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Abstract We characterize the valuations on the space of quasi-concave functions
on R

N , that are rigid motion invariant and continuous with respect to a suitable
topology. Among them we also provide a specific description of those which are
additionally monotone.

1 Introduction

A valuation on a space of functions X is an application � W X ! R such that

�. f _ g/C �. f ^ g/ D �. f /C �.g/ (1)

for every f ; g 2 X s.t. f _ g; f ^ g 2 X; here “_” and “^” denote the point-wise
maximum and minimum, respectively. The condition (1) can be interpreted as a
finite additivity property (typically verified by integrals).

The study of valuations on spaces of functions stems principally from the theory
of valuations on classes of sets, in which the main current concerns convex bodies.
We recall that a convex body is simply a compact convex subset of RN , and the
family of convex bodies is usually denoted by KN . An application � W KN ! R is
called a valuation if

�.K [ L/C �.K \ L/ D �.K/C �.L/ (2)

for every K;L 2 KN such that K [ L 2 KN (note that the intersection of
convex bodies is a convex body). Hence, in passing from (2) to (1) union and
intersection are replaced by maximum and minimum respectively. A motivation is
that the characteristic function of the union (resp. the intersection) of two sets is the
maximum (resp. the minimum) of their characteristic functions.

The theory of valuations is an important branch of modern convex geometry
(the theory of convex bodies). The reader is referred to the monograph [16]
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for an exhaustive description of the state of the art in this area, and for the
corresponding bibliography. The valuations on KN , continuous with respect to
the Hausdorff metric and rigid motion invariant, i.e. invariant with respect to
composition with translations and proper rotations (elements of O.N/), have been
completely classified in a celebrated result by Hadwiger (see [5–7]). Hadwiger’s
theorem asserts that any valuation � with these properties can be written in the form

�.K/ D
NX

iD0
ci Vi.K/ 8K 2 KN ; (3)

where c1; : : : ; cN are constants and V1; : : : ;VN denote the intrinsic volumes (see
Sect. 2, for the definition). This fact will be of great importance for the results
presented here.

Let us give a brief account of the main known results in the area of valuations on
function spaces. Wright, in his PhD thesis [21] and subsequently in collaboration
with Baryshnikov and Ghrist [2], characterized rigid motion invariant and continu-
ous valuations on the class of definable functions (we refer to the quoted papers for
the definition). Their result is very similar to Hadwiger’s theorem; roughly speaking
it asserts that every valuation is the linear combination of integrals of intrinsic
volumes of level sets. This type of valuations will be crucial in our results as well.

Rigid motion invariant and continuous valuations on Lp.RN/ and on Lp.Sn�1/
(1 � p < 1) have been studied and classified by Tsang in [17]. Basically, Tsang
proved that every valuation � with these properties is of the type

�. f / D
Z
�. f /dx (4)

(here the integral is performed on R
N or Sn�1) for some function � defined on R

verifying suitable growth conditions. Subsequently, the results of Tsang have been
extended to Orlicz spaces by Kone in [8]. Also, the special case p D 1 was studied
by Cavallina in [3].

Valuations on the space of functions of bounded variations and on Sobolev spaces
have been recently studied by Wang and Ma respectively, in [14, 19, 20] and [13].

In [4] the authors consider rigid motion invariant and continuous valuations (with
respect to a certain topology that will be recalled later on) on the space of convex
functions, and found some partial characterization results under the assumption of
monotonicity and homogeneity.

Note that the results that we have mentioned so far concern real-valued valu-
ations, but there are also studies regarding other types of valuations (e.g. matrix-
valued valuations, or Minkowski and Blaschke valuations, etc.) that are interlaced
with the results mentioned previously. A strong impulse to these studies have been
given by Ludwig in the works [9–12]; the reader is referred also to [18] and [15].

Here we consider the space CN of quasi-concave functions of N real variables. A
function f W R

N ! R is quasi-concave if it is non-negative and for every t > 0 the
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level set

Lt. f / D fx 2 R
N W f .x/ � tg

is (either empty or) a compact convex set. CN includes log-concave functions and
characteristic functions of convex bodies as significant examples.

We consider valuations � W CN ! R which are rigid motion invariant (with the
same notion as before for rigid motion transformations), i.e.

�. f / D �. f ı T/

for every f 2 CN and for every rigid motion T of RN . We also impose a continuity
condition on �: if fi, i 2 N, is a monotone (either increasing or decreasing) sequence
in CN , converging to f 2 CN point-wise in RN , then we must have

lim
i!1�. fi/ D �. f /:

In Sect. 4.1 we provide some motivation for this definition, comparing this notion
of continuity with other possible choices.

There is a simple way to construct valuations on CN . To start with, note that if
f ; g 2 CN and t > 0

Lt. f _ g/ D Lt. f / [ Lt.g/; Lt. f ^ g/ D Lt. f /\ Lt.g/: (5)

Let  be a function defined on .0;1/ and fix t0 > 0. Define, for every f 2 CN ,

�0. f / D VN.Lt0 . f // .t0/:

Using (5) and the additivity of volume we easily deduce that �0 is a rigid motion
invariant valuation.More generally, we can overlap valuations of this type at various
levels t, and we can further replace VN by any intrinsic volume Vk:

�. f / D
Z

.0;1/

Vk.Lt. f // .t/ dt D
Z

.0;1/

Vk.Lt. f // d�.t/; f 2 CN ; (6)

where � is the measure with density  . This is now a rather ample class of
valuations; as we will see, basically every monotone valuation on CN can be written
in this form. To proceed, we observe that the function

t ! Vk.Lt. f //

is decreasing. In particular it admits a distributional derivative which is a non-
positive measure. For ease of notation we write this measure in the form �Sk. f I �/
where now Sk. f I �/ is a (non-negative) Radon measure on .0;1/. Then, integrating
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by parts in (6) (boundary terms can be neglected, as it will be clear in the sequel)
we obtain:

�. f / D
Z

.0;1/

�.t/ dSk. f I t/ (7)

where � is a primitive of  . Our first result is the fact that functionals of this type
exhaust, by linear combinations, all possible rigid motion invariant and continuous
valuations on CN .

Theorem 1.1 A map � W CN ! R is an invariant and continuous valuation on CN

if and only if there exist .N C 1/ continuous functions �k, k D 0; : : : ;N defined on
Œ0;1/, and ı > 0 such that: �k � 0 in Œ0; ı� for every k D 1; : : : ;N, and

�. f / D
NX

kD0

Z

Œ0;1/

�k.t/dSk. f I t/ 8 f 2 CN :

The condition that each �k, except for �0, vanishes in a right neighborhood of the
origin guarantees that the integral in (7) is finite for every f 2 CN (in fact, it is
equivalent to this fact). As in the case of Hadwiger theorem, the proof of this result
is based on a preliminary step in which valuations that are additionally simple are
classified. A valuation � on CN is called simple if

f D 0 a.e. in R
N ) �. f / D 0:

Note that for f 2 CN , being zero a.e. is equivalent to say that the dimension of the
support of f (which is a convex set) is strictly smaller than N. The following result
is in a sense analogous to the so-called volume theorem for convex bodies.

