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Nikos Dafnis and Grigoris Paouris

Abstract We prove sharp moment inequalities for log-concave and log-convex
functions, on Gaussian random vectors. As an application we take a reverse form
of the classical logarithmic Sobolev inequality, in the case where the function is
log-concave.

1 Introduction and Main Results

A function f W Rk ! Œ0; C1/ is called log-concave (on its support), if and only if

f
�
.1 � �/x C �y

� � f .x/.1��/f . y/�;

for every � 2 Œ0; 1� and x; y 2 supp. f /. Respectively, f is called log-convex (on its
support), if and only if

f
�
.1 � �/x C �y

� � f .x/.1��/f . y/�;

for every � 2 Œ0; 1� and x; y 2 supp. f /. The aim of this note is to present a sharp
inequality for Gaussian moments of log-concave and log-convex functions, stated
below as Theorem 1.1.

We work onRk, equipped with the standard scalar product h�; �i. We denote by j � j
the corresponding Euclidean norm and the absolute value of a real number. We use
the notation X � N.�;T/, if X is a Gaussian random vector in R

k, with expectation
� 2 R

k and covariance the k � k positive semi-definite matrix T. We say that X is
a standard Gaussian random vector if it is centered (i.e. EX D 0) with covariance
matrix the identity inRk, where in that case �k stands for its distribution law. Finally,
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Lp;s.�k/ stand for the class of all functions f 2 Lp.�k/ whose partial derivatives up
to order s, are also in Lp.�k/.

Theorem 1.1 Let k 2 N and X be a Gaussian random vector in R
k. Let f W Rk !

Œ0; C1/ be a log-concave and g W Rk ! Œ0; C1/ be a log-convex function. Then,

(i) for every r 2 Œ0; 1�

Ef
�p

rX
� � .Ef .X/r/

1
r and Eg

�p
rX
� � .Eg.X/r/

1
r ; (1)

(ii) for every q 2 Œ1; C1/

Ef
�p

qX
� � .Ef .X/q/

1
q and Eg

�p
qX
� � .Eg.X/q/

1
q : (2)

In any case, equality holds if r D 1 D q or if f .x/ D g.x/ D e�ha;xiCc, where a 2 R
k

and c 2 R.

We prove Theorem 1.1 in Sect. 2, where we combine techniques from [7] along
with Barthe’s inequality [2].

The entropy of a function f W Rk ! R, with respect to a random vector X in R
k,

is defined to be

EntX. f / WD Ej f .X/j log j f .X/j � Ej f .X/j logEj f .X/j;
provided all the expectations exist. Note that ( for f � 0)

EntX. f / D d

dq

��
Ef .X/q

� 1
q

�

qD1

and so, Theorem 1.1 implies the following entropy inequality:

Corollary 1.2 Let f W Rk ! Œ0; C1/ and X be a Gaussian random vector in Rk.

(i) If f is log-concave, then

EntX. f / � 1

2
EhX; rf .X/i: (3)

(ii) If f is log-convex, then

EntX. f / � 1

2
EhX; rf .X/i: (4)

In any case, equality holds if f .x/ D exp
�ha; xi C c

�
, a 2 R

k, c 2 R.

Proof Let m.q/ WD �
Ef .X/q

� 1
q and h.q/ WD Ef .

p
qX/. Then we have

m.1/ D Ef .X/ D h.1/; m0.1/ D EntX. f / and h0.1/ D 1

2
EhX; rf .X/i;
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and Theorem 1.1 implies the desired result. ut
The logarithmic Sobolev inequality, proved by Gross in [10], states that if X �

N.0; Ik/, then

EntX. f 2/ � 2Ejrf .X/j2; (5)

for every function f 2 L2.�k/. Moreover, Carlen showed in [6], that equality holds
if and only if f is an exponential function. For more details about the logarithmic
Sobolev inequality we refer the reader to [4, 14, 19, 20] and to the references therein.

