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Chapter 3
Neuroprotection Is Technology, Not Science

Donald J. DeGracia, Doaa Taha, Fika Tri Anggraini, and Zhifeng Huang

Abstract All human clinical trials of neuroprotection after brain ischemia and 
reperfusion injury have failed. Brain ischemia is currently conceptualized as an 
“ischemic cascade” and therapy is directed to treating one or another element of this 
cascade. This approach conflates the science of cell injury with the development of 
neuroprotective technologies. Here we review a theory that describes the generic 
nonlinear dynamics of acute cell injury. This approach clearly demarcates the sci-
ence of cell injury from any possible downstream technological applications. We 
begin with a discussion that contrasts the qualitative, descriptive approach of biol-
ogy to the quantitative, mathematical approach used in physics. Next we discuss 
ideas from quantitative biology that underlie the theory. After briefly reviewing the 
autonomous theory, we present, for the first time, a non-autonomous theory that 
describes multiple injuries over time and can simulate pre- or post-conditioning or 
post-injury pharmacologics. The non-autonomous theory provides a foundation for 
three-dimensional spatial models that can simulate complex tissue injuries such as 
stroke. The cumulative theoretical formulations suggest new technologies. We out-
line possible prognosticative and neuroprotective technologies that would operate 
with engineering precision and function on a patient-by-patient basis, hence person-
alized medicine. Thus, we contend that a generic, mathematical approach to acute 
cell injury will accomplish what highly detailed descriptive biology has so far failed 
to accomplish: successful neuroprotective technology.
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1  Introduction

In the setting of brain ischemia, neuroprotection can be defined as taking a post- ischemic 
brain region we know will die and performing some intervention to prevent it from 
dying. While many neuroprotective interventions are described in the preclinical litera-
ture, none have successfully “translated” to clinical stroke neuroprotection in humans 
[1–4]. Analogous failures have plagued other biomedical fields, such as cardiac and 
renal ischemia [5, 6]. These are not isolated cases, but part of a larger pattern of defi-
ciencies in biomedical research. The “lack of reproducibility” of biomedical results has 
garnered national media attention and serious reform efforts from journal editorial 
boards and the NIH [4, 7–11]. All of this, we suggest, is part of the same picture. 
Attempts to remedy these deficiencies have focused almost exclusively on technical 
details of experimental execution [12–14]. That empirical ambiguity needs to be mini-
mized should go without saying. We have argued that an equal, or even greater, contrib-
uting factor is the lack of theoretical foundation in biomedical research [15–19].

The purpose of this chapter is to consider what neuroprotection might look like in a 
world that possessed a working theoretical biomedicine. We have offered such a theory 
and summarize it below. The theory has not yet been empirically validated. Nonetheless, 
the theoretical construct clarifies a number of critical issues. Perhaps most importantly, 
it makes clear the distinction between the science of cell injury and therapeutic technol-
ogy. Developing and confirming the theory constitute the science. Any application that 
stems from the scientific results constitutes technology. Hence, neuroprotection becomes 
a technological goal that comes after the science is completed. Efforts that conflate sci-
ence and technology in biomedical research have only served to confound both.

This chapter has two main parts. In the first part, we discuss the broader views that 
underlie our approach. We consider how physics and biology differ and why it matters 
to the idea of neuroprotection. We begin at the root of the problem and briefly compare 
the scientific cultures of physics and biology. We then briefly discuss the foundations 
of our approach which are grounded in network theory. In the second part, we illustrate 
an approach to acute cell injury that utilizes the principles and notions described in the 
first part. The solutions of this theory offer paradigm- transforming insight into the 
nature of acute cell injury. The theoretical findings provide clear directions for techno-
logical application, of which we consider three facets: (1) therapy as sublethal injury, 
(2) the technology of prognostication, and (3) the technology of neuroprotection.

2  Part 1: Physics and Biology

2.1  A Tale of Two Cultures

Since their respective inceptions in the modern era, biology and physics have devel-
oped along separate tracts. Biology was burdened with the task of describing the 
myriad biological organisms and the almost infinite variations of their structures, 
functions, niches, and so forth [20]. Physics, on the other hand, since the time of 

D.J. DeGracia et al.



97

Galileo, sought to find mathematical patterns that described some general aspect of 
entire classes of phenomena. In Galileo’s own words [quoted in [21]]:

Philosophy [nature] is written in that great book whichever is before our eyes—I mean the 
universe—but we cannot understand it if we do not first learn the language and grasp the 
symbols in which it is written. The book is written in mathematical language…without 
whose help it is impossible to comprehend a single word of it; without which one wanders 
in vain through a dark labyrinth.

The essence of the method of physics was captured succinctly by the mathemati-
cian Morris Kline [21]:

The bold new plan, proposed by Galileo and pursued by his successors, is that of obtaining 
quantitative descriptions of scientific phenomena independently of any physical explanation.

The distinction between the qualitative classifications of biology and the quanti-
tative descriptions of physics illuminates the crisis in biomedical research as 
explained by entrepreneur Bill Frezza [22]:

[We must]…shift the life sciences over to practices that have been advancing the physical 
sciences for years. In order to do this the culture must change. Mathematics is the language 
of engineering and life scientists can no longer take a pass on it. A system that cannot be 
modeled cannot be understood, and hence cannot be controlled. Statistical modeling is not 
enough, for the simple reason that correlation is not causation. Life science engineers need 
to catch up with their peers in the physical sciences when it comes to developing abstract 
mathematical representations of the systems they are studying. Progress comes from con-
stantly refining these models through ever more detailed measurements.

2.2  What Is Measured?

Since the time of Newton, physicists have struggled with the link between the physical 
objects we perceive and their description by mathematical patterns [21]. The domi-
nance of mathematical abstraction over physical intuition was definitively established in 
the 1920s. The founders of quantum mechanics were forced by the empirical behavior 
of light and atoms to abandon appeals to everyday physical intuition. Quantum mechan-
ics made clear that physics provides mathematical descriptions of phenomena whether 
or not they make sense to everyday intuition. For example, a physical intuition of the 
superposition of quantum states is not possible [23]. This approach has been justified by 
the overwhelming scientific and technological success of quantum mechanics.

Physics of course did not come to this realization overnight. The transition 
occurred over centuries. However, from the time of Galileo, physical objects were 
idealized into mathematical quantities. Physical objects were imagined to be points 
(center of mass) moving through frictionless media, whose motion traced out ideal-
ized geometric curves. Idealizing perceptions of the real world in this fashion 
allowed the recognition that the same mathematical pattern could be applied, for 
example, to projectiles and planetary motion, as Newton famously showed [24].

Thus, from its inception, what was to be measured in physics was intimately 
bound to mathematical description. It did not matter if it was an apple, cannon ball, 
or the Moon. The qualitative differences were ignored and each was to be treated as 
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a point-like object distinguished only by its quantitative mass. Mass is a nonsensory 
abstraction [25]. We perceive weight, which is a function of position in a gravity 
field. A cannon ball becomes weightless in outer space, but the mass remains con-
stant. The perception of weight was the intuitive forerunner of mass. Mass is a 
mathematical quantity in the equations of physics. Thus, what is measured in phys-
ics are operational quantities that are defined exclusively in mathematical terms.

In contrast, in modern biomedicine, organisms are dissected/homogenized into 
relatively stable pieces that are measured by a variety of means (centrifugation, 
Western blot, etc.), and intuitively thought of as classical objects with classical func-
tions. There is no underlying mathematical theory to guide the definition of such 
objects. The nature of the objects is wholly dependent on the methods of isolation. 
Different methods can result in different manifestations of supposedly the same object 
[26]. Some subcellular components are not yet amenable to biochemical isolation 
[27]. The employment of the arsenal of molecular biological tools without an underly-
ing mathematical conception has led to empirical chaos where definitions rest not on 
sound theory, but on the methods used to generate the objects of study. This approach 
is not systematic, and it is no wonder that control of such systems has been elusive.