Theorem 1.2 A map � W CN ! R is an invariant, continuous and simple valuation
on CN if and only if there exists a continuous function � defined on Œ0;1/, with
� � 0 in Œ0; ı� for some ı > 0, such that

�. f / D
Z

Rn
�. f .x//dx 8 f 2 CN ;

or, equivalently,

�. f / D
Z

Œ0;1/

�.t/dSN. f I t/:

Here the equivalence of the two formulas follows from the layer cake principle.
The representation formula of Theorem 1.1 becomes more legible in the case of
monotone valuations. Here, each term of the sum is clearly a weighted mean of the
intrinsic volumes of the level sets of f .
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Theorem 1.3 A map � is an invariant, continuous and monotone increasing
valuation on CN if and only if there exists .N C 1/ Radon measures on Œ0;1/,
�k, k D 0; : : : ;N, such that each �k is non-negative, non-atomic and, for k � 1, the
support of �k is contained in Œı;1/ for a suitable ı > 0, and

�. f / D
NX

kD0

Z

Œ0;1/

Vk.Lt. f // d�k.t/; 8 f 2 CN :

We remark that the non-negativity of �k depends on the monotone increasing
property of �, as we will see in Sect. 8.

As we already mentioned, and it will be explained in details in Sect. 5.3, the
passage

Z

Œ0;1/

�k.t/dSk. f I t/ �!
Z

Œ0;1/

Vk.Lt. f // d�k.t/

is provided merely by an integration by parts, when this is permitted by the
regularity of the function �k.

The paper is organized as follows. In the next section we provide some notions
from convex geometry. Section 3 is devoted to the basic properties quasi-convex
functions, while in Sect. 4 we define various types of valuations on the space
CN . In Sect. 5 we introduce the integral valuations, which occur in Theorems 1.1
and 1.3. Theorem 1.2 is proved in Sect. 6, while Sects. 6 and 7 contain the proof of
Theorems 1.1 and 1.3, respectively.

2 Notations and Preliminaries

We work in the N-dimensional Euclidean space RN , N � 1, endowed with the usual
scalar product .�; �/ and norm k � k. Given a subset A of RN , int.A/, cl.A/ and @A
denote the interior, the closure and the topological boundary of A, respectively. For
every x 2 R

N and r � 0, Br.x/ is the closed ball of radius r centered at x; in
particular, for simplicity we will write Br instead of Br.0/. We recall that a rigid
motion of RN will be the composition of a translation and a rotation of RN (i.e. an
isometry). The Lebesgue measure in R

N will be denoted by VN .

2.1 Convex Bodies

We recall some notions and results from convex geometry that will be used in the
sequel. Our main reference on this subject is the monograph by Schneider [16]. As
stated in the introduction the class of convex bodies is denoted by KN . For K;L 2
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KN , we define the Hausdorff distance of K and L as

ı.K;H/ D maxfsup
x2K

dist.x;H/; sup
y2H

dist.K; y/g:

Accordingly, a sequence of convex bodies fKngn2N � KN is said to converge to
K 2 KN if

ı.Kn;K/ ! 0; as n ! C1:

Remark 2.1 KN with respect to Hausdorff distance is a complete metric space.

Remark 2.2 For every convex subset C of RN , and consequently for convex bodies,
its dimension dim .C/ can be defined as follows: dim.C/ is the smallest integer such
that there exists an affine sub-space of RN containing C.

We are ready, now, to introduce some functionals operating on KN , the intrinsic
volumes, which will be of fundamental importance in this paper. Among the various
ways to define intrinsic volumes, we choose the one based on the Steiner formula.
Given a convex body K and � > 0, the parallel set of K is

K� D fx 2 R
N j dist.x;K/ � �g:

The following result asserts that the volume of the parallel body is a polynomial in
�, and contains the definition of intrinsic volumes.

Theorem 2.3 (Steiner Formula) There exist N functions V0; : : : ;VN�1 W KN !
RC such that, for all K 2 KN and for all � � 0, we have

VN.K�/ D
NX

iD0
Vi.K/!N�i�

N�i;

where !j denotes the volume of the unit ball in the space Rj. V0.K/; : : : ;VN.K/ are
called the intrinsic volumes of K.

Hence one of the intrinsic volumes is the Lebesgue measure. Moreover V0 is
the Euler characteristic, so that for every K we have V0.K/ D 1. The name
intrinsic volumes comes from the following fact: assume that K has dimension
j 2 f0; : : : ;Ng, i.e. there exists a j-dimensional affine subspace of RN containing
K, and j is the lowest number with this property (we will write dim.K/ D j). Then
K can be seen as a subset ofRj and Vj.K/ is the Lebesguemeasure ofK as a subset of
R

j. Intrinsic volumes have many other properties, listed in the following proposition.

Proposition 2.4 (Properties of Intrinsic Volumes) For every k 2 f0; : : : ;Ng the
function Vk is:

• rigid motion invariant;
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• continuous with respect to the Hausdorff metric;
• monotone increasing: K � L implies Vk.K/ � Vk.L/;
• a valuation:

Vk.K [ L/C Vk.K \ L/ D Vk.K/C Vk.L/ 8K;L 2 KN s.t. K [ L 2 KN :

We also set conventionally

Vk.¿/ D 0; 8 k D 0; : : : ;N:

The previous properties essentially characterizes intrinsic volumes as stated by
the following result proved by Hadwiger, already mentioned in the introduction.

Theorem 2.5 (Hadwiger) If � is a continuous and rigid motion invariant valua-
tion, then there exist .N C 1/ real coefficients c0; : : : ; cN such that

�.K/ D
NX

iD0
ciVi.K/;

for all K 2 KN [ f¿g.
The previous theorem claims that fV0; : : : ;VNg spans the vector space of all

continuous and invariant valuations on KN [ f¿g. It can be also proved that
V0; : : : ;VN are linearly independent, so they form a basis of this vector space.
In Hadwiger’s Theorem continuity can be replaced by monotonicity hypothesis,
obtaining the following result.

Theorem 2.6 If � is a monotone increasing (resp. decreasing) rigid motion
invariant valuation, then there exist .N C 1/ coefficients c0; : : : ; cN such that ci � 0

(resp. ci � 0) for every i and

�.K/ D
NX

iD0
ciVi.K/;

for all K 2 KN [ f¿g.
A special case of the preceding results concerns simple valuations. A valuation

� is said to be simple if

�.K/ D 0 8K 2 KN s.t. dim.K/ < N:

Corollary 2.7 (Volume Theorem) Let � W KN [ f¿g ! R be a rigid motion
invariant, simple and continuous valuation. Then there exists a constant c such that

� D cVN :
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Remark 2.8 In the previous theorem continuity can be replaced by the following
weaker assumption: for every decreasing sequence Ki, i 2 N, in KN , converging to
K 2 KN ,

lim
i!1 �.Ki/ D �.K/:

This follows, for instance, from the proof of the volume theorem given in [6].

3 Quasi-Concave Functions

3.1 The Space CN

Definition 3.1 A function f W RN ! R is said to be quasi-concave if

• f .x/ � 0 for every x 2 R
N ,

• for every t > 0, the set

Lt. f / D fx 2 R
N W f .x/ � tg

is either a convex body or is empty.

We will denote with CN the set of all quasi-concave functions.

Typical examples of quasi-convex functions are (positive multiples of) charac-
teristic functions of convex bodies. For A � R

N we denote by IA its characteristic
function

IA W RN ! R; IA.x/ D
(
1 if x 2 A;

0 if … A:

Then we have that s IK 2 CN for every s > 0 and K 2 KN . We can also describe the
sets Lt.sIK/, indeed

Lt.s IK/ D
(

¿ if t > s;

K if 0 < t � s:

The following proposition gathers some of the basic properties of quasi-concave
functions.

