
A Remark on Projections of the Rotated Cube
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Efim D. Gluskin and Yaron Ostrover

Abstract Motivated by relations with a symplectic invariant known as the “cylin-
drical symplectic capacity”, in this note we study the expectation of the area of a
minimal projection to a complex line for a randomly rotated cube.

1 Introduction and Result

Consider the complex vector space Cn with coordinates z D .z1; : : : ; zn/, and
equipped with its standard Hermitian structure hz;wiC D Pn

jD1 zjwj. By writing
zj D xj C iyj, we can look at Cn as a real 2n-dimensional vector space Cn '
R2n D Rn ˚ Rn equipped with the usual complex structure J, i.e., J is the linear
map J W R2n ! R2n given by J.xj; yj/ D .�yj; xj/. Moreover, note that the real part
of the Hermitian inner product h�; �iC is just the standard inner product on R2n, and
the imaginary part is the standard symplectic structure on R2n. As usual, we denote
the orthogonal and symplectic groups associated with these two structures by O.2n/
and Sp.2n/, respectively. It is well known that O.2n/ \ Sp.2n/ D U.n/, where the
unitary group U.n/ is the subgroup of GL.n;C/ that preserves the above Hermitian
inner product.

Symplectic capacities on R2n are numerical invariants which associate with every
open set U � R2n a number c.U/ 2 Œ0;1�. This number, roughly speaking,
measures the symplectic size of the set U (see e.g. [3], for a survey on symplectic
capacities). We refer the reader to the Appendix of this paper for more information
regarding symplectic capacities, and their role as an incentive for the current paper.
Recently, the authors observed (see Theorem 1.8 in [8]) that for symmetric convex
domains in R2n, a certain symplectic capacity c, which is the largest possible
normalized symplectic capacity and is known as the “cylindrical capacity”, is
asymptotically equivalent to its linearized version given by

cSp.2n/ .U/ D inf
S2Isp.2n/

Area
�
�.S.U//

�
: (1)
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Here,� is the orthogonal projection to the complex line E D fz 2 Cn j zj D 0 for j ¤
1g, and the infimum is taken over all S in the affine symplectic group ISp.2n/ D
Sp.2n/ËT.2n/, which is the semi-direct product of the linear symplectic group and
the group of translations in R2n. We remark that in what follows we consider only
centrally symmetric convex bodies in R2n, and hence one can take S in (1) to be a
genuine symplectic matrix (i.e., S 2 Sp.2n/).

An interesting natural variation of the quantity cSp.2n/ , which serves as an upper
bound to it and is of independent interest, is obtained by restricting the infimum
on the right-hand side of (1) to the unitary group U.n/ (see the Appendix for more
details). More precisely, let L � R2n be a complex line, i.e., L D spanfv; Jvg for
some non-zero vector v 2 R2n, and denote by �L the orthogonal projection to the
subspace L. For a symmetric convex body K � R2n, the quantity of interest is

cU.n/ .K/ WD inf
U2U.n/

Area
�
�.U.K//

� D inf
n
Area

�
�L.K/

� j L � R
2n is a complex line

o
:

(2)

In this note we focus on understanding cU.n/ .OQ/, where O 2 O.2n/ is a random
orthogonal transformation, and Q D Œ�1; 1�2n � R2n is the standard cube. We
remark that in [8] it was shown that, in contrast with projections to arbitrary two-
dimensional subspaces of R2n, there exist an orthogonal transformation O 2 O.2n/
such that for every complex line L � R2n one has that Area.�L.OQ// � p

n=2.
Here we study the expectation of cU.n/ .OQ/ with respect to the Haar measure on the
orthogonal group O.2n/. The main result of this note is the following:

Theorem 1.1 There exist universal constants C; c1; c2 > 0 such that

�
˚
O 2 O.2n/ j 9 a complex line L � R

2n with diam.�L.OQ// � c1
p
n
� � Cexp.�c2n/;

where � is the unique normalized Haar measure on O.2n/.

