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Preface

Since the mid-1980s, the following volumes containing collections of papers
reflecting the activity of the Israel Seminar in Geometric Aspects of Functional
Analysis have appeared:

1983—-1984 Published privately by Tel Aviv University
1985-1986 Springer Lecture Notes in Mathematics, vol. 1267
1986-1987 Springer Lecture Notes in Mathematics, vol. 1317
1987-1988 Springer Lecture Notes in Mathematics, vol. 1376
1989-1990 Springer Lecture Notes in Mathematics, vol. 1469
1992-1994 Operator Theory: Advances and Applications, vol. 77, Birkhduser
1994-1996 MSRI Publications, vol. 34, Cambridge University Press
19962000 Springer Lecture Notes in Mathematics, vol. 1745
2001-2002 Springer Lecture Notes in Mathematics, vol. 1807
2002-2003 Springer Lecture Notes in Mathematics, vol. 1850
2004-2005 Springer Lecture Notes in Mathematics, vol. 1910
2006-2010 Springer Lecture Notes in Mathematics, vol. 2050
2011-2013 Springer Lecture Notes in Mathematics, vol. 2116
The first six were edited by Lindenstrauss and Milman; the seventh by Ball and
Milman; the subsequent four by Milman and Schechtman; the penultimate one by
Klartag, Mendelson, and Milman; and the last by the present editors.

As in the previous seminar notes, the current volume reflects general trends
in the study of geometric aspects of functional analysis, and many of the papers
deal with different aspects of asymptotic geometric analysis, understood in a broad
sense. A classical theme in the local theory of Banach spaces, which is well
represented in this volume, is the identification of lower-dimensional structures,
such as diameter bounds, Euclidean structure of sections, and super-Gaussian tail
decay of projections, in high-dimensional objects, such as subclasses of high-
dimensional convex bodies and other distributions. More recent applications of
high dimensionality are represented by contributions in random matrix theory,
establishing bounds on expectation of norms of matrices and their inverses, devi-

v



vi Preface

ations about the expectation, and the restricted invertibility property. Naturally, the
Gaussian measure plays a central role in many of these topics and is studied in
this volume—the recent breakthrough proof of the Gaussian correlation conjecture
is revisited, moment inequalities for log-concave random variables are obtained,
and a Poincaré-type inequality on the boundary of convex domains on Gaussian
space is derived. As expected, probabilistic tools play a significant role, and
concentration results for non-Lipschitz functions and empirical multiplier processes
are presented. The interplay of the theory with harmonic analysis is also well
apparent in several examples on large Lie groups and the discrete cube. The
classical relation to both the primal and dual Brunn—Minkowski theories is not
abscent, with contributions pertaining to the stability of Brunn—Minkowski type
inequalities and characterization of the radial sum. Related algebraic structures, such
as constructable functions of valuations, valuations on quasi-concave functions,
generalized valent functions on the complex plane, and rigidity of the chain rule,
are also discussed. Other classical topics such as the theory of type and cotype are
covered as well. All contributions are original research papers and were subject to
the usual refereeing standards.

We are grateful to Vitali Milman for his help and guidance in preparing and
editing this volume.

Tel Aviv, Israel Bo’az Klartag
Haifa, Israel Emanuel Milman
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On Repeated Sequential Closures
of Constructible Functions in Valuations

Semyon Alesker

Abstract The space of constructible functions form a dense subspace of the space
of generalized valuations. In this note we prove a somewhat stronger property that
the sequential closure, taken sufficiently many (in fact, infinitely many) times, of the
former space is equal to the latter one. This stronger property is necessary for some
applications in Alesker (Geom Funct Anal 20(5):1073—-1143, 2010).

1 Main Results

The main results of this note are Theorem 1.1 and Corollaries 1.2, 1.3 below.
Corollary 1.2 says that the taken sufficiently (infinitely) many times sequential
closure of constructible functions inside the space of generalized valuations is equal
to the whole space. Corollary 1.3 says, in particular, that if a sequentially continuous
linear operator from generalized valuations on a manifold either with or without
compact support to a Hausdorff linear topological space vanishes on constructible
functions, then it vanishes. Recall that a map between two topological spaces is
called sequentially continuous if it maps convergent sequences to convergent ones.
Notice that for non-metrizable topological spaces sequential continuity of a map
does not imply topological continuity.

