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Abstract We develop an orbit point of view on the notations of type and cotype
and extend Kwapien’s theorem to this setting. We show that such approach provides
an exact equality in the latter theorem. In addition, we discuss several well known
theorems and reformulate them using the orbit point of view.

1 Introduction

Let X D .Rn; jj � jj/ be an n-dimensional normed space. For a given integer k define
by ˛.k/; ˇ.k/ the smallest possible constants, satisfying
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for any fxigk1 � X and �i independent normalized Gaussian random variables. We
say that X has type 2 ˛ where ˛ D supk ˛.k/. Similarly we say that X has cotype 2

constant ˇ where ˇ D supk ˇ.k/. By a result of Tomczak-Jaegermann (see [11]), it
is known that ˛ � 2˛.n/ and ˇ � 2ˇ.n/. Thus, up to a universal constant we may
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always deal with n-tuples in the definition of type and cotype for n-dimensional
spaces. Both notions play an important role in the study of Banach spaces and local
theory.

Remark 1.1 In this note we consider only Gaussian type and cotype constants, and
we do not deal with Rademacher type and cotype (see [6, 7, 11]).

Before we discuss a few examples, recall that given two n dimensional normed
spaces X;Y, the Banach Mazur distance between X;Y is

d.X;Y/ D supfjjTjjjjT�1jj W T W X ! Y is an isomorphismg:

Whenever Y is a Euclidean space, we will denote d.X;Y/ by dX . The next theorem,
due to Kwapien, provides an upper bound for dX through type 2 and cotype 2
constants.

Theorem 1.2 (Kwapien [4]) Let X be a (finite or infinite) Banach space. Then, X
is isomorphic to a Hilbert space if and only if it has a finite type 2 and a finite cotype
2 constants. Moreover, in this case we have dX � ˛ˇ, where ˛ is the type 2 constant
and ˇ is the cotype 2 constant of X.

It can be shown that the bound in Theorem 1.2 is not optimal. That is, we can find a
space X such that ˛ˇ is of order n, which is clearly not optimal since dX is always
bounded by

p
n (John’s Theorem). In this note we present a new point of view

on the above result, which provides us an equality instead of an upper bound in
Theorem 1.2. To this end, we present the notion of orbits in normed spaces.

Definition 1.3 Let x D .x1; : : : xk/ � X. We say that a k-tuple y D .y1; : : : yk/
belongs to the orbit set of x if there exists U D .uij/ 2 O.k/ such that

yi D
kX

jD1

uijxj:

The set of all such k-tuples will be denoted by O.x/ D fUx W U 2 O.k/g and called
the orbit of x.

Using this notion, we may define the Gaussian type 2 and cotype 2 of an orbit x as
the smallest constants ˛.x/; ˇ.x/ such that
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for all y 2 O.x/. Clearly, ˛.x/ D ˛.y/ and ˇ.x/ D ˇ.y/ for all y 2 O.x/, so the
constants are well defined. Denote

g.x; �/ D E

�����
kX
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�����
2

;

where � D f�igk1. Due to the rotation invariance of the standard Gaussian measure
we have that if y 2 O.x/ then g.x; �/ D g.y; � 0/, where � 0 D f� 0

i gk1 are independent
Gaussian variables, which are also independent of � (see e.g. [9, Chap. 2, p. 13]).
Hence,

˛.x/ˇ.x/ D inf

8<
:

 Pk
iD1 jjyijj2Pk
iD1 jjzijj2

!1=2

W y; z 2 O.x/

9=
; (1)

Using the notion of orbits it is possible to write the exact formula for dX in
Theorem 1.2:

Theorem 1.4 For any n dimensional normed space X we have

dX D supf˛.x/ˇ.x/jx D .x1; : : : xk/; k D 1; 2; : : :g:

Moreover,

dX � 4 supf˛.x/ˇ.x/ W x D .x1; : : : xn/g:

Of course, the first formula is correct for infinite dimensional spaces as well.

Remark 1.5 The question of the exact formula for dX was also considered in the
Master Thesis of Limor Ben-Efraim, under the supervision of V. Milman (not
published).

Remark 1.6 It was noted by Pivovarov (private communication, 2016) that Theo-
rem 1.4 easily implies that dX � 4

p
n.

In the spirit of Theorem 1.4, it is possible to reformulate several well known
theorems regarding embeddings of lk1 and lk1 in X, such as Alon-Milman’s theorem
(see [1]) and Elton’s theorem (see [2]). However, since those theorems involve
Rademacher averaging instead of Gaussian averaging, the results will not be precise,
as those averages are not equivalent in the general case.

