
Towards Quality-Aware Translations
of Activity-Centric Processes to Guard Stage

Milestone

Julius Köpke1,2(B) and Jianwen Su1

1 Department of Computer Science, UC Santa Barbara, Santa Barbara, USA
su@cs.ucsb.edu

2 Alpen-Adria Universität, Klagenfurt, Austria
julius.koepke@aau.at

Abstract. Current translation approaches from activity-centric process
models to artifact-centric Guard Stage Milestone (GSM) models operate
on the syntactic level. While such translations allow equivalent traces
(behaviors) of executions, we argue that they generate poor GSM mod-
els for the intended audience (including business managers and process
modelers). A specific deficiency of these translations is their inability
to relate to relevant domain knowledge, especially groupings of activi-
ties to achieve well-known business goals cannot be obtained by syntac-
tic translations. Ironically, this is a main principle of GSM models. We
developed an initial ontology based translation framework [14] that incor-
porates the missing knowledge for improved translations. In this paper
we further extend this framework with two metrics for the assessment of
quality aspects of resulting GSM translations with domain knowledge,
propose a novel semantic rewriting algorithm that enhances the quality
of GSM translations, and provide an evaluation of the achievable qual-
ity for different classes of input processes. Our evaluation shows that
maximum quality scores are achievable if semantics and structure of the
input processes are well aligned. Given poorly aligned input processes, a
translation method can optimize one of the metrics but not both.

Keywords: Process translation · Artifact-centric BPM · Guard Stage
Milestone · GSM · Quality metrics

1 Introduction

In contrast to the predominant activity-centric modeling methods (e.g. BPMN)
that concentrate on the control-flow between activities, Guard Stage Milestone
(GSM) [12] is artifact-centric and defines business processes based on data enti-
ties and their declarative life-cycles. With the growing adaption of the artifact-
centric modeling paradigm, the need for translations between activity-centric

J. Köpke—Research conducted while visiting UCSB and supported by the Austrian
Science Fund (FWF) under grant J-3609-N15.

c© Springer International Publishing Switzerland 2016
M. La Rosa et al. (Eds.): BPM 2016, LNCS 9850, pp. 308–325, 2016.
DOI: 10.1007/978-3-319-45348-4 18

Towards Quality-Aware Translations of Activity-Centric Processes 309

Note: The syntactic translation algorithm creates a stage L′ representing the loop (L). The loop is controlled with an
additional control-stage L′′ that evaluates the loop condition L.exp.

Fig. 1. (a) Input process (b) Syntactic translation (c) Translation of domain expert [14]

and artifact-centric process models gains importance. The fact that GSM pro-
vides the basis for the new OMG Case Management Standard (CMMN1) further
extends its importance. Especially for inter-organizational cooperations, transla-
tions between both paradigms become vital. Translation of activity-centric mod-
els to artifact-centric models has been studied [7,17]. However, these approaches
remain on the syntactic level and create completely flat GSM models not follow-
ing the basic principles and guidelines of GSM.

Guard Stage Milestone (GSM). We highlight the relevant essentials of GSM here
and refer the reader to [5,12] for details. A process is modeled in the form of
artifacts, where each artifact has a data schema with data attributes and state
attributes, and a life-cycle definition. GSM life-cycles are based on guards, stages,
and milestones. In the graphical representation (Fig. 1(b) and (c)), guards are
depicted as diamonds, stages as rounded boxes with optional labels, and mile-
stones as circles. A guard defines when a particular stage becomes active, a
milestone defines when a stage is completed (e.g. a business goal is reached).
Stages can be atomic or composite. Every atomic stage contains a service that
is executed when the stage becomes active. A composite stage contains other
stages. The idea of composite stages is to group stages that are executed in

1 http://www.omg.org/spec/CMMN/.

http://www.omg.org/spec/CMMN/

310 J. Köpke and J. Su

order to achieve a common goal collectively, i.e. to reach the milestone(s) of
their parent stage. Guards and milestones may have labels and are specified
as sentries. Sentries are defined in the form of Event Condition (over the data
schema) Action (ECA) rules of the form “on event if condition ”, “on event”, or
“if condition”. Events may be internal (e.g. achieving of a milestone) or external
such as the completion event of a service call. Achieving events of sentries are
denoted by the prefix “+” and their invalidation by the prefix “−”, respectively.

Weaknesses of Syntactic Translations. We discuss weaknesses of syntactic trans-
lations with an example. For the activity-centric input process shown in Fig. 1(a),
part (b) shows the GSM translation based on a purely syntactic translation algo-
rithm [14]. Part (c) shows a GSM version of (a) potentially created by a domain
expert from scratch. The syntactic translation (b) has a number of disadvantages
in comparison to (c):

1. Milestones and guards are defined on a solely technical level not relating to
any agreed real-world states of data objects nor business goals. For example,
the milestone of Pay in Fig. 1(b) is defined by the completion of the Pay task.
In contrast, the domain expert has modeled a stage PayInvoice with the
milestone paid in Fig. 1(c), where paid is a well-known state of order objects
in the domain and PayInvoice is a known activity in the domain.

2. The syntactic translation is mostly flat and lacks nesting of stages based on
business goals. In contrast, the domain expert uses nested stages to structure
the process based on business goals of the domain. In Fig. 1(c) the activity
stages are nested inside the upper-level stages Shop, Checkout, ProcessOrder,
and SalesProcessing.

The model in Fig. 1(c) not only has advantages for stake-holders, by present-
ing structured models referring to agreed terms, but also facilitates advanced
process monitoring based on abstract stages and business goals of the domain.

