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Bo’az Klartag

Abstract We establish the following universality property in high dimensions: Let
X be a random vector with density in R

n. The density function can be arbitrary.
We show that there exists a fixed unit vector � 2 R

n such that the random variable
Y D hX; �i satisfies

min fP.Y � tM/;P.Y � �tM/g � ce�Ct2 for all 0 � t � Qcpn;

where M > 0 is any median of jYj, i.e., minfP.jYj � M/;P.jYj � M/g � 1=2.
Here, c; Qc;C > 0 are universal constants. The dependence on the dimension n is
optimal, up to universal constants, improving upon our previous work.

1 Introduction

Consider a random vector X that is distributed uniformly in some Euclidean ball
centered at the origin in R

n. For any fixed vector 0 ¤ � 2 R
n, the density of

the random variable hX; �i D P
i �iXi may be found explicitly, and in fact it is

proportional to the function

t 7!
�

1 � t2

A2n

�.n�1/=2

C
.t 2 R/ (1)

where xC D maxfx; 0g and A > 0 is a parameter depending on the length of � and
the radius of the Euclidean ball. It follows that when the dimension n is large, the
density in (1) is close to a Gaussian density, and the random variable Y D hX; �i
has a tail of considerable size:

P.Y � tM/ � c exp.�Ct2/ for all 0 � t � Qcpn: (2)
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tMM−M

area = 1/2

area ≥ ce−Ct2

Fig. 1 An example of a density of a Super-Gaussian random variable

Here,M D Median.jYj/ is any median of jYj, i.e., minfP.jYj � M/;P.jYj � M/g �
1=2, and c; Qc;C > 0 are universal constants. Both the median and the expectation of
jYj differ from A by a factor which is at most a universal constant. We prefer to work
with a median since in the cases we will consider shortly, the expectation of jYj is
not guaranteed to be finite. The inequality in (2) expresses the property that the tail
distribution of Y=M is at least as heavy as the standard Gaussian tail distribution,
for

p
n standard deviations. The dependence on the dimension n is optimal, since

for t > QCp
n, the probability on the left-hand side of (2) vanishes (Fig. 1).

Our goal in this paper is to show that a similar phenomenon occurs for essentially
any random vector in R

n, and not only for the uniform distribution on the high-
dimensional Euclidean ball. Recall that when n is large and the random vector
X D .X1; : : : ;Xn/ has independent coordinates, the classical central limit theorem
implies that under mild assumptions, there exists 0 ¤ � 2 R

n for which hX; �i is
approximately Gaussian. It is curious to note that a Gaussian lower bound on the
tail persists, even when the independence assumption is completely dropped.

Let Y be a real-valued random variable and let L > 0. We say that Y is Super-
Gaussian of length L with parameters ˛; ˇ > 0 if P.Y D 0/ D 0 and for any
0 � t � L,

min fP.Y � tM/;P.Y � �tM/g � ˛e�t2=ˇ;

whereM D Median.jYj/ is any median of jYj. The requirement that P.Y D 0/ D 0

is necessary only to avoid trivialities. A Gaussian random variable is certainly super-
Gaussian of infinite length, as well as a symmetric exponential random variable.
Write jxj D phx; xi for the standard Euclidean norm of x 2 R

n, and denote Sn�1 D
fx 2 R

n I jxj D 1g.
Theorem 1.1 Let X be a random vector with density in Rn. Then there exists a fixed
vector � 2 Sn�1 such that hX; �i is Super-Gaussian of length c1

p
n with parameters

c2; c3 > 0, where c1; c2; c3 > 0 are universal constants.

Theorem 1.1 improves upon Corollary 1.4 from [5], in which the dependence on
the dimension n was logarithmic. In the case where X is distributed uniformly in a
1-unconditional convex body in R

n, Theorem 1.1 goes back to Pivovarov [9] up to
logarithmic factors. In the case where X is distributed uniformly in a convex body
satisfying the hyperplane conjecture with a uniform constant, Theorem 1.1 is due to
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Paouris [8]. Theorem 1.1 provides a universal lower bound on the tail distribution,
which is tight up to constants in the case where X is uniformly distributed in a
Euclidean ball centered at the origin. In particular, the dependence on the dimension
in Theorem 1.1 is optimal, up to the value of the universal constants.

The assumption that the random vector X has a density in R
n may be somewhat

relaxed. The following definition appears in [2, 5] with minor modifications:

Definition 1.2 Let X be a random vector in a finite-dimensional vector space B and
let d > 0. We say that “the effective rank of X is at least d”, or in short that X is of
class eff.rank�d if for any linear subspace E � B,

P.X 2 E/ � dim.E/=d; (3)

with equality if and only if there is a subspace F � B with E ˚ F D B and P.X 2
E [ F/ D 1.

Intuitively, when X is of class eff.rank�d we think of the support of X as
effectively spanning a subspace whose dimension is at least d. Note, however, that
d is not necessarily an integer. By substituting E D B in (3), we see that there are no
random vectors in R

n of class eff.rank�d with d > n. We say that the effective rank
of X is d when X is of class eff.rank�d, but for any " > 0 the random vector X is not
of class eff.rank�dC". The effective rank of X is d� if X is of class eff.rank�d�" for
all 0 < " < d but X is not of class eff.rank�d. In the terminology of [5], the random
vector X has an effective rank greater than d if and only if it is "-decent for some
" < 1=d.

There are many random vectors in R
n whose effective rank is precisely n. For

example, any random vector with density in R
n, or any random vector X that is

distributed uniformly on a finite set that spans Rn and does not contain the origin. It
was shown by Böröczky et al. [1] and by Henk and Linke [4] that the cone volume
measure of any convex body inRn with barycenter at the origin is of class eff.rank�n

as well. Note that a randomvariable Y is Super-Gaussian of length Lwith parameters
˛; ˇ > 0 if and only if for any number 0 ¤ r 2 R, also rY is Super-Gaussian of
length L with the same parameters ˛; ˇ > 0. Theorem 1.1 is thus a particular case
of the following:

Theorem 1.3 Let d � 1 and let B be a finite-dimensional linear space. Let X be
a random vector in B whose effective rank is at least d. Then there exists a non-
zero, fixed, linear functional ` W B ! R such that the random variable `.X/ is
Super-Gaussian of length c1

p
d with parameters c2; c3 > 0, where c1; c2; c3 > 0

are universal constants.

Theorem 1.3 admits the following corollary, pertaining to infinite-dimensional
spaces:

Corollary 1.4 Let B be a topological vector space with a countable family of
continuous linear functionals that separates points in B. Let X be a random vector,
distributed according to a Borel probability measure in B. Assume that d � 1 is
such that P.X 2 E/ � dim.E/=d for any finite-dimensional subspace E � B.
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Then there exists a non-zero, fixed, continuous linear functional ` W B ! R such
that the random variable `.X/ is Super-Gaussian of length c1

p
d with parameters

c2; c3 > 0, where c1; c2; c3 > 0 are universal constants.

