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Abstract We prove estimates for the expected value of operator norms of Gaussian
random matrices with independent (but not necessarily identically distributed) and
centered entries, acting as operators from `np� to `mq , 1 � p� � 2 � q < 1.

1 Introduction and Main Results

Random matrices and their spectra are under intensive study in Statistics since the
work of Wishart [28] on sample covariance matrices, in Numerical Analysis since
their introduction by von Neumann and Goldstine [25] in the 1940s, and in Physics
as a consequence of Wigner’s work [26, 27] since the 1950s. His Semicircle Law,
a fundamental theorem in the spectral theory of large random matrices describing
the limit of the empirical spectral measure for what is nowadays known as Wigner
matrices, is among the most celebrated results of the theory.

In Banach Space Theory and Asymptotic Geometric Analysis, random matrices
appeared already in the 70s (see e.g. [2, 3, 9]). In [2], the authors obtained asymptotic
bounds for the expected value of the operator norm of a random matrix B D .bij/

m;n
i;jD1

with independent mean-zero entries with jbijj � 1 from `n2 to `mq , 2 � q < 1. To be
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more precise, they proved that

E
�
�B W `n2 ! `mq

�
� � Cq � max

�

m1=q;
p
n
�

;

where Cq depends only on q. This was then successfully used to characterize
.p; q/-absolutely summing operators on Hilbert spaces. Ever since, random matrices
are extensively studied and methods of Banach spaces have produced numerous
deep and new results. In particular, in many applications the spectral properties
of a Gaussian matrix, whose entries are independent identically distributed (i.i.d.)
standard Gaussian random variables, were used. Seginer proved in [22] that for
an m � n random matrix with i.i.d. symmetric random variables the expectation
of its spectral norm (that is, the operator norm from `n2 to `m2 ) is of the order
of the expectation of the largest Euclidean norm of its rows and columns. He
also obtained an optimal result in the case of random matrices with entries
"ijaij, where "ij are independent Rademacher random variables and aij are fixed
numbers. We refer the interested reader to the surveys [6, 7] and references
therein.

It is natural to ask similar questions about general random matrices, in particular
about Gaussian matrices whose entries are still independent centered Gaussian
random variables, but with different variances. In this structured case, where we
drop the assumption of identical distributions, very little is known. It is conjectured
that the expected spectral norm of such a Gaussian matrix is as in Seginer’s result,
that is, of the order of the expectation of the largest Euclidean norm of its rows and
columns. A big step toward the solution was made by Latała in [15], who proved
a bound involving fourth moments, which is of the right order max.

p
m;

p
n/ in

the i.i.d. setting, but does not capture the right behavior in the case of, for instance,
diagonal matrices. On one hand, as is mentioned in [15], in view of the classical
Bai-Yin theorem, the presence of fourth moments is not surprising, on the other
hand they are not needed if the conjecture is true.

Later in [20], Riemer and Schütt proved the conjecture up to a log n factor. The
two results are incomparable—depending on the choice of variances, one or another
gives a better bound. The Riemer-Schütt estimate was used recently in [21].

We would also like to mention that the non-commutative Khintchine inequality
can be used to show that the expected spectral norm is bounded from above by the
largest Euclidean norm of its rows and columns times a factor

p
log n (see e.g. .4:9/

in [23]).
Another big step toward the solution was made a short while ago by Bandeira

and Van Handel [1]. In particular, they proved that

E
�
�.aijgij/ W `n2 ! `m2

�
� � C

�

jjjAjjj C
p

log min.n;m/ � max
ij

jaijj
�

; (1)

where jjjAjjj denotes the largest Euclidean norm of the rows and columns of .aij/,
C > 0 is a universal constant, and gij are independent standard Gaussian random
variables (see [1, Theorem 3.1]). Under mild structural assumptions, the bound (1)
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is already optimal. Further progress was made by Van Handel [24] who verified the
conjecture up to a

p
log log n factor. In fact, more was proved in [24]. He computed

precisely the expectation of the largest Euclidean norm of the rows and columns
using Gaussian concentration. And, while the moment method is at the heart of the
proofs in [22] and [1], he proposed a very nice approach based on the comparison of
Gaussian processes to improve the result of Latała. His approach can be also used
for our setting. We comment on this in Sect. 4.