Proposition 3.2 If f 2 CN then

• lim
jjxjj!C1

f .x/ D 0,

• f is upper semi-continuous,
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• f admits a maximum in R
n, in particular

sup
RN

f < C1:

Proof To prove the first property, let � > 0; as L�. f / is compact, there exists R > 0
such that L�. f / � BR. This is equivalent to say that

f .x/ � � 8 x s.t. kxk � R:

Upper semi-continuity follows immediately from compactness of super-level sets.
LetM D sup

RN f and assume thatM > 0. Let xn, n 2 N, be a maximizing sequence:

lim
n!1 f .xn/ D M:

As f decays to zero at infinity, the sequence xn is compact; then we may assume that
it converges to Nx 2 R

N . Then, by upper semi-continuity

f .Nx/ � lim
n!1 f .xn/ D M:

ut
For simplicity, given f 2 CN , we will denote byM. f / the maximum of f in RN .

Remark 3.3 Let f 2 CN , we denote with supp. f / the support of f , that is

supp. f / D cl.fx 2 R
N W f .x/ > 0g/:

This is a convex set; indeed

supp. f / D cl.
1[

kD1
fx 2 R

N W f .x/ � 1=kg/:

The sets

fx 2 R
N W f .x/ � 1=kg k 2 N;

forms an increasing sequence of convex bodies and their union is convex.

Remark 3.4 A special sub-class of quasi-concave functions is that formed by log-
concave functions. Let u be a function defined on all RN , with values in R[ fC1g,
convex and such that limjjxjj!C1 f .x/ D C1. Then the function f D e�u is quasi-
concave (here we adopt the convention e�1 D 0). If f is of this form is said to be a
log-concave function.
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3.2 Operations with Quasi-Concave Functions

Let f ; g W R
N ! R; we define the point-wise maximum and minimum function

between f and g as

f _ g.x/ D maxf f .x/; g.x/g; f ^ g.x/ D minff .x/; g.x/g;

for all x 2 R
N . These operations, applied on CN , will replace the union and

intersection in the definition of valuations on KN [ f¿g. The proof of the following
equalities is straightforward.

Lemma 3.5 If f and g belong to CN and t > 0:

Lt. f ^ g/ D Lt. f / \ Lt.g/; Lt. f _ g/ D Lt. f /[ Lt.g/:

As the intersection of two convex bodies is still a convex body, we have the
following consequence.

Corollary 3.6 For all f ; g 2 CN, f ^ g 2 CN.

On the other hand, in general f ; g 2 CN does not imply that f _g does, as it is shown
by the example in which f and g are characteristic functions of two convex bodies
with empty intersection.

The following lemma follows from the definition of quasi-concave function and
the fact that if T is a rigid motion of RN and K 2 KN , then T.K/ 2 KN .

Lemma 3.7 Let f 2 CN be a quasi concave function and T W R
N ! R

N a rigid
motion, then f ı T 2 CN.

3.3 Three Technical Lemmas

We are going to prove some lemmas which will be useful for the study of continuity
of valuations.

Lemma 3.8 Let f 2 CN. For all t > 0, except for at most countably many values,
we have

Lt. f / D cl.fx 2 R
N W f .x/ > tg/:

Proof We fix t > 0 and we define

�t. f / D fx 2 R
N W f .x/ > tg; Ht. f / D cl.�t. f //:
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�t. f / is a convex set for all t > 0, indeed

�t D
[

k2N
LtC1=k. f /:

Consequently Ht is a convex body and Ht � Lt. f /. We define Dt D Lt. f / n Ht;
our aim is now to prove that the set of all t > 0 such that Dt ¤ ¿ is at most
countable. We first note that if K and L are convex bodies with K � L, int.L/ ¤ ¿
and L n K ¤ ¿ then int.L n K/ ¤ ¿, therefore

Dt ¤ ¿ , VN.Dt/ > 0: (8)

It follows from

Dt D Lt. f / n Ht � Lt. f / n�t. f / D fx 2 R
N W f .x/ D tg;

that

t1 ¤ t2 ) Dt1 . f /\ Dt2 . f / D ¿: (9)

For the rest of the proof we proceed by induction on N. For N D 1, we observe
that if f is identically zero, then the lemma is trivially true. If supp. f / D fx0g and
f .x0/ D t0 > 0, then we have

Lt. f / D fx0g D cl.�t. f // 8 t > 0; t ¤ t0;

and in particular the lemma is true. We suppose next that int.supp. f // ¤ ¿; let
t0 > 0 be a number such that dim.Lt. f // D 1, for all t 2 .0; t0/ and dim.Lt. f // D 0,
for all t > t0. Moreover, let t1 D maxR f � t0. We observe that

Lt. f / D cl.�t. f // D ¿ 8 t > t1 and Lt. f / D cl.�t. f // 8 t 2 .t0; t1/:
Next we deal with values of t 2 .0; t0/. Let us fix � > 0 and let K be a compact set
in R such that K 	 Lt. f / for every t � �. We define, for i 2 N,

T�i D
�
t 2 Œ�; t0/ W V1.Dt/ � 1

i

�
:

As Dt � K for all t � � and taking (9) into account we obtain that T�i is finite . So

T� D
[

i2N
T�i

is countable for every � > 0. By (8)

ft � � W Dt ¤ ¿g is countable
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for every � > 0, so that

ft > 0 W Dt ¤ ¿g

is also countable. The proof for N D 1 is complete.
Assume now that the claim of the lemma is true up to dimension .N � 1/, and

let us prove in dimension N. If the dimension of supp. f / is strictly smaller than N,
then (as supp. f / is convex) there exists an affine subspace H of RN , of dimension
.N � 1/, containing supp. f /. In this case the assert of the lemma follows applying
the induction assumption to the restriction of f to H. Next, we suppose that there
exists t0 > 0 such that

dim.Lt. f // D N; 8 t 2 .0; t0/

and

dim.Lt. f // < N; 8 t > t0:

By the same argument used in the one-dimensional case we can prove that

ft 2 .0; t0/ W Dt ¤ ¿g

is countable. For t > t0, there exists a .N � 1/-dimensional affine sub-space of RN

containing Lt. f / for every t > t0. To conclude the proof we apply the inductive
hypothesis to the restriction of f to this hyperplane. ut
Lemma 3.9 Let ffigi2N � CN and f 2 CN. Assume that fi % f point-wise in R

N as
i ! C1. Then, for all t > 0, except at most for countably many values,

lim
i!1Lt. fi/ D Lt. f /:

Proof For every t > 0, the sequence of convex bodies Lt. fi/, i 2 N, is increasing
and Lt. fi/ � Lt. f / for every i. In particular this sequence admits a limit Lt � Lt. f /.
We choose t > 0 such that

Lt. f / D cl.fx 2 R
N W f .x/ > tg/:

By the previous lemma we know that this condition holds for every t except at most
countably many values. It is clear that for every x s.t. f .x/ > t we have x 2 Lt,
hence Lt 
 fx 2 R

N W f .x/ > tg; on the other hand, as Lt is closed, we have that
Lt 
 Lt. f /. Hence Lt D Lt. f / and the proof is complete. ut
Lemma 3.10 Let ffigi2N � CN and f 2 CN. Assume that fi & f point-wise in RN as
i ! C1. Then for all t > 0

lim
i!1Lt. fi/ D Lt. f /:
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Proof The sequence Lt. fi/ is decreasing and its limit, denoted by Lt, contains Lt. f /.
On the other hand, as now

Lt D
\

k2N
Lt. fk/

(see Lemma 1:8:1 of [16]), if x 2 Lt then fi.x/ � t for every i, so that f .x/ � t i.e.
x 2 Lt. f /. ut

4 Valuations

Definition 4.1 A functional � W CN ! R is said to be a valuation if

• �.0/ D 0, where 0 2 CN is the function identically equal to zero;
• for all f and g 2 CN such that f _ g 2 CN , we have

�. f /C �.g/ D �. f _ g/C �. f ^ g/:

A valuation� is said to be rigid motion invariant, or simply invariant, if for every
rigid motion T W RN ! R

N and for every f 2 CN , we have

�. f / D �. f ı T/:

In this paper we will always consider invariant valuations.We will also need a notion
of continuity which is expressed by the following definition.

