Royen’s Proof of the Gaussian Correlation
Inequality

Rafal Latata and Dariusz Matlak

Abstract We present in detail Thomas Royen’s proof of the Gaussian correlation
inequality which states that u(K N L) > w(K)u(L) for any centered Gaussian
measure i on R and symmetric convex sets K, L in RY.

1 Introduction

The aim of this note is to present in a self contained way the beautiful proof of the
Gaussian correlation inequality, due to Thomas Royen [7]. Although the method is
rather simple and elementary, we found the original paper not too easy to follow.
One of the reasons behind it is that in [7] the correlation inequality was established
for more general class of probability measures. Moreover, the author assumed
that the reader is familiar with properties of certain distributions and may justify
some calculations by herself/himself. We decided to reorganize a bit Royen’s proof,
restrict it only to the Gaussian case and add some missing details. We hope that this
way a wider readership may appreciate the remarkable result of Royen.
The statement of the Gaussian correlation inequality is as follows.

Theorem 1 For any closed symmetric sets K, L in R? and any centered Gaussian
measure | on RY we have

w(K N L) > u(K)u(L). )

For d = 2 the result was proved by Pitt [5]. In the case when one of the sets
K, L is a symmetric strip (which corresponds to min{n;,n,} = 1 in Theorem 2
below) inequality (1) was established independently by Khatri [3] and Sidak [9].
Hargé [2] generalized the Khatri-Sidak result to the case when one of the sets is a
symmetric ellipsoid. Some other partial results may be found in papers of Borell [1]
and Schechtman et al. [8].
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Up to our best knowledge Thomas Royen was the first to present a complete proof
of the Gaussian correlation inequality. Some other recent attempts may be found
in [4] and [6], however both papers are very long and difficult to check. The first
version of [4], placed on the arxiv before Royen’s paper, contained a fundamental
mistake (Lemma 6.3 there was wrong).

Since any symmetric closed set is a countable intersection of symmetric strips, it
is enough to show (1) in the case when

K ={xeR" Vi<, |[(x.v;)| <1#;} and

L={xeR": Vo t1zizn +m [(x,01)| < 1},

where v; are vectors in R? and ¢, nonnegative numbers. If we set n = n; + ny,
X; := (v;, G), where G is the Gaussian random vector distributed according to u,
we obtain the following equivalent form of Theorem 1.

Theorem 2 Let n = ny + ny and X be an n-dimensional centered Gaussian vector.
Then forany ty,...,t, > 0,

P(|X1| =thhe.e., |Xn| =< tn)
Z IED(l)(l| E tlv--- ) |Xn1| E tnl)]P)(|Xn1+l| E tn1+lv"' ) |Xn| E tn)

Remark 3

(i) The standard approximation argument shows that the Gaussian correlation
inequality holds for centered Gaussian measures on separable Banach spaces.
(ii)) Theorem 1 has the following functional form:

/ fedu = / Jdu / gdp
Rd Rd Rd

for any centered Gaussian measure y on R and even functions f, g: R? —
[0, 00) such that sets {f > ¢} and {g > ¢} are convex for all # > 0.

(iii) Thomas Royen established Theorem 2 for a more general class of random
vectors X such that X?> = (X?,... ,Xﬁ) has an n-variate gamma distribution
with appropriately chosen parameters (see [7] for details).

Notation By A (0, C) we denote the centered Gaussian measure with the covari-
ance matrix C. We write M, x,, for a set of n x m matrices and |A| for the determinant
of a square matrix A. For a matrix A = (a;);j<, andJ C [n] := {1,...,n} by A; we
denote the square matrix (a;); je; and by |J| the cardinality of J.
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2 Proof of Theorem 2

Without loss of generality we may and will assume that the covariance matrix C of
X is nondegenerate (i.e. positive-definite). We may write C as

Cn Clz)
C= ;
(Czl Cn
where Cj; is the n; X n; matrix. Let

Cn Tclz)
C(7) := , 0<t<l.
) (fczl Cy

Set Zi(t) := 1Xi(1)%, 1 < i < n, where X(t) ~ N(0, C(1)).
We may restate the assertion as

P(Zi(1) < s51,....Zy(1) < 50) 2 P(Z1(0) < 51,...,Z4(0) = 50),
where §5; = ;tlz Therefore it is enough to show that the function
T P(Zi(t) <s1,...,7Z,(t) <s,)is nondecreasing on [0, 1].

