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Abstract A matrix A 2 Cq�N satisfies the restricted isometry property of order
k with constant � if it preserves the `2 norm of all k-sparse vectors up to a factor
of 1 ˙ �. We prove that a matrix A obtained by randomly sampling q D O.k �
log2 k � logN/ rows from an N � N Fourier matrix satisfies the restricted isometry
property of order k with a fixed � with high probability. This improves on Rudelson
and Vershynin (Comm Pure Appl Math, 2008), its subsequent improvements, and
Bourgain (GAFA Seminar Notes, 2014).

1 Introduction

Amatrix A 2 Cq�N satisfies the restricted isometry property of order k with constant
� > 0 if for every k-sparse vector x 2 CN (i.e., a vector with at most k nonzero
entries), it holds that

.1 � �/ � kxk2
2 � kAxk2

2 � .1 C �/ � kxk2
2 : (1)

Intuitively, this means that every k columns of A are nearly orthogonal. This
notion, due to Candès and Tao [9], was intensively studied during the last decade
and found various applications and connections to several areas of theoretical
computer science, including sparse recovery [8, 20, 27], coding theory [14], norm
embeddings [6, 22], and computational complexity [4, 25, 31].

The original motivation for the restricted isometry property comes from the area
of compressed sensing. There, one wishes to compress a high-dimensional sparse
vector x 2 C

N to a vector Ax, where A 2 C
q�N is a measurement matrix that enables
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reconstruction of x from Ax. Typical goals in this context include minimizing the
number of measurements q and the running time of the reconstruction algorithm. It
is known that the restricted isometry property of A, for � <

p
2 � 1, is a sufficient

condition for reconstruction. In fact, it was shown in [8, 9, 11, 12] that under this
condition, reconstruction is equivalent to finding the vector of least `1 norm among
all vectors that agree with the given measurements, a task that can be formulated as
a linear program [13, 16], and thus can be solved efficiently.

The above application leads to the challenge of finding matrices A 2 Cq�N that
satisfy the restricted isometry property and have a small number of rows q as a
function of N and k. (For simplicity, we ignore for now the dependence on �.)
A general lower bound of q D �.k � log.N=k// is known to follow from [18]
(see also [17]). Fortunately, there are matrices that match this lower bound, e.g.,
random matrices whose entries are chosen independently according to the normal
distribution [10]. However, in many applications the measurement matrix cannot be
chosen arbitrarily but is instead given by a random sample of rows from a unitary
matrix, typically the discrete Fourier transform. This includes, for instance, various
tests and experiments in medicine and biology (e.g., MRI [28] and ultrasound
imaging [21]) and applications in astronomy (e.g., radio telescopes [32]). An
advantage of subsampled Fourier matrices is that they support fast matrix-vector
multiplication, and as such, are useful for efficient compression as well as for
efficient reconstruction based on iterative methods (see, e.g., [26]).

In recent years, with motivation from both theory and practice, an intensive line
of research has aimed to study the restricted isometry property of random sub-
matrices of unitary matrices. Letting A 2 Cq�N be a (normalized) matrix whose
rows are chosen uniformly and independently from the rows of a unitary matrix
M 2 CN�N , the goal is to prove an upper bound on q for which A is guaranteed to
satisfy the restricted isometry property with high probability. Note that the fact that
the entries of every row of A are not independent makes this question much more
difficult than in the case of random matrices with independent entries.

The first upper bound on the number of rows of a subsampled Fourier matrix that
satisfies the restricted isometry property was O.k � log6 N/, which was proved by
Candès and Tao [10]. This was then improved by Rudelson and Vershynin [30] to
O.k �log2 k �log.k logN/�logN/ (see also [15, 29] for a simplified analysis with better
success probability). A modification of their analysis led to an improved bound of
O.k � log3 k � logN/ by Cheraghchi, Guruswami, and Velingker [14], who related
the problem to a question on the list-decoding rate of random linear codes over
finite fields. Interestingly, replacing the log.k logN/ term in the bound of [30] by
log k was crucial for their application.1 Recently, Bourgain [7] proved a bound of
O.k � log k � log2 N/, which is incomparable to those of [14, 30] (and has a worse
dependence on �; see below). We finally mention that the best known lower bound
on the number of rows is �.k � logN/ [5].

1Note that the list-decoding result of [14] was later improved by Wootters [33] using different
techniques.
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1.1 Our Contribution

In this work, we improve the previous bounds and prove the following.

Theorem 1.1 (Simplified) Let M 2 CN�N be a unitary matrix with entries of
absolute value O.1=

p
N/, and let � > 0 be a fixed constant. For some q D

O.k �log2 k �logN/, let A 2 Cq�N be a matrix whose q rows are chosen uniformly and
independently from the rows of M, multiplied by

p
N=q. Then, with high probability,

the matrix A satisfies the restricted isometry property of order k with constant �.