In Sect. 3, we show that Corollary 1.2, after an application of the Gaussian
integration by parts formula (see Lemma 3.1), leads to the following reverse form
of Gross’ inequality, when the function is log concave:

Theorem 1.3 Let X be a standard Gaussian random vector in R
k and f D e�v 2

L2;1.�k/, be a positive log-concave function (on its support). Then

2Ejrf .X/j2 � Ef .X/2�v.X/ � EntX. f 2/: (6)

Theorem 1.3, ensures that if a log-concave function f D e�v is close to be an
exponential, in the sense that Ef .X/2�v.X/ is small, then the logarithmic Sobolev
inequality for f is close to be sharp.

For more properties and stability results on the logarithmic-Sobolev inequalities
we refer to the papers [8, 9, 11] and the references therein.

2 Proof of the Main Result

The first ingredient of the proof of Theorem 1.1, is the following inequality for
Gaussian random vectors, proved in [7]. We recall that for two square matrices A
and B, we say that A � B if and only if B � A is positive semi-definite.

Theorem 2.1 Let m; n1; : : : ; nm 2 N and set N D Pm
iD1 ni. For every i D 1; : : : ;m,

let Xi be a Gaussian random vector in R
ni , such that X WD .X1; : : : ;Xm/ is a

Gaussian random vector in R
N with covariance the N � N matrix T D .Tij/1�i;j�m,

where Tij is the covariance ni � nj matrix between Xi and Xj, 1 � i; j �
m. Let p1; : : : ; pm 2 R and consider the N � N block diagonal matrix P D
diag.p1T11; : : : ; pmTmm/. Then, for any set of nonnegative measurable functions fi
on Rni , i D 1; : : : ;m,

.i/ if T � P, then

E

mY

iD1

fi.Xi/ �
mY

iD1

�
Efi.Xi/

pi
� 1

pi
; (7)
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.ii/ if T � P, then

E

mY

iD1

fi.Xi/ �
mY

iD1

�
Efi.Xi/

pi
� 1

pi
: (8)

Theorem 2.1 generalizes many fundamental results in analysis, such as Hölder
inequality and its reverse, Young inequality with the best constant and its reverse
[3] and [5], and Nelson’s Gaussian Hypercontractivity and its reverse [17] and [15].
Actually, the first part of Theorem 2.1 is another formulation of the Brascamp-Lieb
inequality [5, 13], while the second part provides a reverse form.

Moreover, (8) implies (see [7]) F. Barthe’s reverse Brascamp-Lieb inequality [2],
which the second main tool in our the proof of Theorem 1.1. For more extensions
of Brascamp-Lieb inequality and similar results see [12] and [16].

For our purposes, we need the so-called geometric form (see [1]) of Barthe’s
theorem.

Theorem 2.2 Let n;m; n1; : : : ; nm 2 N with ni � n for every i D 1; : : : ;m. Let Ui

be a ni � n matrix with UiU�
i D Ini for i D 1; : : : ;m and c1; : : : ; cm be positive real

numbers such that

mX

iD1

ci U
�
i Ui D In:

Let h W R
n ! Œ0; C1/ and fi W R

ni ! Œ0; C1/, i D 1; : : : ;m, be measurable
functions such that

h

 
NX

iD1

ciU
�
i �i

!

�
mY

iD1

fi.�i/
ci 8 �i 2 R

ni ; (9)

i D 1; : : : ;m. Then

Z

Rn
h.x/ d�n.x/ �

mY

iD1

�Z

Rni

fi.x/ d�ni.x/

	ci

: (10)

2.1 Decomposing the Identity

We will apply Theorem 2.1 in the special case where the covariance is the kn �
kn matrix T D �

ŒTij�
�
i;j�n

, with Tii D Ik and Tij D tIk if i ¤ j, for some t 2
Œ� 1

n�1
; 1�. Equivalently, in that caseX WD .X1; : : : ;Xn/ � N.0;T/, whereX1; � � � ;Xn
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are standard Gaussian random vectors in Rk, such that

E.XiX
�
j / D



Ik ; i D j
tIk ; i ¤ j

: (11)

For any t 2 Œ0; 1�, a natural way to construct such random vectors is to consider
n independent copies Z1; : : : ;Zn, of a Z � N.0; Ik/ and set

Xi WD p
t Z C p

1 � t Zi ; i D 1; : : : ; n:

However, we are going to use a more geometric approach. First we will deal with
the 1-dimensional case and then, by using a tensorization argument, we will pass to
the general k-dimensional case, for any k 2 N. We begin with the definition of the
SR-simplex.