From a general perspective, the model in Fig. 1(c) has a higher “quality”
[9,16] than that in Fig. 1(b). A main cause of this quality difference is the dif-
ferent expressiveness of the activity-centric model and the GSM model in the
following sense. While GSM allows to define business goals and hierarchies of
stages to achieve them, this information is missing in the source models. Conse-
quently, it cannot be added through a purely syntactic translation.

Quality of models [9,16] depends on many aspects, some of which may not
have technical formulations. In many application domains, a large part of domain
knowledge exists in documents or even with semi-formal languages. Examples
include housing management [8], travel industry (e.g. http://www.opentravel.
org), the financial/accounting domain [15] and of course the medical domain [2].
For applications in these domains, focusing on ontology “alignment” can improve
learning/training of process models, as well as monitoring of key performance
indicators.

In our earlier work [14] an architecture to tackle this problem was developed.
The general idea is to provide the missing domain knowledge for meaningful

http://www.opentravel.org
http://www.opentravel.org

Towards Quality-Aware Translations of Activity-Centric Processes 311

translations in form of an ontology representing the states of business documents
and a taxonomy of state changing actions defining typical part of relations of
actions in the domain.

Contributions of this paper. We extend our earlier framework with the following
specific contributions:

– Quality metrics for assessing the semantic alignment (Sect. 2) and control-flow
complexity (Sect. 3) of GSM translations.

– A rewrite algorithm (Sect. 4) for improving the semantic alignment of a
translation.

– Our findings based on the evaluation (Sect. 5) are: Maximum quality metrics
of translations are achievable for both metrics if input processes are fully
aligned with the domain taxonomy. Having poorly aligned input processes,
either semantic alignment or control-flow complexity can be optimized but
not both at the same time.

Fig. 2. An example taxonomy of actions [14]

2 Semantic Alignment of a GSM Translation

A core element of our translation framework [14] is a taxonomy of actions T
that defines relationships between actions in the domain. The key idea was to
automatically or manually map activities in an input process to the taxonomy
T to allow GSM translations with semantic stage nesting. While [14] focused on
how an existing process can be matched with the taxonomy, in this paper we
assume such a matching given. We first review the taxonomy from [14] and then
present a mapping formalism between activity-centric input processes and the
taxonomy. Based on the mapping and the taxonomy, we define a novel quality
metric for the semantic alignment of GSM translations.

312 J. Köpke and J. Su

2.1 Taxonomy of Actions

A taxonomy of actions T describes abstract, well agreed actions that result in
state changes (e.g. the achievement of business goals) of business entities. The
actions are organized in a rooted tree (whose root node is root) representing a
part of hierarchy. The semantics of T is the following: If an action b is defined as
a child-action of some action a where a �= root, then b is considered as potentially
contributing to achieving the goal of action a (in GSM reaching a milestone).
Action b can be used to achieve the goal of a, but it is not required to use b
to achieve a in every process or instance. Therefore, T can be considered as
a general glossary of actions that can be reused for different processes of the
domain. As described in [14] each node in T is additionally annotated with
OWL expressions defining pre- and post-states of each action. The annotations
are primarily used for matching activities and actions and are out of scope of this
paper. An example taxonomy for our previous example is shown in Fig. 2. We
assume that the taxonomy is provided as input. It may be created by employing
domain ontologies [2,8,15], or it could be derived from GSM process repositories
or goal models [4,13].

2.2 Mapping of Activities and Taxonomy of Actions

A mapping between an activity-centric input process G and the taxonomy of
actions T is defined by the tuple (M1,M2) that is defined below:

Fig. 3. Taxonomy alignment - correct alignment examples

Definition 1 (Realizes Mapping). M1 is a set of pairs of the form (s, a), where
s ∈ G.activitySteps, a ∈ T.actions, T.actions is the set of actions in the taxonomy
T and G.activitySteps refers to the set of activities in the input process. A tuple
in M1 defines that the activity s realizes the action a. Each activity can realize
zero or one action in T and each action in T can be realized by zero or one
activity (partial bijection).

Not requiring a 1:1 mapping is based on the assumption that the taxonomy
is not necessarily complete and should be generic to be applicable for different
processes. Definition 1 forbids to map more than one activity in the process model
to one action that occurs in the same context (same parent) in the taxonomy.
However, this limitation can be lifted by extending the taxonomy with additional
actions or parent actions.

Towards Quality-Aware Translations of Activity-Centric Processes 313

Definition 2 (Contributes to Mapping). The mapping M2 is also a set of pairs
(s, a), where s∈G.activitySteps and a∈T.actions, and specifies that a specific
activity contributes to the achievement of some action in T . Every activity that
realizes an action also contributes to it (M1⊆M2). M2 further satisfies the fol-
lowing (quantifiers omitted):

– Activities can only contribute to actions they realize or to ancestors thereof:
(s, a)∈M2 ⇒ (s, a) ∈ M1 ∨ ∃(s, a′) ∈ M1, where a is an ancestor of a′.

– Activities must contribute to common ancestors: {(a, a′), (b, b′), (a, a′′)} ⊆ M2

⇒ (b, a′′) ∈ M2 if a′′ is a common ancestor of a′ and b′.
– No skipping of levels in T : {(a, a′), (a, a′′′)} ⊆ M2 ⇒ (a, a′′) ∈ M2, if a′′ ∈

T.actions, a′′ is a descendent of a′′′ and an ancestor of a′.

Definition 3 (Taxonomy Projection). For each taxonomy T and each mapping
M2, let project(T,M2) denote a rooted taxonomy (with root as the root node)
obtained by projecting T onto M2. A node t of T is also a node of project(T,M2),
if ∃ (x, t) ∈ M2 for any x. The relative hierarchical order of T is preserved in
the projection.