The main idea in our proof is described in Sect. 1.3. We arrived at the proof
from our recent work on list-decoding [19], where a baby version of the idea
was used to bound the sample complexity of learning the class of Fourier-sparse
Boolean functions.2 Like all previous work on this question, our proof can be
seen as a careful union bound applied to a sequence of progressively finer nets,
a technique sometimes known as chaining. However, unlike the work of Rudelson
and Vershynin [30] and its improvements [14, 15], we avoid the use of Gaussian
processes, the “symmetrization process,” and Dudley’s inequality. Instead, we
follow and refine Bourgain’s proof [7], and apply the chaining argument directly
to the problem at hand using only elementary arguments. It would be interesting to
see if our proof can be cast in the Gaussian framework of Rudelson and Vershynin.

We remark that the bounds obtained in the previous works [14, 30] have a
multiplicative O.��2/ term, whereas a much worse term of O.��6/ was obtained
in [7]. In our proof of Theorem 1.1 we nearly obtain the best known dependence on
�. For simplicity of presentation we first prove in Sect. 3 our bound with a weaker
multiplicative term of O.��4/, and then, in Sect. 4, we modify the analysis and
decrease the dependence on � to O.��2/ up to logarithmic terms.

1.2 Related Literature

As mentioned before, one important advantage of using subsampled Fourier
matrices in compressed sensing is that they support fast, in fact nearly linear time,
matrix-vector multiplication. In certain scenarios, however, one is not restricted to
using subsampled Fourier matrices as the measurement matrix. The question then is
whether one can decrease the number of rows using another measurement matrix,
while still keeping the near-linear multiplication time. For k < N1=2�� where � > 0

is an arbitrary constant, the answer is yes: a construction with the optimal number

2The result in [19] is weaker in two main respects. First, it is restricted to the case that Ax is in
f0; 1gq. This significantly simplifies the analysis and leads to a better bound on the number of rows
of A. Second, the order of quantifiers is switched, namely it shows that for any sparse x, a random
subsampled A works with high probability, whereas for the restricted isometry property we need
to show that a random A works for all sparse x.
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O.k � logN/ of rows follows from works by Ailon and Chazelle [1] and Ailon and
Liberty [2] (see [6]). For general k, Nelson, Price, and Wootters [27] suggested
taking subsampled Fourier matrices and “tweaking” them by bunching together
rows with random signs. Using the Gaussian-process-based analysis of [14, 30] and
introducing further techniques from [23], they showed that with this construction
one can reduce the number of rows by a logarithmic factor to O.k � log2.k logN/ �
logN/ while still keeping the nearly linear multiplication time. Our result shows that
the same number of rows (in fact, a slightly smaller number) can be achieved already
with the original subsampled Fourier matrices without having to use the “tweak.” A
natural open question is whether the “tweak” from [27] and their techniques can be
combined with ours to further reduce the number of rows. An improvement in the
regime of parameters of k D !.

p
N/ would lead to more efficient low-dimensional

embeddings based on Johnson–Lindenstrauss matrices (see, e.g., [1–3, 22, 27]).

1.3 Proof Overview

Recall from Theorem 1.1 and from (1) that our goal is to prove that a matrix A given
by a random sample Q of q rows of M satisfies with high probability that for all
k-sparse x, kAxk2

2 � kxk2
2. Since M is unitary, the latter is equivalent to saying that

kAxk2
2 � kMxk2

2. Yet another way of expressing this condition is as

E
j2Q

�
.jMxj2/j

� � E
j2ŒN�

�
.jMxj2/j

�
;

i.e., that a sample Q � ŒN� of q coordinates of the vector jMxj2 gives a good
approximation to the average of all its coordinates. Here, jMxj2 refers to the
vector obtained by taking the squared absolute value of Mx coordinate-wise. For
reasons that will become clear soon, it will be convenient to assume without loss
of generality that kxk1 D 1. With this scaling, the sparsity assumption implies that
kMxk2

2 is not too small (namely at least 1=k), and this will determine the amount of
additive error we can afford in the approximation above. This is the only way we
use the sparsity assumption.

At a high level, the proof proceeds by defining a finite set of vectorsH that forms
a net, i.e., a set satisfying that any vector jMxj2 is close to one of the vectors in H.
We then argue using the Chernoff-Hoeffding bound that for any fixed vector h 2 H,
a sample of q coordinates gives a good approximation to the average of h. Finally,
we complete the proof by a union bound over all h 2 H.

In order to define the set H we notice that since kxk1 D 1, Mx can be seen
as a weighted average of the columns of M (possibly with signs). In other words,
we can think of Mx as the expectation of a vector-valued random variable given
by a certain probability distribution over the columns of M. Using the Chernoff-
Hoeffding bound again, this implies that we can approximateMx well by taking the
average over a small number of samples from this distribution. We then letH be the
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set of all possible such averages, and a bound on the cardinality ofH follows easily
(basically N raised to the number of samples). This technique is sometimes referred
to as Maurey’s empirical method.