We present below an approach to acute cell injury based on the method of math-
ematical abstraction and idealization used in physics, where the main concepts and 
objects of measurement are defined by the theory. Before describing the theory, we 
discuss the foundations on which it rests.

2.3  The Mathematizing of Biology

It is a common assertion that biology is too complex to treat mathematically the way 
physics treats physical phenomena. The truth of this assertion has continuously 
eroded over time. This section briefly reviews one line of development that has suc-
cessfully mathematized biology. Some of this material was discussed in greater 
detail elsewhere [19], so only salient aspects are presented here.

The first major step was the discovery of graph theory by the famous eighteenth 
century mathematician Euler, which initiated the study of networks as mathematical 
entities [28]. However, the relevance of network mathematics to biology did not 
become explicit until the 1960s.

After the discovery of the structure of DNA, and the cracking of the genetic code 
in the 1960s, the physical and informational structure of chromosomes was at least 
partially revealed. Even in the context of the now discredited “one gene one protein” 
model, a central paradox became apparent in the construction of organisms. Using 
current numbers, there are on order 20,000–30,000 genes in multicellular organ-
isms. Yet an organism is made of a much smaller number of cell types, on the order 
of several dozens. The question thus arose [29]: how can such a large number of 
genes lead to a much smaller number of cell phenotypes? This question has a para-
doxical character because there are an astronomical number of combinations of 
gene expression patterns. Yet, the limited number of cell phenotypes indicates that 
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most of these possibilities play no role in organismic biology. Somehow, only an 
extremely small percentage of possible gene expression patterns actually mattered. 
Could there be a basic theoretical principle behind this observation?

The discovery leading to the resolution of this seeming paradox was the Nobel 
Prize winning work of Jacob and Monad. As is well-known, Jacob and Monad dis-
covered the Lac operon [30], providing the first clear example of gene regulation. 
The key finding was that the product of the lacI gene, the lac repressor protein, 
could control the transcription of the lac operon. Binding of lac repressor protein 
inhibited transcription of the genes contained in the lac operon. But lactose binding 
to the lac repressor protein dissociated it from the DNA, thereby inducing lac operon 
transcription. This discovery revealed that gene products could regulate the expres-
sion of other genes and showed that genes were functionally interlinked to form a 
self-regulating network of mutual influences.

Shortly after discovery of the Lac operon, in 1969 Stuart Kauffman demonstrated 
that Boolean networks, in which each node is either “on” or “off”, could model gene 
networks [29]. Kauffman did not use Boolean networks to model any specific gene 
network. Instead, he studied the generic mathematical properties of random Boolean 
networks. A random Boolean network of N nodes has 2N possible states. For exam-
ple, a network of N = 25 nodes will have 225 = 33,554,432 possible states.

Kaufmann’s main finding was that, of all the possible states, only a small number 
of them were stable. A stable network state, also called an attractor state, is one that, 
once obtained, no longer changes to another state [31]. He found that the number of 
attractor states was on the order of N  [29, 32]. Thus, for N = 25 nodes, there 
would be ~5 attractor states. This represents ~150 parts per billion of the possible 
network states, a vanishingly small fraction.

Kauffman’s theoretical finding gave insight into how gene networks could oper-
ate. If each gene was taken as a node, and the network was approximated as Boolean 
(i.e. each gene was simply on or off), there would be 220,000 possible states. However, 
there would only be ~ ,20 000  or 141 stable states, a not unrealistic number of cell 
types in an organism. Thus, Kauffman’s work led to a critical new insight: the stable 
states of a network, the attractor states, could be associated with the phenotypes of 
cells. If validated, this would stand as a basic principle in theoretical biology based 
on the mathematical properties of networks.

The empirical demonstration of Kauffmann’s theory had to await the advent of omic 
technology where thousands of genes could be measured simultaneously. In 2007, 
Huang and colleagues provided compelling evidence that changes in gene expression 
could be modeled as changes in the gene network from one stable attractor state to 
another [33]. The initial and final gene expression patterns, each associated with a 
distinct cell type, were stable, but the intermediate gene changes between the two phe-
notypes were dynamic and followed a precise mathematical pattern of change. Below, 
we utilize the same mathematical pattern to theoretically model acute cell injury.

These ideas were a critical advance towards quantitatively abstracting biological 
systems. Cell phenotypes correspond to gene network attractor states. This thinking 
accounts for two levels of biological action simultaneously: (1) the level of the gene 
network and its potentially very complex molecular interactions, and (2) the level of 
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the phenotype which represents the net action of the underlying molecular network. 
In physics, this is sometimes called a “dual” representation, where a problem that 
may be overwhelmingly complex in one representation is considerably simplified in 
the other representation [34]. Phenotypes and genotypes have been linked since 
Mendel. The view above cracks the barrier to precisely quantifying what has until 
now been treated in qualitative terms. Our theory of acute cell injury is grounded in 
this quantitative network view that links the gene network and cell phenotype.

3  Part 2: A Theory of Acute Cell Injury

3.1  Introduction to the Theory

We have presented our theory in detail elsewhere [35] and so here summarize salient 
points. We begin with a qualitative heuristic, and then present the autonomous form 
of the theory, where “autonomous” is a technical mathematical term that means 
time, t, is absent from the right hand side of a differential equation [31]. We briefly 
review the solutions of the autonomous theory. We then discuss three possible tech-
nological directions suggested by the theory:

 1. A non-autonomous version of the theory allows for sequential injuries. This sim-
ulates preconditioning and other clinically relevant conditions. However, this 
result has much broader significance by indicating that therapy in general is 
synonymous with sublethal injury.

 2. To develop a quantitative approach to prognostication of acute cell injury, such 
as stroke, we outline an externally perturbed spatial model on a 3D connected 
lattice.

 3. Based on the previous two discussions, we describe a possible quantitative 
approach that would use precisely targeted radiation to affect neuroprotection.

The “take home message” of our presentation is that the main advantage of a 
theory-driven biomedicine is that the theory provides a clear, stepwise roadmap 
from the science of acute cell injury to therapeutic technology.

3.2  Qualitative Description of the Theory

The theory is an idealization of what happens when a single cell is acutely injured. 
Three features of cell injury are abstracted as continuous mathematical quantities: 
(1) the intensity of the injury, I, (2) the total amount of cell damage, D, and (3) the 
total amount of all stress responses induced by the injured cell, S. The theory 
addresses how D and S change over time, t, as a function of I. How to characterize 
the specific injury and specific cell type naturally emerges as we proceed.
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Imagine a generic cell acutely injured by a generic injury mechanism with 
intensity, I. This will activate many simultaneous damage and stress response 
pathways. The sum of all damage at any instant is D. The sum of all activated 
stress responses at any instant is S. By definition, D and S are mutually antago-
nistic. The function of stress responses is to combat damage, but the damage 
products can inhibit or destroy the stress responses. Therefore, D and S “battle”, 
and the level of each changes over time. The “battle” concludes with only one of 
two possible outcomes: D > S or S > D (the special case of D = S is discussed 
below). If D > S, damage wins out over the stress responses and, unable to over-
come the damage, the cell dies. If S > D, then stress responses win, the cell repairs 
itself and survives.

We can summarize the qualitative idea with a circuit diagram (Fig. 3.1). The core 
of the diagram is the mutual antagonism of D and S. D is positively driven, and S is 
negatively driven, by I. This is intuitive: the stronger an injury (the higher the value 
of I), the more damage it will produce, and the less the cell will be able to respond 
effectively to the injury.

Tying into the general ideas discussed above, our theory recognizes an unin-
jured cell as a stable phenotype generated by a stable pattern of gene expression. 
Application of an acute injury is an extrinsic perturbation (of intensity I) to the 
system. The genetic changes associated with cell injury are explained as a devia-
tion from the stable gene network state into a series of unstable states. The instabil-
ity of the gene network resolves itself either by returning to its original stable state, 
or by becoming so unstable that the system can no longer maintain integrity and so 
disintegrates, i.e. dies.