2.3 Assessing Taxonomy Alignment of a Translation

Given a GSM translation of some activity-centric input process with a mapping
to a taxonomy of actions, we want to assess how well the stage nesting in the
translation corresponds to the taxonomy projection.

General Idea of the Taxonomy Alignment Metric. Figure 3 shows four
different GSM translations G1–G4 of some activity-centric input process (not
shown). The taxonomy T and the taxonomy projection TP are shown on the
left. Elements of T that are not in TP are depicted in grey.

Fig. 4. Taxonomy alignment - contradictions

Translation G1 provides the same nesting as defined in TP . We consider this
as a perfect alignment. G1 should get the maximum score of 1. G3 does not
provide any grouping of atomic stages and should get the minimum score of
0. We do not give credits for the existence of mapped activities since they are
trivially part of the translation.

314 J. Köpke and J. Su

G2 and G4 are partially aligned but parent actions of TP are missing in the
translations. G4 perfectly describes the contribution of B. We therefore assign a
credit of 1 for B in G4. However, the contributions of D and E are only partially
described. We assign a credit of 0.5 for the description of D and of E because
only 1 of two abstractions is present in G4. G2 does not describe the contribution
of B at all (no credit for B) and the contributions of D and E are only partially
modeled (credits 0.5 for D and for E). We argue that G4 should be considered as
superior to G2 because the contribution of the atomic stages is better described
in G4. Following this principle we calculate the overall metrics by the average
credit for each atomic stage: The metrics of G4 is 0.5+0.5+1

3 = 2
3 and that of G2

is 0.5+0.5+0
3 = 1

3 .
While the previous example only addressed missing hierarchy levels, Fig. 4

shows example translations, where the nesting in the process model contradicts
with the one in the taxonomy projection. In process G5 the hierarchy is inverted,
where C is a child of A in the taxonomy, A is a child of C in the translation.
In G6, B is nested under C but it should be nested under A. In G7, a mapped
atomic stage is missing. Stage E contributes to the achievement of C in the
taxonomy but this is not reflected in the process model. We consider this as
incorrect since the goal of C may never be achieved without executing E. While
credits are assigned separately for each atomic stage, contradictions influence
the contributions of multiple atomic stages. We assign a credit of 0 to all atomic
stages that are nested in a stage that contains contradictions.

Calculating Alignment Metrics. We first provide preliminary definitions:
Corresponding Taxonomy Action of an Atomic Stage: Let G′ be a GSM trans-
lation of an activity-centric process G with a mapping M = (M1,M2) to a
taxonomy T . Let s be an atomic stage in G′ implementing an activity a of G. If
(a, t) ∈ M1, then t is the corresponding action of s. The corresponding taxonomy
action of a composite stage is defined by equivalent stage labels and labels of the
actions in the taxonomy. Taxonomy Tree of a GSM translation G′, tree(G′), is
a taxonomy tree representing the stage nesting of G′. The nodes of tree(G′) are
the corresponding actions of the stages union additional nodes for non-mapped
stages of G′. The hierarchy in tree(G′) equals the hierarchy in G′. The Hierarchy
Path hp(n, T) of a node n in a tree T is a sequence of nodes defined by the path
from n to the root, excluding n and the root node. The projection of a hierarchy
path a and a hierarchy path b, projectP(a, b) denotes a hierarchy path a′, where
a′ only contains the elements of b while the relative order of elements in a is
preserved.

Definition 4 (Correct Nesting of a mapped atomic stage s in a GSM trans-
lation G′ under T and M=(M1,M2)). Let t be the corresponding taxonomy
node of the atomic stage s and TP the taxonomy projection of T under M2. The
atomic stage s is correctly nested into parent stages if ∀ action a ∈ hp(t, tree(G′))
where a is an action in TP ⇒ a is an action in hp(t, TP) and the relative order
of actions is equivalent in both paths.

Towards Quality-Aware Translations of Activity-Centric Processes 315

Definition 5 (Contradiction of composite stages in G′ with the taxonomy pro-
jection). A composite stage s1 contradicts with a taxonomy projection if it
contains incorrectly nested atomic stage (Definition 4) or if atomic stages are
missing: Let t1 ∈ project(T,M2) be the corresp. taxonomy node of s1. An atomic
stage is missing in s1 if there exists a descendent t2 of t1 ∈ project(T,M2), a
tuple (x, t2)∈M1 for some x, but �s2 as a substage of s1 in G′ such that t2 is
the corresp. taxonomy node of s2.

For calculating the taxonomy alignment score of a (mapped) atomic stage,
we assign the value of 0 if the atomic stage is part of a contradicting composite
stage. Otherwise, the score is based on the fraction of existing parents in the
translation and the number of parents in the taxonomy projection:

Definition 6 (Taxonomy Alignment of an atomic stage s). Let G′ be a GSM
translation of an activity-centric process G and t the corresponding action of
s in T under the mapping M2. If s is part of a composite stage that does not
contradict with the taxonomy projection (Definition 5), the score is the frac-
tion of the number of existing mapped abstractions of t in tree(G′) and the
number of abstractions of t in the taxonomy projection: SemMetricAtomic(s) =
| projectP(hp(t, tree(G′)), hp(t, project(T,M2)))|

| hp(t, project(T,M2))| otherwise, the score is 0.

Definition 7 (Taxonomy Alignment of a GSM translation). The taxonomy
alignment metrics of a translation is the mean of the metrics scores of all mapped
atomic stages.

