
A Remark on Measures of Sections of Lp-balls
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Abstract We prove that there exists an absolute constant C so that

�.K/ � C
p
p max

�2Sn�1
�.K \ �?/ jKj1=n

for any p > 2; any n 2 N; any convex body K that is the unit ball of an n-
dimensional subspace of Lp; and any measure � with non-negative even continuous
density in R

n: Here �? is the central hyperplane perpendicular to a unit vector
� 2 Sn�1; and jKj stands for volume.

1 Introduction

The slicing problem [1, 4, 5, 29], a major open question in convex geometry, asks
whether there exists a constant C so that for any n 2 N and any origin-symmetric
convex body K in Rn;

jKj n�1
n � C max

�2Sn�1
jK \ �?j;

where jKj stands for volume of proper dimension, and �? is the central hyperplane
in R

n perpendicular to a unit vector �: The best-to-date result C � O.n1=4/ is due
to Klartag [15], who improved an earlier estimate of Bourgain [6]. The answer is
affirmative for unconditional convex bodies (as initially observed by Bourgain; see
also [3, 14, 29]), intersection bodies [10, Theorem 9.4.11], zonoids, duals of bodies
with bounded volume ratio [29], the Schatten classes [23], k-intersection bodies
[21, 22]; see [7] for more details.
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The case of unit balls of finite dimensional subspaces of Lp is of particular interest
in this note. It was shown by Ball [2] that the slicing problem has an affirmative
answer for the unit balls of finite dimensional subspaces of Lp; 1 � p � 2: Junge
[13] extended this result to every p 2 .1; 1/; with the constant C depending on
p and going to infinity when p ! 1: Milman [27] gave a different proof for
subspaces of Lp; 2 < p < 1; with the constant C � O.

p
p/: Another proof of

this estimate can be found in [22].
A generalization of the slicing problem to arbitrary measures was considered

in [18–21]. Does there exist a constant C so that for every n 2 N; every origin-
symmetric convex body K in R

n; and every measure � with non-negative even
continuous density f in Rn;

�.K/ � C max
�2Sn�1

�.K \ �?/ jKj1=n ‹ (1)

For every k-dimensional subspace of Rn; 1 � k � n and any Borel set A � E;

�.A/ D
Z
A
f .x/dx;

where the integration is with respect to the k-dimensional Lebesgue measure on E:

Inequality (1) was proved with an absolute constant C for intersection bodies
[18] (see [16], this includes the unit balls of subspaces of Lp with 0 < p � 2/,
unconditional bodies and duals of bodies with bounded volume ratio in [20], for
k-intersection bodies in [21]. For arbitrary origin-symmetric convex bodies, (1) was
proved in [19] with C � O.

p
n/: A different proof of the latter estimate was recently

given in [8], where the symmetry condition was removed.
For the unit balls of subspaces of Lp; p > 2; (1) was proved in [21] with

C � O.n1=2�1=p/: In this note we improve the estimate to C � O.
p
p/; extending

Milman’s result [27] to arbitrary measures in place of volume. In fact, we prove a
more general inequality

�.K/ � .C
p
p/k max

H2Grn�k

�.K \ H/ jKjk=n; (2)

where 1 � k < n; Grn�k is the Grassmanian of .n � k/-dimensional subspaces of
R

n; K is the unit ball of any n-dimensional subspace of Lp; p > 2; � is a measure
onRn with even continuous density, and C is a constant independent of p; n; k;K; �:

The proof is a combination of two known results. Firstly, we use the reduction of
the slicing problem for measures to computing the outer volume ratio distance from
a body to the class of intersection bodies established in [20]; see Proposition 1.
Note that outer volume ratio estimates have been applied to different cases of the
original slicing problem by Ball [2], Junge [13], and Milman [27]. Secondly, we use
an estimate for the outer volume ratio distance from the unit ball of a subspace of
Lp; p > 2; to the class of origin-symmetric ellipsoids proved by Milman in [27].
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This estimate also follows from results of Davis, Milman and Tomczak-Jaegermann
[9]. We include a concentrated version of the proof in Proposition 2.