The remainder of this paper is devoted to the proof of Theorem 1.3 and
Corollary 1.4. We use the letters c;C; QC; c1;C2 etc. to denote various positive
universal constants, whose value may change from one line to the next. We use
upper-case C to denote universal constants that we think of as “sufficiently large”,
and lower-case c to denote universal constants that are “sufficiently small”. We write
#.A/ for the cardinality of a set A. When we write that a certain set or a certain
number are fixed, we intend to emphasize that they are non-random.

We denote by �n�1 the uniform probability measure on the sphere Sn�1, which is
the unique rotationally-invariant probability measure on Sn�1. When we say that
a random vector � is distributed uniformly on Sn�1, we refer to the probability
measure �n�1. Similarly, when we write that a random subspace E is distributed
uniformly over the Grassmannian Gn;k of k-dimensional subspaces of Rn, we refer
to the unique rotationally-invariant probability measure on Gn;k.

2 Proof Strategy

The main ingredient in the proof of Theorem 1.3 is the following proposition:

Proposition 2.1 Let X be a random vector in Rn with P.X D 0/ D 0 such that

E

�
X

jXj ; �

�2

� 5

n
for all � 2 Sn�1: (4)

Then there exists a fixed vector � 2 Sn�1 such that the random variable hX; �i is
Super-Gaussian of length c1

p
n with parameters c2; c3 > 0, where c1; c2; c3 > 0 are

universal constants.

The number 5 in Proposition 2.1 does not play any particular role, and may be
replaced by any other universal constant, at the expense of modifying the values of
c1; c2 and c3. Let us explain the key ideas in the proof of Proposition 2.1. In our
previous work [5], the unit vector � 2 Sn�1 was chosen randomly, uniformly on
Sn�1. In order to improve the dependence on the dimension, here we select � a bit
differently. We shall define �1 and �2 via the following procedure:

(i) LetM > 0 be a 1=3-quantile of jXj, i.e., P.jXj � M/ � 1=3 and P.jXj � M/ �
2=3. We fix a vector �1 2 Sn�1 such that

P

�

jXj � M and

ˇ
ˇ
ˇ
ˇ
X

jXj � �1

ˇ
ˇ
ˇ
ˇ � 1

5

�

� 1

2
� sup

�2Sn�1

P

�

jXj � M and

ˇ
ˇ
ˇ
ˇ
X

jXj � �

ˇ
ˇ
ˇ
ˇ � 1

5

�

:
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(ii) Next, we fix a vector �2 2 Sn�1 with jh�1; �2ij � 1=10 such that

P

�

jXj � M and

ˇ
ˇ
ˇ
ˇ
X

jXj � �2

ˇ
ˇ
ˇ
ˇ � 1

5

�

� 1

2
� sup

�2Sn�1

jh�;�1ij�1=10

P

�

jXj � M and

ˇ
ˇ
ˇ
ˇ
X

jXj � �

ˇ
ˇ
ˇ
ˇ � 1

5

�

:

In the following pages we will describe a certain subset F3 � Sn�1 which satisfies
�n�1.F3/ � 1 � C=nc and �2 � �1 62 F3. We will show that for any �3 2 F3, the
random variable hX; �i is Super-Gaussian of length cpnwith parameters c1; c2 > 0,
where � is defined as follows:

� D �1 � �2 C �3

j�1 � �2 C �3j : (5)

Thus, �1 and �2 are fixed vectors, while most choices of �3 will work for us, where
by “most” we refer to the uniform measure on Sn�1. The first step the proof below
is to show that for any unit vector � 2 Sn�1,

Median .jhX; �ij/ � CM=
p
n; (6)

that is, any median of jhX; �ij is at most CM=
p
n. Then we need to show that when

�3 2 F3 and � is defined as in (5), for all 0 � t � c
p
n,

min

�

P

�

Y � tMp
n

�

;P

�

Y � � tMp
n

��

� Qce�QCt2 : (7)

The proof of (7) is divided into three sections. The case where t 2 Œ0;
p
log n� may

essentially be handled by using the methods of [5], see Sect. 3. Let t0 > 0 be defined
via

e�t20 D P

�

jXj � M and

ˇ
ˇ
ˇ
ˇ
X

jXj � �2

ˇ
ˇ
ˇ
ˇ � 1

5

�

: (8)

In order to prove (7) in the range t 2 Œ
p
log n; t0�, we will use tools from the local

theory of Banach spaces, such as Sudakov’s inequality as well as the concentration
of measure on the sphere. Details in Sect. 4 below. The remaining interval t 2
Œt0; c

p
n� is analyzed in Sect. 5. In Sect. 6 we deduce Theorem 1.3 and Corollary 1.4

from Proposition 2.1 by using the angularly-isotropic position, along the lines of
[5].
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3 Central Limit Regime

This section is the first in a sequence of three sections that are dedicated to the proof
of Proposition 2.1. Thus, we are given a random vector X in Rn with P.X D 0/ D 0

such that (4) holds true. We fix a numberM > 0 with the property that

P.jXj � M/ � 1=3; P.jXj � M/ � 2=3: (9)

That is, M is a 1=3-quantile of jXj. Our first lemma verifies (6), as it states that for
any choice of a unit vector � , any median of the random variable jhX; �ij is at most
CM=

p
n.

Lemma 3.1 For any � 2 Sn�1,

P
�jhX; �ij � CM=

p
n
	

< 1=2;

where C > 0 is a universal constant.

Proof It follows from (4) that for any � 2 Sn�1,

E

h
hX; �i2 1fjXj�Mg

i
� E




hX; �i2 � M2

jXj2
�

D M2 � E
�
X

jXj ; �

�2

� 5M2

n
:

By the Markov-Chebyshev inequality,

P

�
hX; �i2 1fjXj�Mg � 35M2=n


� 1=7:

Since P.jXj > M/ � 1=3, we obtain

P

�

jhX; �ij � 6Mp
n

�

� P.jXj > M/ C P

�

jhX; �ij � 6Mp
n
and jXj � M

�

� 1

3

C1

7
<

1

2
:

The lemma follows with C D 6. ut
The rest of this section is devoted to the proof of (7) in the range t 2 Œ0;

p
log n�.

The defining properties of �1; �2 2 Sn�1 from the previous section will not be used
here, the entire analysis in this section applies for arbitrary unit vectors �1 and �2.

Lemma 3.2 Let �1; �2 2 Sn�1 be any two fixed vectors. Then,

P

�

jXj � M; jhX; �1ij � 10jXjp
n

and jhX; �2ij � 10jXjp
n

�

>
1

5
:
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Proof By (4) and the Markov-Chebyshev inequality, for j D 1; 2,

P

�

jhX; �jij � 10jXjp
n

�

� n

100
� E
�
X

jXj ; �j

�2

� n

100
� 5

n
D 1

20
:

Thanks to (9), we conclude that

P

�

jXj � M; jhX; �1ij � 10jXjp
n

; jhX; �2ij � 10jXjp
n

�

� 1�
�

2

3
C 1

20
C 1

20

�

>
1

5
:

ut
Let 1 � k � n. Following [5], we write Ok � .Rn/k for the collection of all

k-tuples .v1; : : : ; vk/ with the following property: There exist orthonormal vectors
w1; : : : ;wk 2 R

n and real numbers .aij/i;jD0;:::;k such that jaijj < aii=k2 for j < i, and

vi D
iX

jD1

aijwj for i D 1; : : : ; k: (10)

In other words, Ok consists of k-tuples of vectors that are almost orthogonal. By
recalling the Gram-Schmidt process from linear algebra, we see that .v1; : : : ; vk/ 2
Ok assuming that

jProjEi�1
vij < jvij=k2 for i D 1; : : : ; k; (11)

where Ei is the subspace spanned by the vectors v1; : : : ; vi 2 R
n and ProjEi

is the
orthogonal projection operator onto Ei in R

n. Here, E0 D f0g.
Lemma 3.3 Assume that 1 � k � n and fix .v1; : : : ; vk/ 2 Ok. Then there exists
F � Sn�1 with �n�1.F/ � 1 � C exp.�c

p
k/ such that for any � 2 F and 0 � t �p

log k,

#

�

1 � i � k I hvi; �i � c1

jvijp
n

� t
�

� c2e
�C3t2 � k;

where c1; c2;C3; c;C > 0 are universal constants.