However, the following two theorems may be reformulated in an exact way:

Theorem 1.7 (Figiel-Lindenstrauss-Milman [3]) Let X be an n dimensional
normed space with the unit ball K. Let x D .x1; x2; : : : xn/ be an orbit with cotype
2 constant ˇ.x/. If x is the orthogonal basis of the maximal volume ellipsoid of K
then X contains a subspace of dimension k D cnˇ.x/�2 that is 2-isomorphic to lk2,
for some universal constant c > 0.
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Theorem 1.8 ([6, Theorem 9.7]) Let X be an n-dimensional normed space and let
x D .x1; : : : ; xk/ � X be a k-tuple for some k � n. If O.x/ has a 2-type constant ˛,
then the space E D spanfxigk1 contains a space of dimension m D �

c˛2
�
which is

2-isomorphic to lm2 , for some absolute constant c > 0.

It may be an interesting question to analyze the Maurey-Pisier lemma for
equivalence of Rademacher and Gaussian averages (see [8, Proposition 3.2]) in this
context. However, one should consider a general orbit of cotype q which is not done
in this note.

2 Proof of the Extended Kwapien Theorem

Proof Before we proceed with the proof of Theorem 1.4, let us recall a few
definitions and facts.

Definition 2.1 An operator u W X ! Y factors through a Hilbert space if there is
a Hilbert space H and operators B W X ! H and A W H ! Y such that u D AB.
Denote by �2.X;Y/ the space of all such operators, equipped with the norm

�2.u/ D inffkAkkBkg

where the infimum is taken over all factorizations of u.

A well known theorem by Lindenstrauss and Pelczynski (see [5], [7, Theo-
rem 2.4], [11, Proposition 13.11]) provides a necessary and sufficient condition
when an operator u belongs to �2.X;Y/:

Theorem 2.2 u W X ! Y belongs to �2.X;Y/ if and only if there exists a constant
C such that for all n and all n � n orthogonal matrices .aij/ we have,
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for all x;1 : : : xn 2 X. Moreover, �2.u/ coincides with the smallest possible constant
C satisfying the above inequality.

Let x D .xj/ be a k-tuple of elements of X and let .aij/ 2 O.k/. By the definition
of Gaussian orbit cotype of x we have

ˇ.x/�1
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By the definition of Gaussian orbit type we have

g.x; �/1=2 � ˛.x/
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: (3)

However, since g.x; �/ D g.y; �/ where
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kX
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we get that
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: (4)

Thus, the condition of Theorem 2.2 is satisfied with the constant

C D sup
x

f˛.x/ˇ.x/g:

Clearly, ˇ.x/ and ˛.x/ are the smallest possible numbers satisfying (2) and (3).
Therefore, supxf˛.x/ˇ.x/g is the smallest possible number satisfying (4) for each
positive k and each k-frame x. Thus,

�2.Id/ D supf˛.x/ˇ.x/g;

However, �2.Id/ D dX (by definition), so the first part of the proof of Theorem 1.4
is finished. ut
Remark 2.3 In the case where dimX D dimY D n, one may consider only n � n
orthogonal matrices and the best constant C in Theorem 2.2 is equivalent to �2.u/ up
to a factor of 4. This was noted independently by Tomczak-Jaegermann and Pisier
(private communication, 2000). Since the result was not published we will provide
a different argument which is due to Tomczak-Jaegermann.

To this end, we recall several facts regarding absolutely summing operators (see
[7, 11]).
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Definition 2.4 Let X and Y be Banach spaces. An operator u W X ! Y is called
2-summing operator if there exists a constant C such that for all finite sequences
fxig � X:
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:

The smallest possible C satisfying the above is denoted by �2.u/ and is called the
2-summing norm of u.

Now we will define a similar concept for an orbit and see how it relates to the
definition above. From now on, unless stated otherwise, it is assumed that X is an
n-dimensional normed space.

Definition 2.5 Given an operator u W lk2 ! X, denote

�
.k/
2 .u/ D sup
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kufik2

!1=2

;

ı
.k/
2 .u/ D inf

 
kX

iD1

kufik2

!1=2

;

where ffigk1 runs over all orthonormal bases of lk2.