2 Slicing Inequalities

We need several definitions and facts. A closed bounded set K in R
n is called a star

body if every straight line passing through the origin crosses the boundary of K at
exactly two points, the origin is an interior point of K; and theMinkowski functional
of K defined by

kxkK D minfa � 0 W x 2 aKg

is a continuous function on Rn:

The radial function of a star body K is defined by

�K.x/ D kxk�1
K ; x 2 R

n; x ¤ 0:

If x 2 Sn�1 then �K.x/ is the radius of K in the direction of x:
We use the polar formula for volume of a star body

jKj D 1

n

Z
Sn�1

k�k�n
K d�: (3)

The class of intersection bodies was introduced by Lutwak [25]. Let K;L be
origin-symmetric star bodies in R

n: We say that K is the intersection body of L if
the radius of K in every direction is equal to the .n � 1/-dimensional volume of
the section of L by the central hyperplane orthogonal to this direction, i.e. for every
� 2 Sn�1;

�K.�/ D k�k�1
K D jL \ �?j

D 1

n � 1

Z
Sn�1\�?

k�k�nC1
L d� D 1

n � 1
R

�k � k�nC1
L

�
.�/;

where R W C.Sn�1/ ! C.Sn�1/ is the spherical Radon transform

Rf .�/ D
Z
Sn�1\�?

f .x/dx; 8f 2 C.Sn�1/:

All bodiesK that appear as intersection bodies of different star bodies form the class
of intersection bodies of star bodies. A more general class of intersection bodies is
defined as follows. If � is a finite Borel measure on Sn�1; then the spherical Radon
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transform R� of � is defined as a functional on C.Sn�1/ acting by

.R�; f / D .�;Rf / D
Z
Sn�1

Rf .x/d�.x/; 8f 2 C.Sn�1/:

A star body K in Rn is called an intersection body if k � k�1
K D R� for some measure

�; as functionals on C.Sn�1/; i.e.

Z
Sn�1

kxk�1
K f .x/dx D

Z
Sn�1

Rf .x/d�.x/; 8f 2 C.Sn�1/:

Intersection bodies played a crucial role in the solution of the Busemann-Petty
problem and its generalizations; see [17, Chap. 5].

A generalization of the concept of an intersection body was introduced by Zhang
[30] in connection with the lower dimensional Busemann-Petty problem. For 1 �
k � n � 1; the .n � k/-dimensional spherical Radon transform Rn�k W C.Sn�1/ !
C.Grn�k/ is a linear operator defined by

Rn�kg.H/ D
Z
Sn�1\H

g.x/ dx; 8H 2 Grn�k

for every function g 2 C.Sn�1/:

We say that an origin symmetric star bodyK inRn is a generalized k-intersection
body, and write K 2 BPn

k ; if there exists a finite Borel non-negative measure � on
Grn�k so that for every g 2 C.Sn�1/

Z
Sn�1

kxk�k
K g.x/ dx D

Z
Grn�k

Rn�kg.H/ d�.H/: (4)

When k D 1 we get the class of intersection bodies. It was proved by Goodey and
Weil [11] for k D 1 and by Grinberg and Zhang [12, Lemma 6.1] for arbitrary
k (see also [28] for a different proof) that the class BPn

k is the closure in the radial
metric of k-radial sums of origin-symmetric ellipsoids. In particular, the classes BPn

k
contain all origin-symmetric ellipsoids in Rn and are invariant with respect to linear
transformations. Recall that the k-radial sum KCk L of star bodiesK and L is defined
by

�k
KCkL D �k

K C �k
L:

For a convex body K in Rn and 1 � k < n; denote by

o.v.r..K;BPn
k/ D inf

( � jCj
jKj

�1=n

W K � C; C 2 BPn
k

)

the outer volume ratio distance from a body K to the class BPn
k :
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Let Bn
2 be the unit Euclidean ball in R

n; let j � j2 be the Euclidean norm in R
n;

and let � be the uniform probability measure on the sphere Sn�1 in R
n: For every

x 2 R
n, let x1 be the first coordinate of x. We use the fact that for every p > �1

Z
Sn�1

jx1jpd�.x/ D �. pC1

2
/�. n

2
/p

��. nCp
2

/
I (5)

see for example [17, Lemma 3.12], where one has to divide by jSn�1j D
2�.n�1/=2=�. n

2
/; because the measure � on the sphere is normalized.