The reason to write this note is to correct a mistake made by the author in [7],
where it was wrongly claimed that several operations, such as pull-back, push-
forward, and product on generalized valuations with given wave front sets are
topologically continuous, while they satisfy, in fact, only a weaker property of
sequential continuity. This property comes from the fact that operations of pull-back,
push-forward, and product on generalized functions or distributions with given wave

S. Alesker (P<)
Department of Mathematics, Tel Aviv University, Ramat Aviv, 69978 Tel Aviv, Israel
e-mail: semyon@post.tau.ac.il

© Springer International Publishing AG 2017 1
B. Klartag, E. Milman (eds.), Geometric Aspects of Functional Analysis,
Lecture Notes in Mathematics 2169, DOI 10.1007/978-3-319-45282-1_1
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2 S. Alesker

front sets are only sequentially continuous in appropriate (so called Hérmander)
topology,' but in general they are not topologically continuous, see Sect. 3.1 in [10].

Let X be either smooth manifold or real analytic manifold. It will always be
assumed to be countable at infinity, i.e. X can be presented as a countable union
of compact subsets. We will denote by V°(X) and V°°(X) the space of smooth
valuations on X with and without compact support respectively. Also we denote
by V*°(X) and V~°°(X) the spaces of generalized valuations with and without
compact support respectively. We refer to [7] for the definitions of all these spaces
and further details (see also [6]). For a compact subset Z C X we denote by V,*°(X)
the space of generalized valuations with support contained in Z; clearly it is a closed
subspace of V™°°(X). We equip V,°°(X) with the weak topology induced from
V7%°(X). We denote by V. °°(X) the space of all generalized compactly supported
valuations. We equip it with the topology of (strict) inductive limit:

VI2(X) = li_1>n V72 (X).
z compact

Since all our manifolds are countable at infinity, the limit can be made countable.

Let X be a smooth manifold (not necessarily real analytic). Let P C X be
a compact submanifold with corners. Then P defines a generalized valuation as
follows. By definition, generalized valuations are continuous linear functionals on
V2°(X). Then P defines a linear functional [¢ > ¢ (P)]. We denote this generalized
valuation by E*°(1p). We denote by F(X) the span over C of all generalized
valuations of the form E°°(1p) where P C X is a compact submanifold with
corners. Clearly F(X) is a subspace of V_°°(X). Furthermore, for a closed subset
Z C X we denote by F7z(X) the span over C of generalized valuations of the form
E%°(1p) where P C Z is a compact submanifold with corners.

Let now X be a real analytic manifold. We denote by F“"(X) the space of so
called C-valued constructible functions. Let us remind the definition of this notion
following [5]. We refer to §8.2 in [12] for the definition and basic properties of
subanalytic sets (see also Sect. 1.2 in [5]). An integer valued function f: X — Z on
a real analytic manifold is called constructible if it satisfies:

1. for every m € Z the set f ! (m) is subanalytic;
2. the family of sets { ! (m)} ez is locally finite.

Now a C-valued function f: X — C is called constructible if f is a finite linear
combination with C-coefficients of integer valued constructible (in the above sense)
functions. Furthermore, for a closed subset Z C X we denote by F,"(X) the
subspace of F*"(X) consisting of functions supported in Z.

For a real analytic manifold X there is a canonical injective imbedding 7**(X) —
V=°(X); see Sect. 8.1 in [5].

I'This fact was pointed out to the author by C. Brouder in September 2013. T am very grateful to
him for this remark.
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In order to formulate our main results, let us remind the notion of a sequential
closure of transfinite order of a set. This notion was already known to S. Banach,
see p. 213 in his classical book [9]. Let X’ be a topological space. Let A C X be a
subset. A sequential closure of A is defined by

scl(A) = {x € X| 3 sequence {a;} C A s.t. a; — x}.

