A Remark on Measures of Sections of *Lp***-balls**

Alexander Koldobsky and Alain Pajor

Abstract We prove that there exists an absolute constant *C* so that

$$
\mu(K) \leq C\sqrt{p} \max_{\xi \in S^{n-1}} \mu(K \cap \xi^{\perp}) |K|^{1/n}
$$

for any $p > 2$, any $n \in \mathbb{N}$, any convex body K that is the unit ball of an *n*dimensional subspace of L_p , and any measure μ with non-negative even continuous density in \mathbb{R}^n . Here ξ^{\perp} is the central hyperplane perpendicular to a unit vector $\xi \in S^{n-1}$, and $|K|$ stands for volume.

1 Introduction

The slicing problem $[1, 4, 5, 29]$ $[1, 4, 5, 29]$ $[1, 4, 5, 29]$ $[1, 4, 5, 29]$ $[1, 4, 5, 29]$ $[1, 4, 5, 29]$ $[1, 4, 5, 29]$, a major open question in convex geometry, asks whether there exists a constant *C* so that for any $n \in \mathbb{N}$ and any origin-symmetric convex body *K* in \mathbb{R}^n , *n*-

$$
|K|^{\frac{n-1}{n}} \leq C \max_{\xi \in S^{n-1}} |K \cap \xi^{\perp}|,
$$

where |K| stands for volume of proper dimension, and ξ^{\perp} is the central hyperplane in \mathbb{R}^n perpendicular to a unit vector ξ . The best-to-date result $C \leq O(n^{1/4})$ is due
to Klartag [15], who improved an earlier estimate of Bourgain [6]. The answer is to Klartag [\[15\]](#page-6-3), who improved an earlier estimate of Bourgain [\[6\]](#page-6-4). The answer is affirmative for unconditional convex bodies (as initially observed by Bourgain; see also [\[3,](#page-6-5) [14,](#page-6-6) [29\]](#page-7-0)), intersection bodies [\[10,](#page-6-7) Theorem 9.4.11], zonoids, duals of bodies with bounded volume ratio [\[29\]](#page-7-0), the Schatten classes [\[23\]](#page-7-1), *k*-intersection bodies $[21, 22]$ $[21, 22]$ $[21, 22]$; see $[7]$ for more details.

A. Koldobsky (⊠)

Department of Mathematics, University of Missouri, Columbia, MO 65211, USA e-mail: koldobskiya@missouri.edu

A. Pajor

Université Paris-Est, Laboratoire d'Analyse et Mathématiques Appliquées (UMR 8050), UPEM, Marne-la-Vallée F-77454, France e-mail: alain.pajor@u-pem.fr

[©] Springer International Publishing AG 2017

B. Klartag, E. Milman (eds.), *Geometric Aspects of Functional Analysis*, Lecture Notes in Mathematics 2169, DOI 10.1007/978-3-319-45282-1_14

The case of unit balls of finite dimensional subspaces of L_p is of particular interest in this note. It was shown by Ball [\[2\]](#page-6-9) that the slicing problem has an affirmative answer for the unit balls of finite dimensional subspaces of L_p , $1 \le p \le 2$. Junge 131 extended this result to every $p \in (1, \infty)$ with the constant C depending on [\[13\]](#page-6-10) extended this result to every $p \in (1,\infty)$, with the constant *C* depending on *p* and going to infinity when $p \rightarrow \infty$. Milman [\[27\]](#page-7-4) gave a different proof for subspaces of L_p , $2 < p < \infty$, with the constant $C \leq O(\sqrt{p})$. Another proof of this estimate can be found in [22] this estimate can be found in [\[22\]](#page-7-3).