In [20], the slicing problem for arbitrary measures was reduced to estimating the
outer volume ratio distance from a convex body to the classes BPn

k , as follows.

Proposition 1 For any n 2 N; 1 � k < n; any origin-symmetric star body K in Rn;

and any measure � with even continuous density on K;

�.K/ � �
o.v.r..K;BPn

k/
�k n

n � k
cn;k max

H2Grn�k

�.K \ H/ jKjk=n;

where cn;k D jBn
2j.n�k/=n=jBn�k

2 j 2 .e�k=2; 1/:

It appears that for the unit balls of subspaces of Lp; p > 2 the outer volume ration
distance to the classes of intersection bodies does not depend on the dimension. As
mentioned in the introduction, the following estimate was proved in [27] and also
follows from results of [9]. We present a short version of the proof.

Proposition 2 Let p > 2; n 2 N; 1 � k < n; and let K be the unit ball of an
n-dimensional subspace of Lp: Then

o.v.r..K;BPn
k/ � C

p
p;

where C is an absolute constant.

Proof Since the classes BPn
k are invariant under linear transformations, we can

assume that K is in the Lewis position. By a result of Lewis in the form of [26,
Theorem 8.2], this means that there exists a measure 	 on the sphere so that for
every x 2 R

n

kxkpK D
Z
Sn�1

j.x; u/jpd	.u/;

and

jxj22 D
Z
Sn�1

j.x; u/j2d	.u/:

Also, by the same result of Lewis [24], K � n1=2�1=pBn
2:
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Let us estimate the volume of K from below. By the Fubini theorem, formula (5)
and Stirling’s formula, we get

Z
Sn�1

kxkpKd�.x/ D
Z
Sn�1

Z
Sn�1

j.x; u/jpd�.x/d	.u/

D
Z
Sn�1

jx1jpd�.x/
Z
Sn�1

d	.u/ �
�

Cp

n C p

�p=2 Z
Sn�1

d	.u/:

Now

Cp

n C p

�Z
Sn�1

d	.u/

�2=p

�
�Z

Sn�1

kxkpKd�.x/

�2=p

�
�Z

Sn�1

kxk�n
K d�.x/

��2=n

D
� jKj

jBn
2j

��2=n

� 1

n
jKj�2=n;

because jBn
2j1=n � n�1=2: On the other hand,

1 D
Z
Sn�1

jxj22d�.x/ D
Z
Sn�1

Z
Sn�1

.x; u/2d	.u/d�.x/

D
Z
Sn�1

Z
Sn�1

jx1j2d�.x/d	.u/ D 1

n

Z
Sn�1

d	.u/;

so

Cp

n C p
n2=p � 1

n
jKj�2=n;

and

jKj1=n � cn�1=p

s
n C p

np
� cn1=2�1=p

p
p

jBn
2j1=n:

Finally, since K � n1=2�1=pBn
2; and B

n
2 2 BPn

k for every k; we have

o.v.r..K;BPn
k/ �

� jn1=2�1=pBn
2j

jKj
�1=n

� C
p
p;

where C is an absolute constant.

We now formulate the main result of this note.

Corollary 1 There exists a constant C so that for any p > 2; n 2 N; 1 � k < n;

any convex body K that is the unit ball of an n-dimensional subspace of Lp; and any
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measure � with non-negative even continuous density in R
n;

�.K/ � .C
p
p/k max

H2Grn�k

�.K \ H/ jKjk=n:

Proof Combine Proposition 1 with Proposition 2. Note that n
n�k 2 .1; ek/; and cn;k 2

.e�k=2; 1/; so these constants can be incorporated in the constant C: �
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