In addition to the gene network, we posit that the damage pathways generated by 
acute injury also act as a network [19]. The various damage pathways do not act 
independent of each other. Instead, each damage pathway has a point or points of 
contact with others that link them into a unified network. Hence, D, the damage 
network that seeks to destroy the cell, interacts with S, the gene network that seeks 
to maintain homeostasis. Thus, we need only consider the net action of the two 
competing networks and not concern ourselves with the details of the specific pathways 
that instantiate the networks.

Fig. 3.1 Circuit diagram 
of the theory of acute cell 
injury
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3.3  The Autonomous Theory

The above qualitative picture becomes a mathematical theory via the following four 
postulates:

 1. D and S exist.
 2. The mutual antagonism of D and S follows S-shaped curves (Hill functions).
 3. D and S are exponentially driven by I and −I, respectively.
 4. Decay from the attractor state, (D*, S*), is a function of |D* − S*|.

Postulate 1 was justified in the previous section. Postulate 2 is expressed by Eq. 
(3.1), a system of autonomous ordinary differential equations that is well-known 
[36] to model two mutually antagonistic factors.
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Equation (3.1) specifies that the net rate of change of D or S equals the rate of 
formation minus the rate of decay. The rate of formation is given by Hill functions 
with a Hill coefficient n, threshold Θ, and velocity v. ΘD is the value of D at a 50 % 
decrease in S. ΘS is the value of S at a 50 % decrease in D (Fig. 3.2). The mutual 
inhibition is captured by the inverse relationships dD/dt ∝ 1/Sn and dS/dt ∝ 1/Dn. Eq. 
(3.1) treats the decay rate as first order, with decay constants kD and kS.

Postulate 3 is expressed by having the thresholds change as a function of injury 
intensity, I. The minimal assumption is an exponential relationship. The threshold of 
D, ΘD, is proportional to IeI. The threshold of S goes as Ie−I. To convert to equality, 
multiplier (c) and exponential (λ) proportionality constants are required:
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Fig. 3.2 The threshold of D, ΘD, represents the strength of D to inhibit S by 50 %. The threshold 
of S, ΘS, represents the strength of S to inhibit 50 % of D
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The specific injury and the specific cell type naturally emerge from Eq. (3.2) via 
the proportionality constants [15]. (cD, λD) quantify the lethality of the injury mecha-
nism, analogous to how LD50 quantifies the lethality of a substance. Larger values 
of (cD, λD) mean an injury mechanism is more lethal than one with lower values. (cS, 
λS) quantify the strength of a cell’s intrinsic stress responses. Larger cS and smaller 
λS correspond to stronger stress responses. Thus, every possible acute injury mecha-
nism and every specific cell type can, in principle, be given numerical values for (cD, 
λD) and (cS, λS), respectively. This step is analogous to how an apple, cannon ball, or 
planet is abstracted to its numerical mass, which eliminates the qualitative distinc-
tions. Similarly, specific qualitative injures such as ischemia, head trauma, or poi-
soning will each have distinct values of (cD, λD). Specific cell types, such as neurons, 
myocytes, or endothelial cells will each have distinct values of (cS, λS).

Substituting Eq. (3.2) into Eq. (3.1) gives the autonomous version of the nonlin-
ear dynamical theory of acute cell injury:
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The autonomous theory is based on the first three postulates. Postulate 4 is intro-
duced after studying the solutions to Eq. (3.3). By studying the solutions to Eq. (3.3) 
and giving them biological interpretations, the theory provides a universal under-
standing of acute cell injury dynamics.

3.4  Solutions of the Autonomous Theory

Equation (3.3) is solved by Runge-Kutta numerical methods [32] that apply the 
input parameters to Eq. (3.3) and output the solution as a phase plane containing all 
possible trajectories. By varying I as the control parameter, the theory can model 
an injury system over a range of injury intensities. A single trajectory starts at an 
initial condition (D0, S0). Each trajectory converts to a pair of covarying D and S 
time courses. The time course pairs converge to some steady state. This steady state 
is called a fixed point, which, by definition, is where the rates of all variables simul-
taneously equal zero. There are two types of fixed points, notated (D*, S*), relevant 
to our theory. Trajectories converge to attractors and diverge from repellers [31]. 
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Plotting fixed points vs. the control parameter is called a bifurcation diagram and 
shows quantitative and qualitative changes in fixed points. A qualitative change in 
fixed points is called a bifurcation.

Above we said if D > S, the cell dies, but if S > D the cell recovers. In the solutions 
to Eq. (3.3), outcome is determined by the D and S values of the attractors. If 
S* > D*, the cell recovers. If D* > S*, the cell dies. We demonstrated for all numeri-
cal combinations of (cD, λD, cS, λS, I), that Eq. (3.3) outputs only four types of bifur-
cation diagrams [35]. Here we discuss two of the bifurcation diagram types to 
illustrate our main theoretical findings.

3.5  Monostable Outcome

We now explain how the theory mathematically defines cell death, illustrated by the 
bifurcation diagrams. Figure 3.3, panel 1, shows a bifurcation diagram plotting D* 
vs. I (red) and S* vs. I (green). As I increases continuously, at each I the phase plane 
is monostable, containing only one attractor. Four phase planes are shown (at values 
of I indicated by orange dashed lines on bifurcation diagrams). Trajectories from 
(D0, S0) = (0, 0) either recover (green) or die (red). Initial conditions (0, 0) corre-
spond to the uninjured state, or “the control condition”.

The special case of D = S occurs when the bifurcation curves cross at D* = S* 
(Fig. 3.3, panel 1, arrow). This crossing occurs at a specific value of I termed IX, the 
tipping-point value of I. IX is intuitively understood as the “cell death threshold”. 
Technically, IX is not a threshold (thresholds are illustrated in Fig. 3.2). IX is the tip-
ping point value of injury intensity, I, defined as that value of I where D* = S*. For 
I < IX, S* > D* and the cell recovers. For I > IX, D* > S*, and the cell dies.

At D* = S*, ΘD = ΘS, and Eq. (3.2) can be solved to calculate IX:
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This is a rather amazing result in the context of descriptive biomedicine. Given 
the parameters for any injury mechanism (cD, λD) and any cell type (cS, λS), we can, 
in principle, calculate beforehand the “cell death threshold” or tipping point inten-
sity, IX, for that combination. Additionally, Eq. (3.4) makes explicit that the “cell 
death threshold”, IX, is a function of both the injury mechanism and cell type. That 
means different cell types in a tissue (e.g. cortical vs. hippocampal neurons in brain) 
will die at different values of injury intensity. This is, at best, only intuitively under-
stood in descriptive biomedicine. Our theory derives it as a mathematical fact.

The monostable case in Fig. 3.3 matches the general intuition that a cell will 
survive injury intensities less than the “cell death threshold” (IX), but die if injury 
intensity is greater than IX.

3.6  Bistable Outcome

We now state the most important feature of the autonomous theory: For some 
parameter sets, both a survival and a death attractor are present on the same phase 
plane. The scenario of two attractors on a phase plane is called bistability [31, 32]. 
This result is counterintuitive. The monostable case corresponds to our intuition 
that a single injury intensity leads to either a survival or a death outcome. Our theo-
retical investigation demonstrates that some injury magnitudes are bistable and have 
both a survival and a death outcome.

Bistability is illustrated in Fig. 3.4, panel 1. As I increases, there is a value of I at 
which the phase planes transform from having one attractor to having two attractors 
and one repeller. The system is said to bifurcate at this value of I. The system is 
bistable for a range of I (yellow region) and then bifurcates again to monostable. 
The value of IX falls exactly in the middle of the bistable range of I values.

