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Abstract Let A be an isotropic, sub-gaussian m � n matrix. We prove that the
process Zx :D kAxk2�p

m kxk2 has sub-gaussian increments, that is, kZx �Zyk 2 �
Ckx � yk2 for any x; y 2 R

n. Using this, we show that for any bounded set T � R
n,

the deviation of kAxk2 around its mean is uniformly bounded by the Gaussian
complexity of T. We also prove a local version of this theorem, which allows
for unbounded sets. These theorems have various applications, some of which are
reviewed in this paper. In particular, we give a new result regarding model selection
in the constrained linear model.

1 Introduction

Recall that a random variable Z is sub-gaussian if its distribution is dominated by
a normal distribution. One of several equivalent ways to define this rigorously is to
require the Orlicz norm

kZk 2 WD inf
˚
K > 0 W E 2.jZj=K/ � 1g
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to be finite, for the Orlicz function  2.x/ D exp.x2/ � 1. Also recall that a random
vector X in R

n is sub-gaussian if all of its one-dimensional marginals are sub-
gaussian random variables; this is quantified by the norm

kXk 2 WD sup
�2Sn�1

�
� hX; �i ��

 2
:

For basic properties and examples of sub-gaussian random variables and vectors,
see e.g. [27].

In this paper we study isotropic, sub-gaussian random matrices A. This means
that we require the rows Ai of A to be independent, isotropic, and sub-gaussian
random vectors:

EAiA
T
i D I; kAik 2 � K: (1)

In Remark 1 below we show how to remove the isotropic assumption.
Suppose A is an m � n isotropic, sub-gaussian random matrix, and T � R

n is
a given set. We are wondering when A acts as an approximate isometry on T, that
is, when kAxk2 concentrates near the value .EkAxk22/1=2 D p

mkxk2 uniformly over
vectors x 2 T.

Such a uniform deviation result must somehow depend on the “size” of the set
T. A simple way to quantify the size of T is through the Gaussian complexity

�.T/ WD E sup
x2T

j hg; xi j where g � N.0; In/: (2)

One can often find in the literature the following translation-invariant cousin of
Gaussian complexity, called the Gaussian width of T:

w.T/ WD E sup
x2T

hg; xi D 1

2
E sup

x2T�T
hg; xi :

These two quantities are closely related. Indeed, a standard calculation shows that

1

3

�
w.T/C kyk2

� � �.T/ � 2
�
w.T/C kyk2

�
for every y 2 T: (3)

The reader is referred to [19, Sect. 2], [28, Sect. 3.5] for other basic properties of
Gaussian width. Our main result is that the deviation of kAxk2 over T is uniformly
bounded by the Gaussian complexity of T.

Theorem 1 (Deviation of Random Matrices on Sets) Let A be an isotropic, sub-
gaussian random matrix as in (1), and T be a bounded subset of Rn. Then

E sup
x2T

ˇ̌kAxk2 � p
mkxk2

ˇ̌ � CK2 � �.T/:
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(Throughout, c and C denote absolute constants that may change from line
to line). For Gaussian random matrices A, this theorem follows from a result of
Schechtman [23]. For sub-gaussian random matrices A, one can find related results
in [4, 10, 13]. Comparisons with these results can be found in Sect. 3.

The dependence of the right-hand-side of this theorem on T is essentially
optimal. This is not hard to see for m D 1 by a direct calculation. For general
m, optimality follows from several consequences of Theorem 1 that are known to be
sharp; see Sect. 2.5.

We do not know if the dependence on K in the theorem is optimal or if the
dependence can be improved to linear. However, none of the previous results have
shown a linear dependence on K even in partial cases.

Remark 1 (Removing Isotropic Condition) Theorem 1 and the results below may
also be restated without the assumption that A is isotropic using a simple linear
transformation. Indeed, suppose that instead of being isotropic, each row of A
satisfies EAiAT

i D ˙ for some invertible covariance matrix ˙ . Consider the
whitened version Bi WD p

˙�1Ai. Note that kBik 2 � jjp˙�1jj � kAik 2 �
jjp˙�1jj � K. Let B be the random matrix whose ith row is Bi. Then

E sup
x2T

ˇ
ˇ̌kAxk2 � p

mkp
˙xk2

ˇ
ˇ̌ D E sup

x2T

ˇ
ˇ̌kBp

˙xk2 � p
mkp

˙xk2
ˇ
ˇ̌

D E sup
x2p

˙T

ˇ
ˇkBxk2 � p

mkxk2
ˇ
ˇ

� Ck˙�1kK2�.p˙T/:

The last line follows from Theorem 1. Note also that �.
p
˙T/ � kp

˙k�.T/ Dpk˙k�.T/, which follows from Sudakov-Fernique’s inequality. Summarizing, our
bounds can be extended to anisotropic distributions by including in them the
smallest and largest eigenvalues of the covariance matrix ˙ .

Our proof of Theorem 1 given in Sect. 4.1 is particularly simple, and is inspired
by the approach of Schechtman [23]. He showed that for Gaussian matrices A,
the random process Zx WD kAxk2 � .EkAxk22/1=2 indexed by points x 2 R

n, has
sub-gaussian increments, that is

kZx � Zyk 2 � Ckx � yk2 for every x; y 2 R
n: (4)

Then Talagrand’sMajorizingMeasure Theorem implies the desired conclusion that1

E supx2T jZxj . �.T/.
However, it should be noted that G. Schechtman’s proof of (4) makes heavy use

of the rotation invariance property of the Gaussian distribution of A. When A is only
sub-gaussian, there is no rotation invariance to rely on, and it was unknown if one

1In this paper, we sometimes hide absolute constants in the inequalities marked ..
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can transfer G. Schechtman’s argument to this setting. This is precisely what we do
here: we show that, perhaps surprisingly, the sub-gaussian increment property (4)
holds for general sub-gaussian matrices A.

