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Abstract We introduce the notion of .F ; p/-valent functions. We concentrate in
our investigation on the case, where F is the class of polynomials of degree at
most s. These functions, which we call .s; p/-valent functions, provide a natural
generalization of p-valent functions (see Hayman, Multivalent Functions, 2nd ed,
Cambridge Tracts in Mathematics, vol 110, 1994). We provide a rather accurate
characterizing of .s; p/-valent functions in terms of their Taylor coefficients, through
“Taylor domination”, and through linear non-stationary recurrences with uniformly
bounded coefficients. We prove a “distortion theorem” for such functions, com-
paring them with polynomials sharing their zeroes, and obtain an essentially sharp
Remez-type inequality in the spirit of Yomdin (Isr J Math 186:45–60, 2011) for
complex polynomials of one variable. Finally, based on these results, we present a
Remez-type inequality for .s; p/-valent functions.

1 Introduction

Let us introduce the notion of “.F ; p/-valent functions”. Let F be a class of
functions to be specified later. A function f regular in a domain � � C is called
.F ; p/-valent in � if for any g 2 F the number of solutions of the equation
f .z/ D g.z/ in � does not exceed p.

For example, the classic p-valent functions are obtained for F being the class
of constants, these are functions f for which the equation f D c has at most p
solutions in � for any c. There are many other natural classes F of interest, like
rational functions, exponential polynomials, quasi-polynomials, etc. In particular,
for the classRs consisting of rational functions R.z/ of a fixed degree s, the number
of zeroes of f .z/ � R.z/ can be explicitly bounded for f solving linear ODEs with
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polynomial coefficients (see, e.g. [4]). Presumably, the collection of .Rs; p/-valent
functions with explicit bounds on p (as a function of s) is much wider, including,
in particular, “monogenic” functions (or “Wolff-Denjoy series”) of the form f .z/ DP1

jD1

�j
z�zj

(see, e.g. [13, 16] and references therein).
However, in this note we shall concentrate on another class of functions, for

which F is the class of polynomials of degree at most s. We denote it in short as
.s; p/-valent functions. For an .s; p/-valent function f the equation f D P has at
most p solutions in � for any polynomial P of degree s. We shall always assume
that p � s C 1, as subtracting from f its Taylor polynomial of degree s we get zero
of order at least sC1. Note that this is indeed a generalization of p-valent functions,
simply take s D 0, and every .0; p/-valent function is p-valent.

As we shall see this class of .s; p/-valent functions is indeed rich and appears
naturally in many examples: algebraic functions, solutions of algebraic differential
equations, monogenic functions, etc. In fact, it is fairly wide (see Sect. 2). It pos-
sesses many important properties: Distortion theorem, Bernstein-Markov-Remez
type inequalities, etc. Moreover, this notion is applicable to any analytic function,
under an appropriate choice of the domain� and the parameters s and p. In addition,
it may provide a useful information in very general situations.

The following example shows that an .s; p/-valent function may not be .sC1; p/-
valent:

Example 1.1 Let f .z/ D zp C zN for N � 10p C 1. Then, for s D 0; : : : ; p � 1, the
function f is .s; p/-valent in the disk D1=3, but only .p;N/-valent there.

Indeed, taking P.z/ D zp C c we see that the equation f .z/ D P.z/ takes the
form zN D c. So for c small enough, it has exactly N solutions in the D1=3. Now, for
s D 0; : : : ; p � 1, take a polynomial P.z/ of degree s � p � 1. Then, the equation
f .z/ D P.z/ takes the form zp � P.z/ C zN D 0. Applying Chebyshev theorem (for
more details see for example [17, Lemma 3.3]) to the polynomialQ.z/ D zp � P.z/
of degree p (with leading coefficient 1) we find a circle S� D fjzj D �g with 1=3 �
� � 1=2 such that jQ.z/j � .1=2/10p on S�. On the other hand zN � .1=2/10pC1 <

.1=2/10p on S�. Therefore, by the Rouché principle the number of zeroes ofQ.z/CzN

in the disk D� is the same as for Q.z/, which is at most p. Thus, f is .s; p/-valent in
the disk D1=3, for s D 0; : : : ; p � 1.