Definition 4.2 A valuation � is said to be continuous if for every sequence
ffigi2N � CN and f 2 CN such that fi converges point-wise to f in R

N , and fi is
either monotone increasing or decreasing w.r.t. i, we have

�. fi/ ! �. f /; for i ! C1:

To conclude the list of properties that a valuation may have and that are relevant
to our scope, we say that a valuation � is monotone increasing (resp. decreasing) if,
given f ; g 2 CN ,

f � g point-wise in RN implies �. f / � �.g/ .resp. �. f / � �.g//:

4.1 A Brief Discussion on the Choice of the Topology in CN

A natural choice of a topology in CN would be the one induced by point-wise
convergence. Let us see that this choice would too restrictive, with respect to the
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theory of continuous and rigid motion invariant (but translations would be enough)
valuations. Indeed, any translation invariant valuation � on CN such that

lim
i!1�. fi/ D �. f /

for every sequence fi, i 2 N, in CN , converging to some f 2 CN point-wise, must be
the valuation constantly equal to 0. To prove this claim, let f 2 CN have compact
support, let e1 be the first vector of the canonical basis of RN and set

fi.x/ D f .x � i e1/ 8 x 2 R
N ; 8 i 2 N:

The sequence fi converges point-wise to the function f0 � 0 in R
N , so that, by

translation invariance, and as �. f0/ D 0, we have �. f / D 0. Hence � vanishes
on each function f with compact support. On the other hand every element of CN is
the point-wise limit of a sequence of functions in CN with compact support. Hence
� � 0.

A different choice could be based on the following consideration: we have seen
that CN � L1.RN/, hence it inherits the topology of this space. In [3], Cavallina
studied translation invariant and continuous valuations on L1.RN/. In particular he
proved that there exists non-trivial translation invariant and continuous valuations
on this space, which vanishes on functions with compact support. In particular they
cannot be written in integral form as those found in the present paper. Noting that in
dimensionN D 1 translation and rigid motion invariance provide basically the same
condition, this suggest that the choice of the topology on L1.RN/ on CN would lead
us to a completely different type of valuations.

5 Integral Valuations

A class of examples of invariant valuations which will be crucial for our characteri-
zation results is that of integral valuations.

5.1 Continuous Integral Valuations

Let k 2 f0; : : : ;Ng. For f 2 CN , consider the function

t ! u.t/ D Vk.Lt. f // t > 0:

This is a decreasing function, which vanishes for t > M. f / D maxRN f . In particular
u has bounded variation in Œı;M. f /� for every ı > 0, hence there exists a Radon
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measure defined in .0;1/, that we will denote by Sk. f I �/, such that

�Sk. f I �/ is the distributional derivative of u

(see, for instance, [1]). Note that, as u is decreasing, we have put a minus sign in
this definition to have a non-negative measure. The support of Sk. f I �/ is contained
in Œ0;M. f /�.

Let � be a continuous function defined on Œ0;1/, such that �.0/ D 0. We
consider the functional on CN defined by

�. f / D
Z

.0;1/

�.t/dSk. f I t/ f 2 CN : (10)

The aim of this section is to prove that this is a continuous and invariant valuation
on CN . As a first step, we need to find some condition on the function � which
guarantee that the above integral is well defined for every f .

Assume that

9 ı > 0 s.t. �.t/ D 0 for every t 2 Œ0; ı�: (11)

Then
Z

.0;1/

�C.t/dSk. f I t/ D
Z

Œı;M. f /�
�C.t/ dSk. f ; t/

� M .Vk.Lı. f // � Vk.M. f /// < 1;

where M. f / D maxRN f , M D maxŒı;max
RN f � �C and �C is the positive part of �.

Analogously we can prove that the integral of the negative part of �, denoted by ��,
is finite, so that � is well defined.

We will prove that, for k � 1, condition (11) is necessary as well. Clearly, if �. f /
is well defined (i.e. is a real number) for every f 2 CN , then

Z

.0;1/

�C.t/dSk. f I t/ < 1 and
Z

.0;1/

��.t/dSk. f I t/ < 1 8 f 2 CN :

Assume that �C does not vanish identically in any right neighborhood of the origin.
Then we have

 .t/ WD
Z t

0

�C.	/ d	 > 0 8 t > 0:

The function

t ! h.t/ D
Z 1

t

1

 .s/
ds; t 2 .0; 1�;
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is strictly decreasing. As k � 1, we can construct a function f 2 CN such that

Vk.Lt. f // D h.t/ for every t > 0: (12)

Indeed, consider a function of the form

f .x/ D w.kxk/; x 2 R
N ;

where w 2 C1.Œ0;C1// is positive and strictly decreasing. Then f 2 CN and
Lt. f / D Br.t/, where

r.t/ D w�1.t/

for every t 2 .0; f .0/� (note that f .0/ D M. f /). Hence

Vk.Lt. f // D c .w�1.t//k

where c is a positive constant depending on k and N. Hence if we choose

w D
"�

1

c
h

�1=k#�1
;

(12) is verified. Hence

dSk. f I t/ D 1

 .t/
dt;

and
Z

.0;1/

�C.t/dSk. f I t/ D
Z

.0;M. f //

 0.t/
 .t/

dt D 1:

In the same way we can prove that �� must vanish in a right neighborhood of the
origin. We have proved the following result.

Lemma 5.1 Let � 2 C.Œ0;1// and k 2 f1; : : : ;Ng. Then � has finite integral with
respect to the measure Sk. f I �/ for every f 2 CN if and only if � verifies (11).

In the special case k D 0, as the intrinsic volume V0 is the Euler characteristic,

u.t/ D
�
1 if 0 < t � M. f /;
0 if t > M. f /:

That is, S0 is the Dirac point mass measure concentrated at M. f / and � can be
written as

�. f / D �.M. f // 8f 2 CN :
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Next we show that (10) defines a continuous and invariant valuation.

Proposition 5.2 Let k 2 f0; : : : ;Ng and � 2 C.Œ0;1// be such that �.0/ D 0. If
k � 1 assume that (11) is verified. Then (10) defines an invariant and continuous
valuation on CN.