Let f(x, T) denote the density of the random vector Z(z) and K = [0, s1] X -+ X
[0, s,]. We have

TR sz <50 = /K Fle D) = /K § (o

where the last equation follows by Lemma 6 applied to A; = ... = A, = 0.
Therefore it is enough to show that [, aarf (x,7) = 0.

To this end we will compute the Laplace transform of aar f(x, 7). By Lemma 6,
applied to K = [0, 00)", we have forany A; ..., 4, >0,

n a a n
/ o im1 Aii flx, 1)dx = / e Li=i i (x, T)dx.
[0,00)” af BT [0’00)11

However by Lemma 4 we have

0 1 <
/ e~ Li=1*4%if(x, T)dx = Eexp | — inx,?(r) = |+ AC(x)|7V/2,
[0,00)" 2 i=1

where A = diag(Aq,...,A4,).
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Formula (2) below yields

I+ ACOI=1+ Y [(AC@) =1+ Y [C] ]
G#ICn G#ICn jel
Fix @ # J C [n]. ThenJ = J; U Jy, where J; = [n] N J, J, := J\ [n1] and

C(r)y = (CJI “Cha, ) If J; = @ orJ, = @ then C(t); = Cy, otherwise by (3)
TCJZJI C12
we get

—1/2

—1/2 —
|C(T)./| = |CJ1||CJ2| Il]]‘ - TZCJI / C./]chjzlcjz./lcjl

11
= |C11 ||C12| l—[(l - TZMJl,Jz(i))v

i=1

where wy, 5, (i), 1 < i < |Ji| denote the eigenvalues of CJ_II/ZCJIJZCJ_ZICJZJI CJ_II/2
(by (4) they belong to [0, 1]). Thus for any @ # J C [n] and 7 € [0, 1] we have

d
a() = =, |C(@)| 20,
T
Therefore

ad _ 1 _ a
g T HACOI2 = — [T+ AC@I™? 30 o |l
P#£JC[n)

1
=2|I+AC(t)|_3/2 Z aJ(T)l_[Aj'

B#£JC[n) j&J

We have thus shown that

" 0 1
/ e Xt U feydx = Y a0+ AC@[T] [ A
[0.00)" ot 2

P#JC[n) jeJ

Let h; := h3 c(r) be the density function on (0, 00)” defined by (5). By Lemmas 8
and 7 (iii) we know that

n ‘J‘
I+ AC(7) —3/2 A= o~ Li=1Aiki 9 h,.
| J

ieJ (0,00)" an
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This shows that

3 1 V!

5 f0 D) = > ,@(0) athr(x).
B#JC[n)

Finally recall that a;(t) > 0 and observe that by Lemma 7 (ii),

Il

.0 .
x,-li>nol+ o, h.(x) =0 fori¢l C [n],

thus

oMl
/ he (x)dx = / he(sy,xye)dxge > 0,
K Oxy I,

[jesel0.5]

where J¢ = [n]\ Jand y = (sy,xc) if y; = s; fori € J and y; = x; fori € JC. O

3 Auxiliary Lemmas

Lemma 4 Let X be an n dimensional centered Gaussian vector with the covariance
matrix C. Then for any Ay, ..., A, > 0 we have

E exp (— > A,-X,?) = |I, + 2AC|7V2,
i=1
where A := diag(Ay, ..., Ap).