This paper is organized as follows: in Sect. 2 we characterize .s; p/-valent
functions in terms of their Taylor domination and linear recurrences for their
coefficients. In Sect. 3 we prove a Distortion theorem for .s; p/-valent functions.
In Sect. 4 we make a detour and investigate Remez-type inequalities for complex
polynomials, which is interesting in its own right. Finally, in Sect. 5, we extend the
Remez-type inequality to .s; p/-valent functions, via the Distortion theorem.
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2 Taylor Domination, Bounded Recurrences

In this sectionwe provide a rather accurate characterization of .s; p/-valent functions
in a diskDR in terms of their Taylor coefficients. “Taylor domination” for an analytic
function f .z/ D P1

kD0 akz
k is an explicit bound of all its Taylor coefficients ak

through the first few of them. This property was classically studied, in particular, in
relation with the Bieberbach conjecture: for univalent f we always have jakj � kja1j
(see [2, 3, 12] and references therein). To give an accurate definition, let us assume
that the radius of convergence of the Taylor series for f is OR, for 0 < OR � C1.

Definition 2.1 (Taylor Domination) Let 0 < R < OR, N 2 N, and S.k/ be a
positive sequence of a subexponential growth. The function f is said to possess an
.N;R; S.k//-Taylor domination property if

jakjRk � S.k/ max
iD0;:::;N

jaijRi ; k � N C 1:

The following theorem shows that f is an .s; p/-valent function inDR, essentially,
if and only if its lower s-truncated Taylor series possesses a .p � s;R; S.k//-Taylor
domination.

Theorem 2.2 Let f .z/ D P1
kD0 akz

k be an .s; p/-valent function in DR, and let
Of .z/ D P1

kD1 asCkzk be the lower s-truncation of f . Put m D p�s. Then, Of possesses
an .m;R; S.k//-Taylor domination, with S.k/ D �Amk

m

�2m
, and Am being a constant

depending only on m.
Conversely, if Of possesses an .m;R; S.k//-Taylor domination, for a certain

sequence S.k/ of a subexponential growth, then for R0 < R the function f is .s; p/-
valent in DR0 , where p D p.sC m; S.k/;R0=R/ depends only on mC s, the sequence
S.k/, and the ratio R0=R. Moreover, p tends to 1 for R0=R ! 1, and it is equal to
m C s for R0=R sufficiently small.

Proof First observe that if f is .s; p/-valent in DR, then Of is m-valent there, with
m D p�s. Indeed, put P.z/ D Ps

kD0 akz
kCczs, with any c 2 C. Then, f .z/�P.z/ D

zs.Of .z/ � c/ may have at most p zeroes. Consequently, Of .z/ � c may have at most
m zeroes in DR, and thus Of is m-valent there. Now we apply the following classic
theorem:

Theorem 2.3 (Biernacki [3]) If f is m-valent in the disk DR of radius R centered
at 0 2 C then

jakjRk �
�
Amk

m

�2m

max
iD1;:::;m

jaijRi ; k � m C 1;

where Am is a constant depending only on m.
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In our situation, Theorem 2.3 claims that the function Of which is m-valent in DR,

possesses an .m;R;
�Amk

m

�2m
/-Taylor domination property. This completes the proof

in one direction.
In the opposite direction, for polynomial P.z/ of degree s the function f � P has

the same Taylor coefficients as Of , starting with the index k D sC1. Consequently, if Of
possesses an .m;R; S.k//-Taylor domination, then f�P possesses an .sCm;R; S.k//-
Taylor domination. An explicit bound for the number of zeroes of a function
possessing Taylor domination can be obtained by using the following result [15,
Proposition 2.2.2] (which is announced here as appears in [1]):

Theorem 2.4 ([1, Theorem 2.3]) Let the function f possess an .N;R; S.k//-Taylor
domination property. Then for each R0 < R, f has at most M D M.N; R0

R ; S.k//

zeros in DR0 , where M depends only on N, R0

R and on the sequence S.k/, satisfying

lim R0
R !1

M D 1 and M D N for R0

R sufficiently small.

Now a straightforward application of the above theorem provides the required
bound on the number of zeroes of f � P in the disk DR. ut

A typical situation for natural classes of .s; p/-valent functions is that they are
.s; p/-valent for any s with a certain p D p.s/ which depends on s. However, it is
important to notice that essentially any analytic function possesses this property,
with some p.s/.

Proposition 2.5 Let f .z/ be an analytic function in an open neighbourhoodU of the
closed disk DR. Assume that f is not a polynomial. Then, the function f is .s; p.s//-
valent for any s with a certain sequence p.s/.