Proof For every f 2 CN we define the function uf W Œ0;M. f /� ! R as

uf .t/ D Vk.Lt. f //:

As already remarked, this is a decreasing function. In particular it has bounded
variation in Œı;M. f /�. Let �i, i 2 N, be a sequence of functions in C1.Œ0;1//,
with compact support, converging uniformly to � on compact sets. As � � 0 in
Œ0; ı�, we may assume that the same holds for every �i. Then we have

�. f / D lim
i!1�i. f /;

where

�i. f / D
Z

Œ0;1/

�i.t/dSk. f I t/ 8 f 2 CN :

By the definition of distributional derivative of a measure, we have, for every f and
for every i:

Z

Œ0;1/

�i.t/dSk. f I t/ D
Z

Œ0;1/

uf .t/�
0
i .t/dt D

Z

Œ0;M. f /�
Vk.Lt. f //�

0
i .t/dt:

On the other hand, if f ; g 2 CN are such that f _ g 2 CN , for every t > 0

Lt. f _ g/ D Lt. f /[ Lt.g/; Lt. f ^ g/ D Lt. f /\ Lt.g/: (13)

As intrinsic volumes are valuations

Vk.Lt. f _ g//C Vk.Lt. f ^ g// D Vk.Lt. f //C Vk.Lt.g//:

Multiplying both sides times �0
i .t/ and integrating on Œ0;1/ we obtain

�i. f _ g/C �i. f ^ g/ D �i. f /C �i.g/:

Letting i ! 1 we deduce the valuation property for �.
In order to prove the continuity of �, we first consider the case k � 1. Let

fi; f 2 CN , i 2 N, and assume that the sequence fi is either increasing or decreasing
with respect to i, and it converges point-wise to f in R

N . Note that in each case
there exists a constant M > 0 such that M. fi/;M. f / � M for every i. Consider
now the sequence of functions ufi . By the monotonicity of the sequence fi, and that
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of intrinsic volumes, this is a monotone sequence of decreasing functions, and it
converges a.e. to uf in .0;1/, by Lemmas 3.9 and 3.10. In particular the sequence
ufi has uniformly bounded total variation in Œı;M�. Consequently, the sequence of
measures Sk. fiI �/, i 2 N, converges weakly to the measure Sk. f I �/ as i ! 1.
Hence, as � is continuous

lim
i!1�. fi/ D lim

i!1

Z

Œı;M�
�.t/ dSk. fiI t/ D

Z

Œ0;M�
�.t/ dSk. f I t/ D �. f /:

If k D 0 then we have seen that

�. f / D �.M. f // 8 f 2 CN :

Hence in this case continuity follows from the following fact: if fi, i 2 N, is a
monotone sequence in CN converging point-wise to f , then

lim
i!1M. fi/ D M. f /:

This is a simple exercise that we leave to the reader.
Finally, the invariance of � follows directly from the invariance of intrinsic

volumes with respect to rigid motions. ut

5.2 Monotone (and Continuous) Integral Valuations

In this section we introduce a slightly different type of integral valuations, which
will be needed to characterize all possible continuous and monotone valuations on
CN . Note that, as it will be clear in the sequel, when the involved functions are
smooth enough, the two types can be reduced one to another by an integration by
parts.

Let k 2 f0; : : : ;Ng and let � be a Radon measure on .0;C1/; assume that

Z C1

0

Vk.Lt. f //d�.t/ < C1; 8f 2 CN : (14)

We will return later on explicit condition on � such that (14) holds. Then define the
functional � W CN ! R by

�. f / D
Z C1

0

Vk.Lt. f //d�.t/ 8 f 2 CN : (15)

Proposition 5.3 Let � be a Radon measure on .0;1/ which verifies (14); then
the functional defined by (15) is a rigid motion invariant and monotone increasing
valuation.
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Proof The proof that � is a valuation follows from (13) and the valuation property
for intrinsic volumes, as in the proof of Proposition 5.2. The same can be done for
invariance. As for monotonicity, note that if f ; g 2 CN and f � g, then

Lt. f / � Lt.g/ 8 t > 0:

Therefore, as intrinsic volumes are monotone, Vk.Lt. f // � VK.Lt.g// for every
t > 0. ut

If we do not impose any further assumption the valuation � needs not to be
continuous. Indeed, for example, if we fix t D t0 > 0 and let � D ıt0 be the delta
Dirac measure at t0; then the valuation

�. f / D VN.Lt0 . f //; 8f 2 CN ;

is not continuous. To see it, let f D t0IB1 (recall that B1 is the unit ball of R
N) and

let

fi D t0

�
1 � 1

i

�
IB1 8 i 2 N:

Then fi is a monotone sequence of elements of CN converging point wise to f in RN .
On the other hand

�. fi/ D 0 8 i 2 N;

while �. f / D VN.B1/ > 0. The next results asserts that the presence of atoms is
the only possible cause of discontinuity for �. We recall that a measure � defined
on Œ0;1/ is said non-atomic if �.ftg/ D 0 for every t � 0.

Proposition 5.4 Let � be a Radon measure on .0;C1/ such that (14) holds and
let � be the valuation defined by (14). Then the two following conditions are
equivalent:

i) � is non-atomic,
ii) � is continuous.

Proof Suppose that i) does not hold, than there exists t0 such that �.ft0g/ D ˛ > 0.
Define ' W RC ! R by

'.t/ D
Z

.0;t�
d�.s/:

' is an increasing function with a jump discontinuity at t0 of amplitude ˛. Now let
f D t0IB1 and fi D t0.1 � 1

i /IB1 , for i 2 N. Then fi is an increasing sequence in CN ,
converging point-wise to f in RN . On the other hand

�. f / D
Z t0

0

Vk.B/d�.s/ D Vk.B/�..0; t0�/ D Vk.B1/ '.t0/
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and similarly

�. fi/ D Vk.B1/ '

�
t0 � 1

i

�
:

Consequently

lim
i!C1�. fi/ < �. f /:

Vice versa, suppose that i) holds. We observe that, as � is non-atomic, every
countable subset has measure zero with respect to �. Let fi 2 CN , i 2 N, be a
sequence such that either fi % f or fi . f as i ! C1, point-wise in R

N , for some
f 2 CN . Set

ui.t/ D Vk.Lt. fi//; u.t/ D Vk.Lt. f // 8 t � 0; 8 k 2 N:

The sequence ui is monotone and, by Lemmas 3.9 and 3.10, converges to u �-
a.e. Hence, by the continuity of intrinsic volumes and the monotone convergence
theorem, we obtain

lim
i!1�. fi/ D lim

i!1

Z

.0;1/

ui.t/ d� D
Z

.0;1/

u.t/ d�.t/ D �. f /:

ut
Now we are going to find a more explicit form of condition (14). We need the

following lemma.

Lemma 5.5 Let � W Œ0;C1/ ! R be an increasing, non negative and continuous
function with �.0/ D 0 and �.t/ > 0, for all t > 0. Let � be a Radon measure such
that �.t/ D �.Œ0; t�/, for all t � 0. Then

Z 1

0

1

�k.t/
d�.t/ D C1; 8k � 1:

Proof Fix ˛ 2 Œ0; 1�. The function  W Œ˛; 1� ! R defined by

 .t/ D

8
ˆ̂<

ˆ̂:

1

k � 1
�1�k.t/ if k > 1;

ln.�.t// if k D 1;

is continuous and with bounded variation in Œ˛; 1�. Its distributional derivative is

1

�k.t/
�:
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Hence, for k > 1,

1

k � 1
Œ�1�k.˛/ � �1�k.1/� D  .1/ �  .˛/ D

Z

Œ˛;1�

d�

�k.t/
:

The claim of the lemma follows letting ˛ ! 0C. A similar argument can be applied
to the case k D 1. ut
Proposition 5.6 Let � be a non-atomic Radon measure on Œ0;C1/ and let k 2
f1; : : : ;Ng. Then (14) holds if and only if:

9ı > 0 such that �.Œ0; ı�/ D 0: (16)

Proof We suppose that there exists ı > 0 such that Œ0; ı� \ supp.�/ D ¿. Then we
have, for every f 2 CN ,

�. f / D
Z M. f /

ı

Vi.Lt. f //d�.t/ � Vi.Lı. f //
Z M. f /

ı

d�.t/ (17)

D Vi.Lı. f //.�.Œ0;M. f /�/ � �.Œ0; ı�// < C1: (18)

withM. f / D maxRN f .
Vice versa, assume that (14) holds. By contradiction, we suppose that for all

ı > 0, we have �.Œ0; ı�/ > 0. We define

�.t/ D �.Œ0; t�/; t 2 Œ0; 1�
then � is continuous (as � is non-atomic) and increasing; moreover �.0/ D 0 and
�.t/ > 0, for all t > 0. The function