Note that for any rotation U 2 O.2n/, the image UQ contains the Euclidean unit
ball and hence for every complex line L one has Area.�LUQ/ � diam.�LUQ/. An
immediate corollary from this observation, Theorem 1.1, and the easily verified fact
that for every O 2 O.2n/, the complex line L0 WD Spanfv; Jvg, where v is one of the
directions where the minimal-width of OQ is obtained, satisfies Area.�L0 .OQ// �
4
p
2n, is that

Corollary 1.2 With the above notations one has

E�

�
cU.n/ .OQ/

� � p
n; (3)

where E� stands for the expectation with respect to the Haar measure � on O.2n/,
and the symbol � means equality up to universal multiplicative constants.
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Remark 1.3 We will see below that for every O 2 O.2n/, the quantity cU.n/ .OQ/
is bounded from below by the diameter of the section of the 4n-dimensional
octahedron B4n1 by the subspace

LO D f.x; y/ 2 R
2n ˚ R

2n j y D O�JOxg: (4)

This reduces the above problem of estimating E�

�
cU.n/ .OQ/

�
to estimating the

diameter of a random section of the octahedron B4n1 with respect to a probability
measure � on the real Grassmannian G.4n; 2n/ induced by the map O 7! LO
from the Haar measure � on O.2n/. By duality, the diameter of a section of the
octahedron by a linear subspace is equal to the deviation of the Euclidean ball
from the orthogonal subspace with respect the l1-norm. The right order of the
minimal deviation from half-dimensional subspaces was found in the remarkable
work of Kašin [11]. For this purpose, he introduced some special measure on the
Grassmannian and proved that the approximation of the ball by random subspaces
is almost optimal. In his exposition lecture [17], Mitjagin treated Kashin’s work as
a result about octahedron sections, which gave a more geometric intuition into it,
and rather simplified the proof. At about the same time, the diameter of random
(this time with respect to the classical Haar measure on the Grassmannian) sections
of the octahedron, and more general convex bodies, was studied by Milman [14];
Figiel, Lindenstrauss and Milman [4]; Szarek [22], and many others with connection
with Dvoretzky’s theorem (see also [1, 5–7, 15, 19], as well as Chap. 5 of [20]
and Chaps. 5 and 7 of [2] for more details). It turns out that random sections
of the octahedron B4n1 , with respect to the measure � on the real Grassmannian
G.4n; 2n/ mentioned above, also have almost optimal diameter. To prove this we
use techniques which are now standard in the field. For completeness, all details
will be given in Sects. 2 and 3 below.

Notations The letters C; c; c1; c2; : : : denote positive universal constants that take
different values from one line to another. Whenever we write ˛ � ˇ, we mean that
there exist universal constants c1; c2 > 0 such that c1˛ � ˇ � c2˛. For a finite set V ,
denote by #V the number of elements in V . For a 2 R let Œa� be its integer part. The
standard Euclidean inner product and norm on Rn will be denoted by h�; �i, and j � j,
respectively. The diameter of a subset V � Rn is denoted by diam.V/ D supfjx�yj W
x; y 2 Vg. For 1 � p � 1, we denote by lnp the space Rn equipped with the norm
k � kp given by kxkp D .

Pn
jD1 kxijp/1=p (where kxk1 D maxfjxij j i D 1; : : : ; ng),

and the unit ball of the space lnp is denoted by Bn
p D fx 2 R

n j kxkp � 1g. We
denote by Sn the unit sphere in RnC1, i.e., Sn D fx 2 RnC1 j jxj2 D 1g, and by �n
the standard measure on Sn. Finally, for a measure space .X; �/ and a measurable
function ' W X ! R we denote by E�' the expectation of ' with respect to the
measure �.
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2 Preliminaries

Here we recall some basic notations and results required for the proof of Theo-
rem 1.1.

Let V be a subset of a metric space .X; �/, and let " > 0. A set F � V is called
an "-net for V if for any x 2 V there exist y 2 F such that �.x; y/ � ". It is a well
known and easily verified fact that for any given set G with V � G, if T is a finite
"-net for G, then there exists a 2"-net F of V with #F � #T .

Remark 2.1 From now on, unless stated otherwise, all nets are assumed to be taken
with respect to the standard Euclidean metric on the relevant space.

Next, fix n 2 N and 0 < � < 1. We denote by Gn
� the set Gn

� WD Sn�1 \ �
p
nBn

1.
The following proposition goes back to Kašin [11]. The proof below follows
Makovoz [12] (cf. [21] and the references therein).

Proposition 2.2 For every " such that 8 ln n
n < " < 1

2
, there exists a set T � Gn

�

such that #T � exp."n/, and which is a 8�
q

ln.1="/
	

-net for Gn
� .

For the proof of Proposition 2.2 we shall need the following lemma.