Proof Let f be given by its Taylor series f .z/ D P1
kD0 akz

k. By assumptions, the
radius of convergence OR of this series satisfies OR > R. Since f is not a polynomial,
for any given s there is the index k.s/ > s such that ak.s/ ¤ 0. Now, we need the
following result of [1]:

Proposition 2.6 ([1, Proposition 1.1]) If 0 < OR 6 C1 is the radius of
convergence of f .z/ D P1

kD0 akz
k, with f 66� 0, then for each finite and positive

0 < R 6 OR; f satisfies the .N;R; S .k//-Taylor domination property with N being
the index of its first nonzero Taylor coefficient, and S .k/ D Rkjakj.jaNjRN/�1; for
k > N.

Applying the above proposition to the lower truncated series Of .z/ DP1
kD1 asCkzk. Thus, we obtain, an .m; OR; S.k//-Taylor domination for Of , for certain

m and S.k/. Now, the second part of Theorem 2.2 provides the required .s; p.s//-
valency for f in the smaller disk DR, with p.s/ D p.s C m; S.k/;R= OR/. ut

More accurate estimates of p.s/ can be provided via the lacunary structure of
the Taylor coefficients of f . Consequently, .s; p/-valency becomes really interesting
only for those classes of analytic functions f where we can specify the parameters
in an explicit and uniform way. The following theorem provides still very general,
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but important such class. We remark that the second part is known, see [15,
Lemma 2.2.3] and [1, Theorem 4.1].

Theorem 2.7 Let f .z/ D P1
kD0 akz

k be .s; s C m/-valent in DR for any s. Then, the
Taylor coefficients ak of f satisfy a linear homogeneous non-stationary recurrence
relation

ak D
mX

jD1

cj.k/ak�j (1)

with uniformly bounded (in k) coefficients cj.k/ satisfying jcj.k/j � C�j, with C D
e2A2m

m ; � D R�1, where Am is the constant in the Biernacki’s Theorem 2.3.
Conversely, if the Taylor coefficients ak of f satisfy recurrence relation (1), with

the coefficients cj.k/, bounded for certain K; � > 0 and for any k as jcj.k/j �
K�j, j D 1; : : : ;m, then for any s, f is .s; s C m/-valent in a disk DR, with R D

1

23mC1.2KC2/�
.

Proof We need to prove only the first part. Let us fix s � 0. As in the proof of
Theorem 2.2, we notice that if f is .s; sCm/-valent in DR, then its lower s-truncated
series Of is m-valent there. By Biernacki’s Theorem 2.3 we conclude that

jasCmC1jRmC1 �
�
Am.m C 1/

m

�2m

max
iD1;:::;m

jasCijRi � C max
iD1;:::;m

jasCijRi;

with C D e2A2m
m . Putting k D s C m C 1, and � D R�1 we can rewrite this as

jakj � C max
jD1;:::;m

jak�jj�j:

Hence we can chose the coefficients cj.k/, k D s C m C 1, in such a way that
ak D Pm

jD1 cj.k/ak�j, and jcj.k/j � C�j, which completes the proof. ut
Notice that the bound on the recursion coefficients is sharp, e.g. take f .z/ D

Œ1 � . z
R /m��1, in this case, as well as for other lacunary series with the gap m, the

coefficients cj.k/ are defined uniquely.

3 Distortion Theorem

In this section we prove a distortion-type theorem for .s; p/-valent functions which
shows that the behavior of these functions is controlled by the behavior of a
polynomial with the same zeroes.

First, let us recall the following theorem for p-valent functions, which is our main
tool in proof.
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Theorem 3.1 ([12, Theorem 5.1]) Let g.z/ D a0 C a1z C : : : be a regular non-
vanishing p-valent function in D1. Then, for any z 2 D1

�
1 � jzj
1 C jzj

�2p

� jg.z/=a0j �
�

1 C jzj
1 � jzj

�2p

:

Now, we are ready to formulate a distortion-type theorem for .s; p/-valent
functions.

