interfaces or triggers connect the process executing on blockchain and the
external world. Because smart contracts cannot directly interact with the
world outside the blockchain, a trigger plays the role of an organization’s agent.
It holds confidential information and runs on a full blockchain node, keeping
track of the execution context and status of running business processes. The
trigger calls external APIs if needed, receives API calls from external com-
ponents, and updates the process state in the blockchain based on external
observations. It further keeps track of data payload in API calls and keeps the
data in an external database when appropriate.

By the help of these components, we achieve that (i) participants can execute
collaborative processes over a network of untrusted nodes, (ii) only conforming
messages advance the state of the process, (iii) payments and escrow can be
coded into the process, and (iv) an immutable ledger keeps a log of all transac-
tions, successful or not. Next, we explain the above components in more detail.
Additional details are available in a technical report [23].

3.2 Design Time: Translator

The translator is used at design time: it takes an existing business process speci-
fication as input and generates smart contracts. These implement the C-Monitor
or mediator and can be deployed and executed on the blockchain.

In a collaborative process, this functionality must be split and distributed
between the smart contract and the triggers. The translator creates the artifacts
in such a way that the triggers and the smart contract can collaborate directly
with each other over the blockchain network.

When the translator is called, it may not be known which participants will
play which roles. Therefore, the translator outputs only a factory contract,
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Fig. 2. Overview of our approach

which in turn contains all information needed for instantiating the process. The
factory contract includes the methods for instantiation and two types of artifacts:
(i) an interface specification per role (e.g., buyer, manufacturer, and shipper) in
a collaborative process, to be distributed to the respective triggers, and (ii) a
process instance contract, which is deployed to the blockchain when the process
is instantiated. The process instance contract contains the implementation of
the business logic and takes the form of a C-Monitor or mediator, depending on
the content of the original process specification.

The overall translation algorithm has two phases. First, the translator parses
the input process model and iterates through all its elements, where it generates
two lists per element in the process model: one list of previous elements and one
of next elements. Then, the translator translates each element with its respective
links, generating Solidity code based on the translation rules for different types
of elements as detailed in the TR [23]. Note that, in the current implementation,
only some combinations of consecutive gateways can be connected to each other
without tasks in between. The previous element list is used by the translator to
determine which other elements need to be deactivated when the current element
is executed; the next element list specifies which elements need to be activated
after the current element is executed.

The selection methods for the two lists are shown in Algorithm 1.
NextElements of an element includes all the tasks that directly follow the ele-
ment, or the outgoing edge if the target of that edge is an AND-Join. If a next
element is a Split or XOR-Join gateway, the tasks / edges that connect to it
are added into NextElements through a recursive call. PreviousElements of
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an element includes the element itself. If an XOR-Split gateway Spliti precedes
the current element, the tasks that follow it are added to PreviousElements.
In the case of an AND-Join gateway, all incoming edges are added to
PreviousElements.

Algorithm 1. Calculating PreviousElements and NextElements.
1: function SelectNextElements(Element, NextElements[])
2: for all Edgej ∈ outgoingEdges[Element] do
3: if Edgej .targetElement is Task then
4: NextElements ← Edgej .targetElement
5: else if Edgej .targetElement is AND-Join gateway then
6: NextElements ← Edgej
7: else if Edgej .targetElement is Split or XOR-Join gateway then
8: SelectNextElements(Edgej .targetElement,NextElements[])
9: end if

10: end for
11: end function
12:
13: function SelectPreviousElements(Element, PrevElements[])
14: PrevElements ← Element
15: if Element is Task then
16: for all Edgei ∈ incomingEdges[Element] do
17: if Edgei.sourceElement is XOR-Split gateway then
18: SelectNextElements(Edgei.sourceElement, PrevElements[])
19: end if
20: end for
21: else if Element is AND-Join gateway then
22: for all Edgei ∈ incomingEdges[Element] do
23: PrevElements ← Edgei
24: end for
25: end if
26: end function

The generator is based on the workflow patterns [18]. Some patterns can be
directly translated, some have to be supported off-chain, and other are unnec-
essary in our case. Our focus is not on supporting all elements of BPMN, but
we start from the 5 basic control flow patterns [18], which are among the most
frequently used elements in process models [25]. For brevity, we give an overview
of the translation rules in Table 1. These make use of the two lists derived above,
for activation / deactivation. After generating the smart contracts, the transla-
tor also calculates the cost range for executing the resulting smart contract. This
serves as an indication of how much crypto-coins have to be spent in order to
execute process instances over the blockchain.
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Table 1. Translation rule summary. During traversal of the process model, when the
translator encounters a pattern (left column), it inserts code according to the right
column into the smart contract code. Scope concerns which variants the pattern applies
to (M: mediator; CME: C-Monitor with escrow)

BPMN element Scope Solidity code summary

All patterns All On execution, deactivates itself and
activates the subsequent element.