Definition 2.3 We say that S D convfv1; : : : ; vng � R
n�1 is the spherico-regular

simplex (in short SR-simplex) in R
n�1, if v1; : : : ; vn are unit vectors in R

n�1 with
the following two properties:

(SR1) hvi; vji D � 1
n�1

, for any i ¤ j,
(SR2)

Pn
iD1 vi D 0.

Using the vertices of the SR-simplex in R
n�1, we create n vectors in R

n with the
same angle between them. This is done in the next lemma.

Lemma 2.4 Let n � 2 and v1; : : : ; vn be the vertices of any RS-Simplex in R
n�1.

For every t 2 Œ� 1
n�1

; 1�, let u1; : : : ; un be the unit vectors in Rn with

ui D ui.t/ D
r

t.n � 1/ C 1

n
en C

r
n � 1

n
.1 � t/ vi ; (12)

i D 1; : : : ; n. Then we have that

hui; uji D t ; 8 i ¤ j: (13)

Moreover,

(i) if t 2 Œ0; 1�, then

1

t.n � 1/ C 1

nX

iD1

uiu
�
i C nt

t.n � 1/ C 1

n�1X

jD1

eje
�
j D In; (14)

(ii) if t 2 Œ� 1
n�1

; 0�, then

1

1 � t

nX

iD1

uiu
�
i C �nt

1 � t
ene

�
n D In: (15)
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Proof A direct computation, using the properties .SR1/, .SR2/ and the fact that

n � 1

n

nX

iD1

viv�
i D In�1;

shows that (13)–(15) holds true. ut
Remark 2.5 If Z � N.0; In/, then Xi WD hui;Zi, i D 1; : : : ; n, are standard Gaussian
random variables, satisfying the condition (11) in the 1-dimensional case.

For the general case we first recall the definition of the tensor product of two
matrices:

Definition 2.6 For any matrices A 2 R
m�n and B 2 R

k�`, their tensor product is
defined to be the km � `n matrix

A ˝ B D

0

B
@

a11B � � � a1nB
:::

: : :
:::

am1B � � � amnB

1

C
A :

Every vector a 2 R
n is considered to be a n � 1 column matrix and with this

notation, we state some basic properties for the tensor product, that we will use.

Lemma 2.7 1. Let a D .a1; : : : ; am/� 2 R
m and b D .b1; : : : ; bn/� 2 R

n. Then

a ˝ b� D ab� D

0

B
@

a1b1 � � � a1bn
:::

: : :
:::

amb1 � � � ambn

1

C
A 2 R

m�n;

and as a linear transformation, a ˝ b� D ab� W Rn ! R
m with

.a ˝ b�/.x/ D .ab�/.x/ D hx; bi a; x 2 R
n:

2. Let Ai 2 R
m�n and B 2 R

k�`. Then
�P

i Ai
�˝ B D P

i Ai ˝ B:

3. Let A1 2 R
m�n, B1 2 R

k�`, and A2 2 R
n�r, B2 2 R

`�s. Then

.A1 ˝ B1/ .A2 ˝ B2/ D .A1A2/ ˝ .B1B2/ 2 R
km�rs:

4. For any matrices A and B,

.A ˝ B/� D A� ˝ B�:
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For our k-dimensional construction, we consider the k � kn matrices

Ui WD u�
i ˝ Ik D

� �
ui1Ik

� � � � �uinIk
� �

; (16)