 .t/ D 1

t�.t/
; t 2 .0; 1�;

is continuous and strictly decreasing. Its inverse  �1 is defined in Œ .1/;1/; we
extend it to Œ0;  .1// setting

 �1.r/ D 1 8 r 2 Œ0;  .1//:
Then

V1.fr 2 Œ0;C1/ W  �1.r/ � tg/ D
8
<

:

 .t/; 8 t 2 .0; 1�

0 8 t > 1:

We define now the function f W R
N ! R as

f .x/ D  �1.jjxjj/; 8 x 2 R
N :
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Then

Lt. f / D fx 2 R
N W  .jjxjj/ � tg D B 1

t�.t/
.0/;

and

Vk.Lt. f // D c
1

tk�k.t/
8 t 2 .0; 1�;

where c > 0 depends on N and k. Hence, by Lemma 5.5

Z C1

0

Vk.Lt. f //d�.t/ D
Z 1

0

Vk.Lt. f //d�.t/ � c
Z C1

0

d�.t/

�k.t/
D C1:

ut
The following proposition summarizes some of the results we have found so far.

Proposition 5.7 Let k 2 f0; : : : ;Ng and let � be a Radon measure on Œ0;1/ which
is non-atomic and, if k � 1, verifies condition (16). Then the map � W CN ! R

defined by (15) is an invariant, continuous and increasing valuations.

5.3 The Connection Between the Two Types of Integral
Valuations

When the regularity of the involved functions permits, the two types of integral
valuations that we have seen can be obtained one from each other by a simple
integration by parts.

Let k 2 f0; : : : ;Ng and � 2 C1.Œ0;1// be such that �.0/ D 0. For simplicity,
we may assume also that � has compact support. Let f 2 CN . By the definition of
distributional derivative of an increasing function we have:

Z

Œ0;1/

�.t/ dSk. f I t/ D
Z

Œ0;1/

�0.t/Vk.Lt. f //dt:

If we further decompose ��0 as the difference of two non-negative functions, and
we denote by �1 and �2 the Radon measures having those functions as densities, we
get

Z

Œ0;1/

�.t/ dSk. f I t/ D
Z

Œ0;1/

Vk.Lt. f //d�1.t/ �
Z

Œ0;1/

Vk.Lt. f //d�2.t/:

The assumption that � has compact support can be removed by a standard
approximation argument. In his way we have seen that each valuation of the



Valuations on the Space of Quasi-Concave Functions 93

form (10), if � is regular, is the difference of two monotone integral valuations
of type (15).

Vice versa, let � be a Radon measure (with support contained in Œı;1/, for
some ı > 0), and assume that it has a smooth density with respect to the Lebesgue
measure:

d�.t/ D �0.t/dt

where � 2 C1.Œ0;1//, and it has compact support. Then

Z

Œ0;1/

Vk.Lt. f // d�.t/ D
Z

Œ0;1/

�.t/ dSk. f I t/:

Also in this case the assumption that the support of � is compact can be removed.
In other words each integral monotone valuation, with sufficiently smooth density,
can be written in the form (10).

5.4 The Case k D N

If � is a valuation of the form (10) and k D N, the Layer Cake principle provides
and alternative simple representation.

Proposition 5.8 Let � be a continuous function on Œ0;1/ verifying (16). Then for
every f 2 CN we have

Z

Œ0;1/

�.t/ dSN. f I t/ D
Z

RN
�. f .x//dx: (19)

Proof As � can be written as the difference of two non-negative continuous
function, and (19) is linear with respect to �, there is no restriction if we assume
that � � 0. In addition we suppose initially that � 2 C1.Œ0;1// and it has compact
support. Fix f 2 CN ; by the definition of distributional derivative, we have

Z

Œ0;1/

�.t/ dSN. f I t/ D
Z

Œ0;1/

VN.Lt. f //�
0.t/dt:

There exists �1; �2 2 C1.Œ0;1//, strictly increasing, such that � D �1 � �2. Now:

Z

Œ0;1/

VN.Lt. f //�
0
1.t/dtD

Z

Œ0;1/

VN.fx 2 R
N W �1.f .x// � sg/dsD

Z

RN
�1. f .x//dx;

where in the last equality we have used the Layer Cake principle. Applying the
same argument to �2 we obtain (19) when � is smooth and compactly supported.
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For the general case, we apply the result obtained in the previous part of the proof
to a sequence �i, i 2 N, of functions in C1.Œ0;1//, with compact support, which
converges uniformly to � on compact subsets of .0;1/. The conclusion follows
from a direct application of the dominated convergence theorem. ut

6 Simple Valuations

Throughout this section � will be an invariant and continuous valuation on CN . We
will also assume that � is simple.

Definition 6.1 A valuation � on CN is said to be simple if, for every f 2 CN with
dim.supp. f // < N, we have �. f / D 0.

Note that dim.supp. f // < N implies that f D 0 a.e. in R
N , hence each valuation

of the form (19) is simple. We are going to prove that in fact the converse of this
statement is true.

Fix t � 0 and define a real-valued function �t on KN [ f¿g as

�t.K/ D �.tIK/ 8K 2 KN ; �t.¿/ D 0:

Let K;L 2 KN be such that K [ L 2 KN . As, trivially,

tIK _ tIL D tIK[L and tIK ^ tIL D tIK\L;

using the valuation property of � we infer

�t.K [ L/C �t.K \ L/ D �t.K/C �t.L/;

i.e. �t is a valuation onKN . It also inherits directly two properties of �: it is invariant
and simple. Then, by the continuity of �, Corollary 2.7 and the subsequent remark,
there exists a constant c such that

�t.K/ D cVN.K/ (20)

for every K 2 KN . The constant c will in general depend on t, i.e. it is a real-valued
function defined in Œ0;1/. We denote this function by �N . Note that, as �. f / D 0

for f � 0, �N.0/ D 0. Moreover, the continuity of � implies that for every t0 � 0

and for every monotone sequence ti, i 2 N, converging to t0, we have

�N.t0/ D lim
i!1�N.ti/:

From this it follows that �N is continuous in Œ0;1/.
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Proposition 6.2 Let � be an invariant, continuous and simple valuation on CN.
Then there exists a continuous function �N on Œ0;1/, such that

�.tIK/ D �N.t/VN.K/

for every t � 0 and for every K 2 KN.

6.1 Simple Functions

Definition 6.3 A function f W R
N ! R is called simple if it can be written in the

form

f D t1IK1 _ � � � _ tmIKm (21)

where 0 < t1 < � � � < tm and K1; : : : ;Km are convex bodies such that

K1 
 K2 
 � � � 
 Km:

The proof of the following fact is straightforward.

Proposition 6.4 Let f be a simple function of the form (21) and let t > 0. Then

Lt. f / D fx 2 R
N W f .x/ � tg D

8
<

:

Ki if t 2 .ti�1; ti� for some i D 1; : : :m;

¿ if t > tm;
(22)

where we have set t0 D 0.

In particular simple functions are quasi-concave. Let k 2 f0; : : : ;Ng, and let f be
of the form (21). Consider the function

t ! u.t/ WD Vk.Lt. f //; t > 0:

By Proposition 6.4, this is a decreasing function that is constant on each interval of
the form .ti�1; ti�, on which it has the valueVk.Ki/. Hence its distributional derivative
is �Sk. f I �/, where

Sk. f I �/ D
m�1X

iD1
.Vk.Ki/� Vk.KiC1// ıti.�/C Vk.Km/ıtm.�/: (23)
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6.2 Characterization of Simple Valuations

In this section we are going to prove Theorem 1.2. We will first prove it for simple
functions and then pass to the general case by approximation.