Itis clearthat A C scl(A), and if X is a linear topological space and A C X is a linear
subspace then scl(A) is a linear subspace. A subset A C X is called sequentially
closed if for any converging in X’ sequence {x;}?2, C A its limit belongs to A;
equivalently sc/(A) = A. Clearly any closed subset is sequentially closed, but the
converse is not true in general. If X’ is not metrizable, sc/(A) may not be closed or
even sequentially closed, i.e. scl(scl(A)) # scl(A). We can repeat the procedure of
taking sequential closure any number of times, even any infinite number of times
corresponding to any ordinal. More precisely, for any ordinal 1 one can define by
transfinite induction the subset scl7(A) as follows:

 if n = 0 then scl’(A) = A;
o if n = £ + 1 then scl"(A) = scl(sclf (A));
e if 5 is a limit ordinal then scl7(A) = U§<,,scls A).

Furthermore there exists an ordinal 1 such that for any 1’ > 7 one has scl” A =
scl"(A). We will denote the latter subset by scl*(A). It is also clear that sc/*(A) is
sequentially closed, i.e. scl(scl* (A)) = scl*(A). Clearly if X is a linear topological
space and A C &’ is a linear subspace then scl7(A) is a linear subspace for any 7.

Here is the main result of the note.

Theorem 1.1 Let X be a real analytic (resp. smooth) manifold countable at infinity.
Let Z; C X be a compact subset. Let Z, be a compact neighborhood of Z,. Then
in the above notation the subspace scl*(Fz, (X)) C V.°°(X) (resp. scl*(Fz (X)) C
V(X)) contains V; > (X).

Let us deduce two immediate corollaries.

Corollary 1.2 Let X be a real analytic (resp. smooth) manifold. Then in the above
notation scl*(F" (X)) = V7°(X) (resp. scl* (F(X)) = V™ (X)).

Proof of Corollary 1.2 By Theorem 1.1 scl* (F* (X)) (resp. scl*(F(X))) contains
V% (X). But V_°°(X) is sequentially dense in V~°°(X) since X is assumed to be
countable at infinity. Q.E.D.

Corollary 1.3 Let X be a real analytic (resp. smooth) manifold countable at infinity.
Let R: V™°(X)(or V_*°(X)) — E be a linear operator into a Hausdor{f topological
vector space E. Assume that R is sequentially continuous, i.e. R maps convergent
sequences in V~°(X)(or V. *°(X)) to convergent sequences in E. Let L C E be
a sequentially closed subset. Then if R(F* (X)) C L (resp. R(F(X)) C L) then
the whole image of R is contained in L. In particular if R(F*(X)) = 0 (resp.
R(F(X)) =0)thenR = 0.
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Proof By transfinite induction R(scl* (F*"(X))) C L (resp. R(scl*(F (X)) C L)). In
all cases (smooth or real analytic X, compact or non-compact support) scl* (F (X))
is equal to the whole space. Q.E.D.

Remark 1.4 Corollary 1.3 is used in [7] in the proof of the inversion formula for the
Radon transform on valuations with respect to the Euler characteristic. Khovansky
and Pukhlikov [13] proved it for constructible functions, and then one extends it to
valuations using sequential continuity with the use of Corollary 1.3.

2 Proofs

The two cases of real analytic and smooth manifold X are almost identical and will
be treated simultaneously. Let us remind some notation.

For a finite dimensional real vector space W we denote by P4 (W) the so called
oriented projectivization of W, i.e. the manifold of oriented lines passing through
the origin. For a smooth manifold X we denote by Px the oriented projectivization
of the cotangent bundle 7*X, i.e. the fiber of Px over X is equal to P4 (T X).

For either smooth or real analytic manifold X and for sufficiently nice subsets
P C X (i.e. compact submanifolds with corners or compact subanalytic subsets) we
denote by N(P) the normal cycle of P; in general it is a current on Py, see Sect. 1.5
in [7] for the easier case of compact submanifolds with corners and [11] for the case
of subanalytic sets.

For a finite dimensional real vector space V we denote by IC(V) the family
of all convex compact non-empty subsets of V, and by (V) the subfamily of
compact convex sets with non-empty interior and infinitely smooth boundary with
everywhere positive Gauss curvature.

Lemma 2.1 Let 0 be an infinitely smooth measure on a vector space V. Let A €
K (V). Then K — o (K + A) is a smooth valuation.

Proof Consider the map
p:VxPL(V*)x[0,1] >V

given by (x,n,t) = x + tVha(n), where hy: V* — R is the supporting functional of
A. Since hy is 1-homogeneous, its gradient Vi, is 0-homogeneous, and hence can
be considered as a map Vhy: Py (V*) — V. Since A € (V) the latter map is
infinitely smooth.