Theorem 2 (Sub-gaussian Process) Let A be an isotropic, sub-gaussian random
matrix as in (1). Then the random process

Zx WD kAxk2 � .EkAxk22/1=2 D kAxk2 � p
mkxk2

has sub-gaussian increments:

kZx � Zyk 2 � CK2kx � yk2 for every x; y 2 R
n: (5)

The proof of this theorem, given in Sect. 5, essentially consists of a couple of
non-trivial applications of Bernstein’s inequality; parts of the proof are inspired
by G. Schechtman’s argument. Applying Talagrand’s Majorizing Measure Theorem
(see Theorem 8 below), we immediately obtain Theorem 1.

We also prove a high-probability version of Theorem 1.

Theorem 3 (Deviation of Random Matrices on Sets: Tail Bounds) Under the
assumptions of Theorem 1, for any u 	 0 the event

sup
x2T

ˇ
ˇkAxk2 � p

mkxk2
ˇ
ˇ � CK2

�
w.T/C u � rad.T/�

holds with probability at least 1 � exp.�u2/. Here rad.T/ WD supx2T kxk2 denotes
the radius of T.

This result will be deduced in Sect. 4.1 from a high-probability version of
Talagrand’s theorem.

In the light of the equivalence (3), notice that Theorem 3 implies the following
simpler but weaker bound

sup
x2T

ˇ
ˇkAxk2 � p

mkxk2
ˇ
ˇ � CK2u � �.T/ (6)

if u 	 1. Note that even in this simple bound, �.T/ cannot be replaced with the
Gaussian width w.T/, e.g. the result would fail for a singleton T. This explains why
the radius of T appears in Theorem 3.

Restricting the set T to the unit sphere, we obtain the following corollary.

Corollary 1 Under the assumptions of Theorem 1, for any u 	 0 the event

sup
x2T\Sn�1

ˇ
ˇkAxk2 � p

m
ˇ
ˇ � CK2

�
w.T \ Sn�1/C u

�

holds with probability at least 1 � exp.�u2/.
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In Theorems 1 and 3, we assumed that the set T is bounded. For unbounded sets,
we can still prove a ‘local version’ of Theorem 3. Let us state a simpler form of this
result here. In Sect. 6, we will prove a version of the following theoremwith a better
probability bound.

Theorem 4 (Local Version) Let .Zx/x2Rn be a random process with sub-gaussian
increments as in (5). Assume that the process is homogeneous, that is, Z˛x D ˛Zx
for any ˛ 	 0. Let T be a star-shaped2 subset of Rn, and let t 	 1. With probability
at least 1 � exp.�t2/, we have

jZxj � t � CK2� �T \ kxk2Bn
2

�
for all x 2 T: (7)

Combining with Theorem 2, we immediately obtain the following result.

Theorem 5 (Local Version of Theorem 3) Let A be an isotropic, sub-gaussian
random matrix as in (1), and let T be a star-shaped subset ofRn, and let t 	 1. With
probability at least 1 � exp.�t2/, we have

ˇ
ˇ̌kAxk2 � p

mkxk2
ˇ
ˇ̌ � t � CK2� �T \ kxk2Bn

2

�
for all x 2 T: (8)

Remark 2 We note that Theorems 4 and 5 can also apply when T is not a star-shaped
set, simply by considering the smallest star-shaped set that contains T:

star.T/ WD
[

�2Œ0;1�
�T:

Then one only needs to replace T by star.T/ in the right-hand side of Eqs. (7) and (8).

Results of the type of Theorems 1, 3 and 5 have been useful in a variety of
applications. For completeness, we will review some of these applications in the
next section.

2 Applications

Randommatrices have proven to be useful both for modeling data and transforming
data in a variety of fields. Thus, the theory of this paper has implications for several
applications. A number of classical theoretical discoveries as well as some new
results follow directly from our main theorems. In particular, the local version of our
theorem (Theorem 5), allows a new result in model selection under the constrained
linear model, with applications in compressed sensing. We give details below.

2Recall that a set T is called star-shaped if t 2 T implies �t 2 T for all � 2 Œ0; 1�.
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2.1 Singular Values of Random Matrices

The singular values of a random matrix are an important topic of study in random
matrix theory. A small sample includes covariance estimation [26], stability in
numerical analysis [29], and quantum state tomography [8].

Corollary 1 may be specialized to bound the singular values of a sub-gaussian
matrix. Indeed, take T D Sn�1 and note that w.T/ � p

n. Then the corollary states
that, with high probability,

ˇ
ˇkAxk2 � p

m
ˇ
ˇ � CK2

p
n for all x 2 Sn�1:

This recovers the well-known result that, with high probability, all of the singular
values of A reside in the interval Œ

p
m � CK2

p
n;

p
m C CK2

p
n� (see [27]). When

nK4 
 m, all of the singular values concentrate around
p
m. In other words, a tall

random matrix is well conditioned with high probability.