Parallel-Split All Executes on activation, activates all
subsequent elements.

Parallel-Join All Executes on activation of all incoming
edges.

XOR-Split All Executes on activation, conditionally
activates all subsequent elements. If one
of them is executed, it deactivates all
others.

XOR-Join All Executes on activation of one incoming
edge.

Choreography Task All Executes when the respective message is
received (as blockchain transaction), and
if the task is activated (message conforms
with process). If conforming, the message
is forwarded (as smart contract log entry);
else, an alert is broadcasted.

Task: Payment M, CME Execution and conformance check as above.
If conforming, payment into or from
escrow is processed. Incoming payment is
through a transaction, which has the
desired effect already. Outgoing payment
is sent to the account of the specified
role.

Task: Data Transformation M Execution and conformance check as above.
Mediator-internal logic on data
transformation, to be handled on-chain
by the mediator or off-chain by a
designated trigger.

3.3 Runtime Environment: Executing Processes as Smart Contracts

The translator generates all artifacts needed for runtime execution. We start by
describing C-Monitors, which allow passive monitoring of choreographies and
optionally escrow. Active mediators can be seen as an extension of C-Monitors,
and the additions are explained subsequently. The third important concept for
runtime, the triggers, and the interaction between triggers and smart contracts
are covered afterwards. Finally, we describe how technical challenges like key
distribution are handled.
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Fig. 3. BPMN choreography diagram of the process in Fig. 1

Choreography Monitor. The first way of facilitating collaborative processes is
to use a smart contract as C-Monitor, with optional escrow and conditional pay-
ment at certain points of the processes. For a new process instance, an instance
contract is generated from the factory contract. Initialization includes register-
ing participants and their public keys to roles. The C-Monitor instance contract
contains variables for storing the role assignment and for the process execution
status. During execution, the involved participants do not interact with each
other directly. Instead, they use the monitor to exchange their input/output
data payload and, by doing so, advance the state of the collaborative process.
Consider the choreography in Fig. 3, which is another representation of the col-
laborative process from Fig. 1. All tasks are communication tasks between roles.
By exchanging the messages through the C-Monitor, it can check conformance
with the choreography and track the status. In this way, conformance checking
is done implicitly by the C-Monitor, and all transactions (successful or not) are
logged in the blockchain. The handling of escrow is described below.

Mediator. Similar to the C-Monitor, the mediator is implemented as a smart
contract, which is generated from the factory contract. It uses the same compo-
nents as the C-Monitor. It also implements active components, among others to
transform data and receive and send messages and payments.

Triggers. The Blockchain is a closed environment, where the deployed smart
contracts cannot call external APIs. In our approach, a trigger (or blockchain
interface) connects the participants’ internal processes with the blockchain. It
monitors the process execution status, logically receives messages from smart
contracts and calls external APIs, or receives API calls and logically sends mes-
sages to smart contracts accordingly.

Triggers are programs running on full nodes of the blockchain network. In the
typical setup, every participant operates its own trigger deployed on a node it
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Fig. 4. Sequence diagram for the first two tasks in Fig. 3

controls, and the participant’s systems only communicate with its own trigger.
We assume that this situation is given. Since the trigger is required to hold
private keys for all participants on whose behalf it operates, a high degree of
trust into the individual trigger is required.

When a new process instance is created, the participants register their roles
and public keys. The public key corresponds to the account address of a partici-
pant. All keys and role assignments are passed to all triggers associated with the
process instance, so everyone knows which role is played by whom and can verify
messages accordingly. With the private key it holds, the trigger can encrypt or
sign a message, allowing the contract and the other participants to verify its
messages. In this fashion, it can also create payment transactions.