Proof Let w1; : : : ;wk and .aij/ be as in (10). By applying an orthogonal trans-
formation in R

n, we may assume that wi D ei, the standard ith unit vector.
Let � D .�1; : : : ; �n/ 2 R

n be a standard Gaussian random vector in R
n. For

i D 1; : : : ; n and t > 0, it is well-known that

P.�i � t/ D 1p
2�

Z 1

t
e�s2=2ds 2 Œce�t2 ;Ce�t2=2�:
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Therefore, by the Chernoff large deviations bound (e.g., [3, Chap. 2]), for any t > 0,

P

�
# f1 � i � k I �i � tg � c

2
� e�t2 � k


� 1 � QC exp

�
�Qce�t2k


: (12)

From the Bernstein large deviation inequality (e.g., [3, Chap. 2]),

P
�j�j � 2

p
n
	 � 1 � Ce�cn; P

 
kX

iD1

j�ij � 2k

!

� 1 � OCe� Ock: (13)

Note that when
Pk

iD1 j�ij � 2k, for any i D 1; : : : ; k,

h�; vii D aii �
*

�; ei C
iX

jD2

aij
aii

ej

+

� aii

 

�i �
Pk

jD1 j�jj
k2

!

� aii

�

�i � 2

k

�

:

(14)

Moreover, aii D jvi � P
j�2 aijejj � jvij � aii=k for all i D 1; : : : ; k. Therefore

aii � jvij=2 for all i. It thus follows from (14) that when
Pk

iD1 j�ij � 2k, for any i,

�i � t H) h�; vii � aii�i=2 � jvijt=4 for all t � 4=k:

Hence we deduce from (12) and (13) that for all t � 4=k,

P

�

#

�

i I h�; vii � tjvij
4

�

� c

2
� e�t2 � k

�

� 1 � QC exp
�
�Qce�t2k


: (15)

Write I D f` 2 Z I ` � 2; 2` � p
log k=5g. By substituting t D 2` into (15) we see

that

P

�
8` 2 I; #

˚
i I h�; vii � 2`�2jvij

� � c

2
� e�.2`/2 � k


� 1� QC

X

`2I
exp

�
�Qce�.2`/2

k


:

The latter sum is at most C exp.�c
p
k/. Moreover, suppose that x 2 R

n is a fixed
vector such that # fi I hx; vii � tjvij=4g � .c=2/e�t2k for all 1 � t � p

log k=5 of
the form t D 2` for an integer ` � 2. By adjusting the constants, we see that for any
real number t with 0 � t � p

log k,

# fi I hx; vii � c1tjvijg � Qce�QCt2k:

Consequently,

P

�
8t 2 Œ0;

p
log k�; # fi I h�; vii � c1tjvijg � Qce�QCt2 � k


� 1 � Ce�c

p
k:
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Recall that j�j � 2
p
n with a probability of at least 1 � Ce�cn. Therefore, as k � n,

P

�

8t 2 Œ0;
p
log k�; #

�

i I
�

�

j�j ; vi

�

� c1

tjvij
2
p
n

�

� Qce�QCt2 � k
�

� 1 � OCe�Ocpk:

(16)

Since �=j�j is distributed uniformly on Sn�1, the lemma follows from (16). ut
Let E � R

n be an arbitrary subspace. It follows from (4) that

E

ˇ
ˇ
ˇ
ˇProjE

X

jXj
ˇ
ˇ
ˇ
ˇ

2

D E

dim.E/X

iD1

�
X

jXj ; ui
�2

� 5
dim.E/

n
; (17)

where u1; : : : ; um is an orthonormal basis of the subspace E for m D dim.E/.

Lemma 3.4 Set ` D bn1=8c and let �1; �2 2 Sn�1 be any fixed vectors. Let
X1; : : : ;X` be independent copies of the random vector X. Then with a probability
of at least 1 � C=` of selecting X1; : : : ;X`, there exists a subset I � f1; : : : ; `g with
the following three properties:

(i) k WD #.I/ � `=10.
(ii) We may write I D fi1; : : : ; ikg such that .Xi1 ; : : : ;Xik/ 2 Ok.
(iii) For j D 1; : : : ; k,

jXij j � M; jhXij ; �1ij � 10jXij j=
p
n and jhXij ; �2ij � 10jXijj=

p
n:

Here, C > 0 is a universal constant.

Proof We may assume that ` � 10, as otherwise the lemma trivially holds with any
C � 10. Define

I D ˚
1 � i � ` I jXij � M; jhXi; �1ij � 10jXij=

p
n; jhXi; �2ij � 10jXij=

p
n
�

:

Denote k D #.I/ and let i1 < i2 < : : : < ik be the elements of I. We conclude from
Lemma 3.2 and the Chernoff large deviation bound that

P.#.I/ � `=10/ � 1 � C exp.�c`/: (18)

Thus (i) holds with a probability of at least 1 � C exp.�c`/. Clearly (iii) holds true
with probability one, by the definition of I. All that remains is to show that (ii) holds
true with a probability of at least 1 � 1=`. Write Fi for the subspace spanned by
X1; : : : ;Xi, with F0 D f0g. It follows from (17) that for i D 1; : : : ; `,

E

ˇ
ˇ
ˇ
ˇProjFi�1

Xi

jXij
ˇ
ˇ
ˇ
ˇ

2

� 5 � dim.Fi�1/

n
� 5.i � 1/

n
� 5`

n
<

1

`6
;
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as 10 � ` � n1=8. It follows from the Markov-Chebyshev inequality that with a
probability of at least 1 � 1=`,

ˇ
ˇ
ˇ
ˇProjFi�1

Xi

jXij
ˇ
ˇ
ˇ
ˇ <

1

`2
for all i D 1; : : : ; `:

Write Ej for the subspace spanned by Xi1 ; : : : ;Xij . Then Ej�1 � Fij�1. Therefore,
with a probability of at least 1 � 1=`,

ˇ
ˇ
ˇ
ˇProjEj�1

Xij

jXij j
ˇ
ˇ
ˇ
ˇ �

ˇ
ˇ
ˇ
ˇProjFij�1

Xij

jXij j
ˇ
ˇ
ˇ
ˇ <

1

`2
� 1

k2
for all j D 1; : : : ; k:

In view of (11), we see that (ii) holds true with a probability of at least 1 � 1=`, thus
completing the proof of the lemma. ut

By combining Lemmas 3.3 and 3.4 we arrive at the following:

Lemma 3.5 Let `; �1; �2 be as in Lemma 3.4. Then there exists a fixed subset F �
Sn�1 with �n�1.F/ � 1 � C=

p
` such that for any �3 2 F the following holds:

Define � via (5). Let X1; : : : ;X` be independent copies of the random vector X. Then
with a probability of at least 1 � C=

p
` of selecting X1; : : : ;X`,

#

�

1 � i � ` I hXi; �i � c1

Mp
n

� t
�

� c2e
�C3t2 � `; for all 0 � t � p

log `;

(19)
and

#

�

1 � i � ` I hXi; �i � �c1

Mp
n

� t
�

� c2e
�C3t2 � `; for all 0 � t �

p
log `:

(20)
Here, c1; c2;C3; c;C > 0 are universal constants.