The argument above is actually oversimplified, and carrying it out leads to
rather bad bounds on q. As a result, our proof in Sect. 3 is slightly more delicate.
Namely, instead of just one set H, we have a sequence of sets, H1;H2; : : :, each
being responsible for approximating a different scale of jMxj2. The first set H1

approximates jMxj2 on coordinates on which its value is highest; since the value
is high, we need less samples in order to approximate it well, as a result of which
the set H1 is small. The next set H2 approximates jMxj2 on coordinates on which
its value is somewhat smaller, and is therefore a bigger set, and so on and so forth.
The end result is that any vector jMxj2 can be approximately decomposed into a
sum

P
i h

.i/, with h.i/ 2 Hi. To complete the proof, we argue that a random choice
of q coordinates approximates all the vectors in all theHi well. The reason working
with severalHi leads to the better bound stated in Theorem 1.1 is this: even though
as i increases the number of vectors in Hi grows, the quality of approximation that
we need the q coordinates to provide decreases, since the value of jMxj2 there is
small and so errors are less significant. It turns out that these two requirements on q
balance each other perfectly, leading to the desired bound on q.

2 Preliminaries

Notation The notation x ��;˛ y means that x 2 Œ.1 � �/y � ˛; .1 C �/y C ˛�. For a
matrixM, we denote byM.`/ the `th column ofM and define kMk1 D maxi;j jMi;jj.
The Restricted Isometry Property The restricted isometry property is defined as
follows.

Definition 2.1 We say that a matrix A 2 Cq�N satisfies the restricted isometry
property of order k with constant � if for every k-sparse vector x 2 CN it holds
that

.1 � �/ � kxk2
2 � kAxk2

2 � .1 C �/ � kxk2
2:

Chernoff-Hoeffding Bounds We now state the Chernoff-Hoeffding bound (see,
e.g., [24]) and derive several simple corollaries that will be used extensively later.

Theorem 2.2 Let X1; : : : ;XN be N identically distributed independent random
variables in Œ0; a� satisfying EŒXi� D � for all i, and denote X D 1

N � PN
iD1 Xi.

Then there exists a universal constant C such that for every 0 < � � 1=2, the
probability that X ��;0 � is at least 1 � 2e�C�N��2=a.

Corollary 2.3 Let X1; : : : ;XN be N identically distributed independent random
variables in Œ0; a� satisfying EŒXi� D � for all i, and denote X D 1

N � PN
iD1 Xi.
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Then there exists a universal constant C such that for every 0 < � � 1=2 and
˛ > 0, the probability that X ��;˛ � is at least 1 � 2e�C�N˛�=a.

Proof If � � ˛
"
then by Theorem 2.2 the probability that X ��;0 � is at least

1 � 2e�C�N��2=a, which is at least 1 � 2e�C�N˛�=a. Otherwise, Theorem 2.2 for Q" D
˛
�

> � implies that the probability that X �Q";0 �, hence X �0;˛ �, is at least

1 � 2e�C�N�Q"2=a, and the latter is at least 1 � 2e�C�N˛�=a. �

Corollary 2.4 Let X1; : : : ;XN be N identically distributed independent random
variables in Œ�a; Ca� satisfying EŒXi� D � and EŒjXij� D Q� for all i, and denote
X D 1

N � PN
iD1 Xi. Then there exists a universal constant C such that for every

0 < "0 � 1=2 and ˛ > 0, the probability that X �0;�0 � Q�C˛ � is at least
1 � 4e�C�N˛�0=a.

Proof The corollary follows by applying Corollary 2.3 to max.Xi; 0/ and to
�min.Xi; 0/. �

We end with the additive form of the bound, followed by an easy extension to the
complex case.

Corollary 2.5 Let X1; : : : ;XN be N identically distributed independent random
variables in Œ�a; Ca� satisfying EŒXi� D � for all i, and denote X D 1

N � PN
iD1 Xi.

Then there exists a universal constant C such that for every b > 0, the probability
that X �0;b � is at least 1 � 4e�C�Nb2=a2

.

Proof We can assume that b � 2a. The corollary follows by applying Corollary 2.4
to, say, ˛ D 3b=4 and �0 D b=.4a/. �

Corollary 2.6 Let X1; : : : ;XN be N identically distributed independent complex-
valued random variables satisfying jXij � a and EŒXi� D � for all i, and denote
X D 1

N �PN
iD1 Xi. Then there exists a universal constant C such that for every b > 0,

the probability that jXj �0;b j�j is at least 1 � 8e�C�Nb2=a2
.