Example Calculating the taxonomy alignment for D of G4 in Fig. 3:
hp(D′, tree(G4)) = 〈A〉, hp(D′, project(T,M2)) = 〈C,A〉
projectP(〈A〉, 〈A,B〉) = 〈A〉 → SemMetricAtomic(D) = |〈A〉|

|〈A,B〉| = 1
2 .

In analogy to D: SemMetricAtomic(E) = 1
2 , SemMetricAtomic(B) = 1

1 = 1.
The taxonomy alignment score of G4 is: (12 + 1

2 + 1
1)/3 = 2

3 .

Properties of the Metrics: The purpose of the taxonomy alignment metrics
is to compare translations of the same input process. The metrics is based on
assessing the degree of alignment of each atomic stage. When a translation a
achieves better average taxonomy alignment scores for all atomic stages than
another translation b, then a gets a better score than b. When the taxonomy
projection is balanced this metrics is equivalent to an alternative metrics, which
is the number of all provided abstractions of atomic stages divided by the number
of possible abstractions of all atomic stages. The result of the alternative app-
roach is different for unbalanced taxonomy projections because atomic stages
that are deeper nested have stronger positive or negative impact on the overall
alignment score. This behavior should be considered when the metrics is applied
to unbalanced taxonomy projections. Which metrics better describes the desired
alignment depends on the usage scenario.

We define the quality of a stage nesting (unordered tree) relative to the
taxonomy projection (unordered tree). This also makes general tree similarity

316 J. Köpke and J. Su

Fig. 5. GSM translation G′ for input processes G1 and G2

approaches such as the tree edit distance (e.g. [1]) possible candidates for met-
rics. However, beside the problem that the calculation of the minimal tree edit
distance is NP-hard for unordered trees, it does not directly produce the desired
results: In the example in Fig. 3, the non-weighted tree edit distance between
the taxonomy and G2 and between the taxonomy and G4 are both 1 (adding
one node). However, G4 better matches the desired stage nesting. Therefore, the
edit operations would still need to be weighted based on the number of affected
atomic stages and potential contradictions (see Definition 5).

3 Control-Flow Complexity

The previous metrics assesses the existence of stage nestings relative to a tax-
onomy while ignoring the control-flow between composite stages. However, the
control-flow may limit the usefulness of a given stage nesting: frequent switches
between sub-processes negatively impact on the understandability of (behaviors
of) process models [23,24]. Additionally, the utility of translation for monitor-
ing purposes is limited because numerous stages remain opened at the same
time without actually performing tasks in parallel. In GSM switching between
sub-processes (composite stages) exists if there is control-flow between atomic
stages of different (active) composite stages. To address this, we introduce a
“control-flow complexity” metrics of translations. It is based on the usual fan-in
and fan-out [11] of modules (stages). We are specifically interested in fan-out
of composite stages that are not linked to their closing (non-exit fan-out) and
fan-in into already opened composite stages (non-entry fan-in).

Example Figure 5 shows a GSM stage hierarchy G′ perfectly aligned with the
taxonomy projection on the left. If G′ is the result of a translation of G1, the
control-flow is completely in-line with the stage progression of G′ (solid arrows
in the top part of G′ in Fig. 5). The composite stages C, F , and L are executed in
a sequence. There is no non-entry fan-in nor non-exit fan-out control-flow. (For
the sake of simplicity the example does not contain control-blocks.) If G2 is the
input for G′, the control-flow (dashed arrows in the bottom part of G′ in Fig. 5)
is scattered over multiple composite stages that are open in parallel without
actually executing tasks in parallel. We denote the parent stage of an atomic
stage in subscript. C is opened and (DC , GF) opens F not closing C. (GF , JL)

Towards Quality-Aware Translations of Activity-Centric Processes 317

opens L not closing F . (JL, IC) resumes C. (IC ,HF) resumes F not closing
C. (HF ,KL) closes F and resumes L. Finally, (KL, EC) resumes C and closes
L. For stage C as one example this leads to the non-entry fan-in control-flows
(Jl, IC), (KL, EC) and the non-exit fan-out control-flows (DC , GF), (IC ,HF).

Control-Flow Complexity for GSM. We define fan-in and fan-out of a stage
based on the control-flow graph of the activity-centric input process G. A control-
flow from an activity a to another b exists if a is a predecessor of b in the graph
representation of G and there exists a path from a to b that does not contain
any other activity.

Definition 8 (Non-Entry Fan-In of a Stage S). Let G′ be the GSM translation
of an activity-centric process G and S be a composite stage of G′. A fan-in of
S is a control-flow (a, b), where a corresponds to an atomic stage /∈ S and b
corresponds to an atomic stage ∈ S. A fan-in (a, b) of S is a non-entry if for all
permissible instantiation of G some activity ∈ S is executed before a. The set
of all non-entry fan-ins of S is denoted NonEntryFanIn(S). Fan-out of S and
NonExitFanOut(S) are defined correspondingly.

AvgNonEntryFanIn(G′) is the arithmetic mean of |NonEntryFanIn(S)| of all
composite stages S ∈ G′. AvgNonExitFanOut(G′) is defined similarly. The cal-
culation of the control-flow complexity is realized in analogy to coupling metrics
[6]. The values are in the interval of [≥ 0, < 1], where 0 indicates no unwanted
switching between active composite stages, near 1 indicates very high numbers
of switches on average.

Definition 9 (Control-Flow Complexity of a GSM translation G′).
controlComplex(G′) = 1 − 2

1+AvgNonEntryFanIn(G′)+1+AvgNonExitFanOut(G′)

Example In the example in Sect. 3, when considering G2 as the input process
of G′: The non-entry-fan-in of C in G′ is |{(J, I), (K,E)}| = 2, for F and L, we
get 1. The non-exit-fan-out of C in G′ is |{(D,G), (I,H)}| = 2, for F and L,
we get 1. This leads to an average non-entry-fan-in and non-exit fan-out of 4

3 .
Thus, controlComplex(G′) = 1 − 2/(1 + 4

3 + 1 + 4
3) = 0.572.