The purpose of this work is to provide bounds for operator norms of such
structured Gaussian random matrices considered as operators from `np� to `mq .

In what follows, by gi, gij, i � 1, j � 1 we always denote independent standard
Gaussian random variables. Let n;m 2 N and A D .aij/

m;n
i;jD1 2 R

m�n. We write
G D GA D .aijgij/

m;n
i;jD1. For r � 1, we denote by �r � p

r the Lr-norm of a
standard Gaussian random variable. The notation f � h means that there are two
absolute positive constants c and C (that is, independent of any parameters) such
that cf � h � Cf and f �p;q h means that there are two positive constants c.p; q/

and C.p; q/, which depend only on the parameters p and q, such that c.p; q/f � h �
C.p; q/f .

Our main result is the following theorem.

Theorem 1.1 For every 1 < p� � 2 � q < 1 one has

E
�
�G W `np� ! `mq

�
� �

�

E
�
�G W `np� ! `mq

�
�
q
�1=q

� C p5=q .logm/1=q

�

�p max
i�m

k.aij/
n
jD1kp C �q Emax

i�m
j�n

jaijgijj
�

C 21=q �q max
j�n

k.aij/
m
iD1kq;

where C is a positive absolute constant.

We conjecture the following bound.

Conjecture 1.2 For every 1 � p� � 2 � q � 1 one has

E
�
�G W `np� ! `mq

�
� � max

i�m
k.aij/

n
jD1kp C max

j�n
k.aij/

m
iD1kq C Emax

i�m
j�n

jaijgijj:

Here, as usual, p is defined via the relation 1=p C 1=p� D 1. This con-
jecture extends the corresponding conjecture for the case p D q D 2 and
m D n. In this case, Bandeira and Van Handel proved in [1] an estimate with
p

log min.m; n/ max jaijj instead of Emax jaijgijj (see Eq. (1)), while in [24] the
corresponding bound is proved with

p
log log n in front of the right hand side.

Remark 1.3 The lower bound in the conjecture is almost immediate and follows
from standard estimates. Thus the upper bound is the only difficulty.



154 O. Guédon et al.

Remark 1.4 In the case p� D 1 and q � 2, a direct computation following along
the lines of Lemma 3.2 below, shows that

E
�
�G W `n1 ! `mq

�
� . �q max

j�n
k.aij/

m
iD1kq C Emax

i�m
j�n

jaijgijj:

Remark 1.5 Note that if 1 � p� � 2 � q � 1, in the case of matrices of tensor
structure, that is, .aij/ni;jD1 D x ˝ y D .xj � yi/ni;jD1, with x; y 2 R

n, Chevet’s theorem
[3, 4] and a direct computation show that

E
�
�G W `np� ! `nq

�
� �p;q kykqkxk1 C kyk1kxkp:

If the matrix is diagonal, that is, .aij/ni;jD1 D diag.a11; : : : ; ann/, then we immediately
obtain

E
�
�G W `np� ! `nq

�
� D E k.aiigii/

n
iD1k1 � max

i�n

p

ln.i C 3/ � a�
ii � k.aii/

n
iD1kMg ;

where .a�
ii/i�n is the decreasing rearrangement of .jaiij/i�n and Mg is the Orlicz

function given by

Mg.s/ D
r

2

�

Z s

0

e� 1

2t2 dt

(see Lemma 2.2 below and [11, Lemma 5.2] for the Orlicz norm expression).
Slightly different estimates, but of the same flavour, can also be obtained in the

case 1 � q � 2 � p� � 1.

2 Notation and Preliminaries

By c;C;C1; : : : we always denote positive absolute constants, whose values may
change from line to line, and we write cp;Cp; : : : if the constants depend on some
parameter p.