Lemma 2.3 For k; n 2 N, the set Fk;n WD Zn \ kBn
1 is a

p
k-net for the set kBn

1, and

#Fk;n � .2e.1C n=k///k: (5)

Proof of Lemma 2.3 Let x D .x1; : : : ; xn/ 2 kBn
1, and set yj D Œjxjj� � sgn.xj/, for

1 � j � n. Note that y D .y1; : : : ; yn/ 2 Fk;n, and jxj � yjj � minf1; jxjjg for any
1 � j � n. Thus, jx � yj2 D Pn

jD1 jxj � yjj2 � Pn
jD1 jxjj D k. This shows that Fk;n

is a
p
k-net for kBn

1. In order to prove the bound (5) for the cardinality of Fk;n, note
that by definition

#Fk;n D #fv 2 Z
n j

nX

iD1
jvij � kg � 2k#fv 2 Z

nC1
C j

nC1X

iD1
vi D kg

D 2k

 
n C k

k

!

� 2k
�e.n C k/

k

�k
:

This completes the proof of the lemma. ut
Proof of Proposition 2.2 We assume n > 1 (the case n D 1 can be checked
directly). Set k D Œ "n

8 ln.1="/ �. Note that since " > 8 ln n
n , one has that k � 1. From

Lemma 2.3 it follows that �
p
n
k Fk;n is a �

p
n
k -net for �

p
nBn

1. From the remark
in the beginning of this section and Lemma 2.3 we conclude that there is a set
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T � Gn
� � �

p
nBn

1 which is a 2�
p n

k -net for Gn
� , and moreover,

#T � #Fk;n � �
2e.1C n=k//

�k
:

Finally, from our choice of " it follows that k � "n
16 ln.1="/ , and hence 2�

p n
k �

8�

q
ln.1="/
"

, and moreover that
�
2e.1C n=k/

�k=n � e". This completes the proof of
the proposition. ut

We conclude this section with the following well-known result regarding con-
centration of measure for Lipschitz functions on the sphere (see, e.g., [16], Sect. 2
and Appendix V).

Proposition 2.4 Let f W Sn�1 ! R be an L-Lipschitz function and set Ef DR
Sn�1 fd�n�1, where �n�1 is the standard measure on Sn�1. Then,

�n�1
�fx 2 Sn�1 j jf .x/� Ef j � tg� � Cexp.�
t2n=L2/;

where C; 
 > 0 are some universal constants.

3 Proof of the Main Theorem

Proof of Theorem 1.1 Let Q D Œ�1; 1�2n � R2n. The proof is divided into two steps:

Step I ("-Net Argument): Let L � R2n be a complex line, and e 2 S2n�1 \ L.
Note that the vectors e and Je form an orthogonal basis for L, and for every
x 2 R2n one has

�L.x/ D hx; eie C hx; JeiJe:

Thus, one has

diam.�L.UQ// D 2max
x2Q

p
jhUx; eij2 C jhUx; Jeij2

� max
x2Q maxfjhx;U�eij; jhx;U�Jeijg

D maxfkU�ek1; kU�Jek1g:

(6)

It follows that for every U 2 O.2n/, the minimum over all complex lines satisfies

min
L

diam.�L.UQ// � min
v2S2n�1

maxfkvk1; kU�JUvk1g: (7)
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Next, for a given constant � > 0, denote G� WD S2n�1 \ �p
nB2n1 , and

A� WD fU 2 O.2n/ j 9 a complex line L � R
2n with diam.�L.UQ// � �

p
ng:

(8)

Recall that in order to prove Theorem 1.1, we need to show that there is a constant
� for which the measure of A� � O.2n/ is exponentially small, a task to which
we now turn. From (7) it follows that for any U 2 A� one has

G� \ U�JUG� ¤ ;:

Indeed, if U 2 A�, then by (6) one has that kU�ek1 � �
p
n and

k.U�JU/U�ek1 � �
p
n, so z WD U�e1 2 G� and U�JUz 2 G�. Hence, we

conclude that

A� � fU 2 O.2n/ jG� \ U�JUG� ¤ ;g:

Next, let F be a ı-net for G� for some ı > 0. For any U 2 A� there exists
x 2 G� \ U�JUG�, and y 2 F for which jy � xj � ı. Thus, one has

kU�JUyk1 � kU�JUxk1 C kU�JU.y � x/k1
� �

p
n C p

2njU�JU.y � x/j � p
n.�C p

2ı/:

It follows that

A� �
[

y2F

n
U 2 O.2n/ jU�JUy 2 G�Cp

2ı

o
: (9)

From (9) and Proposition 2.2 from Sect. 2 it follows that for every � > 0

�.A�/ �
X

y2F
�fU 2 O.2n/ jU�JUy 2 G�Cp

2ıg

� exp.2"n/ sup
y2S2n�1

�fU 2 O.2n/ jU�JUy 2 G�Cp
2ıg;

(10)

where 8 ln.2n/
2n < " < 1

2
, and ı D 8�

q
ln.1="/
"

.