During the process execution, the trigger is receptive to API calls from its
owner, as well as to logical messages from the process instance contract. The
interaction between internal process implementations, triggers, and the process
instance smart contract is shown in simplified form in Fig. 4. When a trigger’s
API is called from its owner, the trigger translates the received message into a
blockchain transaction, and sends the transaction to the instance contract. When
the trigger receives a logical message from the instance contract, it updates its
local state and calls an external API from the private process implementation.

Finally, the trigger takes care of sizable data payloads. For incoming API
calls, it moves the data to secure storage, hashes it, and attaches a URI and the
hash to the outgoing transaction. For incoming messages from the blockchain,
it retrieves the data via its URI, checks if the hash matches, and sends it on to
the internal process implementation.

Encryption and Key Distribution. All the information on the blockchain
is publicly accessible to all nodes within the network. We store two types of
information on blockchain, namely the process execution status and the data
payload (or its URI/hash). To preserve the privacy of the involved participants,
we have the option to encrypt the data payload before inserting it into the
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blockchain. However, the process execution status is not encrypted because the
C-Monitors and mediators need to process this information. Encrypting the data
payload means that mediators cannot perform data transformation at all, but
can resort to the source participant’s trigger for this task.

We assume the involved participants exchange their public keys off-chain.
Encrypting data payload for all process participants can be achieved as follows.
One participant creates a secret key for the process instance, and distributes
it during initial key exchange. When a participant adds data payload to the
blockchain, it first symmetrically encrypts this information using the secret key.
Thus, the publicly accessible information on blockchain is encrypted, i.e., useless
to anyone who has no access to the secret key. The participants involved in the
process instance have the secret key and can decrypt the information. Encrypting
data payload between two process participants, in contrast, may be desired if
two participants want to exchange information privately through the process
instance. For this case, the sender can asymmetrically encrypt the information
using the receiver’s public key; only the receiver can decrypt it with its private
key.

Escrow. The C-Monitor or mediator can also work as an escrow for conditional
payment at designated points. Similar to an escrow agent, e.g., in real estate
transactions, the smart contract receives money from one or more parties, and
only releases the money to other parties once certain criteria are met. For the
receivers this has the benefit that they can observe that the money is actually
there before doing work; and the sender does not have to pay upfront, trusting
it will eventually receive the goods or service in return.

In the running example process, the Manufacturer (Mf ) needs to pay the
Middleman (Mm), Supplier (S ) and Carrier (C ) when it receives the goods. But
S is unwilling to send the goods without some guarantees that it will get paid.
Therefore, Mf puts the money in escrow, namely an account held by the process
instance contract, when ordering the goods. Later, both C and Mf confirm
the delivery of the goods, which triggers automatic payment from the escrow
account to Mm, S, and C. The smart contract defines under what conditions
the money can be transferred and how the money should be transferred. Thus,
when a payment function is triggered, the smart contract automatically checks
the defined conditions, and transfers the money according to the defined rules. It
is, however, of high importance to specify rules that cover all possible scenarios
and the respective outcomes: e.g., what shall happen with money in escrow if
Mf and C disagree about the delivery of the goods or their condition?

Gas Money. The computation, data storage, and creation of smart contracts
on the blockchain costs crypto-coins. That represents the cost for using the
blockchain network, since it is used to pay the miners that execute the smart
contracts. Each function call is thus accompanied by cost, but contract creation
is relatively much more expensive than a regular function call. For fairness, the
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participants in a collaborative process may want to decide on a different split of
who pays how much, rather than the implicit split from the process.

4 Evaluation

4.1 Evaluation Method, Implementation, and Setup

The goal of our evaluation is to assess the feasibility of the approach. To this end,
we implemented proof-of-concept prototypes for the translator and the trigger.
The translator, written in Java, accepts BPMN 2.0 XML files, which we parse
using the source code of the JBoss BPMN2 Modeller (jbpm-bpmn2 6.3.0). The
translator’s output are files that comply with the Solidity scripting language,
version 0.2.0. Our smart contracts are running on go-ethereum 1.3.5, which is
the official Golang implementation of the Ethereum protocol. The trigger is
written as a Node.js web application, in JavaScript.