Proof By Corollary 2.5 applied to the real and imaginary parts of the random
variables X1; : : : ;XN it follows that for a universal constant C, the probability that
Re.X/ �0;b=

p
2 Re.�/ and Im.X/ �0;b=

p
2 Im.�/ is at least 1 � 8e�C�Nb2=a2

. By

triangle inequality, it follows that with such probability we have jXj �0;b j�j, as
required. �

3 The Simpler Analysis

In this section we prove our result with a multiplicative term ofO.��4/ in the bound.
This will be obtained in Theorem 3.7 as an easy corollary of the following theorem.

Theorem 3.1 For a sufficiently large N, a matrix M 2 CN�N, and sufficiently small
�; � > 0, the following holds. For some q D O.��3��1 logN � log2.1=�//, let Q
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be a multiset of q uniform and independent random elements of ŒN�. Then, with
probability 1 � 2��.��2�logN�log.1=�//, it holds that for every x 2 CN,

E
j2Q

�j.Mx/jj2
� ��;��kxk2

1 �kMk2
1

E
j2ŒN�

�j.Mx/jj2
�
:

Throughout the proof we assume without loss of generality that the matrix M 2
CN�N satisfies kMk1 D 1. For �; � > 0, we denote t D log2.1=�/, r D log2.1=�2/,
and � D �=.2t/.

We now define the approximating vector sets Hi, i D 1; : : : ; t, each responsible
for coordinates of jMxj2 of a different scale (the larger the i the smaller the scale).We
start by defining the “raw approximations”Gi, which are essentially vectors obtained
by averaging a certain number of columns ofM. We then define the vectors inHi by
restricting the vectors in Gi (actually GiCr) to the set of coordinates Bi where there
is a clear “signal” and not just noise. This is necessary in order to make sure that the
small coordinates of jMxj2 are not flooded by noise from the coarse approximations.
Details follow.

The Vector Sets Gi For every 1 � i � t C r, let Gi denote the set of all vectors
g.i/ 2 CN that can be represented as

g.i/ D
p

2

jFj �
X

.`;s/2F
.�1/s=2 � M.`/ (2)

for a multiset F of O.2i � log.1=�// pairs in ŒN� � f0; 1; 2; 3g. A trivial counting
argument gives the following.

Claim 3.2 For every 1 � i � t C r, jGij � NO.2i�log.1=�//:

The Vector SetsHi For a t-tuple of vectors .g.1Cr/; : : : ; g.tCr// 2 G1Cr �� � ��GtCr

and for 1 � i � t, let Bi be the set of all j 2 ŒN� for which i is the smallest index
satisfying jg.iCr/

j j � 2 � 2�i=2. For such i, define the vector h.i/ by

h.i/
j D min.jg.iCr/

j j2 � 1j2Bi ; 9 � 2�i/: (3)

LetHi be the set of all vectors h.i/ that can be obtained in this way.

Claim 3.3 For every 1 � i � t, jHij � NO.��2�2i�log.1=�//:

Proof Observe that every h.i/ 2 Hi is fully defined by some .g.1Cr/; : : : ; g.iCr// 2
G1Cr � � � � � GiCr. Hence

jHij � jG1Crj � � � jGiCrj � NO.log.1=�//�.21CrC22CrC���C2iCr/ � NO.log.1=�//�2iCrC1

:

Using the definition of r, the claim follows. �
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Lemma 3.4 For every Q� > 0 and some q D O.��3 Q��1 logN � log.1=�//, let Q
be a multiset of q uniform and independent random elements of ŒN�. Then, with
probability 1 � 2��.��2�logN�log.1=�//, it holds that for all 1 � i � t and h.i/ 2 Hi ,

E
j2Q

h
h.i/
j

i
��;Q� E

j2ŒN�

h
h.i/
j

i
:

Proof Fix an 1 � i � t and a vector h.i/ 2 Hi, and denote � D Ej2ŒN�Œh
.i/
j �. By

Corollary 2.3, applied with ˛ D Q� and a D 9 � 2�i (recall that h.i/
j � a for every

j), with probability 1 � 2��.2i�q�Q�/, it holds that Ej2QŒh.i/
j � ��;Q� �. Using Claim 3.3,

the union bound over all the vectors in Hi implies that the probability that some
h.i/ 2 Hi does not satisfy Ej2QŒh.i/

j � ��;Q� � is at most

NO.��2 �2i�log.1=�// � 2��.2i�q�Q�/ � 2��.��2�2i�logN�log.1=�// :

We complete the proof by a union bound over i. �

Approximating the VectorsMx

Lemma 3.5 For every vector x 2 CN with kxk1 D 1, every multiset Q � ŒN�, and
every 1 � i � t C r, there exists a vector g 2 Gi that satisfies j.Mx/jj �0;2�i=2 jgjj
for all but at most � fraction of j 2 ŒN� and for all but at most � fraction of j 2 Q.