A generalization of the slicing problem to arbitrary measures was considered in $[18-21]$ $[18-21]$. Does there exist a constant *C* so that for every $n \in N$, every originsymmetric convex body K in \mathbb{R}^n , and every measure μ with non-negative even continuous density *f* in \mathbb{R}^n ,

$$
\mu(K) \leq C \max_{\xi \in S^{n-1}} \mu(K \cap \xi^{\perp}) |K|^{1/n} ? \tag{1}
$$

For every *k*-dimensional subspace of \mathbb{R}^n , $1 \le k \le n$ and any Borel set $A \subset E$,

$$
\mu(A) = \int_A f(x) dx,
$$

where the integration is with respect to the *k*-dimensional Lebesgue measure on *E*:

Inequality (1) was proved with an absolute constant C for intersection bodies [\[18\]](#page-7-5) (see [\[16\]](#page-6-11), this includes the unit balls of subspaces of L_p with $0 < p \le 2$), unconditional bodies and duals of bodies with bounded volume ratio in [20], for unconditional bodies and duals of bodies with bounded volume ratio in [\[20\]](#page-7-6), for *k*-intersection bodies in [\[21\]](#page-7-2). For arbitrary origin-symmetric convex bodies, [\(1\)](#page-1-0) was proved in [\[19\]](#page-7-7) with $C \leq O(\sqrt{n})$. A different proof of the latter estimate was recently given in [8] where the symmetry condition was removed given in [\[8\]](#page-6-12), where the symmetry condition was removed.

For the unit balls of subspaces of L_p , $p > 2$, [\(1\)](#page-1-0) was proved in [\[21\]](#page-7-2) with $C \leq O(n^{1/2-1/p})$. In this note we improve the estimate to $C \leq O(\sqrt{p})$, extending Milman's result [27] to arbitrary measures in place of volume. In fact, we prove a Milman's result [\[27\]](#page-7-4) to arbitrary measures in place of volume. In fact, we prove a more general inequality

$$
\mu(K) \leq (C\sqrt{p})^k \max_{H \in Gr_{n-k}} \mu(K \cap H) |K|^{k/n}, \tag{2}
$$

where $1 \leq k < n$, Gr_{n-k} is the Grassmanian of $(n-k)$ -dimensional subspaces of \mathbb{R}^n . *K* is the unit ball of any *n*-dimensional subspace of $I_n \geq 2$, *u* is a measure \mathbb{R}^n , *K* is the unit ball of any *n*-dimensional subspace of L_p , $p > 2$, μ is a measure on \mathbb{R}^n with even continuous density, and *C* is a constant independent of p, n, k, K, μ .

The proof is a combination of two known results. Firstly, we use the reduction of the slicing problem for measures to computing the outer volume ratio distance from a body to the class of intersection bodies established in [\[20\]](#page-7-6); see Proposition [1.](#page-4-0) Note that outer volume ratio estimates have been applied to different cases of the original slicing problem by Ball [\[2\]](#page-6-9), Junge [\[13\]](#page-6-10), and Milman [\[27\]](#page-7-4). Secondly, we use an estimate for the outer volume ratio distance from the unit ball of a subspace of L_p , $p > 2$, to the class of origin-symmetric ellipsoids proved by Milman in [\[27\]](#page-7-4).

This estimate also follows from results of Davis, Milman and Tomczak-Jaegermann [\[9\]](#page-6-13). We include a concentrated version of the proof in Proposition [2.](#page-4-1)

2 Slicing Inequalities

We need several definitions and facts. A closed bounded set K in \mathbb{R}^n is called a *star body* if every straight line passing through the origin crosses the boundary of *K* at exactly two points, the origin is an interior point of *K*; and the *Minkowski functional* of *K* defined by

$$
||x||_K = \min\{a \ge 0 : x \in aK\}
$$

is a continuous function on R*ⁿ*:

The *radial function* of a star body *K* is defined by

$$
\rho_K(x) = \|x\|_K^{-1}, \qquad x \in \mathbb{R}^n, \ x \neq 0.
$$

If $x \in S^{n-1}$ then $\rho_K(x)$ is the radius of *K* in the direction of *x*.
We use the polar formula for volume of a star body

We use the polar formula for volume of a star body

$$
|K| = \frac{1}{n} \int_{S^{n-1}} \|\theta\|_K^{-n} d\theta.
$$
 (3)