We may and will assume that 0 € inf(A); the general case reduces to this one
by translation. In this case the restriction of p to N(K) x [0, 1] is a homeomorphism
onto the closure of (K + A)\K. Hence

o(K +A) =0o(K) +/ pro. (1)
NK)X[0.1]
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Let g: V x PL(V*) x [0, 1] = V x P4+ (V*) is the obvious projection. Then by (1)
we have

o(K+A) =0(K)+ / g«p*o.
N(K)

Obviously g«p*o is a smooth (dimV — 1)-form on V x P (V*). This proves the
lemma. Q.E.D.

Lemma 2.2 Let Zy C V be a compact set, A € K*°(V), and Z, be a compact
neighborhood of Z) — A. Let o be a smooth measure with supp(c) C Z;. Then

(1) one has
o +)= [ 1s-doty @
v

as generalized valuations;
(2) o(e + A) belongs to V32 (V) N scl* (Fz, (V).
(3) If, in addition, A is subanalytic then o (e +A) belongs to V3> (V) Nscl* (F7) (V).

Proof First notice that (e 4+ A) is a smooth valuation by Lemma 2.1.

To prove part (1) it suffices to apply both sides to an arbitrary smooth compactly
supported valuation and to prove that the result is the same. It suffices to apply
them to such valuations of the form 1 = w(e + B) where w is a smooth compactly
supported measure and B € K°°(V), since linear combinations of such valuations
are dense in V°°(V) (this easily follows from Corollary 3.1.7 in [3]).

Apply the left hand side of (2) to #:

<o(e+4),n> = (0 Rw)(A(V) + (A xB))

Fubini / do(x)o(x — A + B),

where A: V — V x V is the diagonal imbedding given by A(x) = (x, x).
Apply the right hand side of (2) to n:

< /do(x)]lx_A, n>= /da(x) ‘nx—A) = /do(x) -w(x—A+B)

<o(e4+A),n>.

Thus part (1) is proved.

Let us prove part (3); part (2) can be proven along exactly the same lines. It
remains to show that o (e + A) € scl*(F7,(V)). We use the equality (2) and replace
the integral in the right hand side by a Riemann sum corresponding to a subdivision
of V whose diameter will tend to 0. Let us show that these Riemann sums converge
to the integral in the weak topology on V~>°(V). Let {CV}32_, be a sequence of
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subdivisions whose diameter tends to 0 as N — oo. Choose a point x}' € CV. Apply
the corresponding Riemann sum to 7:

< Yoy n> = Yo -4 = [ doone-a)

< / do()Len,n >,

where we have used the fact that continuous scalar valued functions are Riemann
integrable, to the function [x — 7(x — A)]. It only remains to notice that the i-th
Riemann sum belongs to 77 (V) fori 3> 1.Q.E.D.

Lemma 2.3 Let Z C V be a compact set. Let A{,A; € K®(V). Let Z, be a
compact neighborhood of Z; — A,. Let 01,02 be smooth measures on V such that
supp(o1) C Zy. Let ¢; := oi(e + A;), i = 1,2. Then

o1 € VZJ(V) n SCl*(]:Zz(V)).

If, in addition, Ay, A, are subanalytic then ¢, - ¢, € VZ°;° (V) N scl* (]-"Z’(V))

Proof We consider the subanalytic case only since the two cases are essentially the
same. First let us show that in the space V~°°(V) (or, equivalently, in V_°°(V)) one
has

12 = //dal(x)do2(_)’)]l(x—A1)ﬂ(y—A2)a 3

where the integral is understood in the sense the limit of Riemann sums converging
in the weak topology. Again we have to show that if we apply the two sides on the
same n € V°(V) then we get the same result. It suffices to choose 7 of the form
n = w(e+C), where C € K*°(V), and w is a smooth compactly supported measure
on V. Applying the right hand side of (3) on such 1 we get

< / / doy(x)dory (V)L —apno—ay)- 1 > )
_ / / do ()dor () n((x — A1) N (v — A2) 5)
_ / / doy (\)dor () ([(x = Ay) N (v — A)] + C). ©6)

Now let us apply to n the left hand side of (3) (in the computation A is the
diagonal map V. — V x V x V given by x — (x, x, x)):

< ¢1-¢2,n >= (P1-P2- (V) (7
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= (01X Kw)(AV) + (A XAy x C)) 8)

Fubini / / doi(x)doy()w([(x — A1) N (y — A2)] + C) = (6). ©)

Thus equality (3) is proven. It remains to show that the right hand side of (3)
belongs to scl*(FZ)(V)). To do that, we will approximate the double integral by
Riemann sums belonging to F7(V) which converge to the double integral in the
weak topology on V=°(V).

