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Abstract We settle a question of Farrell and Vershynin on the inverse of the
perturbation of a given arbitrary symmetric matrix by a GOE element.

1 Introduction

In [1], the authors consider the invertibility of d�d-matrices of the formDCR, with
D an arbitrary symmetric deterministic matrix and R a symmetric random matrix
whose independent entries have continuous distributions with bounded densities. In
this setting, a uniform estimate

k.D C R/�1k D O.d2/ (1)

is shown to hold with high probability. The authors conjecture that (1) may be
improved to O.

p
d/. The purpose of this short Note is to prove this in the case

R is Gaussian. Thus we have (stated in the `2
d-normalized setting).

Proposition Let T be an arbitrary matrix in Sym.d/. Then, for A (normalized) in
GOE, there is a uniform estimate

k.A C T/�1k D O.d/ (2)

with large probability.
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2 Proof of the Proposition

By invariance of GOE under orthogonal transformations, we may assume T
diagonal. Let K be a suitable constant and partition

f1; : : : ; dg D �1 [ �2

with

�1 D f j D 1; : : : ; dI jTjjj > Kg:

Denote T.i/ D ��iT��i .i D 1; 2/ and A.i;j/ D ��iA��j.i; j D 1; 2/. Since

.A.1;1/ C T.1//�1 D �
I C .T.1//�1A.1;1//.T.1//�1

and

k.T.1//�1A.1;1/k � 1

K
kA.1;1/k <

1

2

with large probability, we ensure that

k.A.1;1/ C T.1//�1k < 1: (3)

Next, write by the Schur complement formula

.A C T/�1

D
0

@.A.1;1/ C T.1//�1 C .A.1;1/ C T.1//�1A.1;2/S�1A.2;1/.A.1;1/ C T.1//�1 �.A.1;1/ C T.1//�1A.1;2/S�1

�S�1A.2;1/.A.1;1/ C T.1//�1 S�1

1

A

(4)

defining

S D A.2;2/ C T.2/ � A.2;1/.A.1;1/ C T.1//�1A.1;2/: (5)

Hence by (4)

k.A C T/�1k � C.1 C k.A.1;1/ C T.1//�1k2/.1 C kAk2/kS�1k
� C1kS�1k:

(6)
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Note that A.2;2/ and A.2;1/.A.1;1/CT.1//�1A.1;2/ are independent in the A randomness.
Thus S may be written in the form

S D A.2;2/ C S0 (7)

with S0 2 Sym.d/; kS0k < O.1/ (by construction, kT.2/k � K) and A.2;2/ and S0

independent.
Fixing S0, we may again exploit the invariance to put S0 in diagonal form,

obtaining

A.2;2/ C S0
0 with S0

0 diagonal : (8)

Hence, we reduced the original problem to the case T is diagonal and kTk <

K C 1.
Note however that (8) is a .d1 � d1/-matrix and since d1 may be significantly

smaller than d, A.2;2/ is not necessarily normalized anymore. Thus after renormal-
ization of A.2;2/, setting

A1 D
� d

d1

� 1
2
A.2;2/ (9)

and denoting

T1 D
� d

d1

� 1
2
S0

0 (10)

we have

kT1k <
� d

d1

� 1
2
.K C 1/ (11)

while the condition [cf. (6)]

k.A.2;2/ C S0
0/

�1k D O.d/ (12)

becomes

k.A1 C T1/
�1k D O.

p
dd1/: (13)

At this point, we invoke Theorem 1.2 from [2]. As Vershynin kindly pointed out
to the author, the argument in [2] simplifies considerably in the Gaussian case.
Examination of the proof shows that in fact the statement from [2], Theorem 1.2
can be improved in this case as follows.
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Claim Let A be a d � d normalized GOE matrix and T a deterministic, diagonal
.d � d/-matrix. Then

PŒk.A C T/�1k > �d� � C.1 C kTk/�� 1
9 : (14)

We distinguish two cases. If d1 � 1
C2
d;C2 > C3

1, immediately apply the above
claim with d replaced by d1, A by A1 and T by T1. Thus by (11)

PŒk.A1CT1/�1k > �
p
dd1� � C.1CkT1k/

�d1

d

�� 1
18

�� 1
9 < C

�
1C

p
C2.KC1/

�
�� 1

9

(15)

and (12) follows. If d1 < 1
C2
d, repeat the preceding replacing A by A1, T by T1. In

the definition of �1, replace K by K1 D 2K, so that (3) will hold with probability at
least

1 � e�cK2
1 D 1 � e�4cK2

(16)

the point being of making the measure bounds e�c4sK2
, s D 0; 1; 2; : : : obtained in

an iteration, sum up to e�c1K2 D o.1/.
Note that in (13), we only seek for an estimate

k.A1 C T1/�1k < O
�p

C2

C1

d1

�
(17)

hence, cf. (12)

k.A.2;2/
1 C S0

1;0/
�1k < O

�p
d2

C1

d1

�
(18)

where A.2;2/
1 and S0

1;0 are defined as before, considering now A1 and T1. Hence (13)
gets replaced by

k.A2 C T2/
�1k D O

�p
C2

C1

p
d1d2

�
(19)

where A2;T2 are .d2 � d2/-matrices,

kT2k <
�d1

d2

� 1
2
.2K C 1/: (20)
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Assuming d2 � 1
C2
d1, we obtain instead of (15)

PŒk.A2 C T2/
�1k > �

p
C2

C1

p
d1d2� � C

�
1 C

p
C2.K1 C 1/

��
p
C2

C1

�
�� 1

9

< C
�
1 C

p
C2.K C 1/

�
.2C

1
9

1 C
� 1

18

2 /�� 1
9

(21)

and we take C2 to ensure that 2C
1
9

1 C
� 1

18

2 < 1
2
.

The continuation of the process is now clear and terminates in at most 2 log d
steps. At step s, we obtain if dsC1 � 1

C2
ds

P

h
k.AsC1 C TsC1/

�1k > �
�p

C2

C1

�sp
dsdsC1

i
< C

�
1 C

p
C2.K C 1/

�
2�s�� 1

9 :

(22)

Summation over s gives a measure estimate O.�� 1
9 / D o.1/.

This concludes the proof of the Proposition. From quantitative point of view,
previous argument shows

Proposition’ Let T and A be as in the Proposition. Then

PŒk.A C T/�1k > �d� < O.�� 1
10 /: (23)
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Note The author’s interest in this issue came up in the study ( joint with I. Gold-
sheid) of quantitative localization of eigenfunctions of random band matrices. The
purpose of this Note is to justify some estimates in this forthcoming work.
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