Given an orbit x D fx1; : : : xkg � X we will denote �
.k/
2 .x/ D �

.k/
2 .u/, ı

.k/
2 .x/ D

ı.k/.u/ where u is defined by

uei D xi; 1 � i � k:

Remark 2.6 The standard definition of �
.k/
2 .u/ slightly differs from definition

above. It is defined as the smallest possible constant satisfying
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;

for all x1; : : : xk 2 X.
By a theorem of Tomczak-Jaegermann [10] we have that for any operator u W

lk2 ! X of rank n:

�
.n/
2 .u/ � �2.u/ � 2�

.n/
2 .u/: (5)
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Since the proof of (5) constructs an orthonormal basis .ej/ of ln2 that satisfies
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� 1

2
�2.u/;

we get that inequality (5) holds for our definition of �
.n/
2 .u/ as well.

An easy consequence of the above is the following lemma:

Lemma 2.7 For each k � n and x D .x1; : : : xk/ � X there exists y 2 O.x/ and a
subset y0 � y of cardinality n such that

�
.k/
2 .y/ � 2�

.n/
2 .y0/:

Proof Let u W lk2 ! X be the operator defined by uei D xi, and denote E D ker.u/?.
Denote by P W lk2 ! E the orthogonal projection such that u D ujEP. Let f1 : : : fn 2 E
and fnC1 : : : fk 2 E? be another orthonormal basis of lk2 and denote by yi D ufi.
Clearly,

�
.k/
2 .x/ � �2.u/ D �2.ujE/ � 2�

.n/
2 .y0/

where y0 D .y1; : : : yn/. ut
Since ı

.k/
2 is not necessarily convex, denote by Oı.k/

2 the largest convex function

that is smaller than ı
.k/
2 . The norms �

.k/
2 and Oı.k/

2 are dual norms on L.lk2;X/ and
L.lk2;X

�/. That is

�
.k/
2 .u/ D supfjtrace.uv/j W v� 2 L.lk2;X�/;

O
ı

.k/
2 .v�/ � 1g:

The proof of this fact is similar to the proof presented in [11, Proposition 9.9], for
the norms �2 and ı2.

By a standard duality argument we get the following corollary.

Corollary 2.8 Let u W lk2 ! X be an operator, where k � n. Let E D .ker u/? with
dimE D n, and let P be the orthogonal projection P W lk2 ! E. Define Qu W E ! X
such that u D QuP. Then we have

Oı.n/
2 .Qu/ � 2ı

.k/
2 .u/:

Now, we may prove the key lemma required for our goal.

Lemma 2.9 If C satisfies

8x D .x1; : : : xn/ � X; �
.n/
2 .x/ � C�

.n/
2 .x/; (6)
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then, for all k > n,

8x D .x1; : : : xk/ � X; �
.k/
2 .x/ � 4C�

.k/
2 .x/; (7)

Proof Denote by Xm the space of all m-tuples of X. Take x 2 Xn and consider
u W ln2 ! X an operator defined by uei D xi. Clearly, by (6) and the convexity of Oın2
and �

.n/
2

�
.n/
2 .x/ � C Oı.n/

2 .u/:

Given k � n take x D .x1; : : : xk/, y 2 O.x/ and define operator u as above. As
before, denote E D .ker u/? and by P W lk2 ! E the orthogonal projection. Define
Qu W E ! X such that u D QuP. Let f1 : : : fn 2 E and fnC1 : : : fk 2 E? be some
orthonormal basis of lk2. Denote yi D ufi and y D .y1; : : : yk/, y0 D .y1; : : : yn/. Then,

�
.k/
2 .x/ D �

.k/
2 .y/ � 2�

.n/
2 .y0/

and

Oı.n/
2 .Qu/ � 2ı

.k/
2 .u/ D �

.k/
2 .y/ D 2�

.k/
2 .x/:

Thus,

�
.k/
2 .x/ � 2�

.n/
2 .y0/ � 2C Oı.n/

2 .Qu/ � 4C�
.k/
2 .x/:

ut
Now we may finish the second part of main theorem. Let x D .x1; : : : xk/. Notice
that by (1), for each k

˛.x/ˇ.x/ D �
.k/
2 .x/

�
.k/
2 .x/

:

Applying Lemma 2.9 we get

sup
x2Xk

˛.x/ˇ.x/ D sup
x2Xk

�
.k/
2 .x/

�
.k/
2 .x/

� 4 sup
x2Xn

�
.n/
2 .x/

�
.n/
2 .x/

D 4 sup
x2Xn

f˛.x/ˇ.x/g

and the proof is complete.
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