When G1 is the input we have controlComplex(G′) = 1 − 2
1+0+1+0 = 0.

Properties of the Metrics: The purpose of the control-flow complexity metrics
is to compare translations with different stage nestings of the same input process
regarding unwanted dependencies between active composite stages. Therefore,
higher total numbers of non-entry fan-in and non-exit fan-out relative to the
number of composite stages must lead to higher complexity values of the metrics.
This is guaranteed. The metrics does not assess the control-flow complexity [3,10]
of the input process. However, control-blocks in the input process have impact
on the potential fan-in and fan-out of composite stages in the translation.

A control-flow is considered non-entry if the stage has certainly been opened
before. A more pessimistic and more complex approach would be to calculate

318 J. Köpke and J. Su

Algorithm 1 . Semantic Rewrite of a GSM Translation
1: Method rewriteTranslation
Input: TaxonomyNode node
2: if (node is not root node) then
3: GsmStage commonAncest = getCommonAncestor(

getMappedAtomicStages(node));
4: for all (GsmStage s ∈ getMappedAtomicStages(node)) do
5: topStageBefore = ancestorBefore(s,commonAncest);
6: nestingCandidates � topStageBefore;
7: checkAtomic � topStageBefore.getAllAtomicStages();
8: end for
9: if (allNestable(checkAtomic,getMappedAtomicStages(node)) then

10: nestStages(nestingCandidates,node,commonAncest);
11: end if
12: end if
13: for all (TaxonomyNode n ∈ node.getChildren()) do
14: rewriteTranslation(node);
15: end for

non-entry fan-in based on the probability that some stage has already been
opened before and to compute non-exit fan-out correspondingly. However, what
metrics better describes problematic control-flows still needs to be decided based
on a user-study.

4 Semantic Rewrite Algorithm

Based on the taxonomy alignment metrics, we present an algorithm that rewrites
a syntactic translation of an activity-centric input process to enhance its metrics
score. The algorithm takes as input an activity-centric process G, a (possibly
nested) syntactic translation G′ of G, a taxonomy of actions T , and a contributes-
to mapping M2.

The core method rewriteTranslation(TaxonomyNode) is shown as Algorithm 1.
It is first called with the root node of the taxonomy projection and visits the
nodes of the taxonomy projection in a depth-first traversal. Unless the current
node is the (virtual) root node of the projection it retrieves the common ancestor
commonAncest stage of all atomic stages that are mapped to the current node of
the projection in G′. It then creates the sets nestingCandidates and checkAtomic,
where nestingCandidates contains the top-level ancestor stage of each atomic-
stage below commonAncest and checkAtomic contains all atomic stages nested
into each stage in nestingCandidates. The set checkAtomic is used to check if a
nesting is possible.

According to the alignment metrics, a nesting is correct if it contains all
required atomic stages and it does not contain atomic stages that are not mapped
to the current node but to other taxonomy nodes. This check is realized by the
Boolean method nestable(). If nestable returns true, a new stage with the label

Towards Quality-Aware Translations of Activity-Centric Processes 319

of the current taxonomy node is created as a child stage of the common ancestor
and all nodes in nestingCandidates are assigned as child stages of the new stage.
Finally, guards and milestones are generated for the new stage.

Example Applying Algorithm1 on G3 in Fig. 3, rewriteTranslation
(project(T,M2)) → rewriteTranslation(A′): CommonAncestor of D, E, and B
is G3 itself. The loop in lines 4 to 8 produces the sets nestingCandidates =
{D,E,B} and checkAtomic = {D,E,B}, allnestable({D,E,B}, {D,E,B})
returns true. The new stage A′ is created under the common ancestor G3. The
nestingCandidates, {D,E,B}, are set as its child stages. Next, rewriteTransla-
tion(C ′) is called and processed in analogy to A′. Finally, G3 equals G1 in Fig. 3.

Fig. 6. Metrics scores vs. alignment of input processes. Left: App. A, Right: App. B

Setting Guards and Milestones. Since the rewrite algorithm must not change
the permitted traces of executions it should guarantee that every stage that could
be opened before the new stage was introduced can still be opened after the new
stage is introduced. In GSM, a child stage cannot be opened if the parent stage
is closed. Therefore, the new stage must be opened before any of the potentially
first executed nested atomic stages may get opened. In principle, we could add
a copy of the guards of each potentially first opened stage to the new stage.

When taking a block-structured syntactic translation from [14] as input,
control-blocks (xor, par, loops) of the activity-centric input process are rep-
resented as composite stages and in a block-structured activity-centric process
there is always one block that is evaluated first. Therefore, we use the sentry
expression of the substage that represents the first block as the (single) guard
sentry expression of the new stage.

For milestones, we apply a similar strategy. In principle, the new stage is
completed, e.g. some milestone of it is reached, when no atomic stage within
the new stage is open and no atomic stage within the new stage can get opened
anymore. However, this may depend on future decisions during the runtime of
the process, resulting in potentially complex milestone expressions. In contrast
when using the nested syntactic translation of [14] as input there is always one
last stage. We use the achievement sentry expression of its milestone as the
sentry expression of the new stage’s milestone.

320 J. Köpke and J. Su

Finally, we beautify the generated guards and milestones by rewriting equiv-
alent expressions of child and parent guards/milestones. If a child stage has the
exact sentry expression for guards as its parent stage, we update the sentry of
the guard to the opening event of the parent stage. If a parent milestone has
the exact same sentry condition as a milestone of a child stage, we rewrite the
parent milestones sentry to the achieving event of the child milestone.