The monostable bifurcation diagram (Fig. 3.3) displays only two dynamical 
states: (1) recovery for I < IX, and (2) death for I > IX. The bistable bifurcation dia-
gram shows four dynamical states: (1) monostable recovery, (2) bistable recovery, 
(3) bistable death, and (4) monostable death.
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Fig. 3.4 A bistable bifurcation diagram describes the case where, for some range of injury intensi-
ties, both death and survival outcomes are possible for each injury intensity in that range
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3.7  Pre-treatment Therapies

The mathematical results described in the previous section provide a new, paradigm- 
transforming definition of therapy. In the monostable case, there is only one possible 
outcome at each value of injury intensity, either recovery for I < IX, or death if I > IX. 
No therapy is possible for injured cells with monostable dynamics because there is 
no attractor with S* > D* when I > IX. For the bistable bifurcation diagram, a range 
of injury intensities contain both the capacity to recover and to die. In other words, 
our theory demonstrates that bistability is required if we wish to take a system on a 
pro-death trajectory and convert it to a pro-survival trajectory.

For the autonomous theory, whether a trajectory leads to recovery or death 
depends on initial conditions (D0, S0). Altering initial conditions corresponds to a 
pre-treatment therapy. The effect of altering initial conditions was extensively stud-
ied [15], so only salient points are outlined here. When D0 < 0 (D0 is a negative 
number), this represents pre-administering an agent (drug) that inhibits damage. 
Starting at S0 > 0 (S0 is a positive number) corresponds to a manipulation that acti-
vates stress responses prior to inducing injury, for example, by transfecting a protec-
tive gene (e.g. heat shock 70).

For the bistable death range, all trajectories from (D0, S0) = (0, 0) will die. But if 
initial conditions D0 < 0 or S0 > 0, then the system may follow a trajectory to the 
recovery attractor (Fig. 3.4, panel 4, green trajectory). Thus, the theory clearly indi-
cates that the ability to convert a cell on a pro-death trajectory to a pro-survival 
trajectory is due to the bistable dynamics of the system.

This is truly a paradigm-transforming insight. It mathematically expresses the 
intuition that some injury magnitudes that are lethal if untreated can be reversed by 
therapy. Such insight is, at best, only intuitively apprehended using the prevalent 
qualitative molecular pathways approach and certainly cannot be calculated. Our 
theory defines therapeutics mathematically and calculates the range of lethal injury 
intensities that can be recovered by any possible therapy.

However, a limitation of the autonomous version is that it cannot model a post- 
injury treatment. The need to model a post-treatment provided major motivation to 
develop the non-autonomous theory. We described this new theory for the first time 
below. However, before giving the new theory, we turn attention to the main limita-
tion of the autonomous version.

3.8  Closed Trajectories and the Autonomous Theory

The solutions to Eq. (3.3) capture only half of what happens to an acutely injured 
cell. Acute injury displaces the cell from its stable phenotype through a continuous 
series of unstable states. The attractor solutions to Eq. (3.3) represent the maximum 
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deviation from the stable state and specify whether outcome will be recovery 
(S* > D*) or death (D* > S*). However, the cell must “decay” from maximum insta-
bility either to its initial phenotype (recover) or cease to exist (death). We developed 
[35] a stop-gap solution to overcome this limitation which is expressed by Postulate 
4: decay from the attractor state, (D*, S*), is a function of |D* − S*|.

We noted that, from the perspective of the theory, both recovery and death are repre-
sented when D = S = 0. Recovery is the state where there is no longer any damage (D = 0) 
and stress responses are no longer expressed (S = 0). Death is the complete disappearance 
of the cell, and hence all of its variables, including D and S, will equal zero.

Thus, we asked: what determines how long it takes (the decay time, τD) for the 
cell to go from the attractor (D*, S*) back to (D, S) = (0, 0)? If D* is much greater 
than S* (D* ≫ S*), damage is so great the cell will die quickly (τD is short), which 
is a condition widely recognized as necrosis. If S* ≫ D*, stress responses over-
whelm the small amount of damage, and the cell recovers quickly (τD is short). If D* 
is only slightly larger than S*, it will take a longer time for damage to overcome the 
stress responses (τD is long), and vice versa if S* is only slightly larger than D*. We 
thus noticed the importance of the magnitude |D* − S*|. The decay time, τD, from the 
attractor state (D*, S*) is an inverse function of |D* − S*|.

The simplest assumption was an exponential decay of the cell from the attractor 
to (D, S) = (0, 0):
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We then concatenated solutions from Eq. (3.5) to Eq. (3.3) to obtain closed tra-
jectories (Fig. 3.5). In Fig. 3.5, the trajectory solution to Eq. (3.5) is overlaid on the 
phase plane solution to Eq. (3.3). In actual fact, Eqs. (3.3) and (3.5) would have 
different phase planes, but depicting it as we have makes clear the need to have a 
closed loop trajectory on the phase plane to fully model the temporal progression of 
acute cell injury and recovery or death.

IX = 6.9

I = 4 I = 6 I = 7 I = 8

0

1

0 1

S

D

Fig. 3.5 Closed trajectories obtained by applying postulate 4 where the decay rate to recovery or 
death goes as e−|D*−S*|
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This line of questioning showed that the empirically observed facts of rapid 
(necrotic) and delayed death after injury emerged naturally from our theory. Delayed 
neuronal death (DND) occurs in hippocampal CA1 after global ischemia [37] and in 
penumbra after stroke [38]. Many molecular pathways have been advanced to 
explain DND such as apoptosis, aponecrosis, protein aggregation, and so on [39–
42]. However, the main feature of DND is time, the quintessential dynamical quan-
tity. The theory indicates that if |D* − S*| is small, the cell will take a long time to die. 
Thus, delayed death after injury is a consequence of the injury dynamics. Biological 
factors are not causative, but instead merely mediate what is intrinsically a dynami-
cal effect.

However, even though the theory could address rapid and delayed death after 
injury, the need to concatenate equations was artificial. Thus, an important motiva-
tion behind the non-autonomous theory was to develop a mathematical framework 
that could automatically calculate closed loop trajectories that model the full 
sequence of injury and recovery or death. Solving this problem automatically solved 
the post-injury treatment issue, as we now discuss.

4  Technological Applications

We now describe possible technological applications of the dynamical theory of acute 
cell injury. These require modifications of the autonomous formulation. We discuss: (1) 
multiple sequential injuries, (2) a three-dimensional version of the theory to model tis-
sue injury, and (3) a possible neuroprotective technology based on the former two 
results.

4.1  Approaches to Therapy

The autonomous theory, Eq. (3.3), can only deal with pre-treatment by altering the 
initial conditions. In clinical practice, injuries need to be treated after they occur, 
necessitating post-injury therapy. The key to achieving this result is the realization 
that therapy is necessarily a sublethal injury. However, therapy is generally not 
thought of as such in typical biomedical research. Instead, there are diverse 
approaches to defining therapy. Typical notions of therapy include: (1) inhibiting 
damage mechanisms induced by injury [43], (2) bolstering stress responses (includ-
ing the immune system) to allow injured tissue to repair itself [44], (3) some com-
bination of 1 and 2 (e.g. multiple drug treatments) [45, 46], and (4) treatments 
designed to decrease the intensity or duration of the injury [47]. Our theory clearly 
demarcates control of injury intensity, I, from control of D and S.
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4.2  Ascertaining Injury Intensity

In clinical practice, controlling injury intensity, I, is often not an option. For a given 
injury mechanism (ischemia, trauma, poisoning), a large range of continuous values 
of injury intensity, I, can present clinically. The clinical problem is therefore to esti-
mate the magnitude of I (e.g. duration of ischemia, force of trauma, concentration 
of poison) and to determine if an intervention is possible, e.g. tPA or surgery for 
stroke [48]. It is important to know the duration from time of injury to clinical pre-
sentation (e.g. 2 h time window for stroke).

Bifurcation diagrams (Figs. 3.3 and 3.4) provide a systematic framework for esti-
mating injury intensity, I. A given injury will correspond to specific value of I and 
its accompanying phase plane. The phase plane provides time courses from differ-
ent initial conditions, one of which will describe the injury evolution over time. 
Thus, in principle, it is possible to achieve engineering levels of prognosticative 
precision by using our theory.