2.2 Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss lemma [9] describes a simple and effective method of
dimension reduction. It shows that a (finite) set of data vectorsX belonging to a very
high-dimensional space, Rn, can be mapped to a much lower dimensional space
while roughly preserving pairwise distances. This is useful from a computational
perspective since the storage space and the speed of computational tasks both
improve in the lower dimensional space. Further, the mapping can be done simply
by multiplying each vector by the random matrix A=

p
m.

The classic Johnson-Lindenstrauss lemma follows immediately from our results.
Indeed, take T 0 D X�X . To construct T, remove the 0 vector from T 0 and project all
of the remaining vectors onto Sn�1 (by normalizing). Since T belongs to the sphere
and has fewer than jX j2 elements, it is not hard to show that �.T/ � C

p
log jX j.

Then by Corollary 1, with high probability,

sup
x2T

ˇ
ˇ
ˇ
ˇ
1p
m

kAxk2 � 1
ˇ
ˇ
ˇ
ˇ � CK2

p
log jX jp
m

:

Equivalently, for all x; y 2 X

.1 � ı/kx � yk2 � 1p
m

kA.x � y/k2 � .1C ı/kx � yk2; ı D CK2
p
log jX jp
m

:

This is the classic Johnson-Lindenstrauss lemma. It shows that as long as m �
K4 log jX j, the mapping x ! Ax=

p
m nearly preserves pair-wise distances. In other
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words, X may be embedded into a space of dimension slightly larger than log jX j
while preserving distances.

In contrast to the classic Johnson-Lindenstrauss lemma that applies only to finite
setsX , the argument above based on Corollary 1 allowsX to be infinite. In this case,
the size of X is quantified using the notion of Gaussian width instead of cardinality.

To get even more precise control of the geometry of X in Johnson-Lindenstrauss
lemma, we may use the local version of our results. To this end, apply Theorem 5
combined with Remark 2 to the set T D X � X . This shows that with high
probability, for all x; y 2 X ,

ˇ
ˇ
ˇ
ˇ
1p
m

kA.x � y/k2 � kx � yk2
ˇ
ˇ
ˇ
ˇ � CK2�

�
star.X � X / \ kx � yk2Bn

2

�

p
m

: (9)

One may recover the classic Johnson-Lindenstrauss lemma from the above bound
using the containment star.X �X / � cone.X �X /. However, the above result also
applies to infinite sets, and further can benefit when X � X has different structure
at different scales, e.g., when X has clusters.

2.3 Gordon’s Escape Theorem

In [7], Gordon answered the following question: Let T be an arbitrary subset of
Sn�1. What is the probability that a random subspace has nonempty intersection
with T? Gordon showed that this probability is small provided that the codimension
of the subspace exceedsw.T/. This result also follows fromCorollary 1 for a general
model of random subspaces.

Indeed, let A be an isotropic, sub-gaussian m � n random matrix as in (1). Then
its kernel kerA is a random subspace in Rn of dimension at least n�m. Corollary 1
implies that, with high probability,

kerA \ T D ; (10)

provided that m 	 CK4w.T/2. To see this, note that in this case Corollary 1 yields
that

ˇ
ˇkAxk2 � p

m
ˇ
ˇ <

p
m for all x 2 T, so kAxk2 > 0 for all x 2 T, which in turn

is equivalent to (10).
We also note that there is an equivalent version of the above result when T is a

cone. Then, with high probability,

kerA \ T D f0g provided that m 	 CK4�.T \ Sn�1/2: (11)

The conical version follows from the spherical version by expanding the sphere
into a cone.
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2.4 Sections of Sets by Random Subspaces: The M� Theorem

TheM� theorem [14, 15, 18] answers the following question: Let T be an arbitrary
subset of Rn.What is the diameter of the intersection of a random subspace with T?
We may bound the radius of this intersection (which of course bounds the diameter)
using our main results, and again for a general model of random subspaces.

Indeed, let us consider the kernel of an m� n randommatrix A as in the previous
section. By Theorem 3 (see (6)), we have

sup
x2T

ˇ
ˇkAxk2 � p

mkxk2
ˇ
ˇ � CK2�.T/ (12)

with high probability. On the event that the above inequality holds, we may further
restrict the supremum to kerA \ T, giving

sup
x2kerA\T

p
mkxk2 � CK2�.T/:

The left-hand side is
p
m times the radius of T \ kerA. Thus, with high probability,

rad.kerA \ T/ � CK2�.T/p
m

: (13)

This is a classical form of the so-called M� estimate. It is typically used for sets T
that contain the origin. In these cases, the Gaussian complexity �.T/ can be replaced
by Gaussian width w.T/. Indeed, (3) with y D 0 implies that these two quantities
are equivalent.

2.5 The Size of Random Linear Images of Sets

Another question that can be addressed using our main results is how the size of a set
T in R

n changes under the action of a random linear transformation A W Rn ! R
m.

Applying (6) and the triangle inequality, we obtain

rad.AT/ � p
m � rad.T/C CK2�.T/ (14)

with high probability. This result has been known for random projections, where
A D p

nP and P is the orthogonal projection onto a random m-dimensional
subspace in R

n drawn according to the Haar measure on the Grassmanian, see
[2, Proposition 5.7.1].