The class of intersection bodies was introduced by Lutwak [\[25\]](#page-7-8). Let *K*; *L* be origin-symmetric star bodies in \mathbb{R}^n . We say that *K* is the intersection body of *L* if the radius of *K* in every direction is equal to the $(n - 1)$ -dimensional volume of the section of *L* by the central hyperplane orthogonal to this direction, i.e. for every $\xi \in S^{n-1}$,

$$
\rho_K(\xi) = \|\xi\|_K^{-1} = |L \cap \xi^{\perp}|
$$

=
$$
\frac{1}{n-1} \int_{S^{n-1} \cap \xi^{\perp}} \|\theta\|_L^{-n+1} d\theta = \frac{1}{n-1} R \left(\|\cdot\|_L^{-n+1} \right) (\xi),
$$

where $R: C(S^{n-1}) \to C(S^{n-1})$ is the *spherical Radon transform*

$$
Rf(\xi) = \int_{S^{n-1} \cap \xi^{\perp}} f(x) dx, \qquad \forall f \in C(S^{n-1}).
$$

All bodies *K* that appear as intersection bodies of different star bodies form *the class of intersection bodies of star bodies*. A more general class of *intersection bodies* is defined as follows. If μ is a finite Borel measure on S^{n-1} , then the spherical Radon

transform $R\mu$ of μ is defined as a functional on $C(S^{n-1})$ acting by

$$
(R\mu, f) = (\mu, Rf) = \int_{S^{n-1}} Rf(x) d\mu(x), \qquad \forall f \in C(S^{n-1}).
$$

A star body *K* in \mathbb{R}^n is called an *intersection body* if $\|\cdot\|_K^{-1} = R\mu$ for some measure μ as functionals on $C(S^{n-1})$ i.e. μ , as functionals on $C(S^{n-1})$, i.e.

$$
\int_{S^{n-1}} \|x\|_K^{-1} f(x) dx = \int_{S^{n-1}} Rf(x) d\mu(x), \qquad \forall f \in C(S^{n-1}).
$$

Intersection bodies played a crucial role in the solution of the Busemann-Petty problem and its generalizations; see [\[17,](#page-7-9) Chap. 5].

A generalization of the concept of an intersection body was introduced by Zhang [\[30\]](#page-7-10) in connection with the lower dimensional Busemann-Petty problem. For $1 \le k \le n-1$ the $(n-k)$ -dimensional spherical Radon transform R_{n-k} : $C(S^{n-1}) \to$ $k \leq n-1$, the $(n-k)$ -dimensional spherical Radon transform R_{n-k} : $C(S^{n-1}) \to C(G_{n-k})$ is a linear operator defined by $C(Gr_{n-k})$ is a linear operator defined by

$$
R_{n-k}g(H) = \int_{S^{n-1}\cap H} g(x) \, dx, \quad \forall H \in Gr_{n-k}
$$

for every function $g \in C(S^{n-1})$.
We say that an origin symme

We say that an origin symmetric star body *K* in R*ⁿ* is a *generalized k-intersection body*, and write $K \in \mathcal{BP}_k^n$, if there exists a finite Borel non-negative measure μ on Gr_{-k} so that for every $\alpha \in C(\mathbb{S}^{n-1})$ Gr_{n-k} so that for every $g \in C(S^{n-1})$

$$
\int_{S^{n-1}} \|x\|_K^{-k} g(x) dx = \int_{Gr_{n-k}} R_{n-k} g(H) d\mu(H).
$$
 (4)

When $k = 1$ we get the class of intersection bodies. It was proved by Goodey and Weil $[11]$ for $k = 1$ and by Grinberg and Zhang $[12]$, Lemma 6.1] for arbitrary *k* (see also [\[28\]](#page-7-11) for a different proof) that the class BP_k^n is the closure in the radial metric of *k*-radial sums of origin-symmetric ellipsoids. In particular, the classes BP_k^n contain all origin-symmetric ellipsoids in \mathbb{R}^n and are invariant with respect to linear transformations. Recall that the *k*-radial sum $K +_k L$ of star bodies *K* and *L* is defined by

$$
\rho_{K+_kL}^k = \rho_K^k + \rho_L^k.
$$

For a convex body *K* in \mathbb{R}^n and $1 \leq k < n$, denote by

$$
\text{o.v.r.}(K, \mathcal{BP}_k^n) = \inf \left\{ \left(\frac{|C|}{|K|} \right)^{1/n} : K \subset C, C \in \mathcal{BP}_k^n \right\}
$$

the outer volume ratio distance from a body *K* to the class BP_k^n .