We picked three use case processes of different size, two from the litera-
ture and one from an industrial prototype. All three could be used directly as
C-Monitor, and we extended one to cover the other options, i.e., C-Monitor with
escrow and mediator. The key functionality of the blockchain is to accurately
record the shared history of the choreography processes. Therefore, we derived
the set of permissible execution traces for each process model, which we called
the set of conforming traces. Furthermore, we randomly modified these traces
to obtain a larger set of not conforming traces with the following manipulation
operators: (i) add an event, (ii) remove an event, or (iii) switch the order of two
events, such that the modified trace was different from all correct traces. Then
we tested the ability of the smart contracts to discriminate between correct and
incorrect traces. For escrow and the mediator data transformation, we ran a
smaller number of experiments where we manually verified the effects.

Finally, during the above experiments we collected data that allows us to
analyze important qualities. We focused particularly on cost and latency of using
the blockchain in our setting, since these are the two non-functional properties
that differ most from traditional approaches, such as trusted third parties. We
ran experiments on a private blockchain and the public Ethereum blockchain,
which allowed us to compare the effects of different options on these qualities.

4.2 Use Case Processes

For our evaluation, we used the following three processes.

1. Supply chain choreography: This process is discussed throughout this paper
as a running example, see Fig. 3, and adapted from [3]. This process has ten
tasks, two gateways and two conforming traces. From the 2 possible con-
forming traces, we generated 60 randomly manipulated traces. Out of these,
3 were conforming (switched order of parallel tasks) and 57 not.



342 I. Weber et al.

2. Incident management choreography: This process stems from [11, p.18]. This
process has nine tasks, six gateways and four conforming traces. We generated
120 not conforming traces. We implemented it with and without (i) a payment
option and (ii) data manipulation in a mediator.

3. Insurance claim handling: This process is taken from the industrial prototype
Regorous2. Choreographies tend to result in a simplified view of a collab-
orative process, as can be seen when comparing Figs. 1 and 3. To test the
conformance checking feature with a more complex process, we added a third
use case which was originally not a choreography. This process has 13 tasks,
eight gateways and nine conforming traces. We generated 17 correct and 262
not conforming traces.

4.3 Identification of Not Conforming Traces

For this part of the evaluation, we investigate if our implementation accurately
identifies the not conforming traces that have been generated for each of the
models. The results are shown in Table 2. All log traces were correctly classified.
This was our expectation: any other outcome would have pointed at severe issues
with our approach or implementation.

Table 2. Process use case characteristics and conformance checking results

Process Tasks Gateways Trace type Traces Correctness

Supply chain process
of Fig. 3

10 2 Conforming 5 100 %

Not conforming 57 100 %

Incident management 9 6 Conforming 4 100 %

Not conforming 120 100 %

Incident management
with payment

9 6 Conforming 4 100 %

Not conforming 19 100 %

Incident mgmt. with
data transformation

9 6 Calculation 10 100 %

String manipulation 10 100 %

Insurance claim 13 8 Conforming 17 100 %

Not conforming 262 100 %

4.4 Analysis of Cost and Latency

In this part of the evaluation, we investigate the cost and latency of involving the
blockchain in the process execution, since these are the non-functional properties
that are most different from solutions currently used in practice.

2 http://www.regorous.com/. A subset of the authors is involved in this project.

http://www.regorous.com/
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Cost. In our experiments on the private blockchain, we executed a total of 7923
transactions, at zero cost. On the public Ethereum blockchain, we ran 32 process
instances with a total of 256 transactions. The deployment of the factory con-
tract cost 0.032 Ether, and each run of the Incident Management process, with
automatic payments and data transformations, cost on average 0.0347 Ether, or
approx. US$ 0.40 at the time of writing. The data (transactions and contract
effects) of the experiment on the public blockchain is publicly viewable from the
factory contract’s address, e.g. via Etherscan.3

Latency. We measure latency as the time taken from when the trigger receives
an API call until it sends the response with conformance outcome, transaction
hash, block number, etc. A test script iterates over the events in a trace and
synchronously calls the trigger for each event. Therefore, the test script sends
the next request very soon after receiving a response. This distorts the latency
measurement to a degree, since the trigger adds the next transaction to the
transaction pool just after the previous block has been mined, and it needs
to wait there until mining for the block after the current one is started. Our
measurements should thus be regarded as an upper bound, rather than the
typical case. A more detailed explanation is given in the technical report [23].