4.3  Protective Therapeutics

The most common view of post-injury therapy is that there exists a “silver bullet” 
treatment (pharmacologic or otherwise) to stop cell death [49]. We note this notion 
fails completely to account for the range of injury intensities that are possible for a 
given acute injury. In the context of stroke, such a treatment to stop neuron death is 
called neuroprotection. It is almost universally agreed that a drug will specifically 
target the molecular mechanism that causes cell death. This definition of therapy 
presumes a detailed understanding of the biological specifics of the injury and the 
drug action. We assert that this view is wholly incorrect.

Instead, our theory clearly indicates that a drug is a nonspecific form of injury. If 
given at high enough concentration (≫LD50), a drug is lethal. This is well-known. Ideas 
of “on-target” and “off-target” effects are arbitrary distinctions that reflect only our igno-
rance of the total biological action of a drug [17]. For example, how many neuroprotec-
tants were thought to have “specific” actions inhibiting a damage pathway but later 
discovered to simply lower temperature? In the most general terms, any drug will inter-
fere with normal cell function and act as an injury mechanism. At low concentrations 
(low values of I), it is sublethal. At high concentrations (high values of I), it is lethal.

We also note that the logic of “specific targets” has proven elusive with the two 
most neuroprotective stroke therapies: hypothermia and pre-conditioning. Pre- 
conditioning is, by definition, sub-lethal injury. Hypothermia too is an injury 
 mechanism. If the intensity of hypothermia is too large (e.g. temperature is reduced 
too much), the system will die. Therapeutic hypothermia is the application of a 
sublethal dose (intensity) of hypothermia.
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Therefore, through the lens of our theory, all possible therapies fall into only two 
categories: (1) efforts to reduce injury intensity, which have limited practicality when an 
injury has already occurred prior to clinical presentation, and (2) sublethal injuries 
whose main effect is to alter the trajectories of D and S. This understanding provides 
very strong motivation to reformulate our theory so that we can apply sequential injuries 
over time. The solution to this problem is the non-autonomous version of the theory.

4.4  The Non-autonomous Dynamical Theory  
of Acute Cell Injury

The non-autonomous theory builds stepwise on the autonomous theory. The autono-
mous theory treats the threshold parameters, Θ, in Eq. (3.2) as functions of injury 
intensity, I, but treats the v and k parameters as constants. The non-autonomous 
theory assigns functions to the v and k parameters. These are captured by modifying 
postulate 4 and adding a new postulate 5:

 4. The decay parameter, k, is a function of the instantaneous value of |D − S|.
 5. The velocity parameter, v, decays exponentially with time: v ∝ e−t.

With regard to new postulate 4, the importance of the term |D* − S*| for realistic 
injury dynamics (e.g. necrosis vs. DND) was discussed above. Instead of taking 
|D − S| only at the attractor, we set the decay parameter k for both D and S equal to 
the instantaneous value of |D − S| times a constant of proportionality c2. The effect 
of |D − S| is augmented by multiplying it by time, t, causing the injury to decay faster 
than if k was taken only as a function of |D − S|:

 
k k c t D SD S= = -2  (3.6)

For postulate 5, recall that the velocity parameter, v, gives the rate of D and S 
formation in Eq. (3.1). Setting v = 1 (or any number) means D and S will continue to 
increase at a constant rate over time. This is physically unrealistic. We expect the 
rate of formation of both D and S to slow down with time after the injury. Of the 
possible functional forms, the simplest is an exponential decay:

 v v vD S= = -
0

1e c t

 (3.7)

In Eq. (3.7), v0 is the initial velocity of formation of both D and S, and c1 is a time 
constant that specifies the rate of decay of velocity. The presence of time, t, in Eqs. 
(3.6) and (3.7) makes the theory non-autonomous.

Substituting Eqs. (3.6) and (3.7) into Eq. (3.3) gives the non-autonomous version 
of the dynamical theory of acute cell injury:
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(3.8)

4.5  Sequential Injuries

Equation (3.8) solves both limitations of the autonomous theory: (1) it generates 
closed trajectories that automatically return to (D, S) = (0, 0) and (2) it allows simu-
lation of multiple injuries over time as, for example, with ischemic precondition-
ing. Injury 1 (at intensity, I1) is applied at time zero, and injury 2 (at intensity, I2) 
can be applied at any time thereafter. In general, the sequential injuries either inter-
act or they do not interact. The non-interacting case is not realistic and so discarded 
on the grounds that the second injury will necessarily interact with the first.

There are multiple ways to model how injuries 1 and 2 interact. We consider only 
one form of interaction here where D and S from the second injury (D2, S2) antagonize 
each other as well as D and S from the first injury (D1, S1). This formulation is based 
on the approach of Zhou and colleagues [50], is represented by the circuit diagram 
in Fig. 3.6, and gives rise to a system of four coupled nonlinear, non- autonomous 
differential equations:

Fig. 3.6 Circuit diagram 
for two interacting injuries
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In Eq. (3.9), v is as given in Eq. (3.7). The k parameter is modified to allow D and 
S to interact:

 
k c t D D S S= +( ) - +( )2 1 2 1 2  

(3.10)

For Eqs. (3.9) and (3.10), the interaction of injury 1 and injury 2 is by addition of 
the values of D and S from each injury. Whether this is true or not must be empirically 
tested. For our purposes, it stands as an assumption. Our goal here is to study solu-
tions of Eq. (3.9) and determine if they do or do not conform to what is already 
empirically established.

4.6  Solutions of the Multiple Injury Model

We present three examples of solutions to Eq. (3.9). Example 1 considers the case 
of preconditioning. Examples 2 and 3 simulate a post-injury drug treatment, where 
example 2 considers the effect of time of administration, and example 3 illustrates 
the effect of dose.

4.6.1  Preconditioning

Preconditioning is simulated by setting the parameters of injury 1 equal to those of 
injury 2, except for injury intensity, I. Equal values of (cD, λD) and (cS, λS) for both 
injuries mean applying the same injury mechanism to the same cell type. Injury 1 is 
sublethal (I1 < IX) and injury 2 is lethal (I2 > IX), thereby simulating the case where a 
sublethal injury precedes a lethal injury, which is the definition of ischemic 
preconditioning.

Injuries 1 and 2 increasingly interact as time between them (Δt) decreases. When 
Δt = 250 h, injury 1 mostly runs its course and has little effect on lethal injury 2, and 
the system dies (Fig. 3.7a). When Δt is 72 h, the injuries interact, but not enough for 
injury 1 to salvage injury 2 and thus D edges out S and the system dies (Fig. 3.7b). 
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However, at Δt = 48 h, the excess total stress responses of injury 1 adds, in a nonlin-
ear fashion given by Eq. (3.9), to those of injury 2, allowing it to overcome total 
damage and survive (Fig. 3.7c). Therefore, Eq. (3.9) effectively simulates 
preconditioning.

4.6.2  Post-injury Drug Treatment

By modifying the input parameters to Eq. (3.9), it can be used to model a post-injury 
therapy. In this case, injury 1 is the lethal injury, and injury 2 is the therapy, treated 
as a sublethal injury. The parameter sets used in the example are:

INJURY 1 parameters INJURY 2 parameters

cS1 = 0.25; λS1 = 0.9; n1 = 4 cS2 = 0.25; λS2 = 0.9; n2 = 4
cD1 = 0.1; λD1 = 0.1 cD2 = 0.001; λD2 = 0.01
IX = 0.92 IX = 6.1
v0,1 = 0.1; c1,1 = 0.1 v0,2 = 0.5; c1,2 = 1
c2,1 = 0.2 c2,2 = 1

To model applying the injuries to the same cell type, the parameters (cS, λS) are 
set equal for the two injuries. The Hill coefficients are, arbitrarily, also kept equal. 
We assume that a drug, as a form of injury, will be considerably weaker than the 
main injury (which might be ischemia, or trauma, or etc.). Therefore, for injury 2, 
cD is 1/100th and λD is 1/10th that of injury 1. Eq. (3.4) calculates the tipping point 
injury intensities for injury 1, IX = 0.92, and for injury 2, IX = 6.1. Thus, the main 
injury is lethal if I1 > 0.92, and the therapy is lethal if I2 > 6.1. The velocity parame-
ters, v0 and c1, and decay parameter, c2, control the overall rate of the injury. It is 
assumed that a drug will act quicker and so these parameters are 5×, 10×, and 5× 
that of injury 1. There are two additional parameters typically associated with a 
post-injury therapy. The time of administration of the therapy is set by the time after 
injury 1 when injury 2 is initiated. The dose of the therapy (e.g. drug dose) is set by 
the parameter, I, the injury intensity.
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Fig. 3.7 Simulation of preconditioning where a sublethal insult is given before a lethal insult for 
three different time differences between injuries 1 and 2
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The results of running Eq. (3.9) with the above parameters are shown in Fig. 3.8. 
Figure 3.8a shows the main injury, injury 1, with lethal I = 1, and no treatment. The 
injury runs >90 % of its course over 100 time units. To precisely quantify whether 
the system survives or dies, we calculated the area under the D time course (AD), the 
cumulative total damage, and the S time course (AS), the cumulative total stress 
responses. We assert but do not attempt to justify here that AS > AD is the condition 
of survival, and AD > AS is the condition for death. When injury 1 with I = 1 is 
untreated, AD = 5.5 > AS = 3.5 and it dies.