Lemma 6.5 Let � be an invariant, continuous and simple valuation on CN, and let
� D �N be the function whose existence is established in Proposition 6.2. Then, for
every simple function f 2 CN we have

�. f / D
Z

Œ0;1/

�.t/ dSN. f I t/:

Proof Let f be of the form (21). We prove the following formula

�. f / D
m�1X

iD1
�.ti/.VN.Ki/ � VN.KiC1//C �.tm/VN.Km/I (24)

by (23), this is equivalent to the statement of the lemma. Equality (24) will be proved
by induction onm. Form D 1 its validity follows from Proposition 6.2. Assume that
it has been proved up to .m � 1/. Set

g D t1IK1 _ � � � _ tm�1IKm�1 ; h D tmIKm :

We have that g; h 2 CN and

g _ h D f 2 CN ; g ^ h D tm�1IKm :

Using the valuation property of � and Proposition 6.2 we get

�. f / D �.g _ h/ D �.g/C �.h/� �.g ^ h/

D �.g/C �.tm/VN.Km/ � �.tm�1/VN.Km/:

On the other hand, by induction

�.g/ D
m�2X

iD1
�.ti/.VN.Ki/� VN.KiC1//C �.tm�1/VN.Km�1/:

The last two equalities complete the proof. ut
Proof of Theorem 1.2 As before, � D �N is the function coming from Proposi-
tion 6.2. We want to prove that

�. f / D
Z

Œ0;1/

�.t/ dSN. f I t/ (25)
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for every f 2 CN . This, together with Proposition 5.8, provides the proof.

Step 1. Our first step is to establish the validity of this formula when the support
of f bounded, i.e. there exists some convex body K such that

Lt. f / � K 8 t > 0: (26)

Given f 2 CN with this property, we build a monotone sequence of simple
functions, fi, i 2 N, converging point-wise to f in R

N . Let M D M. f / be the
maximum of f on RN . Fix i 2 N. We consider the dyadic partition Pi of Œ0;M�:

Pi D
�
tj D j

M

2i
W j D 0; : : : ; 2i

�
:

Set

Kj D Ltj. f /; fi D
2i_

jD1
tjIKj :

fi is a simple function; as tjIKj � f for every j we have that fi � f in R
N . The

sequence of function fi is increasing, since Pi � PiC1. The inequality fi � f
implies that

lim
i!1 fi.x/ � f .x/ 8 x 2 R

N

(in particular the support of fi is contained in K, for every i 2 N). We want to
establish the reverse inequality. Let x 2 R

N ; if f .x/ D 0 then trivially

fi.x/ D 0 8 i hence lim
i!1 fi.x/ D f .x/:

Assume that f .x/ > 0 and fix � > 0. Let i0 2 N be such that 2�i0M < �. Let
j 2 f1; : : : ; 2i0 � 1g be such that

f .x/ 2
�
j
M

2i0
; . j C 1/

M

2i0

�
:

Then

f .x/ � j
M

2i0
C M

2i0
� fi0 .x/C � � lim

i!1 fi.x/C �:

Hence the sequence fi converges point-wise to f in R
N . In particular, by the

continuity of � we have that

�. f / D lim
i!1�. fi/ D lim

i!1

Z

Œ0;1/

�.t/ dSN. fiI t/:
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By Lemma 3.9, a further consequence is that

lim
i!1 ui.t/ D u.t/ for a.e. t 2 .0;1/;

where

ui.t/ D VN.Lt. fi//; i 2 N; u.t/ D VN.Lt. f //

for t > 0. We consider now the sequence of measures SN. fiI �/, i 2 N; the total
variation of these measures in .0;1/ is uniformly bounded by VN.K/, moreover
they are all supported in .0;M/. As they are the distributional derivatives of
the functions ui, which converges a.e. to u, we have that (see for instance
[1, Proposition 3.13]) the sequence SN. fiI �/ converges weakly in the sense of
measures to SN. f I �/. This implies that

lim
i!1

Z

.0;1/

N�.t/ dSN. fiI t/ D
Z

.0;1/

N�.t/ dSN. f I t/ (27)

for every function N� continuous in .0;1/, such that N�.0/ D 0 and N�.t/ is
identically zero for t sufficiently large. In particular (recalling that �.0/ D 0), we
can take N� such that it equals � in Œ0;M�. Hence, as the support of the measures
SN. fiI �/ is contained in this interval, we have that (27) holds for � as well. This
proves the validity of (25) for functions with bounded support.

Step 2. This is the most technical part of the proof. The main scope here is to
prove that � is identically zero in some right neighborhood of the origin. Let
f 2 CN . For i 2 N, let

fi D f ^ .M. f /IBi/

where Bi is the closed ball centered at the origin, with radius i. The function fi
coincides with f in Bi and vanishes inRNnBi; in particular it has bounded support.
Moreover, the sequence fi, i 2 N, is increasing and converges point-wise to f in
R

N . Hence

�. f / D lim
i!1�. fi/ D lim

i!1

Z

.0;1/

�.t/ dSN. fiI t/:

Let �C and �� be the positive and negative parts of �, respectively. We have that

lim
i!1

�Z

.0;1/

�C.t/ dSN. fiI t/C
Z

.0;1/

��.t/ dSN. fiI t/
�

exists and it is finite. We want to prove that this implies that �C and �� vanishes
identically in Œ0; ı� for some ı > 0.
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By contradiction, assume that this is not true for �C. Then there exists three
sequences ti, ri and �i, i 2 N, with the following properties: ti tends decreasing to
zero; ri > 0 is such that the intervals Ci D Œti � ri; ti C ri� are contained in .0; 1�
and pairwise disjoint; �C.t/ � �i > 0 for t 2 Ci. Let

C D
[

i2N
Ci ; � D .0; 1� n C:

Next we define a function 
 W .0; 1� ! Œ0;1/ as follows. 
.t/ D 0 for every
t 2 � while, for every i 2 N, 
 is continuous in Ci and


.ti ˙ ri/ D 0;

Z

Ci


.t/dt D 1

�i
:

Note in particular that 
 vanishes on the support of �� intersected with .0; 1�.
We also set

g.t/ D 
.t/C 1 8 t > 0:

Observe that
Z 1

0

��.t/g.t/dt D
Z 1

0

��.t/dt < 1:

On the other hand

Z 1

0

�C.t/g.t/dt �
Z 1

0

�.t/
.t/dt D
1X

iD1

Z

Ci

�C.t/
.t/dt

�
1X

iD1
�i

Z

Ci


.t/dt D C1:

Let

G.t/ D
Z 1

t
g.s/ds and �.t/ D ŒG.t/�1=N ; 0 < t � 1:

As 
 is non-negative, g is strictly positive, and continuous in .0; 1/. Hence G is
strictly decreasing and continuous, and the same holds for �. Let

S D sup
.0;1�

� D lim
t!0C

�.t/;

and let ��1 W Œ0; S/ ! R be the inverse function of �. If S < 1, we extend ��1
to be zero in ŒS;1/. In this way, ��1 is continuous in Œ0;1/, and C1.Œ0; S//. Let

f .x/ D ��1.kxk/; 8 x 2 R
N :
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For t > 0 we have

Lt. f / D
� fx 2 R

N W kxk � �.t/g if t � 1;

¿ if t > 1:

In particular f 2 CN . Consequently,

VN.Lt. f // D c �N.t/ D cG.t/ 8 t 2 .0; 1�;
where c > 0 is a dimensional constant, and then

dSN. f I t/ D c g.t/dt:

By the previous considerations
Z

Œ0;1/

�C.t/dSN. f ; t/D c
Z

Œ0;1/

�C.t/g.t/dtD 1;

Z

Œ0;1/

�C.t/dSN. f ; t/ < 1:

Clearly we also have that
Z

Œ0;1/

�C.t/dSN. f ; t/ D lim
i!1

Z

Œ0;1/

�C.t/dSN. fi; t/;

and the same holds for ��; here fi is the sequence approximating f defined before.
We reached a contradiction.