Proof Let A be a symmetric positive-definite matrix. Then A = UDU” for some
U € O(n) and D = diag(d;, d>, ... ,d,). Hence

/ exp(—(Ax, x))dx = / exp(—(Dx, x))dx = l_[ \/;T — ”h/2|D|—1/2 — ”n/2|A|—1/2.
n Rll k=1 k

Therefore for a canonical Gaussian vector Y ~ N(0,1,) and a symmetric matrix B
such that 2B < I, we have

Bexp((8Y. V) = @m) " [ exp (— <(;1n—3) % x>) ae=27"|!

= |I,—2B|7/%.

—-1/2
1,—B
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We may represent X ~ AN(0,C) as X ~ AY with Y ~ AN(0,1,) and C = AAT.
Thus

Eexp (— ZA,X?) = Eexp(—(AX, X))
i=1

= Eexp(—(AAY,AY)) = Eexp(—(ATAAY,Y))
= |I, + 2ATAA|7V? = |1, + 2AC| 712,

where to get the last equality we used the fact that |I, + A1A;| = |1, + AxA4| for
Al 7A2 € Mnxn~ O
Lemma 5

(i) For any matrix A € Myxp,

L+Al=1+ > A/l ©)
B#£JC[n)

(ii) Suppose thatn = n; +ny and A € M,,x,, is symmetric and positive-definite with

a block representation A = (ﬁ; ﬁ;), where Aj; € Mnanj. Then
Al = Iy — Ay PAnA A AT 3)
Moreover,
0 <A} PAAR ANAL? < T, )
Proof

(1) This formula may be verified in several ways—e.g. by induction on n or by
using the Leibniz formula for the determinant.
(ii)) We have

(A“Alz): A% 0 I, A PALAL T\ (A 0
Az A 0 AY* )\ Ay ?A472 I, 0 A’

and
I, A PARAL Y| I,,I—Alll/ZAuA AnA? 0
—1/2 —1/2 - 2
A3, PAnALY I, A5 A21A“/ I,
1/2

I, — A7 A 1A A21A_1/2) .
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To show the last part of the statement notice that Al_ll/ A 12A2_21A21A1_11/ 2 =

BTB > 0, where B := Az_zl/ 2A21A1_11/ 2 Since A is positive-definite, for any

t€R,x € R" and y € R™ we have 2 (A x,x) + 2t{Az1x,y) + (Azy,y) > 0.
This implies (Ay1x,y)?> < (A11x,x)(A2y, ). Replacing x by Al_ll/zx and y by
A2—21/2y we get (Bx,y)? < |x|?|y|>. Choosing y = Bx we get (B"Bx,x) < |x|?,
ie. BB <1,.

|

Lemma 6 Let f(x, t) be the density of the random vector Z(t) defined above. Then
for any Borel set K in [0, 00)" and any Ay, ..., A, >0,

n a a n
/ o™ Xt 1 f(x, T)dx = / e Zi=Nf (x, T)dx.
X ik ot Jk

Proof The matrix C is nondegenerate, therefore matrices Cj; and Cy, are nonde-
generate and C(7) is nondegenerate for any 7 € [0, 1]. Random vector X(7) ~
N (0, C(t)) has the density |C(t)|~"/2(27) ™% exp(— ) (C(7) "'x, x)). Standard cal-
culation shows that Z(7) has the density

- —n 1 —(C(v)™ X X
feey =lc@PEm™ T 3 T eI (),
VR
where for ¢ € {—1,1}" and x € (0, 00)" we set £/x := (&;./Xi)i.

The function 7 > |C(t)|~!/? is smooth on [0, 1], in particular

d
sup |C(D)|7V2 4+ sup . |C(0)|TV? =1 M < .
7€[0,1] 7€[0,1] ot

Since C(tr) = tC(1) + (1 — v)C(0) we have aar C(r) = C(1) — C(0) and

T < (O (O~ CONCLR) e i e )
T

The continuity of the function t — C(t) gives
(C(r) Ye/x, e4/x) = ale/x, e/x) = aZ |xi|
i=1
and

{C(@)™H(C(1) — CO0)C(1) ev/x.ev/x)| < blev/x.ev/x) =b Y |xi

i=1
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for some @ > 0, b < co. Hence for x € (0, 00)"