Theorem 3.2 (DistortionTheorem) Let f be an .s; p/-valent function in D1 having
there exactly s zeroes z1; : : : ; zs (always assumed to be counted according to
multiplicity). Define a polynomial

P.z/ D A
sY

jD1

.z � zj/;

where the coefficient A is chosen such that the constant term in the Taylor series for
f .z/=P.z/ is equal to 1. Then, for any x 2 D1

�
1 � jzj
1 C jzj

�2p

� jf .z/=P.z/j �
�

1 C jzj
1 � jzj

�2p

:

Proof The function g.z/ D f .z/=P.z/ is regular in D1 and does not vanish there.
Moreover, g is p-valent in D1. Indeed, the equation g.z/ D c is equivalent to f .z/ D
cP.z/ so it has at most p solutions by the definition of .s; p/-valent functions. Now,
apply Theorem 3.1 to the function g. ut

It is not clear whether the requirement for f to be .s; p/-valent is really necessary
in this theorem. The ratio g.z/ D f .z/

P.z/ certainly may not be p-valent for f being

just p-valent, but not .s; p/-valent. Indeed, take f .z/ D zp C zN as in Example 1.1.
By this example f is p-valent in D1=3 and it has a root of multiplicity p at zero. So
g.z/ D f .z/=zp D 1 C zN�p and the equation g.z/ D c has N � p solutions in D1=3

for c sufficiently close to 1. So g is not p-valent there.

4 Complex Polynomials

The distortion Theorem 3.2, proved in the previous section, allows us easily
to extend deep properties from polynomials to .s; p/-valent functions, just by
comparing them with polynomials having the same zeros. In this section we make
a detour and investigate one specific problem for complex polynomials, which
is interesting in its own right: a Remez-type inequality for complex polynomial
(compare [14, 18]). Denote by

V�.g/ D fz W jg.z/j � �g
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the � sub-level set of a function g. For polynomials in one complex variable a
result similar to the Remez inequality is provided by the classic Cartan (or Cartan-
Boutroux) lemma (see, for example, [11] and references therein):

Lemma 4.1 (Cartan’s Lemma [7], as Appears in [11]) Let ˛; " > 0, and let P.z/
be a monic polynomial of degree d. Then

V"d.P/ � [p
jD1Drj ;

where p � d, and Dr1 ; : : : ;Drp are balls with radii rj > 0 satisfying
Pp

jD1 r
˛
j �

e.2"/˛.

In [5, 6, 19, 20] some generalizations of the Cartan-Boutroux lemma to plurisub-
harmonic functions have been obtained, which lead, in particular, to the bounds on
the size of sub-level sets. In [5] some bounds for the covering number of sublevel
sets of complex analytic functions have been obtained, similar to the results of [18]
in the real case. Now, we shall derive from the Cartan lemma both the definition of
the invariant cd;˛ and the corresponding Remez inequality.

Definition 4.2 Let Z � D1. The .d; ˛/-Cartan measure of Z is defined as

cd;˛.Z/ D min

0

@
pX

jD1

r˛
j

1

A

1=˛

where the minimum is taken over all covers of Z by p � d balls with radii rj > 0.

Clearly, the invariant cd;˛.Z/ satisfies the following basic properties. It is
monotone in Z, that is, for Z1 � Z2 we have cd;˛.Z1/ � cd;˛.Z2/. And, also monotone
in d, that is, for d1 � d we have cd;˛.Z/ � cd1;˛.Z/. Finally, for any Z � D1 we have
cd;˛.Z/ � 1. Note also that the ˛-dimensional Hausdorff content of Z is defined in
a similar way

H˛.Z/ D inf

8
<

:

X

j

r˛
j W there is a cover of Z by balls with radii rj > 0

9
=

;
:

Thus, by the above definitions, we have H
1
˛
˛ .Z/ � cd;˛.Z/.

For ˛ D 1 the .d; 1/-Cartan measure cd;˛.Z/ was introduced and used, under
the name “d-th diameter”, in [8, 9]. In particular, Lemma 3.3 of [8] is, essentially,
equivalent to the case ˛ D 1 of our Theorem 4.3. In Sect. 4.1 below we provide
some initial geometric properties of cd;˛.Z/ and show that a proper choice of ˛ may
improve the geometric sensitivity of this invariant.