Step 3. The conclusion of the proof proceeds as follows. Let N� W CN ! R be
defined by

N�. f / D
Z

.0;1/

�.t/ dSN. f I t/:

By the previous step, and by the results of Sect. 5.1, this is well defined, and is
an invariant and continuous valuation. Hence the same properties are shared by
� � N�; on the other hand, by Step 1 and the definition of N�, this vanishes on
functions with bounded support. As for any element f of CN there is a monotone
sequence of functions in CN , with bounded support and converging point-wise to
f in R

N , and as � � N� is continuous, it must be identically zero on CN .
ut

7 Proof of Theorem 1.1

We proceed by induction on N. For the first step of induction, let � be an invariant
and continuous valuation on C1. For t > 0 let

�0.t/ D �.tIf0g/:
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This is a continuous function in R, with �0.0/ D 0. We consider the application
�0 W C1 ! R:

�0. f / D �0.M. f //

where as usual M. f / D maxR f . By what we have seen in Sect. 5.1, this is an
invariant and continuous valuation. Note that it can be written in the form

�0. f / D
Z

.0;1/

�0.t/ dS0. f I t/:

Next we set N� D � � �0; this is still an invariant and continuous valuation, and it
is also simple. Indeed, if f 2 C1 is such that dim.supp. f // D 0, this is equivalent to
say that

f D tIfx0g

for some t � 0 and x0 2 R. Hence

�. f / D �.tIf0g/ D �0.t/ D �0. f /:

Therefore we may apply Theorem 1.2 to �1 and deduce that there exists a function
�1 2 C.Œ0;1//, which vanishes identically in Œ0; ı� for some ı > 0, and such that

N�. f / D
Z

.0;1/

�1.t/ dS1. f I t/ 8 f 2 C1:

The proof in the one-dimensional case is complete.
We suppose that the Theorem holds up to dimension .N � 1/. Let H be an

hyperplane of R
N and define CN

H D ff 2 CN W supp. f / � Hg. CN
H can be

identified with CN�1; moreover � restricted to CN
H is trivially still an invariant and

continuous valuation. By the induction assumption, there exists �k 2 C.Œ0;1//,
k D 0; : : : ;N � 1, such that

�. f / D
N�1X

kD0

Z

.0;1/

�k.t/ dSk. f I t/ 8 f 2 CN
H :

In addition, there exists ı > 0 such that �1; : : : ; �N�1 vanish in Œ0; ı�. Let N� W CN !
R as

N�. f / D
N�1X

kD0

Z

.0;1/

�k.t/ dSk. f I t/:
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This is well defined for f 2 CN and it is an invariant and continuous valuation. The
difference � � N� is simple; applying Theorem 1.2 to it, as in the one-dimensional
case, we complete the proof. �

8 Monotone Valuations

In this section we will prove Theorem 1.3; in particular we will assume that � is
an invariant, continuous and increasing valuation on CN throughout. Note that, as
�. f0/ D 0, where f0 is the function identically zero in R

N , we have that �. f / � 0

for every f 2 CN .
The proof is divided into three parts.

8.1 Identification of the Measures �k, k D 0; : : : ;N

We proceed as in the proof of Proposition 6.2. Fix t > 0 and consider the application
�t W KN ! R:

�t.K/ D �.tIK/; K 2 KN :

This is a rigid motion invariant valuation on KN and, as � is increasing, �t has the
same property. Hence there exists .N C 1/ coefficients, depending on t, that we
denote by  k.t/, k D 0; : : : ;N, such that

�t.K/ D
NX

kD0
 k.t/Vk.K/ 8K 2 KN : (28)

We prove that each  k is continuous and monotone in .0;1/. Let us fix the index
k 2 f0; : : : ;Ng, and let �k be a closed k-dimensional ball in R

N , of radius 1. We
have

Vj.�k/ D 0 8 j D k C 1; : : : ;N;

and

Vk.�k/ DW c.k/ > 0:

Fix r � 0; for every j, Vj is positively homogeneous of order j, hence, for t > 0,

�.tIr�k/ D
kX

jD0
rjVj.�k/ j.t/:
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Consequently

 k.t/ D Vk.�k/ � lim
r!1

�.tIr�k/

rk
:

By the properties of �, the function t ! �.tIr�k/ is non-negative, increasing and
vanishes for t D 0, for every r � 0; these properties are inherited by  k.

As for continuity, we proceed in a similar way. To prove that  0 is continuous
we observe that the function

t ! �.t�0/ D  0.t/

is continuous, by the continuity of�. Assume that we have proved that 0; : : : ;  k�1
are continuous. Then by the equality

�.tI�k/ D
kX

jD1
Vj.�k/ j.t/;

it follows that  k is continuous.

Proposition 8.1 Let � be an invariant, continuous and increasing valuation on CN.
Then there exists .N C 1/ functions  0; : : : ;  N defined in Œ0;1/, such that (28)
holds for every t � 0 and for every K. In particular each  k is continuous,
increasing, and vanishes at t D 0.

For every k 2 f0; : : : ;Ng we denote by �k the distributional derivative of  k. In
particular as  k is continuous, �k is non-atomic and

 k.t/ D �k.Œ0; t//; 8 t � 0:

Since  k are non-negative functions, by Theorem 2.6, then �k are non-negative
measures.

8.2 The Case of Simple Functions

Let f be a simple function:

f D t1IK1 _ � � � _ tmIKm

with 0 < t1 < � � � < tm, K1 
 � � � 
 Km and Ki 2 KN for every i. The following
formula can be proved with the same method used for (24)

�. f / D
NX

kD0

mX

iD1
. k.ti/�  k.ti�1//Vk.Lti . f //; (29)
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where we have set t0 D 0. As

 k.ti/ �  k.ti�1/ D �k..ti�1; ti�/

and Lt. f / D Ki for every t 2 .ti�1; ti�, we have

�. f / D
NX

kD0

Z

Œ0;1/

Vk.Lt. f // d�k.t/: (30)

In other words, we have proved the theorem for simple functions.

8.3 Proof of Theorem 1.3

Let f 2 CN and let fi, i 2 N, be the sequence of functions built in the proof of
Theorem 1.2, Step 2. We have seen that fi is increasing and converges point-wise to
f in R

N . In particular, for every k D 0; : : : ;N, the sequence of functions Vk.Lt. fi//,
t � 0, i 2 N, is monotone increasing and it converges a.e. to Vk.Lt. f // in Œ0;1/.
By the B. Levi theorem, we have that

lim
i!1

Z

Œ0;1/

Vk.Lt. fi// d�k.t/ D
Z

Œ0;1/

Vk.Lt. f // d�k.t/

for every k. Using (30) and the continuity of � we have that the representation
formula (30) can be extended to every f 2 CN .

Note that in (21) each term of the sum in the right hand-side is non-negative,
hence we have that

Z

Œ0;1/

Vk.Lt. f // d�k.t/ < 1 8 f 2 CN :

Applying Proposition 5.6 we obtain that, if k � 1, there exists ı > 0 such that the
support of �k is contained in Œı;1/. The proof is complete. �
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