An overview of the latency measurements is shown in Fig. 54. The duration
for a block to be mined comes from the complexity of the mining task, which
is deliberately designed to be computationally hard. On the public Ethereum
blockchain, the target median time between blocks at the time of writing is set to
around 13 s, with the actual time measured at 14.4 s. On our private blockchain,
we can control the complexity mechanism to increase mining time (shown as Pri-
vate fast in Fig. 5) or leave the default implementation in place (Private uncon-
trolled). As can be seen, the variance is high. On the public Ethereum blockchain,
the median latency was 23.0 s. In our private fast setting we achieved a median
latency of 2.8 s, which should be sufficient for many practical deployments. For
any application, this tradeoff needs to be considered: public blockchains offer
much higher trustworthiness in return for higher cost and latency.

4.5 Discussion

Conflict Resolution. Following up on the conflict example from Sect. 2.1, we
discuss how conflict resolution can be implemented in our approach. Recall that
there was disagreement about the amount of supplies ordered. The blockchain
inherently provides an immutable audit trail, thus it is trivial to review the
original order and waybill messages – the culprit can be identified through such
inspection. Say, the Supplier was at fault, but the Manufacturer paid crypto-coins

3 https://etherscan.io/address/0x09890f52cdd5d0743c7d13abe481e705a2706384.
4 Note that, instead of the typical error bars with min and max in box plots, we

here show the 1st and the 99th percentile, to reduce the effect of the worst outliers.
For Private uncontrolled, the max was 183 s – almost twice as much as the 99th
percentile.

https://etherscan.io/address/0x09890f52cdd5d0743c7d13abe481e705a2706384
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Fig. 5. Latency in seconds, using private blockchain with/without speed modification,
and public Ethereum blockchain (box plot)

into escrow – how does it get its money back? The conditions for reimbursement
from escrow need to be specified in the smart contract, but then they can be
invoked at a later time. For instance, the participants may agree upfront that
the Manufacturer gets reimbursed only if the Middleman agrees to that; then
the Middleman sends a transaction to that effect, and the Manufacturer’s money
is transferred back to its account.

Trust. Blockchain provides a trustworthy environment, without requiring trust
in any single entity. In contrast, in the traditional model participants who do
not trust each other need to agree on a third party which is trusted by all.
Blockchain can replace this trusted third party. This is of particular interest in
cases of coopetition. If multiple parties come together to achieve a joint business
goal, but some of the organizations are in coopetition, it is important that the
entity which executes the joint business process is neutral. Say, Org1, Org2, and
Org3 are in coopetition, but want to have a joint process to achieve some business
goal. However, Org1 would not accept Org2 or Org3 to control the process, and
neither of those would accept Org1. Using our approach, the blockchain can be
used, enabling trustless collaboration as it is not controlled by a single entity. Our
translator allows the deployment of business processes on blockchain network
without the need to manually implement the corresponding smart contract. Trust
in the deployed bytecode for a process is established as follows: each participant
has access to the process model, translates it to Solidity with our translator, and
uses an agreed-upon Solidity compiler. This results in the same bytecode, and
each participant can verify that the deployed bytecode has not been manipulated.
Finally, the trigger allows for seamless integration into service-based message



Untrusted Business Process Monitoring and Execution Using Blockchain 345

exchanges. However, each trigger is a fully trusted party, and by default we
assume each organization hosts their own trigger.

Privacy. Public blockchains do not guarantee any data privacy: anyone can
join a public blockchain network without permission, and information on the
blockchain is public. Thus, for scenarios like collaborative process execution, a
permissioned blockchain may be more appropriate: joining it requires explicit
permission. Even with permission management, the information on blockchain
is still available to all the participants of the blockchain network. While we
propose a method to encrypt the data payload of messages, the process status
information is publicly available. As such, if Org1 ’s competitor, Org4, knows
which account address belongs to which participant, it can infer with whom
Org1 is doing business and how frequently. This can be mitigated by creating a
new account address for each process instance: the space of addresses is huge, and
account creation trivial. However, this method prevents building a reputation,
at least on the blockchain.

Off-Chain Data Store. For large data payloads, we propose to store only meta-
data with a URI on-chain, and to keep the actual payload off-chain – accessible
with the URI. Due to size limits for data storage on current blockchains [14] and
associated costs, this solution can be highly advantageous. There are existing
solutions that provide a data layer on top of blockchains, such as Factom [14].
Distributed data storage, like IPFS, DHT (Distributed Hash Table), or AWS
S3, can also be used in combination with the blockchain to build decentralized
applications.