Now we can state and proof our generalized Remez inequality for complex
polynomials:
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Theorem 4.3 Let P.z/ be a polynomial of degree d. Let Z � D1. Then, for any
˛ > 0

max
D1

jP.z/j �
�

6e1=˛

cd;˛.Z/

�d

max
Z

jP.z/j �
�

6e

H˛.Z/

� d
˛

max
Z

jP.z/j:

Proof Assume that jP.z/j � 1 on Z. First, we prove that the absolute value A of the
leading coefficient of P satisfies

A �
�

2e1=˛

cd;˛.Z/

�d

:

Indeed, we have Z � V1.P/. By the definition of cd;˛.Z/ for every covering of
V1.P/ by p disks Dr1 ; : : : ;Drp of the radii r1; : : : ; rd (which is also a covering of Z)

we have
Pd

iD1 r
˛
i � cd;˛.Z/˛ . Denoting, as above, the absolute value of the leading

coefficient of P.z/ by A we have by the Cartan lemma that for a certain covering as
above

cd;˛.Z/˛ �
dX

iD1

r˛
i � e

�
2

A1=d

�˛

:

Now, we write P.z/ D A
Qd

jD1.z � zj/, and consider separately two cases:

(1) All jzjj � 2. Thus, maxD1 jP.z/j � A3d �
�

2e1=˛

cd;˛.Z/

�d
3d, as required.

(2) For j D 1; : : : ; d1 < d, jzjj � 2, while jzjj > 2 for j D d1 C 1; : : : ; d. Denote

P1.z/ D A
d1Y

jD1

.z � zj/ ; P2.z/ D
dY

jDd1C1

.z � zj/;

and notice that for any two points v1; v2 2 D1 we have jP2.v1/=P2.v2/j < 3d�d1 .
Consequently we get

maxD1 jP.z/j
maxZ jP.z/j < 3d�d1

maxD1 jP1.z/j
maxZ jP1.z/j :

All the roots of P1 are bounded in absolute value by 2, so by first part we have

maxD1 jP1.z/j
maxZ jP1.z/j �

�
2e1=˛

cd1;˛.Z/

�d1

3d1 �
�

2e1=˛

cd;˛.Z/

�d

3d1

where the last inequality follows from the basic properties of the invariant cd;˛.Z/

described after Definition 4.2. Finally, application of the inequality H˛.Z/ �
cd;˛.Z/˛ completes the proof. ut
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Let us stress a possibility to chose an optimal ˛ in the bound of Theorem 4.3. Let

Kd.Z/ D inf
˛>0

�
6e1=˛

cd;˛.Z/

�d

; KH
d .Z/ D inf

˛>0

�
6e

H˛.Z/

� d
˛

:

Corollary 4.4 Let P.z/ be a polynomial of degree d. Let Z � D1. Then,

max
D1

jP.z/j � Kd.Z/max
Z

jP.z/j � KH
d .Z/max

Z
jP.z/j:

4.1 Geometric and Analytic Properties of the Invariant cd;˛

In addition to the basic properties of cd;˛ we also have

Proposition 4.5 Let ˛ > 0. Then, cd;˛.Z/ > 0 if and only if Z contains more than d
points. In the latter case, cd;˛.Z/ is greater than or equal to one half of the minimal
distance between the points of Z.

Proof Any d points can be covered by d disks with arbitrarily small radii. But, the
radius of at least one disk among d disks covering more than dC1 different points is
greater than or equal to the one half of a minimal distance between these points. ut

The lower bound of Proposition 4.5 does not depend on ˛. However, in general,
this dependence is quite prominent.

Example 4.6 Let Z D Œa; b�. Then, for ˛ � 1 we have cd;˛.Z/ D .b � a/=2, while
for ˛ � 1 we have cd;˛.Z/ D d

1
˛ �1.b � a/=2.

Indeed, in the first case the minimum is achieved for r1 D .b � a/=2; r2 D � � � D
rd D 0, while in the second case for r1 D r2 D � � � D rd D .b � a/=2d.

Proposition 4.7 Let ˛ > ˇ > 0. Then, for any Z

cd;˛.Z/ � cd;ˇ.Z/ � d. 1
ˇ � 1

˛ /cd;˛.Z/: (2)

Proof Let r D .r1; : : : ; rd/ and � > 0. Consider jjrjj� D .
Pd

jD1 r
�
j /

1
� . Then, by the

definition, cd;� .Z/ is the minimum of jjrjj� over all r D .r1; : : : ; rd/ being the radii
of d balls covering Z. Now we use the standard comparison of the norms jjrjj� , that
is, for any x D .z1; : : : ; zd/ and for ˛ > ˇ > 0,

jjzjj˛ � jjzjjˇ � d. 1
ˇ � 1

˛ /jjzjj˛:

Take r D .r1; : : : ; rd/ for which the minimum of jjrjjˇ is achieved, and we get

cd;˛.Z/ � jjrjj˛ � jjrjjˇ D cd;ˇ.Z/:
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Now taking r for which the minimum of jjrjj˛ is achieved, exactly in the same
way we get the second inequality. ut

Now, we compare cd;˛.Z/ with some other metric invariants which may be
sometimes easier to compute. In each case we do it for the most convenient value of
˛. Then, using the comparison inequalities of Proposition 4.7, we get corresponding
bounds on cd;˛.Z/ for any ˛ > 0. In particular, we can easily produce a simple lower
bound for cd;2.Z/ through the measure of Z:

Proposition 4.8 For any measurable Z � D1 we have

cd;2.Z/ � .�2.Z/=�/1=2:

Proof For any covering of Z by d disks D1; : : : ;Dd of the radii r1; : : : ; rd we have
�.

Pd
iD1 r

2
i / � �2.Z/. ut

However, in order to deal with discrete or finite subsets Z � D1 we have to
compare cd;˛.Z/ with the covering number M.";Z/ (which is, by definition, the
minimal number of "-disks covering Z).

Definition 4.9 Let Z � D1. Define

!cd.Z/ D sup
"

".M.";Z/ � d/1=2;

if jZj � d, and !cd.Z/ D 0 otherwise. Put �d.Z/ D d"0; where "0 is the minimal "

for which there is a covering of Z with d "-disks. Note that, writing y D M.";Z/ D
‰."/, and taking the inverse " D ‰�1.y/, we have "0 D ‰�1.d/.

As it was mentioned above, a very similar invariant

!d.Z/ D sup
"

".M.";Z/ � d/;

if jZj � d, and !cd.Z/ D 0 otherwise, was introduced and used in [18] in the real
case. We compare !cd and !d below.

Proposition 4.10 Let Z � D1. Then, !cd.Z/=2 � cd;2.Z/ � cd;1.Z/ � �d.Z/.

Proof To prove the upper bound for cd;1.Z/ we notice that it is the infimum of the
sum of the radii in all the coverings of Z with d disks, while �d.Z/ is such a sum for
one specific covering.

To prove the lower bound, let us fix a covering of Z by d disks Di of the radii
ri with cd;2.Z/ D .

Pd
iD1 r

2
i /

1=2. Let " > 0. Now, for any disk Dj with rj � "

we need at most 4r2
j ="2 "-disks to cover it. For any disk Dj with rj � " we need

exactly one "-disk to cover it, and the number of such Dj does not exceed d. So,
we conclude that M.";Z/ is at most d C .4="2/

Pd
iD1 r

2
i . Thus, we get cd;2.Z/ D

.
Pd

iD1 r
2
i /

1=2 � "=2.M.";Z/ � d/1=2. Taking supremum with respect to " > 0 we
get cd;2.Z/ � !cd.Z/=2. ut
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Since M.";Z/ is always an integer, we have

!d.Z/ � !cd.Z/:

For Z � D1 of positive plane measure, !d.Z/ D 1 while !cd.Z/ remains
bounded (in particular, by �d.Z/).

Some examples of computing (or bounding) !d.Z/ for “fractal” sets Z can be
found in [18]. Computations for !cd.Z/ are essentially the same. In particular,
in an example given in [18] in connection to [10] we have that for Z D Zr D
f1; 1=2r; 1=3r; : : : ; 1=kr; : : : g

!d.Zr/ � rr

.r C 1/rC1dr
; !cd.Zr/ � .2r C 1/r

.2r C 2/rC1drC1=2
:

The asymptotic behavior here is for d ! 1, as in [10].

4.2 An Example

We conclude this section with one very specific example. Let

Z D Z.d; h/ D fz1; z2; : : : ; z2d�1; z2dg ; zi 2 C; d � 2:

We assume that Z consists of d, 2�-separated couples of points, with points in
each couple being in a distance 2h. Let 2D.Z/ be the diameter of the smallest disk
containing Z. Assume h 	 1, 2� 
 h.

Proposition 4.11 Let Z be as above. Then,

(1) !d.Z/ D dh.
(2) !cd.Z/ D p

dh.
(3) For ˛ > 0, we have cd;˛.Z/ � d

1
˛ h.

(4) For ˛ 
 1, we have cd;˛.Z/ D d
1
˛ h.

(5) For 	 D Œlogd.
D.Z/

h /��1, we have cd;	.Z/ � �.