Proof Observe that for every ` 2 ŒN� there exist p`;0; p`;1; p`;2; p`;3 � 0 that satisfy

3X

sD0

p`;s D jx`j and
p

2 �
3X

sD0

p`;s � .�1/s=2 D x`:

Notice that the assumption kxk1 D 1 implies that the numbers p`;s form a probability
distribution. Thus, the vectorMx can be represented as

Mx D
NX

`D1

x` � M.`/ D p
2 �

NX

`D1

3X

sD0

p`;s � .�1/s=2 � M.`/ D E
.`;s/�D

Œ
p

2 � .�1/s=2 �M.`/�;

where D is the distribution that assigns probability p`;s to the pair .`; s/.
Let F be a multiset of O.2i � log.1=�// independent random samples from D, and

let g 2 Gi be the vector corresponding to F as in (2). By Corollary 2.6, applied with
a D p

2 (recall that kMk1 D 1) and b D 2�i=2, for every j 2 ŒN� the probability
that

j.Mx/jj �0;2�i=2 jgjj (4)

is at least 1 � �=4. It follows that the expected number of j 2 ŒN� that do not
satisfy (4) is at most �N=4, so by Markov’s inequality the probability that the
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number of j 2 ŒN� that do not satisfy (4) is at most �N is at least 3=4. Similarly, the
expected number of j 2 Q that do not satisfy (4) is at most � jQj=4, so by Markov’s
inequality, with probability at least 3=4 it holds that the number of j 2 Q that do not
satisfy (4) is at most � jQj. It follows that there exists a vector g 2 Gi for which (4)
holds for all but at most � fraction of j 2 ŒN� and for all but at most � fraction of
j 2 Q, as required. �

Lemma 3.6 For every multiset Q � ŒN� and every vector x 2 CN with kxk1 D 1

there exists a t-tuple of vectors .h.1/; : : : ; h.t// 2 H1 � � � � � Ht for which

1. Ej2Q
�j.Mx/jj2

� �O.�/;O.�/ Ej2Q
hPt

iD1 h
.i/
j

i
and

2. Ej2ŒN�

�j.Mx/jj2
� �O.�/;O.�/ Ej2ŒN�

hPt
iD1 h

.i/
j

i
.

Proof By Lemma 3.5, for every 1 � i � t there exists a vector g.iCr/ 2 GiCr that
satisfies

j.Mx/jj �0;2�.iCr/=2 jg.iCr/
j j (5)

for all but at most � fraction of j 2 ŒN� and for all but at most � fraction of j 2 Q. We
say that j 2 ŒN� is good if (5) holds for every 1 � i � t, and otherwise that it is bad.
Notice that all but at most t� fraction of j 2 ŒN� are good and that all but at most t�
fraction of j 2 Q are good. Let .h.1/; : : : ; h.t// and .B1; : : : ;Bt/ be the vectors and
sets associated with .g.1Cr/; : : : ; g.tCr// as defined in (3). We claim that h.1/; : : : ; h.t/

satisfy the requirements of the lemma.
We first show that for every good j it holds that j.Mx/jj2 �3�;9�

Pt
iD1 h

.i/
j . To

obtain it, we observe that if j 2 Bi for some i, then

2 � 2�i=2 � jg.iCr/
j j � 3 � 2�i=2: (6)

The lower bound follows simply from the definition of Bi. For the upper bound,
which trivially holds for i D 1, assume that i � 2, and notice that the definition of
Bi implies that jg.iCr�1/

j j < 2 �2�.i�1/=2. Using (5), and assuming that � is sufficiently
small, we obtain that

jg.iCr/
j j � j.Mx/jj C 2�.iCr/=2 � jg.iCr�1/

j j C 2�.iCr�1/=2 C 2�.iCr/=2

� 2�i=2.23=2 C 21=2 � � C �/ � 3 � 2�i=2:

Hence, by the upper bound in (6), for a good j 2 Bi we have h.i/
j D jg.iCr/

j j2 and

h.i0/
j D 0 for i0 ¤ i. Observe that by the lower bound in (6),

j.Mx/jj 2 Œjg.iCr/
j j�2�.iCr/=2; jg.iCr/

j jC2�.iCr/=2� � Œ.1��/�jg.iCr/
j j; .1C�/�jg.iCr/

j j�;
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and that this implies that j.Mx/jj2 �3�;0

Pt
iD1 h

.i/
j . On the other hand, in case that j

is good but does not belong to any Bi, recalling that t D log2.1=�/, it follows that

j.Mx/jj � jg.tCr/
j j C 2�.tCr/=2 � 2 � 2�t=2 C 2�.tCr/=2 � 3 � 2�t=2 � 3

p
�;

and thus j.Mx/jj2 �0;9� 0 D Pt
iD1 h

.i/
j .