Proof Let ‚ be a random vector, distributed uniformly on Sn�1. According to
Lemma 3.4, with a probability of at least 1 � C=` of selecting X1; : : : ;X`, there
exists a subset

I D fi1; : : : ; ikg � f1; : : : ; `g

such that properties (i)–(iii) of Lemma 3.4 hold true. Let us apply Lemma 3.3. Then
under the event where properties (i)–(iii) hold true, with a probability of at least
1 � QC exp.�Qcp`/ of selecting ‚ 2 Sn�1,

#

�

1 � j � k I hXij ; ‚i � c1

jXij jp
n

� t
�

� c2e
�C3t2 �k for all 0 � t � p

log k;
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and moreover k � `=10 with

max

( ˇ
ˇ
ˇ
ˇ
ˇ

*
Xij

jXij j
; �1

+ˇ
ˇ
ˇ
ˇ
ˇ
;

ˇ
ˇ
ˇ
ˇ
ˇ

*
Xij

jXij j
; �2

+ˇ
ˇ
ˇ
ˇ
ˇ

)

� 10p
n

for j D 1; : : : ; k:

Consequently, under the event where properties (i)–(iii) hold true, with a probability
of at least 1 � QC exp.�Qcp`/ of selecting ‚ 2 Sn�1,

#

(

1 � j � k I
*
Xij

jXij j
; �1 � �2 C ‚

+

� c1

2

tp
n

)

� c2e�C3t2 �k for t 2 Œ80=c1;
p
log k�:

Since k � `=10, the condition t 2 Œ80=c1;
p
log k� can be upgraded to t 2 Œ0;

p
log `�

at the cost of modifying the universal constants. Recall that by Lemma 3.3(iii),
we have that jXij j � M for all j. By the triangle inequality, with probability one,
0 < j�1 � �2 C ‚j � 3. Hence,

jXij j=j�1 � �2 C ‚j � M=3:

Therefore, under the event where properties (i)–(iii) hold true, with a probability of
at least 1 � QC exp.�Qcp`/ of selecting ‚ 2 Sn�1,

8t 2 Œ0;
p
log `�; #

�

1 � i � ` I
�

Xi;
�1 � �2 C ‚

j�1 � �2 C ‚j
�

� Nc1

Mp
n

� t
�

� Nc2e
� NC3t2 � `:

(21)

Write A for the event that the statement in (21) holds true. Denoting EX D
.X1; : : : ;X`/, we have shown that

P..‚; EX/ 2 A/ � 1 � QC exp.�Qc
p

`/ � C=` � 1 � NC=`:

Denote

F D
n
� 2 Sn�1 I PEX..�; EX/ 2 A/ � 1 � NC=

p
`
o

:

Then,

1 � NC
`

� P..‚; EX/ 2 A/ � P.‚ 2 F/ C
�

1 � NCp
`

�

P.‚ 62 F/: (22)

It follows from (22) that �n�1.F/ D P.‚ 2 F/ � 1 � 1=
p

`. By the definition
of F � Sn�1, for any �3 2 F , with a probability of at least 1 � NCp

` of selecting
X1; : : : ;X`,

8t 2 Œ0;
p
log `�; #

�

1 � i � ` I
�

Xi;
�1 � �2 C �3

j�1 � �2 C �3j
�

� Nc1

Mp
n

� t
�

� Nc2e
� NC3t2 � `:
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This completes the proof of (19). The argument for (20) requires only the most
trivial modifications, and we leave it for the reader to complete. ut

We will use the well-known fact that for any random variable Y and measurable
sets A1; : : : ;A`, by the Markov-Chebyshev inequality,

1

s
�
X̀

iD1

P.Y 2 Ai/ D 1

s
�E
X̀

iD1

1fY2Aig � P
�
# fi I Y 2 Aig � s

	
.s > 0/:

Corollary 3.6 Let �1; �2 2 Sn�1 be any fixed vectors. Then there exists a fixed
subset F � Sn�1 with �n�1.F/ � 1 � C=nc such that for any �3 2 F , defining �

via (5),

8t 2 Œ0; 5
p
log n�; min

�

P

�

hX; �i � c1

Mp
n

� t
�

;P

�

hX; �i � �c1

Mp
n

� t
��

� c2e
�C3t2 ;

where c;C; c1; c2;C3 > 0 are universal constants.

Proof Wemay assume that n exceeds a certain fixed universal constant, as otherwise
the conclusion of the lemma trivially holds for F D ;. Set ` D bn1=8c and let F be
the set from Lemma 3.5. Let �3 2 F and define � via (5). Suppose that X1; : : : ;X`

are independent copies of the random vector X. Then for any 0 � t � p
log `,

P

�

hX; �i � c1

Mp
n

� t
�

D c2e
�C3 t2

1

c2e�C3t2 � `

X̀

iD1

P

�

hXi; �i � c1

Mp
n

� t
�

� c2e
�C3t2 � P

�

#
�

iI hXi; �i � c1

Mp
n

� t
�

� c2e
�C3 t2 � `

�

� c2e
�C3t2 � .1 � C=

p
`/;

where the last passage is the content of Lemma 3.5. We may similarly obtain a
corresponding lower bound for P

�hX; �i � �c1tM=
p
n
	
. Since ` D bn1=8c, the

desired conclusion follows by adjusting the constants. ut

4 Geometry of the High-Dimensional Sphere

This is the second section dedicated to the proof of Proposition 2.1. A few geometric
properties of the high-dimensional sphere will be used here. For example, the sphere
Sn�1 does not contain more than n mutually orthogonal vectors, yet it contains
e"n mutually almost-orthogonal vectors. Moreover, for the purpose of computing
the expectation of the supremum, a family of e"n standard Gaussians which are
almost-orthogonal in pairs behaves approximately like a collection of independent
Gaussians.
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While Corollary 3.6 takes care of the interval t 2 Œ0; 5
p
log n�, in this section we

deal with the range t 2 Œ5
p
log n; t0� where t0 is defined in (8). We begin with some

background on Sudakov’s minoration theorem and the concentration of measure
inequality on the sphere. Given a bounded, non-empty subset S � R

n, its supporting
functional is defined via

hS.�/ D sup
x2S

hx; �i .� 2 R
n/:

The supporting functional hS is a convex function on R
n whose Lipschitz constant

is bounded by R.S/ D supx2S jxj. The mean width of S is 2M�.S/ where

M�.S/ D
Z

Sn�1

hS.�/d�n�1.�/:

The concentration inequality for Lipschitz functions on the sphere (see, e.g., [7,
Appendix V]) states that for any r > 0,

�n�1

�˚
v 2 Sn�1 I jhS.v/ � M�.S/j � r � R.S/

�	 � Ce�cr2n: (23)

A lower bound for M�.S/ is provided by the following Sudakov’s minoration
theorem (see, e.g., [6, Sect. 3.3]):

Theorem 4.1 (Sudakov) Let N � 1; ˛ > 0 and let x1; : : : ; xN 2 R
n. Set S D

fx1; : : : ; xNg and assume that jxi � xjj � ˛ for any i ¤ j. Then,

M�.S/ � c˛

r
logN

n
;

where c > 0 is a universal constant.