Given p 2 Œ1; 1�, p� denotes its conjugate and is given by the relation
1=p C 1=p� D 1. For x D .xi/i�n 2 R

n, kxkp denotes its `p-norm, that is
kxk1 D maxi�n jxij and, for p < 1,

kxkp D
� nX

iD1

jxijp
�1=p

:

The corresponding space .Rn; k � kp/ is denoted by `np, its unit ball by Bn
p.
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If E is a normed space, then E� denotes its dual space and BE its closed unit ball.
The modulus of convexity of E is defined for any " 2 .0; 2/ by

ıE."/ WD inf
n

1 �
�
�
�
x C y

2

�
�
�
E

W kxkE D 1; kykE D 1; kx � ykE > "
o

:

We say that E has modulus of convexity of power type 2 if there exists a positive
constant c such that for all " 2 .0; 2/, ıE."/ � c"2. It is well known that this property
(see e.g. [8] or [18, Proposition 2.4]) is equivalent to the fact that

�
�
�
x C y

2

�
�
�

2

E
C ��2

�
�
�
x � y

2

�
�
�

2

E
� kxk2

E C kyk2
E

2

holds for all x; y 2 E, where � > 0 is a constant depending only on c. In that case,
we say that E has modulus of convexity of power type 2 with constant �. We clearly
have ıE."/ � "2=.2�2/.

Recall that a Banach space E is of Rademacher type r for some 1 � r � 2 if
there is C > 0 such that for all n 2 N and for all x1; : : : ; xn 2 E,

	

E"

�
�
�

nX

iD1

"ixi
�
�
�

2

1=2

� C

 
nX

iD1

kxikr
!1=r

;

where ."i/
1
iD1 is a sequence of independent random variables defined on some

probability space .�;P/ such that P."i D 1/ D P."i D �1/ D 1
2

for every i 2 N.
The smallest C is called type-r constant of E, denoted by Tr.E/. This concept was
introduced into Banach space theory by Hoffmann-Jørgensen [14] in the early 1970s
and the basic theory was developed by Maurey and Pisier [17].

We will need the following theorem.

Theorem 2.1 Let E be a Banach space with modulus of convexity of power type 2
with constant �. Let X1; : : : ;Xm 2 E� be independent random vectors, q � 2 and
define

B WD C�4T2.E
�/

r

logm

m

�

Emax
i�m

kXikqE�

�1=2

;

and

� WD sup
y2BE

 

1

m

mX

iD1

EjhXi; yijq
!1=q

:

Then

E sup
y2BE

ˇ
ˇ
ˇ
ˇ

1

m

mX

iD1

jhXi; yijq � EjhXi; yijq
ˇ
ˇ
ˇ
ˇ

� B2 C B � �q=2:
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Its proof is done following the argument “proof of condition (H)” of [13] in com-
bination with the improvement on covering numbers established in [12, Lemma 2].
Indeed, in [12], the argument is only made in the simpler case q D 2, but it can be
extended verbatim to the case q � 2.

We also recall known facts about Gaussian random variables. The next lemma is
well-known (see e.g. Lemmas 2.3, 2.4 in [24]).

Lemma 2.2 Let a D .ai/i�n 2 R
n and .a�

i /i�n be the decreasing rearrangement of
.jaij/i�n. Then

E max
i�n

jaigij � max
i�n

p

ln.i C 3/ � a�
i :

Note that in general the maximum of i.i.d. random variables weighted by coordinates
of a vector a is equivalent to a certain Orlicz norm kakM , where the function M
depends only on the distribution of random variables (see [10, Corollary 2] and
Lemma 5.2 in [11]).

The following theorem is the classical Gaussian concentration inequality (see
e.g. [5] or inequality (2.35) and Proposition 2.18 in [16]).

Theorem 2.3 Let n 2 N and .Y; k�kY/ be a Banach space. Let y1; : : : ; yn 2 Y and
X D Pn

iD1 giyi. Then, for every t > 0,

P

�ˇ
ˇ kXkY � E kXkY

ˇ
ˇ � t

�

� 2 exp

	

� t2

2�Y.X/2




; (2)

where �Y .X/ D supk�kY� D1

�
Pn

iD1 j�.yi/j2
�1=2

.