It is also known that the bound (14) is sharp (up to absolute constant factor) even
for random projections, see [2, Sect. 5.7.1]. This in particular implies optimality of
the bound in our main result, Theorem 1.
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2.6 Signal Recovery from the Constrained Linear Model

The constrained linear model is the backbone of many statistical and signal
processing problems. It takes the form

y D Ax C z; x 2 T; (15)

where x 2 T � R
n is unknown, y 2 R

m is a vector of known observations, the
measurement matrix A 2 R

m�n is known, and z 2 R
m is unknown noise which can

be either fixed or random and independent of A.
For example, in the statistical linear model,A is a matrix of explanatory variables,

and x is a coefficient vector. It is common to assume, or enforce, that only a small
percentage of the explanatory variables are significant. This is encoded by taking T
to be the set of vectors with less than s non-zero entries, for some s � n. In other
words, T encodes sparsity. In another example, y is a vector of MRI measurements
[12], in which case x is the image to be constructed. Natural images have quite a
bit of structure, which may be enforced by bounding the total variation, or requiring
sparsity in a certain dictionary, each of which gives a different constraint set T.
There are a plethora of other applications, with various constraint sets T, including
low-rank matrices, low-rank tensors, non-negative matrices, and structured sparsity.
In general, a goal of interest is to estimate x.

When T is a linear subspace, it is standard to estimate x via least squares
regression, and the performance of such an estimator is well known. However, when
T is non-linear, the problem can become quite complicated, both in designing a
tractable method to estimate x and also analyzing the performance. The field of
compressed sensing [5, 6] gives a comprehensive treatment of the case when T
encodes sparsity, showing that convex programming can be used to estimate x, and
that enforcing the sparse structure this way gives a substantial improvement over
least squares regression. Amain idea espoused in compressed sensing is that random
matrices A give near optimal recovery guarantees.

Predating, but especially following, the works in compressed sensing, there have
also been several works which tackle the general case, giving results for arbitrary
T [1, 3, 11, 16, 17, 20, 21, 25]. The deviation inequalities of this paper allow for a
general treatment as well. We will first show how to recover several known signal
recovery results, and then give a new result in Sect. 2.7.

Consider the constrained linear model (15). A simple and natural way to estimate
the unknown signal x is to solve the optimization problem

Ox WD argmin
x02T kAx0 � yk22 (16)

We note that depending on T, the constrained least squares problem (16) may be
computationally tractable or intractable. We do not focus on algorithmic issues here,
but just note that T may be replaced by a larger tractable set (e.g., convexified) to
aid computation.
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Our goal is to bound the Euclidean norm of the error

h WD Ox � x:

Since Ox minimizes the squared error, we have kAOx � yk22 � kAx � yk22. Simplifying
this, we obtain

kAhk22 � 2hh;ATzi: (17)

We now proceed to control khk2 depending on the structure of T.

2.6.1 Exact Recovery

In the noiseless case where z D 0, inequality (17) simplifies and we have

h 2 kerA \ .T � x/: (18)

(The second constraint here follows since h D Ox � x and Ox 2 T.)
In many cases of interest, T � x is a cone, or is contained in a cone, which is

called the tangent cone or descent cone. Gordon-type inequality (11) then implies
that h D 0, and thus we have exact recovery Ox D x, provided that the number of
observations m significantly exceeds the Gaussian complexity of this cone: m 	
CK4�..T � x/ \ Sn�1/2.

For example, if x is a sparse vector with s non-zero entries, and T is an
appropriately scaled `1 ball, then T � x is contained in a tangent cone, D, satisfying
�.D/2 � Cs log.n=s/. This implies that Ox D x with high probability, provided
m 	 CK4s log.n=s/.

2.6.2 Approximate Recovery

In the cases where T � x is not a cone or cannot be extended to a narrow cone
(for example, when x lies in the interior of T), we can use the M� Theorem for the
analysis of the error. Indeed, combining (18) with (13), we obtain

khk2 � CK2w.T/p
m

:

Here we also used that since T � T contains the origin, we have �.T � T/ � w.T/
according to (3). In particular, this means that x can be estimated up to an additive
error of " in the Euclidean norm provided that the number of observations satisfies
m 	 CK4w.T/2="2.

For a more detailed description of the M� Theorem, Gordon’s Escape Theorem,
and their implications for the constrained linear model, see [28].
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2.7 Model Selection for Constrained Linear Models

It is often unknown precisely what constraint set to use for the constrained linear
model, and practitioners often experiment with different constraint sets to see which
gives the best performance. This is a form of model selection. We focus on the case
when the form of the set is known, but the scaling is unknown. For example, in
compressed sensing, it is common to assume that x is compressible, i.e., that it can
be well approximated by setting most of its entries to 0. This can be enforced by
assuming that x belongs to a scaled `p ball for some p 2 .0; 1�. However, generally
it is not known what scaling to use for this `p ball.

Despite this need, previous theory concentrates on controlling the error for one
fixed choice of the scaling. Thus, a practitioner who tries many different scalings
cannot be sure that the error bounds will hold uniformly over all such scalings. In
this subsection, we remove this uncertainty by showing that the error in constrained
least squares can be controlled simultaneously for an infinite number of scalings of
the constraint set.

Assume x 2 T, but the precise scaling of T is unknown. Thus, x is estimated
using a scaled version of T:

Ox� WD arg min
x02�T kAx0 � yk22; � 	 1: (19)

The following corollary controls the estimation error.

Corollary 2 Let T be a convex, symmetric set. Given � 	 1, let Ox� be the solution
to (19). Let h� WD Ox� � x, let v� D h�=.1 C �/, and let ı D kv�k2. Then with
probability at least 0:99, the following occurs. For every � 	 1,

ı � CK2�.T \ ıBn
2/p

m
C CK

s
�.T \ ıBn

2/ � kzk2
m.1C �/

: (20)

The corollary is proven using Theorem 5. To our knowledge, this corollary is
new. It recovers previous results that only apply to a single, fixed �, as in [11, 20].
It is known to be nearly minimax optimal for many constraint sets of interest and
for stochastic noise term z, in which case kzk2 would be replaced by its expected
value [21].