We shall need the following elementary lemma:

Lemma 4.2 Let Z1; : : : ;ZN be random variables attaining values in f0; 1g. Let 1 �
k � N; 0 � " � 1, and assume that for any A � f1; : : : ;Ng with #.A/ D k,

P .9i 2 A; Zi D 1/ � 1 � ": (24)

Then,

P

 
NX

iD1

Zi � N

3k

!

� 1 � 2": (25)

Proof If k � N=3 then (25) holds true, since it follows from (24) that with a
probability of at least 1 � ", there is a non-zero element among Z1; : : : ;ZN . Suppose
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now that k < N=3. The number of k-elements subsets A � f1; : : : ;Ng with
maxi2A Zi D 0 equals

 
N �PN

iD1 Zi
k

!

:

Write E for the event that
PN

iD1 Zi � N=.3k/. Conditioning on the event E ,

1
�N
k

	
X

#.A/Dk

P .8i 2 A; Zi D 0 j E/ �
�N�bN=.3k/c

k

	

�N
k

	 �
�

1 � N=.3k/

N � k

�k

>

�

1 � 1

2k

�k

� 1

2
:

However, by (24),

" � 1
�N
k

	
X

#.A/Dk

P .8i 2 A; Zi D 0/

� 1
�N
k

	
X

#.A/Dk

P.E/ � P .8i 2 A; Zi D 0 j E/ � P.E/=2:

Hence P.E/ � 2" and the lemma is proven. ut
Sudakov’s theorem is used in the following lemma:

Lemma 4.3 Let N � n and let x1; : : : ; xN 2 Sn�1 be such that hxi; xji � 49=50 for
any i ¤ j. Then there exists F � Sn�1 with �n�1.F/ � 1 � C=nc such that for any
� 2 F ,

#
˚
1 � i � N I hxi; �i � c1t=

p
n
�

N
� c2e

�C3t2 ; for all t 2 Œ
p
log n;

p
logN�;

(26)
where c1; c2;C3; c;C > 0 are universal constants.

Proof Denote S D fx1; : : : ; xNg � Sn�1 and note that jxi�xjj � p
2 � 49=25 D 1=5

for all i ¤ j. Fix a number t 2 Œ
p
log n;

p
logN�. Let A � fx1; : : : ; xNg be any subset

with #.A/ � exp.t2/. By Theorem 4.1,

M�.A/ � ct=
p
n: (27)

Next we will apply the concentration inequality (23) with r D M�.A/=.2R.A//.
Since R.A/ D 1, it follows from (23) and (27) that

�n�1

�˚
� 2 Sn�1 I hA.�/ � M�.A/=2

�	 � 1 � C exp

 

�cn

�
M�.A/

R.A/

�2
!

� 1 � QCe�Qct2 :
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Let ‚ be a random vector, distributed uniformly over Sn�1. By combining the last
inequality with (27), we see that for any fixed subset QA � f1; : : : ;Ng with #. QA/ D
dexp.t2/e,

P
�9i 2 QA I hxi; ‚i � ct=

p
n
	 � 1 � QCe�Qct2 :

Let us now apply Lemma 4.2 for Zi D 1fhxi;‚i�ct=
p
ng. Lemma 4.2 now implies that

with a probability of at least 1 � 2 QCe�Qct2 of selecting ‚ 2 Sn�1,

#
˚
1 � i � N I hxi; ‚i � ct=

p
n
� � N

3dexp.t2/e � N

6
� e�t2 :

We now let the parameter t vary. Let I be the collection of all integer powers of two
that lie in the interval Œ

p
log n;

p
logN�. Then,

P

 

8t 2 I;
#
˚
1 � i � N I hxi; ‚i � ct=

p
n
�

N
� e�t2

6

!

� 1�
X

t2I
2 QCe�Qct2 � 1�

OC
nOc :

The restriction t 2 I may be upgraded to the condition t 2 Œ
p
log n;

p
logN� by

adjusting the constants. The lemma is thus proven. ut
Recall the construction of �1 and �2 from Sect. 2, and also the definition (8) of the

parameter t0. From the construction we see that for any v 2 Sn�1 with jhv; �1ij �
1=10,

P

�

jXj � M and

ˇ
ˇ
ˇ
ˇ
X

jXj � v

ˇ
ˇ
ˇ
ˇ � 1

5

�

� 2e�t20 ; (28)

whereM > 0 satisfies P.jXj � M/ � 1=3 and P.jXj � M/ � 2=3.

Lemma 4.4 Assume that t0 � 5
p
log n and set N D bet20=4c. Let X1; : : : ;XN be

independent copies of X. Then with a probability of at least 1 � C=n of selecting
X1; : : : ;XN, there exists I � f1; : : : ;Ng with the following three properties:

(i) #.I/ � N=10.
(ii) For any i; j 2 I with i ¤ j we have hXi;Xji � .49=50/ � jXij � jXjj.
(iii) For any i 2 I,

jXij � M; jhXi; �1ij � 10jXij=
p
n and jhXi; �2ij � 10jXij=

p
n:

Here, C > 0 is a universal constant.