Step II (Concentration of Measure): For y 2 S2n�1 let �y be the push-forward
measure on S2n�1 induced by the Haar measure � on O.2n/ through the map
f W O.2n/ ! S2n�1 defined by U 7! U�JUy. Using the measure �y, we can



A Remark on Projections of the Rotated Cube to Complex Lines 143

rewrite inequality (10) as

�.A�/ � exp.2"n/ sup
y2S2n�1

�y.G�Cp
2ı/

D exp.2"n/ sup
y2S2n�1

�yfx 2 S2n�1 j kxk1 � p
n.�C p

2ı/g: (11)

Note that if V 2 O.2n/ preserves y, i.e., Vy D y, then

V.f .U// D V.U�JUy/ D .UV�/�J.UV�/.Vy/ D f .UV�/:

Thus, the measure �y is invariant under any rotation in O.2n/ that preserves y.
Note also that for any y 2 S2n�1 one has

hU�JUy; yi D hJUy;Uyi D 0:

This means that �y is supported on S2n�1 \ fyg?, and hence we conclude that �y
is the standard normalized measure on S2n�1 \ fyg?.

Next, let Sy D S2n�1\fyg?. For x 2 Sy set '.x/ D kxk1. Note that ' is a Lipschitz
function on Sy with Lipschitz constant k'kLip � p

2n. Using a concentration of
measure argument (see Proposition 2.4 above), we conclude that for any ˛ > 0

�yfx 2 Sy j '.x/ < E�y' � ˛
p
ng � Cexp.�
2˛2n2=k'k2Lip/ � Cexp.�
2˛2n/;

(12)
for some universal constants C and 
.

Our next step is to estimate the expectation E�y' that appear in (12). For this
purpose let us take some orthogonal basis fz1; : : : ; z2n�1g of the subspace L D
fyg? � R2n. For 1 � j � 2n, denote by wj the vector wj D .z1. j/; : : : ; z2n�1. j//,
where zk. j/ stands for the jth coordinate of the vector zk. Then, the measure �y,
which is the standard normalized Lebesgue measure on S2n�1 \ fyg?, can be
described as the image of the normalized Lebesgue measure �2n�2 of S2n�2 under
the map

S2n�2 3 a D .a1; : : : ; a2n�1/ 7!
2n�1X

kD1
akzk D .ha;w1i; ha;w2i; : : : ha;w2ni/ 2 Sy:

Consequently,

E�y' D E�2n�2 .a 7!
2nX

jD1
jha;wjij/ � 1p

2n � 1

r
2

�

2nX

jD1
jwjj:
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Since fz1; : : : ; z2n�1; yg is a basis of R2n, one has that jwjj2 C y2j D 1 and hence

E�y' D 1p
2n � 1

r
2

�

2nX

jD1

q
1 � y2j � 1p

2n � 1

r
2

�
.2n � 1/ � 1

2

p
n:

Thus, from inequality (12) with ˛ D 1
4

we conclude that

�yfx 2 Sy j '.x/ < 1

4

p
ng � �yfx 2 Sy j '.x/ < E�y' � 1

4

p
ng � Cexp.�


2n

16
/:

(13)

In other words, for any � � 1
4

and any y 2 S2n�1 one has that

�y.G� / � Cexp.�

2n

16
/;

for some constant 
. Thus, for every � such that � C p
2ı � 1=4, we conclude

by (11) that

�.A�/ � Cexp.2n"/ � exp
�� 
2n

16

�
:

To complete the proof of the Theorem it is enough to take " D 
2=64, and � which

satisfies the inequality �
�
1C 16

q
ln.1="/
"

�
� 1=4. ut
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Appendix

Here we provide some background from symplectic topology which partially served
as a motivation for the current paper. For more detailed information on symplectic
topology we refer the reader e.g., to the books [10, 13] and the references therein.