Proof For " > h, we have M.";Z/ � d, and hence M.";Z/ � d is non-positive.
For " < h, we have M.";Z/ D 2d, and M.";Z/ � d D d. Thus the supremum of
".M.";Z/ � d/, or the supremum of ".M.";Z/ � d/

1
2 , is achieved as " < h tends to

h. Therefore, !d.Z/ D dh, and !cd.Z/ D p
dh.

Covering each couple with a separate ball of radius h, we get for any ˛ > 0 that
cd;˛.Z/ � d

1
˛ h. For ˛ 
 1 it is easy to see that this uniform covering is minimal.

Thus, for such ˛ we have the equality cd;˛.Z/ D d
1
˛ h.

Now let us consider the case of a “small” ˛ D 	. Take a covering of Z with
certain disks Dj, j � d. If there is at least one disk Dj containing three points of Z or
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more, the radius of this disk is at least �. Thus, for this covering .
Pd

jD1 r
	
j /

1
	 � �. If

each disk in the covering contains at most two points, it must contain exactly two,
otherwise these disks could not cover all the 2d points of Z. Hence, the radius of
each disk Dj in such covering is at least h, and their number is exactly d. We have,

by the choice of 	, that .
Pd

jD1 r
	
j /

1
	 � d

1
	 h D D.Z/ � �. ut

Let us use two choices of ˛ in the Remez-type inequality of Theorem 4.3: ˛ D 1

and ˛ D 	. We get two bounds for the constant Kd.Z/ W

Kd.Z/ �
�

6e

cd;1.Z/

�d

or Kd.Z/ �
�

6e1=	

cd;	.Z/

�d

:

By Proposition 4.11 we have cd;1.Z/ � dh, while cd;	.Z/ � �. Therefore we get

�
6e

cd;1.Z/

�d

�
�

6e

dh

�d

; while

�
6e1=	

cd;	.Z/

�d

�
�

6e1=	

�

�d

: (3)

But e1=	 D elogd.
D.Z/
h / D .

D.Z/

h /
1
ln d . So the second bound of (3) takes a form

Kd.Z/ �
�

6D.Z/

�ln dh

� d
ln d

:

We see that for d � 3 and for h ! 0 the asymptotic behavior of this last bound,
corresponding to ˛ D 	, is much better than of the first bound in (3), corresponding
to ˛ D 1. Notice, that 	 depends on h and D.Z/, i.e. on the specific geometry of the
set Z.

5 Remez Inequality

Now, we present a Remez-type inequality for .s; p/-valent functions. We recall that
by Proposition 2.5 above, any analytic function in an open neighborhood U of the
closed disk DR is .s; p.s//-valent in DR for any s with a certain sequence p.s/.
Consequently, the following theorem provides a non-trivial information for any
analytic function in an open neighborhood of the unit diskD1. Of course, this results
becomes really interesting only in cases where we can estimate p.s/ explicitly.

Theorem 5.1 Let f be an analytic function in an open neighborhoodU of the closed
disk D1. Assume that f has in D1 exactly s zeroes, and that it is .s; p/-valent in D1.
Let Z be a subset in the interior of D1, and put � D �.Z/ D minf� W Z � D�g. Then,
for any R < 1 function f satisfies

max
DR

jf .z/j � 
p.R; �/Ks.Z/max
Z

jf .z/j;
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where 
p.R; �/ D
�

1CR
1�R � 1C�

1��

�2p
.

Proof Assume that jf .z/j is bounded by 1 on Z. Let z1; : : : ; zs be zeroes of f in D1.
Consider, as in Theorem 3.2, the polynomial

P.z/ D A
lY

jD1

.z � zj/;

where the coefficient A is chosen in such a way that the constant term in the Taylor
series for g.z/ D f .z/=P.z/ is equal to 1. Then by Theorem 3.2 for g we have

�
1 � jzj
1 C jzj

�2p

� jg.z/j �
�

1 C jzj
1 � jzj

�2p

:

We conclude that P.z/ � .
1C�

1��
/2p on Z. Hence by the polynomial Remez

inequality provided by Theorem 4.3 we obtain

jP.z/j � Ks.Z/

�
1 C �

1 � �

�2p

on D1. Finally, we apply once more the bound of Theorem 3.2 to conclude that

jf .z/j � Ks.Z/

�
1 C R

1 � R

�2p �
1 C �

1 � �

�2p

on DR. ut
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