1 " n
< g(x) = Mj-[_n/Z (1 + bz |xi|) e_“Zz:l |x,-|'
\/_x cee Xy P

0
P

sup
7€[0,1]

Since g(x) € L((0,00)") and e~ Yi=i12% < | the statement easily follows by the

Lebesgue dominated convergence theorem. O
Let fora > 0,
el
ga(x,y) :=¢" _}ZF(k—}— o) K x>0,y>0.
For w,ay,...,o, > 0and arandom vector Y = (Y1, ..., Y,) such that P(Y; > 0) =
1 we set

nl Xi
hmwmﬂy@h”.ﬁg:=E[rlugm(MJ0}, Xiyeoo s Xy > 0,

i=1

Lemma 7 Let i > 0 and Y be a random n-dimensional vector with nonnegative
coordinates. For a = (ay, ..., a,) € (0,00)" set hy 1= ha,, a1y

(i) Foranyo € (0,00)", hy > Oandf(Ooo),,h (x)dx = 1.
(ii) If e € (0,00)" and a; > 1 then limy, 04 he(x) =0, h (x) exists and

am@=mw—m
0x, i

(iii) Ifa € (1,00)" thenforanyJ C [n], § oV ‘h (x) exists and belongs to L ((0, c0)").
Moreover for Ay,..., A, >0,

n V! n
— Y i AiXi ho (x)dx = A / — 2= Aixipy (x)d
e X)dx = | | e o (X)dx.
/(O,oo)” a ) )

jes  J0ooy

Proof
(i) Obviously iy € [0, 00]. We have for any y > 0 and o > 0,

o0 1 x o0
/ ga( ,y) dx:/ go(x,y)dx = 1.
0o M 128 0
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Hence by the Fubini theorem,

/<o,oo>nh (x)dx—IEl_[/ ( )dxl =1.

(ii) It is well known that I"(x) is decreasing on (0, xo] and increasing on [x, 00),
where 1 < x9p < 2 and I'(xg) > 1/2. Therefore for k = 1,... and @ > 0,
I'(k+a)> Tk = }(k—1)!and

o +a—1

< e l—x X —x
ga(ry) = ZF(k+oz)_2( * Z(k—l)v )

=2x*""(e™ + x).

This implies that fora > 0 and 0 < a < b < 00, gu(x,y) < C(a,a,b) < oo
for x € (a,b) and y > 0. Moreover,

2 n Xi ai—1 Xi
h“(x)‘(u) H(M) (1+M)'

In particular lim,, o4+ ho(x) = 0 if @; > 1. Observe that for @ > 1, aaxga =
8a—1 — 8« Standard application of the Lebesgue dominated convergence
theorem concludes the proof of part (ii).

(iii) By (ii) we get

VI
gjha =Y DV R s e € Li((0,00)").

KCJ

Moreover limy, o+ ?,'x’j' hy(x) = 0 forj ¢ J. We finish the proof by induction
on |J| using integration by parts.
|
Let C be a positive-definite symmetric n x n matrix. Then there exists & > 0 such
that B := C— ,uI is positive-definite. Let X! := (Xl.(l) )i<n be independent Gaussian

vectors (0, .} B

k

vi=Y x"? 1<izn

=1

and

hici=hy &y ©)
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Lemma 8 ForanyAy,...,A, > 0 we have
/ " Z= My o(x) = |I + AC| 2,
(0,00)"

where A = diag(1q, ..., Ay).
Proof We have for any o, . > Oand A,y > 0

/oole_“g y dx—e}z / (“)XH dx
0o M A\’ k'F(k+a) plte

k

o0
_ y = M
= = (1 + ph) e 1#m?,

P S e

By the Fubini theorem we have

[ e e = £ [T e (B a
0oor e n

koo Ay
= I, + A2 Ee” =t v,

Therefore by Lemma 4 we have

[SE

n 1
/ e~ imidsipy (()dx = |I, + pA|72 T+ 2uAT + pA)™! 5, B
(0 OO)”

= I, + AC|">.
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