Panels B–D of Fig. 3.8 show the effect of altering the time of administration. 
When the drug is given very early in the time course (t = 0.9), AS > AD, and the system 
survives. However, if the sublethal injury (i.e., drug) is given at t = 5 or t = 20, the 
system dies. This result is consistent with the common experience that a drug must 
be administered within a specific time window to be effective at halting cell death.

Panels E–G show the effect of concentration of the sublethal therapy. Panel F 
reproduces panel B showing that sublethal therapy of I2 = 1 at t = 0.9 causes survival 
of lethal injury 1. However, if the dose of therapy is either halved (I2 = 0.5, panel E) 
or doubled (I2 = 2, panel G), damage dominates and the system dies. This result 
reproduces the notion of an optimal dose of therapy. If the dose is too small, it will 
be ineffective. If the dose is too large, it contributes to lethality.
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Fig. 3.8 Post-injury therapy of intensity I2, applied to the main, lethal injury of lethal intensity, 
I1 = 1. Blue arrows in (b–d) indicate time of application of second, sublethal injury
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These examples show proof of principle that the non-autonomous theory can 
simulate multiple sequential injuries. We are systematically studying the non- 
autonomous model and will present a full exposition at a later date. The above 
examples illustrate how the theory generalizes the notion of therapy as sublethal 
injury. As such, the theory provides a novel framework for pharmacodynamics.

The therapy (sublethal injury) may be applied before the lethal injury (pre- 
conditioning) or after (post-injury therapy), capturing mathematically several 
important empirical results. The theory provides a systematic framework to calculate 
beforehand all doses and times of administration, allowing optimization of out-
come. Further, the theory is not confined only to two sequential injuries, but can 
model any number of injuries over time.

4.7  Spatial Applications

In this section, we briefly outline a spatial application of the theory that can be used 
to model three-dimensional (3D) tissue injury and thereby, for example, prognosticate 
stroke. We do not give a mathematical exposition, but instead merely outline the 
construction of this application.

Spatial applications involve two main components: (1) a 3D lattice with (2) a 
spatially distributed injury superimposed over the lattice. Each vertex of the lattice 
is taken as a biological cell, and multiple instances of the theory [e.g. Eq. (3.9)] are 
run in parallel at each lattice point. Figure 3.9 illustrates a simple 3D grid lattice. 
The injury mechanism is depicted as a colored solid in which the lattice is embedded. 
The legend maps the colors to a continuous distribution of injury intensity, I, which 
runs from sublethal to lethal and depicts a bistable system. The value of I at the location 
of a vertex serves as the I input parameter for that vertex.

The new feature of a spatial model is a coupling function between the cells/ver-
tices, indicated by μ in Fig. 3.9. In general, the coupling function, μ, represents 
interaction between neighboring cells. Examples of what could be modeled by μ 
include an incremental addition of I to neighboring cells if the central cell dies, 
paracrine or autocrine influences between cells, or both.

Every aspect of a spatial application is constructible. The 3D lattice and superim-
posed injury mechanism can take on any geometry. The injury mechanism may be 
static or dynamic. The coupling functions can represent any possible interactions 
among cells. The common features of any spatial applications are: (1) a (x, y, z) depen-
dence on both cell locations and the distribution of the injury mechanism (2), the 
coupling among cells, and (3) the need to run multiple instances of the theory in paral-
lel. In general, spatial applications will be massively parallel computing problems.

We can envision a spatial application to invent technology to prognosticate stroke 
outcome. The cerebral blood flow (CBF) distribution, ascertained by PET or fMRI, 
could be used to generate the spatially distributed injury. The blood flow distribu-
tion could be mapped across an entire bifurcation diagram (Fig. 3.10a). The 3D cell 
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lattice can approximate the distribution of cells in the affected brain tissue. The lat-
tice is then superimposed with the patient’s 3D CBF distribution (Fig. 3.10b, C). 
Blood or cerebrospinal fluid could also provide biomarkers to further parameterize 
the theory, e.g. by estimating time after injury. Such a simulation could, in principle, 
be generated and solved in near real time on a patient-by-patient basis directly at the 
patient bedside. Figure 3.10b–d show an initial time (say, patient presentation) used 
to parameterize the spatial application. Solving D & S time courses at each vertex, 
based on the patient’s CBF gradient, could, in principle, fully prognosticate out-
come. The blow-up in Fig. 3.10c shows calculated initial and final lesions. Here 
green points survive, yellow points are bistable and live or die depending on I (pen-
umbra), and red is necrotic core. Figure 3.10d shows the final 3D reconstructions 
that could be generated in the clinic for physician use at the bedside.

Many neuroimaging efforts are directed at prognosticating stroke outcome [51, 
52]. To date there has been no unequivocal success in this endeavor [53]. Our theo-
retical approach provides a missing link between the raw biological data of neuro-
imaging and biomarkers, on one hand, and prognostication on the other hand. The 
raw data needs to serve as input into a theory capable of prognosticating outcome, 
which is precisely the purpose of the dynamical theory of acute cell injury.
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Fig. 3.9 A simple spatial 
model of acute cell injury. 
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monostable attractors. “Bi” 
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4.8  A Possible Neuroprotective Technology

From the multiple injury models, we conclude that, theoretically, any form of protective 
therapy is necessarily a form of sublethal injury. Spatial applications hold out the 
promise to model, simulate, and prognosticate outcome in 3D tissue. We combine 
these with other insights offered by the theory and present a possible technology for 
stroke neuroprotection.

From studying bifurcation diagrams with I as the control parameter, it is necessarily 
the case that the behavior of an acutely injured system varies with injury intensity, I. 
This means a patient who experiences 40 % CBF is a completely different case than 
one with 20 % CBF or 0 % CBF. Simply stated, there will never be a “one size fits all 
single” or a “silver bullet” treatment for stroke. Each case will be different in the 
particulars of time after injury, degree and distribution of CBF reductions, comor-
bidities, etc. Furthermore, the theory unambiguously specifies that therapy is only 
possible when the injury dynamics are bistable. Prognostic efforts must be able to 
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Fig. 3.10 The spatial model applied to stroke prognosis. (a) Mapping a bistable bifurcation dia-
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measurements, where CBF serves as the spatially distributed I parameter for the simulation. (c) 
Zoomed view from panels in (b). (d) Final 3D reconstruction calculating outcome would serve to 
prognosticate changes in lesion volume over time
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identify the bistable volumes of tissue. Then, the theory can calculate the conditions 
required to transform bistable lethal trajectories to survival trajectories.

Therefore, if clinical neuroprotection is possible, it must be tailor-made for each 
patient, on a patient-by-patient basis. That is, stroke neuroprotection is inherently an 
example of so-called “personalized medicine”, not by choice but by necessity. The 
prognosticative technology considered in the previous sections shows how a patient- 
specific prognosis is possible in principle. It is only a small conceptual step from the 
prognosticative technology to neuroprotective technology that can be applied on a 
patient-by-patient basis. Our example will describe a technology that does not yet exist. 
It speaks to the power of our theory that it allows us to imagine new technology.