The rather complex bound of Eq. (20) seems necessary in order to allow
generality. To aid understanding, we specialize the result to a very simple set—
a linear subspace—for which the behaviour of constrained least squares is well
known, the scaling becomes irrelevant, and the result simplifies significantly. When
T is a d-dimensional subspace, we may bound the Gaussian complexity as �.T \
ıB2/ � ı

p
d. Plugging in the bound on �.T \ ıBn

2/ into (20), substituting h� back
in, and massaging the equation gives

kh�k22 � CK4 � dkzk22
m2

as long as m 	 CK4d:
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If z is Gaussian noise with standard deviation � , then it’s norm concentrates aroundp
m� , giving (with high probability)

kh�k22 � CK4 � d�
2

m
as long as m 	 CK4d:

In other words, the performance of least squares is proportional to the noise
level multiplied by the dimension of the subspace, and divided by the number of
observations, m. This is well known.

In this corollary, for simplicity we assumed that T is convex and symmetric. Note
that this already allows constraint sets of interest, such as the `1 ball. However, this
assumption can be weakened. All that is needed is for T � �T to be contained in a
scaled version of T, and to be star shaped. This also holds, albeit for more complex
scalings, for arbitrary `p balls with p > 0.

Proof (of Corollary 2) For simplicity of notation, we assume K � 10 (say), and
absorb K into other constants. The general case follows the same proof. First note
that h� 2 �T � T. Since T is convex and symmetric, we have �T � T � .1C �/T
and as v� D h�=.1C �/, we get

v� 2 T: (21)

Moreover, (17) gives

kAv�k22 � hv�;ATzi
1C �

; v� 2 T: (22)

We will show that, with high probability, any vector v� satisfying (21) and (22) has a
small norm, thus completing the proof. We will do this by upper bounding hv�;ATzi
and lower bounding kAv�k2 by kv�k2 minus a deviation term.

For the former goal, letw WD ATz=kzk2. Recall that the noise vector z is fixed (and
in case z random and independent of A, condition on z to make it fixed). Then w is
a sub-gaussian vector with independent entries whose sub-gaussian norm is upper-
bounded by a constant; see [27]. Thus, the random process Zx WD hx;wi has the
sub-gaussian increments required in Theorem 4 (again, see [27]). By this theorem,
with probability 	 0:995,

jZxj � C�.T \ kxk2Bn
2/ for all x 2 T:

Let F be the ‘good’ event that the above equation holds.
To control kAv�k2, consider the ‘good’ event G that

kAxk2 	 p
mkxk2 � C�.T \ kxk2Bn

2/ for all x 2 T:

By Theorem 5, G holds with probability at least 0:995.
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Now, suppose that bothG and F hold (which occurs with probability at least 0:99
by the union bound). We will show that for every � > 1, v� is controlled. The event
G gives

hv�;ATzi � C�.T \ kv�k2Bn
2/ � kzk2:

The event F gives

kAv�k2 	 p
mkv�k2 � C�.T \ kv�k2Bn

2/:

Taking square roots of both sides of (22) and plugging in these two inequalities
gives (20). ut

3 Comparison with Known Results

Several partial cases of our main results have been known. As we alreadymentioned,
the special case of Theorem 1 where the entries of A have standard normal
distribution follows from the main result of the paper by Schechtman [23].

Generalizing the result of [23], Klartag and Mendelson proved the following
theorem.

Theorem 6 (Theorem 4.1 in [10]) Let A be an isotropic, sub-gaussian random
matrix as in (1), and let T � Sn�1. Assume that w.T/ 	 C0.K/.3 Then with
probability larger than 1=2,

sup
x2T

ˇ
ˇkAxk2 � p

m
ˇ
ˇ � C.K/w.T/: (23)

Here C0.K/ and C.K/ may depend on K only.

A similar but slightly more informative statement follows from our main results.
Indeed, Corollary 1 gives the same conclusion, but with explicit dependence on
K (the sub-gaussian norms of the rows of A) as well as probability of success.
Moreover, our general results, Theorems 1 and 3, do not require the set T to lie
on the unit sphere.

Another related result was proved by S. Mendelson, A. Pajor, and N. Tomczak-
Jaegermann.

3This restriction is not explicitly mentioned in the statement of Theorem 4.1 in [10], but it is used in
the proof. Indeed, this result is derived from their Theorem 1.3, which explicitly requires that �.T/
be large enough. Without such requirement, Theorem 4.1 in [10] fails e.g. when T is a singleton,
since in that case we have w.T/ D 0.
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Theorem 7 (Theorem 2.3 in [13]) Let A be an isotropic, sub-gaussian random
matrix as in (1), and T be a star-shaped subset of Rn. Let 0 < � < 1. Then with
probability at least 1 � exp.�c�2m=K4/ we have that all vectors x 2 T with

kxk2 	 r� WD inf
˚
� > 0 W � 	 CK2�

�
T \ � � Sn�1� =.�

p
m/
�

satisfy

.1 � �/ kxk22 � kAxk22
m

� .1C �/ kxk22 :

Applying our Theorem 3 to the bounded set T \ r� � Sn�1 precisely implies
Theorem 7 with the same failure probability (up to the values of the absolute
constants c;C). Moreover, our Theorem 3 treats all x 2 T uniformly, whereas
Theorem 7 works only for x with large norm.