Ej WD e�
j ˝ Ik D

� �
ej1Ik

� � � � �ejnIk
� �

; (17)

for i D 1 : : : ; n. Note that

U�
i Ui D .u�

i ˝ Ik/
�.u�

i ˝ Ik/ D uiu
�
i ˝ Ik

and

E�
j Ej D .e�

j ˝ Ik/
�.e�

j ˝ Ik/ D eje
�
j ˝ Ik;

for every i; j D 1; : : : ; n. Thus by taking the tensor product with Ik, in both sides
of (14), we get that

1

p

nX

iD1

U�
i Ui C nt

p

n�1X

jD1

E�
j Ej D Ikn; (18)

for every t 2 Œ0; 1�, where p WD .n � 1/t C 1. Moreover, we can now construct the
general case describing in (11). We summarize in the next lemma.

Lemma 2.8 Suppose that Z1; : : : ;Zn are iid standard Gaussian random vectors in
R

k and set Z WD .Z1; : : : ;Zn/ � N.0; Ikn/. Consider the random vectors

Xi WD UiZ D
nX

aD1

uiaZa; i D 1; : : : ; n; (19)

where Ui, i D 1; : : : ; n, are the matrices defined in (16). Then Xi is a standard
Gaussian random vector in R

k, for every i D 1; : : : ; n and

E
�
Xi ˝ X�

j

� D
�
EŒXirXj`�

�

r;`�k
D
�
tır`

�

r;`�k
D tIk; (20)

for every i ¤ j.

Proof Clearly, EXi D 0, for every i; j D 1; : : : ; n, and since

E
�
Za ˝ Z�

b

� D
�
EŒZarZb`�

�

r;`�k
D ı˛ˇIk
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we have that

E
�
XirXj`

� D E

" 
nX

aD1

uiaZar

! 
nX

bD1

ujbZb`

!#

D
nX

aD1

nX

bD1

uiaujb E ŒZarZb`�

D
nX

aD1

uiauja E ŒZarZa`�

D
nX

aD1

uiauja ır`

D hui; uji ır`:

The proof is complete, since juij D 1 for all i’s and by (13) hui; uji D t for all i ¤ j.
ut

2.2 Proof of Theorem 1.1

The next proposition is the main ingredient for the proof of Theorem 1.1.

Proposition 2.9 Let t 2 Œ0; 1�, k; n 2 N, p D t.n�1/C1, X be a standard Gaussian
random vector in Rk and X1; � � � ;Xn be copies of X such that

E
�
Xi ˝ X�

j

� D
�
EŒXirXj`�

�

r;`�k
D tIk; 8 i ¤ j:

Then, for any log-concave (on its support) function f W Rk ! Œ0; C1/, we have that

E

 
nY

iD1

f .Xi/

! 1
n

�
�
Ef .X/

p
n

	 n
p

� Ef

 
1

n

nX

iD1

Xi

!

(21)

Note that, the log-concavity of f implies that

 
nY

iD1

f .Xi/

! 1
n

� f

 
1

n

nX

iD1

Xi

!

;

where equality is achieved for the exponential function f .x/ D eha;xiCc, a 2 R
k and

c 2 R.
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Proof of Proposition 2.9 In order to prove the left-hand side inequality in (21), we
will apply Theorem 2.1. Note that the assumption of log-concavity will not be used.
The left-hand side inequality in (21) holds true for any non-negative measurable
function f .

To be more precise, let X1; : : : ;Xn be standard Gaussian random vectors in R
k

satisfying condition (20) and t 2 Œ� 1
n�1

; 1�. Then, X WD .X1; : : : ;Xn/, is a centered
Gaussian vector in Rkn with covariance the kn� kn matrix T D .Tij/i;j�n, with block
entries the k � k matrices Tii D Ik and Tij D tIk, for i ¤ j. Setting

p WD .n � 1/t C 1 and q WD 1 � t;

it’s not hard to check that, for any t 2 Œ0:1�, p is the biggest and q is the smallest
singular value of T, while for any t 2 Œ� 1

n�1
; 0�, q is the biggest and p is the smallest

singular value of T. Thus,

(i) if t � 0, then

qIkn � T � pIkn;