Let B_2^n be the unit Euclidean ball in \mathbb{R}^n , let $|\cdot|_2$ be the Euclidean norm in \mathbb{R}^n ,
i let σ be the uniform probability measure on the sphere S^{n-1} in \mathbb{R}^n . For every and let σ be the uniform probability measure on the sphere S^{n-1} in \mathbb{R}^n . For every $x \in \mathbb{R}^n$, let x_1 be the first coordinate of *x*. We use the fact that for every $p > -1$

$$
\int_{S^{n-1}} |x_1|^p d\sigma(x) = \frac{\Gamma(\frac{p+1}{2}) \Gamma(\frac{n}{2})}{\sqrt{\pi} \Gamma(\frac{n+p}{2})};\tag{5}
$$

see for example [\[17,](#page-7-9) Lemma 3.12], where one has to divide by $|S^{n-1}|$
 $2\pi^{(n-1)/2}/\Gamma(\frac{n}{2})$ because the measure σ on the sphere is normalized j D $2\pi^{(n-1)/2}/\Gamma(\frac{n}{2})$, because the measure σ on the sphere is normalized.

In [\[20\]](#page-7-6), the slicing problem for arbitrary measures was reduced to estimating the outer volume ratio distance from a convex body to the classes BP_k^n , as follows.

Proposition 1 *For any n* $\in \mathbb{N}$, $1 \leq k < n$, *any origin-symmetric star body K in* \mathbb{R}^n , *and any measure u with even continuous density on K* and any measure μ with even continuous density on **K**,

$$
\mu(K) \leq \left(\text{ o.v.r}(K, \mathcal{BP}_k^n) \right)^k \frac{n}{n-k} c_{n,k} \max_{H \in Gr_{n-k}} \mu(K \cap H) |K|^{k/n},
$$

 $where \ c_{n,k} = |B_2^n|^{(n-k)/n} / |B_2^{n-k}| \in (e^{-k/2}, 1).$

It appears that for the unit balls of subspaces of L_p , $p > 2$ the outer volume ration distance to the classes of intersection bodies does not depend on the dimension. As mentioned in the introduction, the following estimate was proved in [\[27\]](#page-7-4) and also follows from results of [\[9\]](#page-6-13). We present a short version of the proof.

Proposition 2 *Let* $p > 2$, $n \in \mathbb{N}$, $1 \leq k < n$, and let K be the unit ball of an *n*-dimensional subspace of *L*. Then *n-dimensional subspace of Lp*: *Then*

$$
o.v.r(K, \mathcal{BP}_k^n) \leq C\sqrt{p},
$$

where C is an absolute constant.

Proof Since the classes BP_k^n are invariant under linear transformations, we can assume that K is in the Lewis position. By a result of Lewis in the form of $[26,$ Theorem 8.2], this means that there exists a measure ν on the sphere so that for every $x \in \mathbb{R}^n$

$$
||x||_K^p = \int_{S^{n-1}} |(x,u)|^p dv(u),
$$

and

$$
|x|_2^2 = \int_{S^{n-1}} |(x,u)|^2 dv(u).
$$

Also, by the same result of Lewis [\[24\]](#page-7-13), $K \subset n^{1/2-1/p}B_2^n$.