5 Evaluation

We present an evaluation of achievable metrics scores of the rewrite algorithm
(Sect. 4) to assess (1) the influence of existing hierarchy on taxonomy align-
ment, (2) the influence of rewriting on control-flow complexity, and (3) the bal-
ance between control-flow complexity and semantic alignment. We conducted
experiments with the rewrite algorithm having two different syntactic transla-
tion approaches as input. The combination of our block-based translation app-
roach [14] with the semantic rewrite algorithm is referred to as “Approach A”.
The combination of the semantic rewrite approach with a simple flat translation
is referred to as “Approach B”. While Approach A creates complete and poten-
tially enactable translations, Approach B generates partial translations discard-
ing guards and milestones. This is sufficient for the assessment of the achievable
quality since the control-flow metrics is based on the control-flow defined in the
input processes. Potentially enactable implementations can be based on existing
flat translation approaches such as [17,18].

Fig. 7. Left: #control-blocks vs. metrics scores, Right: %-random vs. metrics scores

For our experiments, we have generated semantically aligned block-
structured processes and taxonomy mappings based on the Food Products
Chapter of the well balanced UN Central Product Classifications Taxonomy.2

A block structured input process G is aligned with a taxonomy when each
control-block (par, xor, loop) c that contains mapped activities only contains
2 CPC Ver.2.1 http://unstats.un.org/unsd/cr/registry/regdnld.asp?Lg=1.

http://unstats.un.org/unsd/cr/registry/regdnld.asp?Lg=1

Towards Quality-Aware Translations of Activity-Centric Processes 321

mapped activities if all are mapped to the same most specific common ancestor
action a in the taxonomy (recursively) and only brothers or descendants of c
may also contain activities mapped to a.

Experiment 1. We assess the influence of taxonomy alignment of the input
process and the achievable metrics scores for Approaches A and B. We have
conducted experiments with varied number of misaligned activities by repeat-
edly swapping two random activities. For each number of swaps (0 to 96 =
completely random), we randomly generated 50 fully semantically aligned ini-
tial processes with mappings and applied the swaps. Each process contains 183
activities and on average 19 control-blocks (par, xor, loop). The average metrics
scores of 50 processes in relation to the number of swaps for Approach A (on
the left) and Approach B (on the right) are shown in Fig. 6.

Experiment 2. In the second experiment we investigate the influence of control-
blocks in the input processes on taxonomy alignment and control-flow complexity
scores. We generated input processes with 183 activities, 0 control-blocks (only
sequences) to 183 activities, 59 control-blocks (par, xor, loop). For each number
of control-blocks we generated 50 processes with 10 swapped activities (approx.
20 changed activities or 10 % of the activities are not aligned with the taxonomy).
The average metrics scores of 50 processes in relation to the number of control-
blocks are shown on the left side of Fig. 7.

5.1 Findings

Finding 1: Maximum taxonomy alignment scores are achievable
Both approaches can achieve maximum taxonomy alignment scores. Approach
A achieves an alignment score of one, if the input processes are fully aligned with
the taxonomy (see 0 swaps at left side of Fig. 6) or if the input processes only
contain sequences (see left side of Fig. 7). Approach B constantly produces the
maximum alignment score of 1 (see right side of Fig. 6 and left side of Fig. 7).
In contrast to Approach A, the non-nested GSM translation used as input for
Approach B does not impose any restrictions on the required nesting.

Finding 2: Optimizing taxonomy alignment scores increases control-flow com-
plexity
When input processes are not aligned with the taxonomy, Approach B still pro-
duces perfect taxonomy alignment scores of 1 (right side of Fig. 6 and left side
of Fig. 7). However, the semantic grouping results in an increase of control-flow
complexity. As shown on the right side of Fig. 6, the control-flow complexity of
the translation results of Approach B grows logarithmical with the percentage
of misaligned activities in the input processes. A rough estimate for the control-
flow complexity is complex = 0.1936 ln(x) + 0.1074, where x is the percentage of
misaligned activities in the input processes. This behavior of increased control-
flow complexity score due to semantic nesting also applies for Approach A if the
processes contain (mostly) of sequences (left side of Fig. 7). The reason is that
nested syntactic translation approach does not perform nesting for sequences.

322 J. Köpke and J. Su

Another interesting behavior is that the control-flow complexity given a fixed
number of swapped activities decreases, when the number of control-blocks grows
in the processes (left side of Fig. 7, dotted line). The reason for this behavior is
that the number of non-entry fan-in and non-exit fan-out decreases, when more
(potential) entry fan-ins and exit fan-outs exists due to conditions.

Finding 3: Optimizing control-flow complexity decreases taxonomy alignment
scores
Where Approach B produces constantly perfect taxonomy alignment scores,
Approach A produces very low control-flow complexity scores (left side of Fig. 6).
By not modifying existing nestings of the syntactic translation that translates
control-blocks to single-entry, single-exit composite stages, the control-flow com-
plexity stays at a very low level (dotted line in Fig. 6). However, near opti-
mal control-flow complexity comes with strongly reduced taxonomy alignment
scores of Approach A, if randomness is added to the input processes. The tax-
onomy alignment scores decrease potentially with a rough estimation of score
= 0.8081x−0.299, where x is the percentage of misaligned activities in the input
processes. This exponential decrease is induced by the growing misalignment of
two trees: The nesting of the syntactic translation and the best-case semantic
nesting defined by the taxonomy projection.