(ii) if t � 0, then

pIkn � T � qIkn

In the above situation, Theorem 2.1 reads as follows:

Theorem 2.10 Let k; n 2 N, t 2 Œ� 1
n�1

; 1� and let X1; : : : ;Xn be standard Gaussian
random vectors inRk, with E

�
Xi˝X�

j

� D tIk, for all i ¤ j. Set p WD .n�1/tC1, q WD
1 � t, and then for every measurable functions fi W Rk ! Œ0; C1/, i D 1; : : : ; n,

(i) if t 2 Œ0; 1�, then

nY

iD1

�
Efi.Xi/

q
�1=q � E

nY

iD1

fi.Xi/ �
nY

iD1

�
Efi.Xi/

p
�1=p

; (22)

(ii) if t 2 Œ� 1
n�1

; 0�, then

nY

iD1

�
Efi.Xi/

p
�1=p � E

nY

iD1

fi.Xi/ �
nY

iD1

�
Efi.Xi/

q
�1=q

: (23)

Now, the left-hand side inequality of (21) follows immediately from (22), by
taking fi D f 1=n for every i D 1; : : : ; n.

In order to prove the right-hand side inequality of (21) we apply Barthe’s
theorem, using the decomposition of the identity in (18). In the following lemma
we gather some technical facts.
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Lemma 2.11 Let Ui and Ei, i D 1; : : : ; n the matrices defined in (16) and (17), and
set p D .n � 1/t C 1, q D 1 � t. Then

U�
i D

r
p

n
en ˝ Ik C

r
n � 1

n
q vi ˝ Ik 2 R

kn�k:

UiU
�
j D hui; ujiIk

UiE
�
j D

r
n � 1

n
q hvi; ejiIk

for every i � n and j � n � 1.

Proof The first and the second assertion can be verified, just by using the definitions.
For the third one, we have

UiE
�
j D .u�

i ˝ Ik/.e
�
j ˝ Ik/

�

D
 r

p

n
e�
n ˝ Ik C

r
n � 1

n
q v�

i ˝ Ik

!

.ej ˝ Ik/

D
r

p

n
.e�

n ˝ Ik/.ej ˝ Ik/ C
r

n � 1

n
q .v�

i ˝ Ik/.ej ˝ Ik/

D
r

p

n
e�
n ej ˝ Ik C

r
n � 1

n
q v�

i ej ˝ Ik

D
r

p

n
hen; ejiIk C

r
n � 1

n
q hvi; ejiIk

D O C
r

n � 1

n
q hvi; ejiIk:

ut
To finish the proof of Proposition 2.9, we apply Barthe’s Theorem 2.2, using the

decomposition of the identity appearing in (18). We choose the parameters: n $ kn,
m WD 2n � 1, ni WD k for all i D 1; : : : ; 2n � 1, and

ci WD
(

1
p ; i D 1; : : : ; n
nt
p ; i D n C 1; : : : ; 2n � 1

:

Then, we apply Theorem 2.2 to the functions

Qfi.x/ WD


f .x/

p
n ; i D 1; : : : ; n

1 ; i D n C 1; : : : ; 2n � 1
; x 2 R

k
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and

h.x/ WD f

 
1

n

nX

iD1

Uix

!

; x 2 R
kn:

For any �1; : : : ; �n 2 R
k, by Lemma 2.11, we get that

h

0

@
nX

jD1

1

p
U�

j �j C
n�1X

aD1

nt

p
E�
a �nCa

1

A

D f

0

@1

n

nX

iD1

nX

jD1

1

p
UiU

�
j �j C 1

n

nX

iD1

n�1X

aD1

nt

p
UiE

�
a �nCa

1

A

D f

0

@1

n

nX

iD1

nX

jD1

1

p
UiU

�
j �j C 1

n

nX

iD1

n�1X

aD1

nt

p

r
n � 1

n
qhvi; eai�nCa

1

A

D f

0

@1

n

nX

iD1

nX

jD1

1

p
UiU

�
j �j

1

A
�
since

X
vi D 0

�

D f

0

@1

n

nX

iD1

nX

jD1

1

p
hui; uji�j

1

A

D f

0

@1

n

nX

iD1

�1

p
�i C

X

j¤i

t

p
�j

�
1

A

D f

 
1

n

nX

iD1

�1

p
C .n � 1/

t

p

�
�i

!