Let us estimate the volume of K from below. By the Fubini theorem, formula (5) and Stirling's formula, we get

$$
\int_{S^{n-1}} ||x||_K^p d\sigma(x) = \int_{S^{n-1}} \int_{S^{n-1}} |(x,u)|^p d\sigma(x) d\nu(u)
$$

=
$$
\int_{S^{n-1}} |x_1|^p d\sigma(x) \int_{S^{n-1}} d\nu(u) \le \left(\frac{Cp}{n+p}\right)^{p/2} \int_{S^{n-1}} d\nu(u).
$$

Now

$$
\frac{Cp}{n+p} \left(\int_{S^{n-1}} dv(u) \right)^{2/p} \ge \left(\int_{S^{n-1}} ||x||_K^p d\sigma(x) \right)^{2/p}
$$

$$
\ge \left(\int_{S^{n-1}} ||x||_K^{-n} d\sigma(x) \right)^{-2/n} = \left(\frac{|K|}{|B_2^n|} \right)^{-2/n} \sim \frac{1}{n} |K|^{-2/n},
$$

because $|B_2^n|^{1/n} \sim n^{-1/2}$. On the other hand,

$$
1 = \int_{S^{n-1}} |x|_2^2 d\sigma(x) = \int_{S^{n-1}} \int_{S^{n-1}} (x, u)^2 d\nu(u) d\sigma(x)
$$

=
$$
\int_{S^{n-1}} \int_{S^{n-1}} |x_1|^2 d\sigma(x) d\nu(u) = \frac{1}{n} \int_{S^{n-1}} d\nu(u),
$$

so

$$
\frac{Cp}{n+p}n^{2/p} \ge \frac{1}{n}|K|^{-2/n},
$$

and

$$
|K|^{1/n} \ge cn^{-1/p} \sqrt{\frac{n+p}{np}} \ge \frac{cn^{1/2-1/p}}{\sqrt{p}} |B_2^n|^{1/n}.
$$

Finally, since $K \subset n^{1/2-1/p} B_2^n$, and $B_2^n \in \mathcal{BP}_k^n$ for every *k*, we have

$$
\text{o.v.r.}(K, \mathcal{BP}_k^n) \le \left(\frac{|n^{1/2-1/p}B_2^n|}{|K|}\right)^{1/n} \le C\sqrt{p},
$$

where *C* is an absolute constant.

We now formulate the main result of this note.

Corollary 1 *There exists a constant C so that for any p* > 2, *n* $\in \mathbb{N}$, $1 \leq k < n$, any convex hody K that is the unit hall of an n-dimensional subspace of L and any *any convex body K that is the unit ball of an n-dimensional subspace of Lp*; *and any* m easure μ with non-negative even continuous density in $\mathbb{R}^n,$

$$
\mu(K) \leq (C\sqrt{p})^k \max_{H \in Gr_{n-k}} \mu(K \cap H) |K|^{k/n}.
$$

Proof Combine Proposition [1](#page-4-0) with Proposition [2.](#page-4-1) Note that $\frac{n}{n-k} \in (1, e^k)$, and $c_{n,k} \in (e^{-k/2}, 1)$, so these constants can be incorporated in the constant C $(e^{-k/2}, 1)$, so these constants can be incorporated in the constant *C*.

Acknowledgements The first named author was partially supported by the US National Science Foundation, grant DMS-1265155.