Finally, for every bad j we have

ˇ
ˇ
ˇ
ˇ
ˇ
j.Mx/jj2 �

tX

iD1

h.i/
j

ˇ
ˇ
ˇ
ˇ
ˇ

� max
�
j.Mx/jj2;

tX

iD1

h.i/
j

�
� 2:

Since at most t� fraction of the elements in ŒN� and in Q are bad, their effect on the
difference between the expectations in the lemma can be bounded by 2t� . By our
choice of � , this is �, completing the proof of the lemma. �

Finally, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1 By Lemma 3.4, applied with Q� D �=.2t/, a random multiset
Q of size

q D O
�
��3��1 � t � logN � log.1=�/

�
D O

�
��3��1 logN � log2.1=�/

�

satisfies with probability 1 � 2��.��2�logN�log.1=�// that for all 1 � i � t and h.i/ 2 Hi,

E
j2Q

h
h.i/
j

i
��;�=t E

j2ŒN�

h
h.i/
j

i
;

in which case we also have

E
j2Q

"
tX

iD1

h.i/
j

#

��;� E
j2ŒN�

"
tX

iD1

h.i/
j

#

:

We show that a Q with the above property satisfies the requirement of the
theorem. Let x 2 CN be a vector, and assume without loss of generality that kxk1 D
1. By Lemma 3.6, there exists a t-tuple of vectors .h.1/; : : : ; h.t// 2 H1 � � � � � Ht

satisfying Items 1 and 2 there. As a result,

E
j2Q

�j.Mx/jj2
� �O.�/;O.�/ E

j2ŒN�

�j.Mx/jj2
�

;

and we are done. �
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3.1 The Restricted Isometry Property

Equipped with Theorem 3.1, it is easy to derive our result on the restricted isometry
property (see Definition 2.1) of random sub-matrices of unitary matrices.

Theorem 3.7 For sufficiently large N and k, a unitary matrix M 2 CN�N satisfying
kMk1 � O.1=

p
N/, and a sufficiently small � > 0, the following holds. For some

q D O.��4 � k � log2.k=�/ � logN/, let A 2 Cq�N be a matrix whose q rows are chosen
uniformly and independently from the rows of M, multiplied by

p
N=q. Then, with

probability 1 � 2��.��2�logN�log.k=�//, the matrix A satisfies the restricted isometry
property of order k with constant �.

Proof Let Q be a multiset of q uniform and independent random elements of ŒN�,
defining a matrix A as above. Notice that by the Cauchy-Schwarz inequality, any
k-sparse vector x 2 CN with kxk2 D 1 satisfies kxk1 � p

k. Applying Theorem 3.1
with �=2 and some � D �.�=k/, we get that with probability 1�2��.��2�logN�log.k=�//,
it holds that for every x 2 CN with kxk2 D 1,

kAxk2
2 D N � E

j2Q
�j.Mx/jj2

� ��=2;�=2 N � E
j2ŒN�

�j.Mx/jj2
� D kMxk2

2 D 1 :

It follows that every vector x 2 CN satisfies kAxk2
2 ��;0 kxk2

2, hence A satisfies the
restricted isometry property of order k with constant �. �

4 The Improved Analysis

In this section we prove the following theorem, which improves the bound of
Theorem 3.1 in terms of the dependence on �.

Theorem 4.1 For a sufficiently large N, a matrix M 2 CN�N, and sufficiently small
�; � > 0, the following holds. For some q D O.log2.1=�/ ���1��1 logN � log2.1=�//,
let Q be a multiset of q uniform and independent random elements of ŒN�. Then, with
probability 1 � 2��.logN�log.1=�//, it holds that for every x 2 CN,

E
j2Q

�j.Mx/jj2
� ��;��kxk2

1 �kMk2
1

E
j2ŒN�

�j.Mx/jj2
�
: (7)

We can assume that � � �, as otherwise, one can apply the theorem with
parameters �=2; �=2 and derive (7) for �; � as well (because the right-hand size
is bounded from above by kxk2

1 � kMk21). As before, we assume without loss of
generality that kMk1 D 1. For � � � > 0, we define t D log2.1=�/ and
r D log2.1=�2/. For the analysis given in this section, we define � D �=.60.tC r//.
Throughout the proof, we use the vector sets Gi from Sect. 3 and Lemma 3.5 for this
value of � .
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The Vector SetsDi;m For a .t C r/-tuple of vectors .g.1/; : : : ; g.tCr// 2 G1 � � � � �
GtCr and for 1 � i � t, let Ci be the set of all j 2 ŒN� for which i is the smallest
index satisfying jg.i/

j j � 2 � 2�i=2. For m D i; : : : ; i C r define the vector h.i;m/ by

h.i;m/
j D jg.m/

j j2 � 1j2Ci ; (8)

and for other values of m define h.i;m/ D 0. Now, for everym, let �.i;m/ be the vector
defined by

�
.i;m/
j D

(
h.i;m/
j � h.i;m�1/

j ; if jh.i;m/
j � h.i;m�1/

j j � 30 � 2�.iCm/=2I
0; otherwise.