The example of a post-injury treatment given above (Fig. 3.8) considered the 
post-injury therapy to be a drug. But once we recognize that therapy is, in the con-
text of our theory, always a form of sublethal injury, we are free to consider other 
ways to induce sublethal injury. We require a form of sublethal injury that can be 
precisely targeted and whose intensity can be precisely controlled. We also require 
something that can penetrate the skin and skull and be controlled to penetrate to any 
required depth in the brain tissue. The obvious possibility is some form of radiation 
that can be administered on an intensity continuum from nonlethal to lethal. We thus 
envision a machine that targets a brain-penetrant radiation, of variable intensity, to 
specific voxels in the brain. This is not an unheard of possibility. Recent work sug-
gests that infrared or other radiation may be used as a neuroprotectant [54–57]. Our 
theory suggests that the “mechanism” of the neuroprotective action of radiation may 
precisely be its ability to impact acute injury dynamics.

Location, intensity, and duration of radiation are determined by the calculated 
prognosis (Fig. 3.11). If left untreated, the theory can calculate which bistable 
regions (e.g. penumbra) will survive and which will die, and therefore predict the 
maximum final lesion. Because the prognostic calculations can distinguish bistable 
from monostable lethal cases, the regions susceptible to neuroprotective therapy 
can be determined. Further, on a voxel by voxel basis, the intensity of the sublethal 
injury required to convert death trajectories to survival trajectories can be calculated 
(e.g. as illustrated in Fig. 3.8). Therapy would then be administered in the form of 
precision targeted sublethal injury (Fig. 3.11).

Ideally, all bistable regions susceptible to therapy would be shifted to pro- survival 
dynamics, resulting in the minimal lesion volume where only monostable lethal 
volumes die. It is well-recognized that core is not subject to salvage. The goal of 
neuroprotective therapy is to minimize the extent to which penumbra converts to 
additional core lesion. Our theory offers the possibility of engineering-level preci-
sion over these factors.

This section provides merely a rough sketch of a possible neuroprotective 
technology in the context of the dynamical theory of acute cell injury. Many scien-
tific and technological hurdles exist before such technology can become reality. 
That the theory allows imagining such possibilities speaks of the strength of a math-
ematical and theoretical view of cell injury. Such technology cannot be envisioned 
from the qualitative, descriptive, pathway-centric view of cell injury that currently 
dominates biomedical research.
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5  The Mathematical Road to Neuroprotection

This chapter has outlined the path from the science of acute cell injury to the 
technology of neuroprotection. A succinct summary of the steps is:

 1. The correct mathematical form of the theory must be empirically validated for 
single injuries.

 2. The correct mathematical form of the theory applied to multiple sequential inju-
ries must be empirically validated.

 3. The links between autonomous and non-autonomous versions must be system-
atically studied.

 4. The theory provides the scientific basis to determine the parameters for combi-
nations of injury mechanisms (cD, λD) and cell types (cS, λS) in the laboratory.

 5. As injury dynamics become well-understood empirically, the doors to techno-
logical applications open. Possible technologies to prognosticate stroke outcome 
and to administer stroke neuroprotection were given as examples.

Fig. 3.11 A possible neuroprotective technology based on the nonlinear dynamical theory of acute 
cell injury. Penumbra is envisioned to consist of voxel dynamics that are either sublethal or lethal 
bistable, where lethal bistable voxels have the potential to be salvaged via a sublethal injury 
therapy
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There is thus a stepwise progression from science to technology. The scientific 
step is to fully parameterize and validate the theory. This in turn provides the infor-
mation to calculate outcomes at all injuries I (e.g. Fig. 3.11a). Technology then uses 
this information to design applications. The theory thus provides a quantitative and 
systematic platform to study therapeutics for all possible combinations of acute 
injury mechanisms and cell types.

By applying the method that Galileo advocated some 350 years ago to the study 
of cell injury, we have constructed a mathematical theory that has the potential to 
radically alter the understanding and treatment of acute cell injury. In short, the 
theory can usher in a new paradigm of acute cell injury that is firmly grounded in a 
mathematical paradigm of biology. We feel this direction will go a long way to 
overcome the weaknesses that are evident in the qualitative, pathways-based 
approach that currently dominates biomedical research.

References

 1. Cheng YD, Al-Khoury L, Zivin JA (2004) Neuroprotection for ischemic stroke: two decades 
of success and failure. NeuroRx 1(1):36–45

 2. O’Collins VE, Macleod MR, Donnan GA, Horky LL, van der Worp BH, Howells DW (2006) 
1,026 experimental treatments in acute stroke. Ann Neurol 59(3):467–477

 3. Turner RC, Dodson SC, Rosen CL, Huber JD (2013) The science of cerebral ischemia and the quest 
for neuroprotection: navigating past failure to future success. J Neurosurg 118(5):1072–1085

 4. Xu SY, Pan SY (2013) The failure of animal models of neuroprotection in acute ischemic 
stroke to translate to clinical efficacy. Med Sci Monit Basic Res 19:37–45

 5. Jo SK, Rosner MH, Okusa MD (2007) Pharmacologic treatment of acute kidney injury: why 
drugs haven’t worked and what is on the horizon. Clin J Am Soc Nephrol 2(2):356–365

 6. Kloner RA (2013) Current state of clinical translation of cardioprotective agents for acute 
myocardial infarction. Circ Res 113(4):451–463

 7. Freedman LP, Gibson MC, Ethier SP, Soule HR, Neve RM, Reid YA (2015) Reproducibility: 
changing the policies and culture of cell line authentication. Nat Methods 12(6):493–497

 8. Halsey LG, Curran-Everett D, Vowler SL, Drummond GB (2015) The fickle P value generates 
irreproducible results. Nat Methods 12(3):179–185

 9. Landis SC, Amara SG, Asadullah K, Austin CP, Blumenstein R, Bradley EW et al (2012) A 
call for transparent reporting to optimize the predictive value of preclinical research. Nature 
490(7419):187–191

 10. Plant AL, Locascio LE, May WE, Gallagher PD (2014) Improved reproducibility by assuring 
confidence in measurements in biomedical research. Nat Methods 11(9):895–898

 11. Vasilevsky NA, Brush MH, Paddock H, Ponting L, Tripathy SJ, Larocca GM et al (2013) On the 
reproducibility of science: unique identification of research resources in the biomedical literature. 
PeerJ 1, e148

 12. Drummond GB, Paterson DJ, McGrath JC (2010) ARRIVE: new guidelines for reporting ani-
mal research. J Physiol 588(pt 14):2517

 13. Kilkenny C, Browne W, Cuthill IC, Emerson M, Altman DG, National Centre for the Replacement, 
Refinement and Reduction of Animals in Research et al (2011) Animal research: reporting 
in vivo experiments—the ARRIVE guidelines. J Cereb Blood Flow Metab 31(4):991–993

 14. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG (2010) Improving bioscience 
research reporting: the ARRIVE guidelines for reporting animal research. J Pharmacol Pharmacother 
1(2):94–99

D.J. DeGracia et al.



121

 15. DeGracia DJ (2013) A program for solving the brain ischemia problem. Brain Sci 3(2):460–503
 16. DeGracia DJ (2010) Towards a dynamical network view of brain ischemia and reperfusion. 

Part II: a post-ischemic neuronal state space. J Exp Stroke Transl Med 3(1):72–89
 17. DeGracia DJ (2010) Towards a dynamical network view of brain ischemia and reperfusion. 

Part III: therapeutic implications. J Exp Stroke Transl Med 3(1):90–103
 18. DeGracia DJ (2010) Towards a dynamical network view of brain ischemia and reperfusion. 

Part IV: additional considerations. J Exp Stroke Transl Med 3(1):104–114
 19. DeGracia DJ (2010) Towards a dynamical network view of brain ischemia and reperfusion. 