Remark 2.4 Let p � 2. Let a D .aj/j�n 2 R
n and X D .ajgj/j�n. Then we clearly

have

�`np
.X/ D max

j�n
jajj:

Thus, Theorem 2.3 implies for X D .ajgj/j�n

P

�ˇ
ˇkXkp � EkXkp

ˇ
ˇ > t

�

� 2 exp

	

� t2

2 maxj�n jajj2



: (3)

Note also that

EkXkp �
	 nX

jD1

jajjp Ejgjjp

1=p

D �pkakp: (4)
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3 Proof of the Main Result

We will apply Theorem 2.1 with E D `np� , 1 < p� � 2 and X1; : : : ;Xm being the
rows of the matrix G D .aijgij/

m;n
i;jD1. We start with two lemmas in which we estimate

the quantity � and the expectation, appearing in that theorem.

Lemma 3.1 Let m; n 2 N, 1 < p� � 2 � q, and for i � m let Xi D .aijgij/njD1. Then

� D sup
y2Bn

p�

	
1

m

mX

iD1

E
ˇ
ˇhXi; yi

ˇ
ˇ
q

1=q

D �q

m1=q
max
j�n

k.aij/
m
iD1kq:

Proof For every i � m, hXi; yi D Pn
jD1 aijyjgij, is a Gaussian random variable with

variance k.aijyj/njD1k2. Hence,

�q D sup
y2Bn

p�

1

m

mX

iD1

EjhXi; yijq D �q
q

m
sup
y2Bn

p�

mX

iD1

	 nX

jD1

jaijyjj2

q=2

:

Since p� � 2 � q, the function

	.z/ D
mX

iD1

	 nX

jD1

jaijj2jzjj2=p�


q=2

is a convex function on the simplex S D fz 2 R
n j Pn

jD1 � 1; 8j W zj � 0g.
Therefore, it attains its maximum on extreme points, that is, on vectors of the
canonical unit basis of Rn, e1; : : : ; en. Thus,

sup
y2Bn

p�

mX

iD1

	 nX

jD1

jaijyjj2

q=2

D sup
z2S

	.z/ D sup
k�n

	.ek/ D max
j�n

k.aij/
m
iD1kqq;

which completes the proof. ut
Now we estimate the expectation in Theorem 2.1. The proof is based on the

Gaussian concentration, Theorem 2.3, and is similar to Theorem 2.1 and Remark 2.2
in [24].

Lemma 3.2 Let m; n 2 N, 1 < p� � 2 � q, and for i � m let Xi D .aijgij/njD1. Then

�

Emax
i�m

kXikqp
�1=q � max

i�m
EkXikp C C �q Emax

i�m
j�n

jaijgijj

� �p max
i�m

k.aij/
n
jD1kp C C �q Emax

i�m
j�n

jaijgijj;

where C is a positive absolute constant.
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Proof We have

�

Emax
i�m

kXikqp
�1=q � �

�max
i�m

ˇ
ˇkXikp � EkXikp

ˇ
ˇC max

i�m
EkXikp

�
�
Lq

�
�

Emax
i�m

ˇ
ˇkXikp � EkXikp

ˇ
ˇ
q
�1=q C max

i�m
EkXikp:

For all i � m and t > 0 by (3) we have

P

�ˇ
ˇkXikp � EkXikp

ˇ
ˇ > t

�

� 2 exp

	

� t2

2 maxj�n jaijj2



: (5)

By permuting the rows of .aij/
m;n
i;jD1, we can assume that

max
j�n

ja1jj � � � � � max
j�n

jamjj:

For each i � m, choose j.i/ � n such that jaij.i/j D maxj�n jaijj. Clearly,

max
i�m
j�n

jaijgijj � max
i�m

jaij.i/j � jgij.i/j

and hence, by independence of gij’s and Lemma 2.2,

b WD Emax
i�m
j�n

jaijgijj � Emax
i�m

jaij.i/j � jgij � cmax
i�m

p

log.i C 3/ � jaij.i/j;

where the latter inequality follows since ja1j.1/j � � � � � janj.n/j. Thus, for i � m,

max
j�n

jaijj2 D a2
ij.i/ � b2

c log.i C 3/
:

By (5) we observe for every t > 0,

P

�

max
i�m

ˇ
ˇkXikp � EkXikp

ˇ
ˇ > t

�

� 2

mX

iD1

exp

	

� ct2 log.i C 3/

2b2




D 2

mX

iD1

	
1

i C 3


ct2=2b2

� 2

Z 1

3

x�ct2=2b2

dx

� 6 � 3�ct2=2b2

;

whenever ct2=b2 � 4. Integrating the tail inequality proves that

	

Emax
i�m

ˇ
ˇ
ˇkXikp � EkXikp

ˇ
ˇ
ˇ

q

1=q

� C1

p
q b � C2 �q Emax

i�m
j�n

jaijgijj:
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By the triangle inequality, we obtain the first desired inequality, the second one
follows by (4). ut

We are now ready to present the proof of the main theorem.