(9)

Note that the support of �.i;m/ is contained in Ci. Let Di;m be the set of all vectors
�.i;m/ that can be obtained in this way.

Claim 4.2 For every 1 � i � t and i � m � i C r, jDi;mj � NO.2m�log.1=�//:

Proof Observe that every vector in Di;m is fully defined by some .g.1/; : : : ; g.m// 2
G1 � � � � � Gm. Hence

jDi;mj � jG1j � � � jGmj � NO.log.1=�//�.21C22C���C2m/ � NO.log.1=�//�2mC1

;

and the claim follows. �

Lemma 4.3 For every Q"; Q� > 0 and some q D O.Q"�1 Q��1 logN � log.1=�//, let
Q be a multiset of q uniform and independent random elements of ŒN�. Then, with
probability 1 � 2��.logN�log.1=�//, it holds that for every 1 � i � t, m, and a vector
�.i;m/ 2 Di;m associated with a set Ci,

E
j2Q

h
�

.i;m/
j

i
�0;b E

j2ŒN�

h
�

.i;m/
j

i
for b D O

�
Q" � 2�i � jCij

N
C Q�

�
: (10)

Proof Fix i, m, and a vector �.i;m/ 2 Di;m associated with a set Ci as in (9). Notice
that

E
j2ŒN�

Œj�.i;m/
j j� � 30 � 2�.iCm/=2 � jCij

N
:

By Corollary 2.4, applied with

�0 D Q" � 2.m�i/=2; ˛ D Q�; and a D 30 � 2�.iCm/=2;

we have that (10) holds with probability 1 � 2��.2m�qQ"Q�/. Using Claim 4.2, the union
bound over all the vectors inDi;m implies that the probability that some �.i;m/ 2 Di;m
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does not satisfy (10) is at most

NO.2m�log.1=�// � 2��.2m�qQ"Q�/ � 2��.2m�logN�log.1=�// :

The result follows by a union bound over i and m. �

Approximating the VectorsMx

Lemma 4.4 For every multiset Q � ŒN� and every vector x 2 CN with kxk1 D 1

there exist vector collections .�.i;m/ 2 Di;m/mDi;:::;iCr associated with sets Ci (1 �
i � t), for which

1. Ej2ŒN�

�j.Mx/jj2
� � Pt

iD1 2�i � jCi j
N � �;

2. Ej2Q
�j.Mx/jj2

� �O.�/;O.�/ Ej2Q
hPt

iD1

PiCr
mDi �

.i;m/
j

i
; and

3. Ej2ŒN�

�j.Mx/jj2
� �O.�/;O.�/ Ej2ŒN�

hPt
iD1

PiCr
mDi �

.i;m/
j

i
:

Proof By Lemma 3.5, for every 1 � i � t C r there exists a vector g.i/ 2 Gi that
satisfies

j.Mx/jj �0;2�i=2 jg.i/
j j (11)

for all but at most � fraction of j 2 ŒN� and for all but at most � fraction of j 2 Q. We
say that j 2 ŒN� is good if (11) holds for every i, and otherwise that it is bad. Notice
that all but at most .t C r/� fraction of j 2 ŒN� are good and that all but at most
.t C r/� fraction of j 2 Q are good. Consider the sets Ci and vectors h.i;m/; �.i;m/

associated with .g.1/; : : : ; g.tCr// as defined in (8). We claim that �.i;m/ satisfy the
requirements of the lemma.

Fix some 1 � i � t. For every good j 2 Ci, the definition of Ci implies that
jg.i/

j j � 2 � 2�i=2, so using (11) it follows that

j.Mx/jj � jg.i/
j j � 2�i=2 � 2�i=2: (12)

We also claim that j.Mx/jj � 3 � 2�.i�1/=2. This trivially holds for i D 1, so assume

that i � 2, and notice that the definition of Ci implies that jg.i�1/
j j < 2 � 2�.i�1/=2, so

using (11), it follows that

j.Mx/jj � jg.i�1/
j j C 2�.i�1/=2 � 3 � 2�.i�1/=2: (13)

Since at most .t C r/� fraction of j 2 ŒN� are bad, (12) yields that

E
j2ŒN�

�j.Mx/jj2
� �

tX

iD1

2�i � jCij
N

� .t C r/�=2 �
tX

iD1

2�i � jCij
N

� �;

as required for Item 1.
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Next, we claim that every good j satisfies

j.Mx/jj2 �O.�/;O.�/

tX

iD1

h.i;iCr/
j : (14)