A symplectic vector space is a pair .V; !/, consisting of a finite-dimensional
vector space and a non-degenerate skew-symmetric bilinear form !, called the
symplectic structure. The group of linear transformations which preserve ! is
denoted by Sp.V; !/. The archetypal example of a symplectic vector space is the
Euclidean space R2n equipped with the skew-symmetric bilinear form ! which
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is the imaginary part of the standard Hermitian inner product in R2n ' Cn.
More precisely, if fx1; : : : ; xn; y1; : : : ; yng stands for the standard basis of R2n, then
!.xi; xj/ D !.yi; yj/ D 0, and !.xi; yj/ D ıij. In this case the group of linear
symplectomorphisms is usually denoted by Sp.2n/. More generally, the group of
diffeomorphisms ' of R2n which preserve the symplectic structure, i.e., when the
differential d' at each point is a linear symplectic map, is called the group of
symplectomorphisms of R2n, and is denoted by Symp.R2n; !/. In the spirit of
Klein’s Erlangen program, symplectic geometry can be defined as the study of
transformations which preserves the symplectic structure. We remark that already
in the linear case, the geometry of a skew-symmetric bilinear form is very different
from that of a symmetric form, e.g., there is no natural notion of distance or angle
between two vectors. We further remark that symplectic vector spaces, and more
generally symplectic manifolds, provide a natural setting for Hamiltonian dynamics,
as the evolution of a Hamiltonian system is known to preserve the symplectic form
(see, e.g., [10]). Historically, this is one of the main motivations to study symplectic
geometry.

In sharp contrast with Riemannian geometry where, e.g., curvature is an obstruc-
tion for two manifolds to be locally isometric, in the realm of symplectic geometry
it is known that there are no local invariants (Darboux’s theorem). Moreover,
unlike the Riemannian setting, a symplectic structure has a very rich group of
automorphisms. More precisely, the group of symplectomorphisms is an infinite-
dimensional Lie group. The first results distinguishing (non-linear) symplecto-
morphisms from volume preserving transformations were discovered only in the
1980s. The most striking difference between the category of volume preserving
transformations and the category of symplectomorphisms was demonstrated by
Gromov [9] in his famous non-squeezing theorem. This theorem asserts that if
r < 1, there is no symplectomorphism  of R2n which maps the open unit ball
B2n.1/ into the open cylinder Z2n.r/ D B2.r/ 	 Cn�1. This result paved the way
to the introduction of global symplectic invariants, called symplectic capacities,
which are significantly differ from any volume related invariants, and roughly
speaking measure the symplectic size of a set (see e.g., [3], for the precise definition
and further discussion). Two examples, defined for open subsets of R2n, are the

Gromov radius c.U/ D supf�r2 W B2n.r/
s
,! Ug, and the cylindrical capacity

c.U/ D inff�r2 W U s
,! Z2n.r/g. Here

s
,! stands for symplectic embedding.

Shortly after Gromov’s work [9] many other symplectic capacities were con-
structed, reflecting different geometrical and dynamical properties. Nowadays, these
invariants play an important role in symplectic geometry, and their properties,
interrelations, and applications to symplectic topology and Hamiltonian dynamics
are intensively studied (see e.g., [3]). However, in spite of the rapidly accumulating
knowledge regarding symplectic capacities, they are usually notoriously difficult to
compute, and there are very few general methods to effectively estimate them, even
within the class of convex domains in R2n (we refer the reader to [18] for a survey
of some known results and open questions regarding symplectic measurements of
convex sets in R2n). In particular, a long standing central question is whether all
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symplectic capacities coincide on the class of convex bodies in R2n (see, e.g., Sect. 5
in [18]). Recently, the authors proved that for centrally symmetric convex bodies,
several symplectic capacities, including the Ekeland-Hofer-Zehnder capacity cEHZ ,
spectral capacities, the cylindrical capacity c, and its linearized version cSp.2n/ given
in (1), are all equivalent up to an absolute constant. More precisely, the following
was proved in [8].

Theorem 3.1 For every centrally symmetric convex body K � R2n

1

kJkKı!K
� cEHZ.K/ � c.K/ � cSp.2n/ .K/ � 4

kJkKı!K
;

where kJkKı!K is the operator norm of the complex structure J, when the latter
is considered as a linear map between the normed spaces J W .R2n; k � kKı/ !
.R2n; k � kK/:

Theorem 3.1 implies, in particular, that despite the non-linear nature of the
Ekeland-Hofer-Zehnder capacity cEHZ , and the cylindrical capacity c (both, by defi-
nition, are invariant under non-linear symplectomorphisms), for centrally symmetric
convex bodies they are asymptotically equivalent to a linear invariant: the linearized
cylindrical capacity cSp.2n/ . Motivated by the comparison between the capacities
c and cSp.2n/ in Theorem 3.1, it is natural to introduce and study the following
geometric quantity:

cG.K/ D inf
g2G

Area
�
�.g.K//

�
; (14)

where K lies in the class of convex domains of R2n ' C
n (or possibly, some other

class of bodies), � is the orthogonal projection to the complex line E D fz 2
C

n j zj D 0 for j ¤ 1g, and G is some group of transformations of R2n. One possible
choice is to take the group G in (14) to be the unitary group U.n/, which is the
maximal compact subgroup of Sp.2n/. In this case it is not hard to check (by looking
at linear symplectic images of the cylinder Z2n.1/) that the cylindrical capacity c is
not asymptotically equivalent to cU.n/ . Still, one can ask if these two quantities are
asymptotically equivalent on average. More precisely,

Question 3.2 Is it true that for every convex body K � R2n one has

E� .c.OK// � E�

�
cU.n/ .OK/

�
‹;

where � is the Haar measure on the orthogonal group O.2n/.

The answer to Question 3.2 is negative. A counterexample is given by the
standard cube Q D Œ�1; 1�2n in R2n. We remark that the quantity E�

�
cU.n/ .OQ/

�

is the main objects of interest of the current paper. To be more precise, we turn now
to the following proposition, which is a direct corollary of Theorem 3.1, and might
be of independent interest. For completeness, we shall give a proof below.
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Proposition 3.3 For the standard cube Q D Œ�1; 1�2n � R2n one has

E� .cEHZ.OQ// � E� .c.OQ// � E�

�
cSp.2n/ .OQ/

� �
r

n

ln n
;

where � is the Haar measure on the orthogonal group O.2n/.

Note that the combination of the main result of the current paper (in particular,
Corollary 1.2) with Proposition 3.3 above gives a negative answer to Question 3.2,
and thus further emphasizes the difference between the symplectic and complex
structures on R2n ' Cn.

Proof of Proposition 3.3 Note that by definition one has that

kJk.OQ/ı!.OQ/ D max
x2.OQ/ı

kJxkOQ D max
x2B2n1

kO�JOxk1 D max
iD1;:::;2n kO�JOeik1;

where feig2niD1 stands for the standard basis ofR2n. It follows from Step II of the proof
of Theorem 1.1 above that for a random rotation O 2 O.2n/, the vector O�JOei
is uniformly distributed on S2n�2 ' S2n�1 \ feig? with respect to the standard
normalized measure �2n�2 on S2n�2. The distribution of the lk1-norm on the sphere
Sk�1 is well-studied, and in particular one has (see e.g., Sects. 5.7 and 7 in [16]) that
for every ei

E�

�k.O�JOei/k1
� �

q
ln n
n ; (15)

and

P�

˚
.k.O�JOei/k1 � E�

�k.O�JOei/k1
�
> t
� � c1exp.�c2t

2n/; (16)

for some universal constants c1; c2 > 0. From (15) and (16) it immediately follows
that

E�

�kJk.OQ/ı!.OQ/
� �

q
ln n
n : (17)

Moreover, one has that for some universal constants c3; c4 > 0,

P�

˚
.kJk.OQ/ı!.OQ/ � c3

q
ln n
n

� � c4
n
: (18)

Indeed, from the above it follows that

P�

˚kJk.OQ/ı!.OQ/ � t
� � P�

˚
.k.O�JOe1/k1 � t

� D P�2n�2

˚kvk1 � t
�
:
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Using the standard Gaussian probability measure �2n�1 on R2n�1, one can further
estimate

P�2n�2

˚kvk1 � t
� D �2n�1

˚kgk1 � tkgk2
�

� �2n�1

˚kgk1 � 2
p
2n � 1t�C �2n�1

˚kgk2 � 2
p
2n � 1

�
;

where g is a Gaussian vector in R2n�1 with independent standard Gaussian coordi-
nates. One can directly check that (18) now follows from the above inequalities, and
the following standard estimates for the Gaussian probability measure �k on Rk, and
0 < " < 1:

�k
˚kgk1 � ˛

� � Œ1�
q

2
�

exp.�˛2=2/
˛

�k; and �k
n
x 2 R

k j kgk22 � k
.1�"/

o
� exp.�"2k=4/:

Taking into account the fact that 1p
2n

� kJk.OQ/ı!.OQ/ � 1, we conclude from (17)
and (18) above that

E�

�
.kJk.OQ/ı!.OQ//

�1� �
q

n
ln n :

Together with Theorem 3.1, this completes the proof of Proposition 3.3. ut
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