Proof We may assume that n � 104, as otherwise for an appropriate choice of the
constant C, all we claim is that a certain event holds with a non-negative probability.
Write

A D fv 2 R
n I jvj � M; max

jD1;2
jhv=jvj; �jij � 10=

p
ng:
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According to Lemma 3.2, for i D 1; : : : ;N,

P.Xi 2 A/ > 1=5:

Denote I D fi D 1; : : : ;N I Xi 2 Ag. By the Chernoff large deviation bound,

P.#.I/ � N=10/ � 1 � C exp.�cN/:

Note that 10=
p
n � 1=10 and that if v 2 A then jhv=jvj; �1ij � 1=10. It thus follows

from (28) that for any i; j 2 f1; : : : ;Ng with i ¤ j,

P

�

i; j 2 I and

ˇ
ˇ
ˇ
ˇ
Xj

jXjj � Xi

jXij
ˇ
ˇ
ˇ
ˇ � 1

5

�

� P

�

Xj 2 A and

ˇ
ˇ
ˇ
ˇ
Xj

jXjj � Xi

jXij
ˇ
ˇ
ˇ
ˇ � 1

5

ˇ
ˇ
ˇ Xi 2 A

�

� 2e�t20 � 2

N4
:

Consequently,

P

�

9i; j 2 I with i ¤ j and

ˇ
ˇ
ˇ
ˇ
Xi

jXij � Xj

jXjj
ˇ
ˇ
ˇ
ˇ � 1

5

�

� N.N � 1/

2
� 2

N4
� 1

N2
:

We conclude that with a probability of at least 1 � C exp.�cN/ � 1=N2 � 1 � QC=n,

#.I/ � N=10 and 8i; j 2 I; i ¤ j H)
ˇ
ˇ
ˇ
ˇ
Xi

jXij � Xj

jXjj
ˇ
ˇ
ˇ
ˇ >

1

5
:

Note that hXi;Xji � .49=50/ � jXij � jXjj if and only if jXi=jXij � Xj=jXjjj � 1=5.
Thus conclusions (i)–(iii) hold true with a probability of at least 1 � QC=n, thereby
completing the proof. ut

By combining Lemmas 4.3 and 4.4 we arrive at the following:

Lemma 4.5 Assume that t0 � 5
p
log n and set N D bet20=4c. Then there exists

a fixed subset F � Sn�1 with �n�1.F/ � 1 � C=nc such that for any �3 2 F
the following holds: Define � via (5). Let X1; : : : ;XN be independent copies of the
random vector X. Then with a probability of at least 1� QC=nQc of selecting X1; : : : ;XN,

#
n
1 � i � N I hXi; �i � c1

Mp
n

� t
o

N
� c2e

�C3t2 ; for all t 2 Œ
p
log n; t0�;

(29)
and

#
n
1 � i � N I hXi; �i � �c1

Mp
n

� t
o

N
� c2e

�C3t2 ; for all t 2 Œ
p
log n; t0�:

(30)
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Here, c1; c2;C3; c;C; Qc; QC > 0 are universal constants.

Proof This proof is almost identical to the deduction of Lemma 3.5 from Lem-
mas 3.3 and 3.4. Let us spell out the details. Set EX D .X1; : : : ;XN/ and let ‚ be a
random vector, independent of EX, distributed uniformly on Sn�1. We say that EX 2 A1

if the event described in Lemma 4.4 holds true. Thus,

P.EX 2 A1/ � 1 � C=n:

Assuming that EX 2 A1, we may apply Lemma 4.3 and obtain that with a probability
of at least 1 � QC=nQc of selecting ‚ 2 Sn�1,

#
�

1 � i � N I
�
Xi

jXij ; ‚

�

� c1t=
p
n

�

� c2e
�C3t2 �.N=10/ for all t 2 Œ

p
log n;

p
logN�:

Assuming that EX 2 A1, we may use Lemma 4.4(iii) in order to conclude that with a
probability of at least 1 � QC=nQc of selecting ‚ 2 Sn�1, for t 2 Œ

p
log n; 4

p
logN�,

#

�

1 � i � N I
�

Xi;
�1 � �2 C ‚

j�1 � �2 C ‚j
�

� Nc1

Mp
n

� t
�

� Nc2e
� NC3t2 � N: (31)

Write A2 for the event that (31) holds true for all t 2 Œ
p
log n; 4

p
logN�. Thus,

P..‚; EX/ 2 A2/ � 1 � C=n � QC=nQc � 1 � NC=nNc:

Consequently, there exists F � Sn�1 with

�n�1.F/ � 1 � OC=nOc

with the following property: For any �3 2 F , with a probability of at least 1 � OC=nOc
of selecting X1; : : : ;XN , for all t 2 Œ

p
log n; 4

p
logN�,

#

�

1 � i � N I
�

Xi;
�1 � �2 C �3

j�1 � �2 C �3j
�

� c1

Mp
n

� t
�

� c2e
�C3t2 � N:

Recalling that 4
p
logN � t0, we have established (29). The proof of (30) is similar.

ut
The short proof of the following corollary is analogous to that of Corollary 3.6.

Corollary 4.6 There exists a fixed subset F � Sn�1 with �n�1.F/ � 1 �C=nc such
that for any �3 2 F , defining � via (5),

8t 2 Œ
p
log n; t0�; min

�

P

�

hX; �i � c1

Mp
n

� t
�

;P

�

hX; �i � �c1

Mp
n

� t
��

� c2e�C3t2 ;

where c;C; c1; c2;C3 > 0 are universal constants.
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Proof Wemay assume that n exceeds a certain fixed universal constant. LetF be the
set from Lemma 4.5, denote N D bexp.t20=4/c, and let X1; : : : ;XN be independent
copies of X. Then for any �3 2 F , defining � via (5) we have that for any t 2
Œ
p
log n; t0�,

P

�

hX; �i � c1

Mp
n

� t
�

� c2e
�C3t2 � P

0

@
#
n
iI hXi; �i � c1

Mp
n

� t
o

N
� c2e

�C3t2

1

A

� c2

2
e�C3t2 ;

where the last passage is the content of Lemma 4.5. The bound for P
�hX; �i �

�c1tM=
p
n
	
is proven similarly. ut

5 Proof of the Main Proposition

In this section we complete the proof of Proposition 2.1. We begin with the
following standard observation:

Lemma 5.1 Suppose that X is a random vector in R
n with P.X D 0/ D 0. Then

there exists a fixed subset F � Sn�1 of full measure, such that P.hX; �i D 0/ D 0

for all � 2 F .

Proof For a > 0, we say that a subspace E � R
n is a-basic if P.X 2 E/ � a while

P.X 2 F/ < a for all subspaces F ¨ E. Lemma 7.1 in [5] states that there are
only finitely many subspaces that are a-basic for any fixed a > 0. Write S for the
collection of all subspaces that are a-basic for some rational number a > 0. Then
S is a countable family which does not contain the subspace f0g. Consequently, the
set

F D f� 2 Sn�1 I 8E 2 S; E 6� �?g

is a set of full measure in Sn�1, as its complement is the countable union of spheres
of lower dimension. Here, �? D fx 2 R

n I hx; �i D 0g. Suppose that � 2 F , and let
us prove that P.hX; �i D 0/ D 0. Otherwise, there exists a rational number a > 0

such that

P.hX; �i D 0/ � a:

Thus �? contains an a-basic subspace, contradicting the definition of F . ut
Recall the definition ofM; �1 and �2 from Sect. 2.
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Lemma 5.2 Let F3 � ˚
�3 2 Sn�1 I jh�3; �1ij � 1

10
and jh�3; �2ij � 1

10

�
. Then for

any �3 2 F3 and v 2 Sn�1,

jv � �1j � 1

5
H) hv; �1 � �2 C �3i � 1

10
; (32)

and

jv � �2j � 1

5
H) hv; �1 � �2 C �3i � � 1

10
: (33)

Proof Recall that jh�1; �2ij � 1=10. Note that for any �3 2 F3 and i; j 2 f1; 2; 3g
with i ¤ j,

p
9=5 � j�i � �jj � p

11=5:

Let v 2 Sn�1 be any vector with jv � �1j � 1=5. Then for any �3 2 F3 and j D 2; 3

we have that

r
9

5
� 1

5
� j�j � �1j � j�1 � vj � jv � �jj � j�j � �1j C j�1 � vj �

r
11

5
C 1

5
;

and hence for j D 2; 3,

hv; �ji D 1 � 1

2
� jv � �jj2 2

2

41 � 1

2
�
 r

11

5
C 1

5

!2

; 1 � 1

2
�
 r

9

5
� 1

5

!2
3

5

�



�3

7
;

3

7

�

: (34)

However, hv; �1i � 49=50 for such v, and hence (32) follows from (34). By
replacing the triplet .�1; �2; �3/ by .�2; �1; ��3/ and repeating the above argument,
we obtain (33). ut
Proof of Proposition 2.1 From Corollaries 3.6 and 4.6 we learn that there exists
F � Sn�1 with �n�1.F3/ � 1 � C=nc such that for any �3 2 F , defining � via (5),

8t 2 Œ0; t0�; min

�

P

�

hX; �i � c1

Mp
n

� t
�

;P

�

hX; �i � �c1

Mp
n

� t
��

� c2e
�C3t2 :

(35)

According to Lemma 5.1, we may remove a set of measure zero from F and
additionally assume that P.hX; �i D 0/ D 0. From Lemma 3.1 we learn that any
median of jhX; �ij is at most CM=

p
n. Hence (35) shows that for any �3 2 F ,

defining � via (5) we have that hX; �i is Super-Gaussian of length c1t0, with
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parameters c2; c3 > 0. We still need to increase the length to c1

p
n. To this end,

denote

F3 D
�

�3 2 F I jh�3; �1ij � 1

10
and jh�3; �2ij � 1

10

�

:

Then �n�1.F3/ � �n�1.F/ � C exp.�cn/ � 1 � QC=nQc. Recall from Sect. 2 that for
j D 1; 2,

P

�

jXj � M and

ˇ
ˇ
ˇ
ˇ
X

jXj � �j

ˇ
ˇ
ˇ
ˇ � 1

5

�

� 1

2
� e�t20 : (36)

Let us fix t 2 Œt0;
p
n�; �3 2 F3 and define � via (5). Since 0 < j�1 � �2 C �3j � 3,

by (36) and Lemma 5.2,

P

�

hX; �i � Mt

30
p
n

�

� P

�

hX; �1 � �2 C �3i � Mt

10
p
n

�

� P

��
X

jXj ; �1 � �2 C �3

�

� M

10jXj
�

� P

�

jXj � M;

ˇ
ˇ
ˇ
ˇ
X

jXj � �1

ˇ
ˇ
ˇ
ˇ � 1

5

�

� 1

2
� e�t20 � 1

2
� e�t2 :

Similarly,

P

�

hX; �i � � Mt

30
p
n

�

� P

��
X

jXj ; �1 � �2 C �3

�

� � M

10jXj
�

� P

�

jXj � M;

ˇ
ˇ
ˇ
ˇ
X

jXj � �2

ˇ
ˇ
ˇ
ˇ � 1

5

�

D e�t20 � e�t2 :

Therefore, we may upgrade (35) to the following statement: For any �3 2 F and
t 2 Œ0;

p
n�, defining � via (5),

min

�

P

�

hX; �i � c1

Mp
n

� t
�

;P

�

hX; �i � �Oc1

Mp
n

� t
��

� Oc2e
� OC3t2 :

We have thus proven that hX; �i is Super-Gaussian of length c1

p
n with parameters

c2; c3 > 0. ut

6 Angularly-Isotropic Position

In this section we deduce Theorem 1.3 from Proposition 2.1 by using the angularly-
isotropic position which is discussed below. We begin with the following:
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Lemma 6.1 Let d;X;B be as in Theorem 1.3. Set n D dde. Then there exists a fixed
linear map T W B ! R

n such that for any " > 0, the random vector T.X/ is of class
eff.rank�d�".

Proof We will show that a generic linear map T works. Denote N D dim.B/ and
identify B Š R

N . Since the effective rank of X is at least d, necessarily d � N
and hence also n D dde � N. Let L � R

N be a random n-dimensional subspace,
distributed uniformly in the Grassmannian GN;n. Denote T D ProjL W RN ! L, the
orthogonal projection operator onto the subspace L.

For any fixed subspace E � R
N , with probability one of selecting L 2 GN;n,

dim.ker.T/ \ E/ D maxf0; dim.E/ � ng;

or equivalently,

dim.T.E// D dim.E/ � dim.ker.T/ \ E/ D minfn; dim.E/g: (37)

Recall that for a > 0, a subspace E � R
N is a-basic if P.X 2 E/ � a while

P.X 2 F/ < a for all subspaces F ¨ E. Lemma 7.1 in [5] states that there exist only
countably many subspaces that are a-basic with a being a positive, rational number.
Write G for the collection of all these basic subspaces. Then with probability one of
selecting L 2 GN;n,

8E 2 G; dim.T.E// D minfn; dim.E/g: (38)

We now fix a subspace L 2 GN;n for which T D ProjL satisfies (38). Let S � L be
any subspace and assume that a 2 Q \ .0; 1� satisfies

P.T.X/ 2 S/ � a:

Then P.X 2 T�1.S// � a. Therefore T�1.S/ contains an a-basic subspace E. Thus
E 2 G while E � T�1.S/ and P.X 2 E/ � a. Since the effective rank of X is at least
d, necessarily dim.E/ � a � d. Since T.E/ � S, from (38),

dim.S/ � dim.T.E// D minfn; dim.E/g � minfn; da � deg D da � de:

We have thus proven that for any subspace S � L and a 2 Q \ .0; 1�,

P.T.X/ 2 S/ � a H) dim.S/ � da � de: (39)

It follows from (39) that for any subspace S � L,

P.T.X/ 2 S/ � dim.S/=d:

This implies that for any " > 0, the random vector T.X/ is of class eff.rank�d�". ut
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Lemma 6.2 Let d;X;B be as in Theorem 1.3. Assume that d < dim.B/ and that
for any subspace f0g ¤ E ¨ B,

P.X 2 E/ < dim.E/=d: (40)

Then there exists " > 0 such that X is of class eff.rank�dC".

Proof Since the effective rank of X is at least d, necessarily P.X D 0/ D 0. Assume
by contradiction that for any " > 0, the random vectorX is not of class eff.rank�dC".
Then for any " > 0 there exists a subspace f0g ¤ E � B with

P.X 2 E/ � �" C dim.E/=d:

The Grassmannian of all k-dimensional subspaces of B is compact. Hence there is a
dimension 1 � k � dim.B/ and a converging sequence of k-dimensional subspaces
E1;E2; : : : � B with

P.X 2 E`/ � �1=` C dim.E`/=d D �1=` C k=d for all ` � 1: (41)

Denote E0 D lim` E`, which is a k-dimensional subspace in B. Let U � B be an
open neighborhood of E0 with the property that tx 2 U for all x 2 U; t 2 R. Then
E` � U for a sufficiently large `, and we learn from (41) that

P.X 2 U/ � k=d: (42)

Since E0 is the intersection of a decreasing sequence of such neighborhoods U, it
follows from (42) that

P.X 2 E0/ � k=d D dim.E0/=d: (43)

Since d < dim.B/, the inequality in (43) shows that E0 ¤ B. Hence 1 � dim.E0/ �
dim.B/ � 1, and (43) contradicts (40). The lemma is thus proven. ut

The following lemma is a variant of Lemma 5.4 from [5].