D f

 
1

n

nX

iD1

�i

!

�
nY

iD1

f .�i/
1
n D

nY

iD1

�
f .�i/

p
n

� 1
p D

nY

iD1

Qf .�i/ci :

Thus, Theorem 2.2 implies

Ef

 
1

n

nX

iD1

Xi

!

D Ef

 
1

n

nX

iD1

UiZ

!

�
nY

iD1

�
Ef .Xi/

p
n

� 1
p D

�
Ef .X/

p
n

� n
p

and the proof is complete. ut
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We close this section with the proof of our primary result.

Proof of Theorem 1.1 Suppose first that X � N.0; Ik/. Then, under the notation of
Lemma 2.8 we have that

1

n

nX

iD1

UiZ D 1

n

nX

iD1

r
p

n
.e�

n ˝ Ik/Z C 1

n

nX

iD1

r
n � 1

n
q .v�

i ˝ Ik/Z

D
r

p

n
.e�

n ˝ Ik/Z C 1

n

r
n � 1

n
q

 
nX

iD1

v�
i

!

˝ Ik Z

D
r

p

n
EnZ C 1

n

r
n � 1

n
q

 
nX

iD1

vi

!�
˝ Ik Z

D
r

p

n
Zn:

Thus, the right hand side of (21) can be written as

Ef

�r
p

n
X

	
�
�
f .X/

p
n

� n
p

: (24)

where p D .n � 1/t C 1, n 2 N, and t 2 Œ0; 1�.
Consequently, if f W Rk ! Œ0; C1/ is a log-concave function and r 2 .0; 1�, then

there exist t 2 Œ0; 1� and n 2 N, such that r D p
n D .n�1/tC1

n and so by (24) we get
that

Ef
�p

rX
� � .Ef .X/r/

1
r (25)

for every r 2 .0; 1�. We consider now the case where r D 0. Since f is log-concave,
there exists a convex function v W R

k ! R such that f D e�v . Then, for r D 0,
inequality (1) is equivalent to Jensen’s inequality

v.0/ D v.EX/ � Ev.X/; (26)

and the proof of (1) is complete.
For every q � 1 consider r D 1

q 2 .0; 1�. Let F.x/ D f .x=
p
r/1=r which is also

log-concave and so (25) for F and r implies

Ef .X/q � �
Ef .

p
qX/

�q
; (27)

and (2) follows.
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Assume now that g W Rn ! Œ0; C1/ is log-convex and r 2 .0; 1�. By the log-
convexity of g and Theorem 2.10(i), we have that

Eg

 
1

n

nX

iD1

Xi

!

� E

nY

iD1

g.Xi/
1
n �

�
Eg.X/

p
n

� n
p

: (28)

As we have seen at the beginning of the proof 1
n

Pn
iD1 Xi

dD
q

p
n X. So, using (28)

for t 2 Œ0; 1� and n 2 N such that p
n D .n�1/tC1

n D r, we derive that

Eg
�p

rX
� � .Eg.X/r/

1
r ;

for every r 2 .0; 1�. The rest of the proof for a log-convex function g is identical to
the log-concave case.

For the equality case, a straightforward computation shows that for f .x/ D
eha;xiCc, we have that

Ef .
p
qX/ D C exp

�q
2

jaj2
�

D �
Ef .X/q

� 1
q :

for every q � 0.
Finally, suppose that X is a general Gaussian random vector in R

k with
expectation � 2 R

k and covariance matrix T D UU� where U 2 R
k�k. Note,

that if f is log-concave (or log-convex) and positive function on R
k, then so is

F.x/ WD f .Ux � �/. Moreover, if Z � N.0; Ik/ then UZ � �
dD X � N.0;T/.