By combining Findings 2 and 3 we conclude that given non-perfectly aligned
input processes, a translation approach producing control-flow preserving trans-
lations (e.g. permitting the same traces of executions) can either optimize tax-
onomy alignment scores (as approach B) or minimize control-flow complexity
scores but cannot achieve both at the same time.

5.2 Input Processes that Achieve Acceptable Alignment/Complexity
Scores

We assume that for real-world applications, a process will mostly follow the
domain taxonomy. The right side of Fig. 7 shows the average taxonomy align-
ment scores for approach A and the average control-flow complexity scores for
approach B depending on the percentage of randomly assigned activities in the
processes (data from Exp. 1). 2.2 %3 randomly assigned activities results in a
still very good taxonomy alignment score of 0.77 for approach A and in a very
low control-flow complexity score of 0.15 for approach B. 6.5 % random activities
results in a still reasonable score of 0.55 for A and 0.35 for B. When 10 % of the
activities are randomly assigned, the metrics score is 0.47 for both approaches.
To conclude, both approaches still provide good scores (>0.5 for taxonomy align-
ment and <0.5 for control-flow complexity) when less than approx. 8% activities
in the input processes are not aligned with the taxonomy. We suspect that this
class covers a wide range of real-world processes since it is very likely that activ-
ities that belong semantically together are also structurally related in the input
processes. However, the assumption of acceptable scores (>0.5 / <0.5) requires
further empirical validation with experts or practitioners.
3 2.2 % corresponds to 2 swaps resulting in 4 misaligned activities out of 183 in Fig. 6.

Towards Quality-Aware Translations of Activity-Centric Processes 323

We have created variants of the taxonomy with deeper and flatter hierarchies.
Our experiments show, that all findings also apply for these variants. Only the
classes of acceptable quality are influenced by the taxonomy depth.

6 Related Work

Translations of activity-centric processes to declarative GSM models have been
studied [7,14,17,18]. The approach in [7] generates from UML activity diagrams
with data objects and state information as input state machines for data objects,
and then translates the state machines into flat GSM models. The translation of
Petri nets to GSM was addressed in [17] and applied to mining GSM processes
in [18]. The approach is based on calculating pre-condition sets for each activity
in order to generate guards of atomic stages. The resulting GSM models are
completely flat. To the best of our knowledge, the syntactic translation approach
in [14] is the only approach that generates nested GSM models, with nesting
based on the block structure of the input process.

A key component of our work is the mapping between input processes and
taxonomies. Such a mapping could be obtained by matching pre- and and post-
conditions of activities [14]. As an alternative approach to obtain a mapping,
processes are matched with a taxonomy based on label similarity [20]. However,
this would not take into account (explicit) business goals, which is a key idea of
abstractions in GSM. Approaches combining activity-centric modeling and goal
modeling such as [4,13] lead to richer input models, which potentially allow to
derive the taxonomy and mapping.

The broader context of our quality metrics is framed by the work on qual-
ity of conceptual models in general [9,16] and quality of business process models
[10,21] in particular. Metrics for business process models were inspired by metrics
from software engineering [6,11], namely coupling, cohesion, complexity, modu-
larity and size. Coupling and cohesion in the context of business processes were
addressed in [19], where the major goal is to find a proper granularity of activ-
ities. The control-flow complexity (CFC) of activity-centric models was studied
in [3], where the complexity is measured based on different gateway types and
the potential number of states.

There are no quality metrics for GSM processes. We have made a first step
with our taxonomy alignment metrics following the basic principles of stage
nesting in GSM. The metrics is accompanied with a control-flow complexity
metrics to assess unwanted communications between active composite stages.
However, in contrast to [3,10] our control-flow complexity metrics does no assess
the control-flow complexity of the input process. The core of both metrics devel-
oped here is counting existing abstractions or unwanted control-flow between
composite stages. This naturally satisfies all 9 properties of Weyuker measures
[22] for software programs. The normalized metrics are in-line with all relevant
properties of Weyuker measures given that their purpose is to compare different
translations of the same input process.

324 J. Köpke and J. Su

7 Conclusions and Future Work

GSM models allow to group stages based on the fulfillment of business goals.
The absence of goals in activity-centric models leads to undesirable syntactic
translations. We presented two novel metrics for GSM translations assessing the
quality of stage nesting relative to domain taxonomies and assessing the control-
flow complexity induced by stage nesting. We developed a semantic rewrite
algorithm to enhance the taxonomy alignment metrics of syntactic translations.
Experiments show that rewritten translations can achieve reasonable to perfect
metrics scores if input processes are well aligned with the domain taxonomies.
When input processes are poorly aligned a translation can either achieve optimal
alignment scores or low complexity scores but not both.

While we argue that adding semantics nestings to GSM translations will
also enhance understandability of the models, this hypothesis still needs to be
addressed in further evaluations with end-users. Such a study could also reveal
details on the interpretation of the metrics values: What values can be considered
good? At which scores do processes actually get uncomprehensible?

Other fields of future work include the study of translations of process models
that already partially include (typically structural) groupings (e.g. BPMN sub-
processes). Given such models, the taxonomy and mapping creation process may
exploit existing groupings. The translation itself can be realized as presented in
this paper. Finally, we suppose that processes, where the translations have high
control-flow complexity might already have deficits in their activity-centric rep-
resentation. On the one hand they might themselves by hardly understandable,
on the other hand the control-flow may still have room for optimizations. Both
questions are interesting future work.