Proof of Theorem 1.1 First observe that

E
�
�G W `np� ! `mq

�
� �

�

E
�
�G W `np� ! `mq

�
�
q
�1=q D

	

E sup
y2Bn

p�

mX

iD1

ˇ
ˇhXi; yi

ˇ
ˇ
q

1=q

:

We have

E sup
y2Bn

p�

mX

iD1

ˇ
ˇhXi; yi

ˇ
ˇ
q � E sup

y2Bn
p�

"
mX

iD1

ˇ
ˇhXi; yi

ˇ
ˇ
q � E

ˇ
ˇhXi; yi

ˇ
ˇ
q

#

C sup
y2Bn

p�

mX

iD1

E
ˇ
ˇhXi; yi

ˇ
ˇ
q

D m � E sup
y2Bn

p�

"

1

m

mX

iD1

ˇ
ˇhXi; yi

ˇ
ˇ
q � E

ˇ
ˇhXi; yi

ˇ
ˇ
q

#

Cm � �q:

Hence, Theorem 2.1 applied with E D `np� implies

E
�
�G W `np� ! `mq

�
�
q � m � �B2 C B�q=2

�C m � �q � 2m
�

B2 C �q
�

;

where B and � are defined in that theorem. Therefore,

�

E
�
�G W `np� ! `mq

�
�
q
�1=q � 21=qm1=q

�

B2=q C �
�

:

Now, recall that T2.`np/ � p
p and that Bn

p� has modulus of convexity of power type

2 with ��2 � 1=p (see, e.g., [19, Theorem 5.3]). Therefore,

B2=q D C2=q�8=q T2=q
2 .`np/

	
logm

m


1=q �

Emax
i�m

kXikqp
�1=q

D C2=qp5=q.logm/1=qm�1=q
�

Emax
i�m

kXikqp
�1=q

:

Applying Lemma 3.1, we obtain

�

E
�
�G W `np� ! `mq

�
�
q
�1=q

� .2C2/1=q � p5=q � .logm/1=q
�

Emax
i�m

kXikqp
�1=q

C 21=q�q � max
j�n

k.aij/
m
iD1kq:

The desired bound follows now from Lemma 3.2. ut
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Remark 3.3 This proof can be extended to the case of random matrices whose rows
are centered independent vectors with multivariate Gaussian distributions. We leave
the details to the interested reader.

4 Concluding Remarks

In this section, we briefly outline what can be obtained using the approach of [24].
We use a standard trick to pass to a symmetric matrix. The matrix GA being given,
define S as

S D 1

2

	
0 GT

A

GA 0




:

Then, S is a random symmetric matrix and

sup
w

hSw;wi D sup
u2Bn

p�

sup
v2Bm

q�

hGAu; vi D �
�GA W `np� ! `mq

�
�;

where the supremum in w is taken over all vectors of the form .u; v/T with u 2 Bn
p�

and v 2 Bm
q� . Repeating verbatim the proof of Theorem 4.1 in [24] one gets

E
�
�GA W `np� ! `mq

�
� .p;q Emax

i�m

	 nX

jD1

jgjjpjaijjp

1=p

C Emax
j�n

	 mX

iD1

jgijqjaijjg

1=q

C Emax
i

Yi;

where Y � N.0;A�/ and A� is a positive definite matrix whose diagonal elements
are bounded by

max

 

max
i�m

s
X

j

a4
ij ; max

j�n

s
X

i

a4
ij

!

:

However, the bounds obtained here and in Theorem 1.1 are incomparable. Depend-
ing on the situation one may be better than the other.
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