Threats to Validity. There are several limitations to our study. To start, we
made some assumptions when implementing our evaluation scenario, which bear
threats to validity. First, we considered a supply chain scenario in which seconds
of latency are typically not an issue. We expect that scenarios in other indus-
tries, such as automatic financial trading, would have stronger requirements in
terms of latency, which could limit the applicability of our technique. Second,
we worked with a network of limited size. A global network might have stronger
requirements in terms of minimal block-to-block latency to ensure correct repli-
cation. These threats emphasize the need to conduct further application stud-
ies in different settings. Furthermore, there are open questions regarding tech-
nology acceptance, including management perception and legal issues of using
blockchain technology.

5 Conclusion

Collaborative process execution is problematic if the participants involved have a
lack of trust in each other. In this paper, we propose the use of blockchain and its
smart contracts to circumvent the traditional need for a centralized trusted party
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in a collaborative process execution. First, we devise a translator to translate
process specifications into smart contracts that can be executed on a blockchain.
Second, we utilize the computational infrastructure of blockchain to coordi-
nate business processes. Third, to connect the smart contracts on blockchain
with external world, we propose and implement the concept of triggers. A trig-
ger converts API calls to blockchain transactions directed at a smart contract,
and receives status updates from the contract that it converts to API calls.
Triggers can thus act as a bridge between the blockchain and an organiza-
tion’s private process implementations. We ran a large number of experiments
to demonstrate the feasibility of this approach, using a private as well as a pub-
lic blockchain. While latency is low on a private, customized blockchain, the
latency on the public blockchain may be considered too high for fast-paced sce-
narios. Additional benefits of our approach include the option to build escrow
and automated payments into the process, and that the blockchain transactions
from process executions form an immutable audit trail.

Acknowledgments. We thank Chao Li for integrating the trigger prototype with
POD-Viz and recording the screencast video.
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enhancement of BPEL engines for self-healing composite web services. In: Proceed-
ings of SAINT Symposium, pp. 33–39 (2008)

17. Tschorsch, F., Scheuermann, B.: Bitcoin and beyond: a technical survey on decen-
tralized digital currencies. IACR Cryptology ePrint Archive, 2015, 464 (2015)

18. van der Aalst, W., ter Hofstede, A.H.M., Kiepuszewski, B., Barros, A.P.: Workflow
patterns. Distrib. Parallel Databases 14(1), 5–51 (2003)

19. van der Aalst, W.M.P., Dumas, M., Ouyang, C., Rozinat, A., Verbeek, E.: Con-
formance checking of service behavior. ACM Trans. Internet Technol. 8(3) (2008)

20. van der Aalst, W.M.P., Weske, M.: The P2P approach to interorganizational work-
flows. In: Dittrich, K.R., Geppert, A., Norrie, M. (eds.) CAiSE 2001. LNCS, vol.
2068, pp. 140–159. Springer, Heidelberg (2001)

21. Viriyasitavat, W., Martin, A.: In the relation of workflow and trust characteristics,
and requirements in service workflows. In: Abd Manaf, A., Zeki, A., Zamani, M.,
Chuprat, S., El-Qawasmeh, E. (eds.) ICIEIS 2011, Part I. CCIS, vol. 251, pp.
492–506. Springer, Heidelberg (2011)

22. Weber, I., Haller, J., Mülle, J.: Automated derivation of executable business
processes from choreograpies in virtual organizations. Int. J. Bus. Process Integr.
Manag. (IJBPIM) 3(2), 85–95 (2008)

23. Weber, I., Xu, X., Riveret, R., Governatori, G., Ponomarev, A., Mendling, J.:
Using blockchain to enable untrusted business process monitoring and execution.
Technical report UNSW-CSE-TR-09, University of New South Wales (2016)

24. Zeng, L., Benatallah, B., Ngu, A., Dumas, M., Kalagnanam, J., Chang, H.: QOS-
aware middleware for web services composition. IEEE TSE 30(5), 311–327 (2004)

25. Muehlen, M., Recker, J.: How much language is enough? Theoretical and practical
use of the business process modeling notation. In: Bellahsène, Z., Léonard, M.
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