Yet another relevant result was proved by Dirksen [4, Theorem 5.5]. He showed
that the inequality

ˇ̌kAxk22 � mkxk22
ˇ̌
. K2w.T/2 C p

mK2 rad.T/w.T/

C u
p
mK2 rad.T/2 C u2K2 rad.T/2 (24)

holds uniformly over x 2 T with probability at least 1� exp.�u2/. To compare with
our results, one can see that Theorem 3 implies that, with the same probability,

ˇ
ˇkAxk22 � mkxk22

ˇ
ˇ . K4w.T/2 C p

mK2kxk2w.T/
C u

p
mK2 rad.T/kxk2 C uK4 rad.T/w.T/C u2K4 rad.T/2;

which is stronger than (24) when K D O.1/ and m & n, since then kxk2 � rad.T/
and w.T/ . p

m rad.T/.

4 Preliminaries

4.1 Majorizing Measure Theorem, and Deduction
of Theorems 1 and 3

As we mentioned in the Introduction, Theorems 1 and 3 follow from Theorem 2 via
Talagrand’s Majorizing Measure Theorem (and its high-probability counterpart).
Let us state this theorem specializing to processes that are indexed by points in R

n.
For T � R

n, let diam.T/ :D supx;y2T kx � yk2.
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Theorem 8 (Majorizing Measure Theorem) Consider a random process .Zx/x2T
indexed by points x in a bounded set T � R

n. Assume that the process has sub-
gaussian increments, that is there exists M 	 0 such that

kZx � Zyk 2 � Mkx � yk2 for every x; y 2 T: (25)

Then

E sup
x;y2T

jZx � Zyj � CME sup
x2T

hg; xi ;

where g � N.0; In/. Moreover, for any u 	 0, the event

sup
x;y2T

jZx � Zyj � CM
�
E sup

x2T
hg; xi C u diam.T/

�

holds with probability at least 1 � exp.�u2/.

The first part of this theorem can be found e.g. in [24, Theorems 2.1.1, 2.1.5].
The second part, a high-probability bound, is borrowed from [4, Theorem 3.2].

Let us show how to deduce Theorems 1 and 3. According to Theorem 2, the
random process Zx WD kAxk2 � p

mkxk2 satisfies the hypothesis (25) of the
Majorizing Measure Theorem 8 with M D CK2. Fix an arbitrary y 2 T and use
the triangle inequality to obtain

E sup
x2T

jZxj � E sup
x2T

jZx � Zyj C EjZyj: (26)

Majorizing Measure Theorem bounds the first term: E supx2T jZx � Zyj . K2w.T/.
(We suppress absolute constant factors in this inequality and below.) The second
term can be bounded more easily as follows: EjZyj . kZyk 2 . K2kyk2, where we
again used Theorem 2 with x D 0. Using (3), we conclude that

E sup
x2T

jZxj . K2.w.T/C kyk2/ . K2�.T/;

as claimed in Theorem 1.
We now prove Theorem 3. Since adding 0 to a set does not change its radius, we

may assume that 0 2 T. Let Zx WD kAxk2 � p
m kxk2. Since Z0 D 0, and since Zx

has sub-gaussian increments by Theorems 2, 8 gives that with probability at least
1 � exp.�u2/,

sup
x2T

jZxj D sup
x2T

jZx � Z0j . K2
�
E sup

x2T
hg; xi C u � diam.T/�

. K2
�
E sup

x2T
hg; xi C u � rad.T/�: ut
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4.2 Sub-exponential Random Variables, and Bernstein’s
Inequality

Our argument will make an essential use of Bernstein’s inequality for sub-
exponential random variables. Let us briefly recall the relevant notions, which
can be found, e.g., in [27]. A random variable Z is sub-exponential if its distribution
is dominated by an exponential distribution. More formally, Z is sub-exponential if
the Orlicz norm

kZk 1 WD inf
˚
K > 0 W E 1.jZj=K/ � 1g

is finite, for the Orlicz function  1.x/ D exp.x/ � 1. Every sub-gaussian random
variable is sub-exponential. Moreover, an application of Young’s inequality implies
the following relation for any two sub-gaussian random variables X and Y:

kXYk 1 � kXk 2kYk 2 : (27)

The classical Bernstein’s inequality states that a sum of independent sub-
exponential random variables is dominated by a mixture of sub-gaussian and
sub-exponential distributions.

Theorem 9 (Bernstein-Type Deviation Inequality, See e.g. [27]) Let X1; : : : ;Xm

be independent random variables, which satisfy EXi D 0 and kXik 1 � L. Then

P

( ˇ
ˇ
ˇ
1

m

mX

iD1
Xi

ˇ
ˇ
ˇ > t

)

� 2 exp
h

� cmmin
� t2

L2
;
t

L

	i
; t 	 0:

5 Proof of Theorem 2

Proposition 1 (Concentration of the Norm) Let X 2 R
m be a random vector with

independent coordinates Xi that satisfy EX2i D 1 and kXik 2 � K. Then

�
�
�kXk2 � p

m
�
�
�
 2

� CK2:

Remark 3 If EXi D 0, this proposition follows from [22, Theorem 2.1], whose
proof uses the Hanson-Wright inequality.