References

- 1. K. Ball, Isometric problems in ℓ_p and sections of convex sets, Ph.D. dissertation, Trinity College, Cambridge, 1986
- 2. K. Ball, *Normed Spaces with a Weak Gordon-Lewis Property*. Lecture Notes in Mathematics, vol. 1470 (Springer, Berlin 1991), pp. 36–47
- 3. S. Bobkov, F. Nazarov, On convex bodies and log-concave probability measures with unconditional basis, in *Geometric Aspects of Functional Analysis*, ed. by V.D. Milman, G. Schechtman. Lecture Notes in Mathematics, vol. 1807 (Springer, Berlin, 2003), pp. 53–69
- 4. J. Bourgain, On high-dimensional maximal functions associated to convex bodies. Am. J. Math. **108**, 1467–1476 (1986)
- 5. J. Bourgain, Geometry of Banach spaces and harmonic analysis, in *Proceedings of the International Congress of Mathematicians (Berkeley, Calif., 1986)* (American Mathematical Society, Providence, RI, 1987), pp. 871–878
- 6. J. Bourgain, On the distribution of polynomials on high-dimensional convex sets, in *Geometric Aspects of Functional Analysis, Israel Seminar (1989–90)*. Lecture Notes in Mathematics, vol. 1469 (Springer, Berlin, 1991), pp. 127–137
- 7. S. Brazitikos, A. Giannopoulos, P. Valettas, B. Vritsiou, *Geometry of Isotropic Convex Bodies* (American Mathematical Society, Providence RI, 2014)
- 8. G. Chasapis, A. Giannopoulos, D.-M. Liakopoulos, Estimates for measures of lower dimensional sections of convex bodies. Adv. Math. **306**, 880–904 (2017)
- 9. W.J. Davis, V.D. Milman, N. Tomczak-Jaegermann, The distance between certain ndimensional Banach spaces. Isr. J. Math. **39**, 1–15 (1981)
- 10. R.J. Gardner, *Geometric Tomography*, 2nd edn. (Cambridge University Press, Cambridge, 2006)
- 11. P. Goodey, W. Weil, Intersection bodies and ellipsoids. Mathematika **42**, 295–304 (1995)
- 12. E. Grinberg, G. Zhang, Convolutions, transforms and convex bodies. Proc. Lond. Math. Soc. **78**, 77–115 (1999)
- 13. M. Junge, On the hyperplane conjecture for quotient spaces of *Lp*. Forum Math. **6**, 617–635 (1994)
- 14. M. Junge, Proportional subspaces of spaces with unconditional basis have good volume properties, in *Geometric Aspects of Functional Analysis (Israel Seminar, 1992–1994)*. Operator Theory Advances and Applications, vol. 77 (Birkhauser, Basel, 1995), pp. 121–129
- 15. B. Klartag, On convex perturbations with a bounded isotropic constant. Geom. Funct. Anal. **16**, 1274–1290 (2006)
- 16. A. Koldobsky, Intersection bodies, positive definite distributions and the Busemann-Petty problem. Am. J. Math. **120**, 827–840 (1998)
- 17. A. Koldobsky, *Fourier Analysis in Convex Geometry* (American Mathematical Society, Providence RI, 2005)
- 18. A. Koldobsky, A hyperplane inequality for measures of convex bodies in \mathbb{R}^n , $n \leq 4$, Discret. Comput. Geom. **47**, 538–547 (2012)
- 19. A. Koldobsky, A \sqrt{n} estimate for measures of hyperplane sections of convex bodies. Adv. Math. **254**, 33–40 (2014)
- 20. A. Koldobsky, Slicing inequalities for measures of convex bodies. Adv. Math. **283**, 473–488 (2015)
- 21. A. Koldobsky, Slicing inequalities for subspaces of *Lp*. Proc. Am. Math. Soc. **144**, 787–795 (2016)
- 22. A. Koldobsky, A. Pajor, V. Yaskin, Inequalities of the Kahane-Khinchin type and sections of *Lp*-balls. Stud. Math. **184**, 217–231 (2008)
- 23. H. König, M. Meyer, A. Pajor, The isotropy constants of the Schatten classes are bounded. Math. Ann. **312**, 773–783 (1998)
- 24. D.R. Lewis, Finite dimensional subspaces of *Lp*. Stud. Math. **63**, 207–212 (1978)
- 25. E. Lutwak, Intersection bodies and dual mixed volumes. Adv. Math. **71**, 232–261 (1988)
- 26. E. Lutwak, D. Yang, G. Zhang, *Lp* John ellipsoids. Proc. Lond. Math. Soc. **90**, 497–520 (2005)
- 27. E. Milman, Dual mixed volumes and the slicing problem. Adv. Math. **207**, 566–598 (2006)
- 28. E. Milman, Generalized intersection bodies. J. Funct. Anal. **240**(2), 530–567 (2006)
- 29. V. Milman, A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed *n*-dimensional space, in *Geometric Aspects of Functional Analysis*, ed. by J. Lindenstrauss, V. Milman. Lecture Notes in Mathematics, vol. 1376 (Springer, Heidelberg, 1989), pp. 64–104
- 30. G. Zhang, Section of convex bodies. Am. J. Math. **118**, 319–340 (1996)