The general case follows then, by applying the previous case on function F. ut

3 Reverse Logarithmic Sobolev Inequality

In the next lemma, we state the Gaussian Integration by Parts formula (see [18,
Appendix 4] for a simple proof).

Lemma 3.1 Let X;Y1; : : : ;Yn be centered jointly Gaussian random variables, and
F be a real valued function on Rn, that satisfy the growth condition

lim
jxj!1

jF.x/j exp ��ajxj2� D 0 8 a > 0: (29)

Then

E
�
XF.Y1; : : : ;Yn/

� D
nX

iD1

E
�
XYi

�
E
�
@iF.Y1; : : : ;Yn/

�
: (30)
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Involving this formula, we can further elaborate Corollary 1.2.
Let Gk, be the class of all positive functions in Rk, such that their first derivatives

satisfy the growth condition (29). Then for any f 2 Gk, by Lemma 3.1, we get that

E
�hX; rf .X/i� D

kX

iD1

E
�
Xi@if .X/

�

D
kX

iD1

kX

jD1

E
�
XiXj

�
E
�
@ijf .X/

� D E
�
tr
�
T Hf .X/

��
;

where T is the covariancematrix of X andHf .x/ stands for the Hessian matrix of f at
x 2 R

k. In the special case where X � N.0; Ik/, Corollary 1.2 implies the following:

Corollary 3.2 Let k 2 N, and X be a standard Gaussian vector in Rk. Then

(i) for every log-concave function f 2 Gk, we have

EntX. f / � 1

2
E�f .X/; (31)

(ii) for every log-convex function f 2 Gk, we have

EntX. f / � 1

2
E�f .X/: (32)

Proof of Theorem 1.3 Let f 2 L2;1.�k/. Without loss of generality we may also
assume that Ef 2.X/ D 1. Suppose first that f has a bounded support. Then f 2 2 Gk

and Corollary 3.2, after an application of the chain rule 1
2
�f 2 D jrf j2 C f�f , gives

that

Ejrf .X/j2 C Ef .X/�f .X/ � EntX. f 2/ � 2Ejrf .X/j2: (33)

Let f D e�v , where v W supp. f / ! R is a convex function. Again by the chain rule
we have f�f D jrf j2 � f 2�v, and so

Ef .X/�f .X/ D Ejrf .X/j2 � Ef .X/2�v.X/: (34)

Equations (33) and (34), prove Theorem 1.3 in this case.
To drop the assumption of the bounded support, we consider the functions fn WD

f 1nBk
2
, where 1nBk

2
is the indicator function of the Euclidean Ball in R

k with radius
n 2 N. Every fn has bounded support and so by the previous case,

2Ejrfn.X/j2 � Efn.X/2�vn.X/ � EntX. f 2
n /: (35)
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In order to avoid any possible problem of infiniteness of the derivatives of fn,
n 2 N, we define the functions

Fn D jrf j2 � 1nBk
2
; Hn D f 2�v � 1nBk

2
:

Notice that Fn D jrfnj2 and Hn D f 2
n �vn almost everywhere, since they could only

differ on the zero-measure set fx 2 R
k W jxj D ng. Thus,

0 � fn % f ; 0 � Fn % jrf j2; 0 � Hn % f 2�v;

and by the monotone convergence theorem

Ejrfn.X/j2 D EFn.X/ �! Ejrf .X/j2 (36)

and

Efn.X/2�vn.X/ D EHn.X/ �! Ef .X/2�v.X/: (37)

Moreover, f 2
n log f

2
n ! f 2 log f 2 and j f 2

n log f
2
n j � j f 2 log f 2j, for every n 2 N

(where we have taken that 0 log 0 D 0). Since, by Gross’ inequality, f 2 log f 2 2
L1.�k/, the Lebesgue’s dominated convergence theorem implies that

EntX. f 2
n / �! EntX. f 2/: (38)

Under the light of (36)–(38), the desired result follows by taking the limit in (35),
as n ! 1. ut
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