Proof Let us apply Bernstein’s deviation inequality (Theorem 9) for the sum of
independent random variables kXk22 � m D Pm

iD1.X2i � 1/. These random variables
have zero means and sub-exponential norms

kX2i � 1k 1 � 2kX2i k 1 � 2kXik2 2 � 2K2:
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(Here we used a simple centering inequality which can be found e.g. in [27,
Remark 5.18] and the inequality (27).) Bernstein’s inequality implies that

P
˚ˇˇkXk22 � m

ˇ
ˇ > tm

� � 2 exp
h

� cmmin
� t2

K4
;

t

K2

	i
; t 	 0: (28)

To deduce a concentration inequality for kXk2� p
m from this, let us employ the

numeric bound jx2 � mj 	 p
m jx � p

mj valid for all x 	 0. Using this together
with (28) for t D s=

p
m, we obtain

P
˚ˇˇkXk2 � p

m
ˇ
ˇ > s

� � P
˚ˇˇkXk22 � m

ˇ
ˇ > s

p
m
�

� 2 exp.�cs2=K4/ for s � K2
p
m:

To handle large s, we proceed similarly but with a different numeric bound, namely
jx2 � mj 	 .x� p

m/2 which is valid for all x 	 0. Using this together with (28) for
t D s2=m, we obtain

P
˚ˇˇkXk2 � p

m
ˇ
ˇ > s

� � P
˚ˇˇkXk22 � m

ˇ
ˇ > s2

�

� 2 exp.�cs2=K2/ for s 	 K
p
m:

Since K 	 1, in both cases we bounded the probability in question by
2 exp.�cs2=K4/. This completes the proof. ut
Lemma 1 (Concentration of a Random Matrix on a Single Vector) Let A be an
isotropic, sub-gaussian random matrix as in (1). Then

�
�
�kAxk2 � p

m
�
�
�
 2

� CK2 for every x 2 Sn�1:

Proof The coordinates of the vector Ax 2 R
m are independent random variables

Xi WD hAi; xi. The assumption that EAiAT
i D I implies that EX2i D 1, and the

assumption that kAik 2 � K implies that kXik 2 � K. The conclusion of the lemma
then follows from Proposition 1. ut

Lemma 1 can be viewed as a partial case of the increment inequality of
Theorem 2 for x 2 Sn�1 and y D 0, namely

kZxk 2 � CK2 for every x 2 Sn�1: (29)

Our next intermediate step is to extend this by allowing y to be an arbitrary unit
vector.

Lemma 2 (Sub-Gaussian Increments for Unit Vectors) Let A be an isotropic,
sub-gaussian random matrix as in (1). Then

�
��kAxk2 � kAyk2

�
��
 2

� CK2kx � yk2 for every x; y 2 Sn�1:
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Proof Given s 	 0, we will bound the tail probability

p WD P

( ˇ
ˇkAxk2 � kAyk2

ˇ
ˇ

kx � yk2 > s

)

: (30)

Case 1: s 	 2
p
m. Using the triangle inequality we have jkAxk2 � kAyk2j �

kA.x � y/k2. Denoting u WD .x � y/=kx � yk2, we find that

p � P
˚kAuk2 > s

� � P
˚kAuk2 � p

m > s=2
� � exp.�Cs2=K4/:

Here the second bound holds since s 	 2
p
m, and the last bound follows by

Lemma 1.
Case 2: s � 2

p
m. Multiplying both sides of the inequality defining p in (30) by

kAxk2 C kAyk2, we can write p as

p D P
˚jZj > s

�kAxk2 C kAyk2
��

where Z WD kAxk22 � kAyk22
kx � yk2 :

In particular,

p � P
˚jZj > skAxk2

� � P



jZj > s

p
m

2

�

C P



kAxk2 �

p
m

2

�
DW p1 C p2:

We may bound p2 using Lemma 1:

p2 � 2 exp
�

� .
p
m=2/2

C2K4

	
D 2 exp

�
� m

4C2K4

	
� 2 exp

�
� s2

16C2K4

	
: (31)

Next, to bound p1, it will be useful to write Z as

Z D hA.x � y/;A.x C y/i
kx � yk2 D hAu;Avi ; where u WD x � y

kx � yk2 ; v WD x C y:

Since the coordinates of Au and Av are hAi; ui and hAi; vi respectively, Z can be
represented as a sum of independent random variables:

Z D
mX

iD1
hAi; ui hAi; vi : (32)

Note that each of these random variables hAi; ui hAi; vi has zero mean, since

E hAi; x � yi hAi; x C yi D E
� hAi; xi2 � hAi; yi2

� D 1 � 1 D 0:
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(Here we used the assumptions that EAiAT
i D I and kxk2 D kyk2 D 1.) Moreover,

the assumption that kAik 2 � K implies that k hAi; ui k 2 � Kkuk2 D K and
k hAi; vi k 2 � Kkvk2 � 2K. Recalling inequality (27), we see that hAi; ui hAi; vi
are sub-exponential random variables with k hAi; ui hAi; vi k 1 � CK2. Thus we can
apply Bernstein’s inequality (Theorem 9) to the sum of mean zero, sub-exponential
random variables in (32), and obtain

p1 D P



jZj > s

p
m

2

�
� 2 exp.�cs2=K4/; since s � 2K2

p
m:

Combining this with the bound on p2 obtained in (31), we conclude that

p D p1 C p2 � 2 exp.�cs2=K4/:

This completes the proof. ut
Finally, we are ready to prove the increment inequality in full generality, for all

x; y 2 R
n.