For a good j 2 Ci and m � i,
ˇ
ˇ
ˇj.Mx/jj2 � h.i;m/

j

ˇ
ˇ
ˇ � 2 � j.Mx/jj � 2�m=2 C 2�m � 10 � 2�.iCm/=2; (15)

where the first inequality follows from (11) and the second from (13). In particular,
for m D i C r (recall that r D log2.1=�2/), we have

ˇ
ˇ
ˇj.Mx/jj2 � h.i;iCr/

j

ˇ
ˇ
ˇ � 10 � � � 2�i � 10 � � � j.Mx/jj2 ;

and thus j.Mx/jj2 �O.�/;0 h.i;iCr/
j . Since every good j belongs to at most one of the

sets Ci, for every good j 2 S
Ci we have j.Mx/jj2 �O.�/;0

Pt
iD1 h

.i;iCr/
j . On the other

hand, if j is good but does not belong to any Ci, by our choice of t, it satisfies

j.Mx/jj � jg.t/
j j C 2�t=2 � 3 � 2�t=2 D 3

p
� ;

and thus j.Mx/jj2 �0;9� 0 D Pt
iD1 h

.i;iCr/
j . This establishes that (14) holds for every

good j.
Next, we claim that for every good j,

j.Mx/jj2 �O.�/;O.�/

tX

iD1

iCrX

mDi

�
.i;m/
j : (16)

This follows since for every 1 � i � t, the vector h.i;iCr/ can be written as the
telescopic sum

h.i;iCr/ D
iCrX

mDi

.h.i;m/ � h.i;m�1// ;

where we used that h.i;i�1/ D 0. We claim that for every good j, these differences
satisfy

jh.i;m/
j � h.i;m�1/

j j � 30 � 2�.iCm/=2;

thus establishing that (16) holds for every good j. Indeed, form � iC1, (15) implies
that

jh.i;m/
j � h.i;m�1/

j j � 10 � .2�.iCm/=2 C 2�.iCm�1/=2/ � 30 � 2�.iCm/=2; (17)

and for m D i it follows from (11) combined with (13).
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Finally, for every bad j we have

ˇ
ˇ̌j.Mx/jj2 �

tX

iD1

iCrX

mDi

�
.i;m/
j

ˇ
ˇ̌ � 1 C 30 � max

1�i�t

� iCrX

mDi

2�.iCm/=2
�

� 60 :

Since at most .t C r/� fraction of the elements in ŒN� and in Q are bad, their effect
on the difference between the expectations in Items 2 and 3 can be bounded by
60.t C r/� . By our choice of � this is �, as required. �

Finally, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1 Recall that it can be assumed that � � �. By Lemma 4.3,
applied with Q" D �=r and Q� D �=.rt/, a random multiset Q of size

q D O
�
��1��1 � r2 � t � logN � log.1=�/

�

D O
�
log2.1=�/ � ��1��1 logN � log2.1=�/

�

satisfies with probability 1 � 2��.logN�log.1=�//, that for every 1 � i � t, m, and
�.i;m/ 2 Di;m associated with a set Ci,

E
j2Q

h
�

.i;m/
j

i
�0;bi E

j2ŒN�

h
�

.i;m/
j

i
for bi D O

�"

r
� 2�i � jCij

N
C �

rt

�
;

in which case we also have

E
j2Q

"
tX

iD1

iCrX

mDi

�
.i;m/
j

#

�0;b E
j2ŒN�

"
tX

iD1

iCrX

mDi

�
.i;m/
j

#

for b D O
�
��

tX

iD1

2�i � jCij
N

C�
�

:

(18)

We show that a Q with the above property satisfies the requirement of the
theorem. Let x 2 CN be a vector, and assume without loss of generality that
kxk1 D 1. By Lemma 4.4, there exist vector collections .�.i;m/ 2 Di;m/mDi;:::;iCr

associated with sets Ci (1 � i � t), satisfying Items 1, 2, and 3 there. Combined
with (18), this gives

E
j2Q

�j.Mx/jj2
� �O.�/;O.�/ E

j2ŒN�

�j.Mx/jj2
�

;

and we are done. �

4.1 The Restricted Isometry Property

It is easy to derive now the following theorem. The proof is essentially identical to
that of Theorem 3.7, using Theorem 4.1 instead of Theorem 3.1.
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Theorem 4.5 For sufficiently large N and k, a unitary matrix M 2 CN�N satisfying
kMk1 � O.1=

p
N/, and a sufficiently small � > 0, the following holds. For some

q D O.log2.1=�/��2 �k�log2.k=�/�logN/, let A 2 Cq�N be a matrix whose q rows are
chosen uniformly and independently from the rows of M, multiplied by

p
N=q. Then,

with probability 1 � 2��.logN�log.k=�//, the matrix A satisfies the restricted isometry
property of order k with constant �.
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