Lemma 6.3 Let d;X;B be as in Theorem 1.3. Then there exists a fixed scalar
product h�; �i on B such that denoting j� j D ph�; �i, we have

E

�
X

jXj ; �

�2

� j� j2
d

for all � 2 B: (44)

Proof By induction on the dimension n D dim.B/. Assume first that there exists a
subspace f0g ¤ E ¨ B, such that equality holds true in (3). In this case, there exists
a subspace F � B with E ˚ F D B and P.X 2 E [ F/ D 1. We will construct
a scalar product in B as follows: Declare that E and F are orthogonal subspaces,
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and use the induction hypothesis in order to find appropriate scalar products in the
subspace E and in the subspace F. This induces a scalar product in B which satisfies

E

�
X

jXj ; �

�2

� j� j2
d

for all � 2 E [ F:

For any � 2 B we may decompose � D �E C �F with �E 2 E; �F 2 F. Since
P.X 2 E [ F/ D 1, we obtain

E

�
X

jXj ; �

�2

D E

�
X

jXj ; �E

�2

C E

�
X

jXj ; �F

�2

� j�Ej2 C j�Fj2
d

D j� j2
d

;

proving (44).
Next, assume that for any subspace f0g ¤ E ¨ B, the inequality in (3) is strict.

There are two distinct cases, either d D n or d < n. Consider first the case where
d D n D dim.B/. Thus, for any subspace E � B with E ¤ f0g and E ¤ B,

P.X 2 E/ < dim.E/=n:

This is precisely the main assumption of Corollary 5.3 in [5]. By the conclusion of
the corollary, there exists a scalar product in B such that (44) holds true. We move
on to the case where d < n. Here, we apply Lemma 6.2 and conclude that X is of
class eff.rank�dC" for some " > 0. Therefore, for some " > 0,

P.X 2 E/ < dim.E/=.d C "/ 8E � B: (45)

Now we invoke Lemma 5.4 from [5]. Its assumptions are satisfies thanks to (45).
From the conclusion of that lemma, there exists a scalar product in B for which (44)
holds true. ut

The condition that the effective rank of X is at least d is not only sufficient but
is also necessary for the validity of conclusion (44) from Lemma 6.3. Indeed, it
follows from (44) that for any subspace E � B,

P.X 2 E/ � E

ˇ
ˇ
ˇ
ˇProjE

X

jXj
ˇ
ˇ
ˇ
ˇ

2

D
dim.E/X

iD1

E

�
X

jXj ; ui
�2

� dim.E/

d
; (46)

where u1; : : : ; um is an orthonormal basis of the subspace E with m D dim.E/.
Equality in (46) holds true if and only if P.X 2 E [ E?/ D 1, where E? is the
orthogonal complement to E. Consequently, the effective rank of X is at least d.

Definition 6.4 Let X be a random vector in R
n with P.X D 0/ D 0. We say that X

is angularly-isotropic if

E

�
X

jXj ; �

�2

D 1

n
for all � 2 Sn�1: (47)
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For 0 < d � n we say that X=jXj is sub-isotropic with parameter d if

E

�
X

jXj ; �

�2

� 1

d
for all � 2 Sn�1: (48)

We observe that X is angularly-isotropic if and only if X=jXj is sub-isotropic with
parameter n. Indeed, suppose that (48) holds true with d D n. Given any � 2 Sn�1

we may find an orthonormal basis �1; : : : ; �n 2 R
n with �1 D � . Hence

1 D E

ˇ
ˇ
ˇ
ˇ
X

jXj
ˇ
ˇ
ˇ
ˇ

2

D E

nX

iD1

�
X

jXj ; �i

�2

�
nX

iD1

1

n
D 1;

and (47) is proven.

Proof of Theorem 1.3 According to Lemma 6.1, we may project X to a lower-
dimensional space, and assume that dim.B/ D n D dde and that the effective rank
of X is at least n=2. Lemma 6.3 now shows that there exists a scalar product in B
with respect to which X=jXj is sub-isotropic with parameter n=2. We may therefore
identify B with Rn so that

E

�
X

jXj ; �

�2

� 2

n
for all � 2 Sn�1:

Thus condition (4) of Proposition 2.1 is verified. By the conclusion of Proposi-
tion 2.1, there exists a non-zero linear functional ` W R

n ! R such that `.X/ is
Super-Gaussian of length c1

p
n � c

p
d with parameters c2; c3 > 0. ut

Proof of Corollary 1.4 By assumption, P.X 2 E/ � dim.E/=d for any finite-
dimensional subspace E � B. Lemma 7.2 from [5] states that there exists a
continuous, linear map T W B ! R

N such that T.X/ has an effective rank of at least
d=2. We may now invoke Theorem 1.3 for the random vector T.X/, and conclude
that for some non-zero, fixed, linear functional ` W RN ! R, the random variable
.` ı T/.X/ is Super-Gaussian of length c1

p
d with parameters c2; c3 > 0. ut

Remark 6.5 We were asked by Yaron Oz about analogs of Theorem 1.1 in the
hyperbolic space. We shall work with the standard hyperboloid model

H
n D

(

.x0; : : : ; xn/ 2 R
nC1 I �x2

0 C
nX

iD1

x2
i D �1; x0 > 0

)

where the Riemannian metric tensor is g D �dx2
0 C Pn

iD1 dx
2
i . For any linear

subspace L � R
nC1, the intersection L \ H

n is a totally-geodesic submanifold
of Hn which is called a hyperbolic subspace. When we discuss the dimension of
a hyperbolic subspace, we refer to its dimension as a smooth manifold. Note that
an .n � 1/-dimensional hyperbolic subspace E � H

n divides Hn into two sides.
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A signed distance function dE W Hn ! R is a function that equals the hyperbolic
distance to E on one of these sides, and minus the distance to E on the other side.
Given a linear functional ` W RnC1 ! R such that E D H

n \ fx 2 R
nC1 I `.x/ D 0g

we may write

dE.x/ D arcsinh.˛ � `.x// .x 2 H
n/

for some 0 ¤ ˛ 2 R. It follows from Theorem 1.3 that for any absolutely-
continuous random vector X in H

n, there exists an .n � 1/-dimensional hyperbolic
subspace E � H

n and an associated signed distance function dE such that the
random variable sinh.dE.X// is Super-Gaussian of length c1

p
n with parameters

c2; c3 > 0. In general, we cannot replace the random variable sinh.dE.X// in the
preceding statement by dE.X/ itself. This is witnessed by the example of the random
vector

X D
0

@

v
u
u
t1 C R2

nX

iD1

Z2
i ;RZ1; : : : ;RZn

1

A 2 R
nC1

which is supported in H
n. Here, Z1; : : : ;Zn are independent standard Gaussian

random variables, and R > 1 is a fixed, large parameter.
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