Proof (of Theorem 2)Without loss of generality we may assume that kxk2 D 1 and
kyk2 	 1. Consider the unit vector Ny WD y=kyk2 and apply the triangle inequality to
get

kZx � Zyk 2 � kZx � ZNyk 2 C kZNy � Zyk 2 DW R1 C R2:

By Lemma 2, R1 � CK2kx � Nyk2. Next, since Ny and y are collinear, we have R2 D
kNy� yk2 � kZNyk 2 . Since Ny 2 Sn�1, inequality (29) states that kZNyk 2 � CK2, and we
conclude that R2 � CK2kNy � yk2. Combining the bounds on R1 and R2, we obtain

kZx � Zyk 2 � CK2
�kx � Nyk2 C kNy � yk2

�
:

It is not difficult to check that since kyk2 	 1, we have kx � Nyk2 � kx � yk2 and
kNy � yk2 � kx � yk2. This completes the proof. ut

6 Proof of Theorem 4

We will prove a slightly stronger statement. For r > 0, define

Er WD sup
x2 1

r T\Bn
2

jZxj:

Set W WD limr!rad.T/
�

�
�
1
r T \ Bn

2

�
. Since 1

r T \ Bn
2 contains at least one point on

the boundary for every r < rad.T/, it follows that W 	 p
2=� . We will show that,
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with probability at least 1 � exp
��c0t2W2

�
, one has

Er � t � CK2�
�
1

r
T \ Bn

2


for all r 2 .0;1/;

which, when combined with the assumption of homogeneity, will clearly imply the
theorem with a stronger probability.

Fix " > 0. Let " D r0 < r1 < : : : < rN be a sequence of real numbers satisfying
the following conditions:

• �
�
1
ri
T \ Bn

2

	
D 2 � �

�
1

riC1
T \ Bn

2

	
for i D 0; 1; : : : ;N � 1, and

• �
�
1
rN
T \ Bn

2

	
� 2 � W.

The quantities r1; : : : ; rN exist since the map r 7! �
�
1
r T \ Bn

2

�
is decreasing and

continuous when T is star-shaped.
Applying the Majorizing Measure Theorem 8 to the set 1r T \ Bn

2 and noting that
Z0 D 0, we obtain that

Er . K2
�
�

�
1

r
T \ Bn

2


C u

�

with probability at least 1� exp.�u2/. Set c :D 10 �p�
2

	 10=W and use the above
inequality for u D ct�

�
1
r T \ Bn

2

�
. We get

Er . t � K2�
�
1

r
T \ Bn

2


(33)

holds with probability at least 1 � exp
�
�c2t2�

�
1
r T \ Bn

2

�2	
. Thus for each i 2

f0; 1; : : : ;Ng, we have

Eri . t � K2�
�
1

ri
T \ Bn

2


(34)

with probability at least

1 � exp

 

�c2t24N�i�

�
1

rN
T \ Bn

2

2!

	 1 � exp
��c2t24N�iW2

�
:

By our choice of c and the union bound, (34) holds for all i simultaneously with
probability at least

1 �
NX

iD0
exp

��c2t24N�iW2
� 	 1 � 2 � exp.�100t2W2/ D: 1 � exp.�c0t2W2/:
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We now show that if (34) holds for all i, then (33) holds for all r 2 .";1/. This
is done via an approximation argument. To this end, assume that (34) holds and let
r 2 .ri�1; ri/ for some i 2 ŒN�. Since T is star-shaped, we have 1

r T\Bn
2 � 1

ri�1
T\Bn

2,
so

Er � Eri�1 . t � K2�
�
1

ri�1
T \ Bn

2


D 2t � K2�

�
1

ri
T \ Bn

2



� 2t � K2�
�
1

r
T \ Bn

2


:

Also, for rad.T/ 	 r > rN we have

Er . t � K2�
�
1

rN
T \ Bn

2


� 2t � K2W � 2t � K2�

�
1

r
T \ Bn

2


:

Let Fk be the event that (33) holds for all r 2 .1=k;1/. We have just shown that
P
˚
Fk
� 	 1 � exp

��c0t2W2
�
for all k 2 N. As F1 � F2 � : : : and \kFk D: F1 is

the event that (33) holds for all r 2 .0;1/, it follows by continuity of measure that
P
˚
F1

� 	 1 � exp
��c0t2W2

�
, thus completing the proof.

7 Further Thoughts

In the definition of Gaussian complexity �.T/ D E supx2T j hg; xi j, the absolute
value is essential to make Theorem 1 hold. In other words, the bound would fail if
we replace �.T/ by the Gaussian width w.T/ D E supx2T hg; xi. This can be seen by
considering a set T that consists of a single point.

However, one-sided deviation inequalities do hold for Gaussian width. Thus a
one-sided version of Theorem 1 states that

E sup
x2T

�
kAxk2 � p

mkxk2
	

� CK2 � w.T/; (35)

and the same bound holds for E supx2T
� � kAxk2 C p

mkxk2
�
. To prove (35),

one modifies the argument in Sect. 4.1 as follows. Fix a y 2 T. Since EkAyk2 ��
EkAyk22

�1=2 D p
mkyk2, we have EZy � 0, thus

E sup
x2T

Zx � E sup
x2T
.Zx � Zy/ � E sup

x2T
jZx � Zyj . K2w.T/

where the last bound follows by Majorizing Measure Theorem 8. Thus in this
argument there is no need to separate the term EjZyj as was done before in Eq. (26).
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