References

1. Bille, P.: A survey on tree edit distance and related problems. Theor. Comput. Sci.
337(13), 217–239 (2005)

2. Bodenreider, O.: Biomedical ontologies in action: role in knowledge management,
data integration and decision support. Yearb. Med. Inf. 67–79 (2008)

3. Cardoso, J.: Control-flow complexity measurement of processes, Weyuker’s prop-
erties. Int. J. Math. Comput. Phys. Electr. Comp Eng. 1(8), 366–371 (2007)

4. Cortes-Cornax, M., Matei, A., Dupuy-Chessa, S., et al.: Using intentional frag-
ments to bridge the gap between organizational and intentional levels. Inf. Softw.
Tech. 58, 1–19 (2015)

5. Damaggio, E., Hull, R., Vacuĺın, R.: On the equivalence of incremental and fixpoint
semantics for business artifacts with guard-stage-milestone lifecycles. Inform. Syst.
38(4), 561–584 (2013)

6. Dhama, H.: Quantitative models of cohesion, coupling in software. J. Syst. Soft.
29(1), 65–74 (1995). Oregon Metric Workshop

7. Eshuis, R., Van Gorp, P.: Synthesizing data-centric models from business process
models. Computing 98, 345–373 (2015)

8. City Office for Property Management of Hangzhou: 2014 rental subsidies for low
income families: processing guidelines, July 2014 (in Chinese)

Towards Quality-Aware Translations of Activity-Centric Processes 325

9. Gemino, A., Wand, Y.: A framework for empirical evaluation of conceptual mod-
eling techniques. Requirements Eng. 9(4), 248–260 (2004)

10. Gruhn, V., Laue, R.: Complexity metrics for business process models. In: Interna-
tional Conference on Business Information Systems - BIS, vol. 85, pp. 1–12 (2006)

11. Henry, S., Kafura, D.: Software structure metrics based on information flow. IEEE
Trans. Softw. Eng. SE–7(5), 510–518 (1981)

12. Hull, R., Damaggio, E., De Masellis, R., et al.: Business artifacts with guard-stage-
milestone lifecycles: managing artifact interactions with conditions and events. In:
Proceedings of DEBS, pp. 51–62. ACM (2011)

13. Koliadis, G., Ghose, A.K.: Relating business process models to goal-oriented
requirements models in KAOS. In: Hoffmann, A., Kang, B.-H., Richards, D.,
Tsumoto, S. (eds.) PKAW 2006. LNCS (LNAI), vol. 4303, pp. 25–39. Springer,
Heidelberg (2006)

14. Köpke, J., Su, J.: Towards ontology guided translation of activity-centric processes
to GSM. In: Reichert, M., Reijers, H. (eds.) BPM Workshops 2015. LNBIP, vol.
256, pp. 364–375. Springer, Heidelberg (2016). doi:10.1007/978-3-319-42887-1 30

15. McCarthy, W.E.: The REA accounting model: a generalized framework for account-
ing systems in a shared data environment. Acc. Rev. 57(3), 554–578 (1982)

16. Moody, D.L.: Theoretical and practical issues in evaluating the quality of concep-
tual models: current state and future directions. Data Knowl. Eng. 55(3), 243–276
(2005)

17. Popova, V., Dumas, M.: From petri nets to guard-stage-milestone models. In: La
Rosa, M., Soffer, P. (eds.) BPM Workshops 2012. LNBIP, vol. 132, pp. 340–351.
Springer, Heidelberg (2013)

18. Popova, V., Fahland, D., Dumas, M.: Artifact lifecycle discovery. Int. J. Coop. Inf.
Syst. 24, 44 (2015). http://dx.doi.org/10.1142/S021884301550001X. 1550001

19. Reijers, H.A., Vanderfeesten, I.T.P.: Cohesion and coupling metrics for workflow
process design. In: Desel, J., Pernici, B., Weske, M. (eds.) BPM 2004. LNCS, vol.
3080, pp. 290–305. Springer, Heidelberg (2004)

20. Smirnov, S., Dijkman, R., Mendling, J., Weske, M.: Meronymy-based aggregation
of activities in business process models. In: Parsons, J., Saeki, M., Shoval, P., Woo,
C., Wand, Y. (eds.) ER 2010. LNCS, vol. 6412, pp. 1–14. Springer, Heidelberg
(2010)

21. Vanderfeesten, I., Cardoso, J., Mendling, J., Reijers, H., van der Aalst, W.M.P.:
BPM and workflow handbook, chapter quality metrics for business process models,
p. 179 (2007)

22. Weyuker, E.J.: Evaluating software complexity measures. IEEE Trans. Softw. Eng.
14(9), 1357–1365 (1988)

23. Zugal, S., Pinggera, J., Weber, B., Mendling, J., Reijers, H.A.: Assessing the impact
of hierarchy on model understandability – a cognitive perspective. In: Kienzle, J.
(ed.) MODELS 2011. LNCS, vol. 7167, pp. 123–133. Springer, Heidelberg (2012)

24. Zugal, S., Soffer, P., Haisjackl, C., et al.: Investigating expressiveness and under-
standability of hierarchy in declarative business process models. Softw. Sys. Model.
14(3), 1081–1103 (2013)

http://dx.doi.org/10.1007/978-3-319-42887-1_30
http://dx.doi.org/10.1142/S021884301550001X

	Towards Quality-Aware Translations of Activity-Centric Processes to Guard Stage Milestone
	1 Introduction
	2 Semantic Alignment of a GSM Translation
	2.1 Taxonomy of Actions
	2.2 Mapping of Activities and Taxonomy of Actions
	2.3 Assessing Taxonomy Alignment of a Translation

	3 Control-Flow Complexity
	4 Semantic Rewrite Algorithm
	5 Evaluation
	5.1 Findings
	5.2 Input Processes that Achieve Acceptable Alignment/Complexity Scores

	6 Related Work
	7 Conclusions and Future Work
	References