Part I: background and preliminaries. J Exp Stroke Transl Med 3(1):59–71
 20. Nordenskiöld E, Eyre LB (1935) The history of biology, a survey. Tudor, New York, pp 3–629
 21. Kline M (1985) Mathematics and the search for knowledge. Oxford University Press, New York, 

p 257
 22. Frezza W (2012) The skeptical outsider: how to rescue the life sciences from technological torpor. 

Updated 13 July 2012. Available from: http://www.bio-itworld.com/BioIT_Article.aspx?id=117147, 
http://www.bio-itworld.com2013

 23. Bao L, Radish EF (2002) Understanding probabilistic interpretations of physical systems: a 
prerequisite to learning quantum physics. Am J Phys 70(3):210–217

 24. Newton I, Cohen IB, Whitman AM (1999) The Principia: mathematical principles of natural 
philosophy. University of California Press, Berkeley, p 966

 25. Weyl H (1934) Mind and nature. University of Pennsylvania Press, Philadelphia, p 100
 26. Hillman H (1972) Certainty and uncertainty in biochemical techniques. Ann Arbor Science, Ann 

Arbor, p 126
 27. Kedersha N, Anderson P (2007) Mammalian stress granules and processing bodies. Methods 

Enzymol 431:61–81
 28. Biggs N, Lloyd EK, Wilson RJ (1986) Graph theory, 1736-1936. Oxfordshire/Clarendon Press, 

New York, p 239
 29. Kauffman SA (1969) Metabolic stability and epigenesis in randomly constructed genetic nets. 

J Theor Biol 22(3):437–467
 30. Jacob F, Perrin D, Sanchez C, Monod J (1960) Operon: a group of genes with the expression 

coordinated by an operator. C R Hebd Seances Acad Sci 250:1727–1729
 31. Strogatz SH (1994) Nonlinear dynamics and Chaos: with applications to physics, biology, 

chemistry, and engineering. Addison-Wesley, Reading, p 498
 32. Kaplan D, Glass L (1995) Understanding nonlinear dynamics. Springer, New York, p 420
 33. Huang S, Guo YP, May G, Enver T (2007) Bifurcation dynamics in lineage-commitment in 

bipotent progenitor cells. Dev Biol 305(2):695–713
 34. Vaughn MT (2007) Introduction to mathematical physics. Wiley-VCH, Weinheim, p 527
 35. DeGracia DJ, Huang ZF, Huang S (2012) A nonlinear dynamical theory of cell injury. J Cereb 

Blood Flow Metab 32(6):1000–1013
 36. Alon U (2007) An introduction to systems biology: design principles of biological circuits. 

Chapman & Hall/CRC, Boca Raton, p 301
 37. Kirino T (2000) Delayed neuronal death. Neuropathology 20(suppl):S95–S97
 38. Hossmann KA (1994) Viability thresholds and the penumbra of focal ischemia. Ann Neurol 

36(4):557–565
 39. Balduini W, Carloni S, Buonocore G (2012) Autophagy in hypoxia-ischemia induced brain 

injury. J Matern Fetal Neonatal Med 25(suppl 1):30–34
 40. Chalmers-Redman RM, Fraser AD, Ju WY, Wadia J, Tatton NA, Tatton WG (1997) Mechanisms 

of nerve cell death: apoptosis or necrosis after cerebral ischaemia. Int Rev Neurobiol 40:1–25
 41. Ge P, Zhang F, Zhao J, Liu C, Sun L, Hu B (2012) Protein degradation pathways after brain 

ischemia. Curr Drug Targets 13(2):159–165
 42. Jouan-Lanhouet S, Riquet F, Duprez L, Vanden Berghe T, Takahashi N, Vandenabeele P 

(2014) Necroptosis, in vivo detection in experimental disease models. Semin Cell Dev Biol 
35:2–13

3 Neuroprotection Is Technology, Not Science

http://www.bio-itworld.com/BioIT_Article.aspx?id=117147
http://www.bio-itworld.com2013/


122

 43. Ginsberg MD (2008) Neuroprotection for ischemic stroke: past, present and future. 
Neuropharmacology 55(3):363–389

 44. Alonso de Lecinana M, Diez-Tejedor E, Gutierrez M, Guerrero S, Carceller F, Roda JM (2005) New 
goals in ischemic stroke therapy: the experimental approach—harmonizing science with practice. 
Cerebrovasc Dis 20(suppl 2):159–168

 45. Hermann DM, Bassetti CL (2007) Neuroprotection in the SAINT-II aftermath. Ann Neurol 
62(6):677–678, author reply 8

 46. Savitz SI, Fisher M (2007) Future of neuroprotection for acute stroke: in the aftermath of the 
SAINT trials. Ann Neurol 61(5):396–402

 47. Molina CA, Saver JL (2005) Extending reperfusion therapy for acute ischemic stroke: emerg-
ing pharmacological, mechanical, and imaging strategies. Stroke 36(10):2311–2320

 48. Molina CA, Alvarez-Sabin J (2009) Recanalization and reperfusion therapies for acute isch-
emic stroke. Cerebrovasc Dis 27(suppl 1):162–167

 49. Rother J (2008) Neuroprotection does not work! Stroke 39(2):523–524
 50. Zhou JX, Brusch L, Huang S (2011) Predicting pancreas cell fate decisions and reprogram-

ming with a hierarchical multi-attractor model. PLoS One 6(3), e14752
 51. Harston GW, Rane N, Shaya G, Thandeswaran S, Cellerini M, Sheerin F et al (2015) Imaging 

biomarkers in acute ischemic stroke trials: a systematic review. AJNR Am J Neuroradiol 
36(5):839–843

 52. Ward NS (2015) Does neuroimaging help to deliver better recovery of movement after stroke? 
Curr Opin Neurol 28(4):323–329

 53. Hirano T (2014) Searching for salvageable brain: the detection of ischemic penumbra using 
various imaging modalities? J Stroke Cerebrovasc Dis 23(5):795–798

 54. Brennan KM, Roos MS, Budinger TF, Higgins RJ, Wong ST, Bristol KS (1993) A study of radia-
tion necrosis and edema in the canine brain using positron emission tomography and magnetic 
resonance imaging. Radiat Res 134(1):43–53

 55. Lapchak PA (2010) Taking a light approach to treating acute ischemic stroke patients: transcra-
nial near-infrared laser therapy translational science. Ann Med 42(8):576–586

 56. Sanderson TH, Reynolds CA, Kumar R, Przyklenk K, Huttemann M (2013) Molecular mecha-
nisms of ischemia-reperfusion injury in brain: pivotal role of the mitochondrial membrane 
potential in reactive oxygen species generation. Mol Neurobiol 47(1):9–23

 57. Wong CS, Van der Kogel AJ (2004) Mechanisms of radiation injury to the central nervous 
system: implications for neuroprotection. Mol Interv 4(5):273–284

D.J. DeGracia et al.


	Chapter 3: Neuroprotection Is Technology, Not Science
	1 Introduction
	2 Part 1: Physics and Biology
	2.1 A Tale of Two Cultures
	2.2 What Is Measured?
	2.3 The Mathematizing of Biology

	3 Part 2: A Theory of Acute Cell Injury
	3.1 Introduction to the Theory
	3.2 Qualitative Description of the Theory
	3.3 The Autonomous Theory
	3.4 Solutions of the Autonomous Theory
	3.5 Monostable Outcome
	3.6 Bistable Outcome
	3.7 Pre-treatment Therapies
	3.8 Closed Trajectories and the Autonomous Theory

	4 Technological Applications
	4.1 Approaches to Therapy
	4.2 Ascertaining Injury Intensity
	4.3 Protective Therapeutics
	4.4 The Non-autonomous Dynamical Theory of Acute Cell Injury
	4.5 Sequential Injuries
	4.6 Solutions of the Multiple Injury Model
	4.6.1 Preconditioning
	4.6.2 Post-injury Drug Treatment

	4.7 Spatial Applications
	4.8 A Possible Neuroprotective Technology

	5 The Mathematical Road to Neuroprotection
	References