Consider a sequence {C}$2_, of subdivisions of V with diameter tending to 0 as
N — o0. Choose a point x)' € CV. For the corresponding Riemann sum

< ZUI (Cfv)UZ(C]]'V)]l()Ji\’_AI)m(%V_Az)a n> (10)

i

= > 01(Coa(C)n(( — A N () — Ay). (11)

i

Similarly for the double integral we have
< / / doy (x)do2(Y) L (x—ani—as). 1 > (12)

_ / / do1()doa(y) - 1((x — Ar) O (v — A2)). (13)

We see that (11) is a Riemann sum for (13), and we have to show that the former
converges to the latter. In other words we have to show that the function VxV — R
given by (x,y) = n((x —A;) N (y — Ay)) is Riemann integrable.

Notice that the above function does not have to be continuous. But obviously
this function is bounded. By the Lebesgue criterion of Riemann integrability (see
e.g. [15], Sect. 11.1) it suffices to show that the above function is continuous almost
everywhere. For that it suffices to prove that the function E: V x V — IC(V) U {@}
given by E(x,y) = (x — Ay) N (y — Ay) is continuous almost everywhere in the
Hausdorff metric on IC(V).

To prove the last statement let us consider a closed convexset M C VxV xV
defined by

M := {(x,y.2)|x —z €A,y — 7 € A}.

Let g:V xV xV — V x V be the projection onto the first two copies of V. Then
clearly

g ') NM=(x—A)N(GH—A4A)=Exy),
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and the restriction of g to M is proper. Applying Theorem 1.8.8 of [14],? it follows
that E is continuous outside of the boundary of the set

gM) = {(x, y)|(x—A) N (y—A2) # 0} = {(x.y)|[x—y € A — Ay}

From this description it is clear that g(M) is a closed convex set. Its boundary
always has Lebesgue measure zero. Finally let us notice that the N-th Riemann sum
belongs to F7(V) for N > 1. QE.D.

In [4] we have defined a canonical filtration on V°°(X") by closed subspaces
V(X" = WEX™) D WP(X") D --- D WR(X).

Here for a closed subset Z C X we will also denote by W7 := W N VZ°(X).

Lemma 2.4 Let V be an n-dimensional real vector space. Let Z, C V be a compact
domain with infinitely smooth boundary, and Z, be a compact neighborhood of Z,.
The image of WEZ N scl* (]-'g‘(\/)) (resp. WEZ N scl*(Fz(V))) in WEZ /Wl.o_fflz1 ~
CZ(V, Val>®(V))? is a dense linear subspace.

Proof Let us consider the real analytic case only; the smooth case is very similar.
Letus fix A € K®(V). Let ¢.(K) := vol(K + &A). Define

il ai
n! deni

P(K) = | =P (K) = V(K[i], Aln — i]).

Clearly ¢ € W™®. Now let v = w(e — B), where B € K°(V) such that 0 € B,
and w is a smooth compactly supported measure on V such that supp(w) + B C Z;.
Thus supp(y) C Z;. By Lemma 2.3 for small ¢ > 0

V- e € VEI(V) Nscl™ (FZL (V).

Hence also ¥ - ¢ € VZ°(V) Nscl*(F7, (V). Butsince ¢ € W° and Vo (V) - W* C
W, we deduce that

¢y e ngl N scl*(}—Z’(V)). (14)

2This theorem says that if K,L € (V) cannot be separated by a hyperplane (i.e. there is no
hyperplane such that K and L are contained in different closed subspaces defined by the hyperplane)
and if convex compact sets K; — K and L; — L in the Hausdorff metric as i — oo, then
K,NL —KNL.

3This canonical isomorphism was proved in Lemma 5.1.3(1) of [5]. CZ2(V, Val?® (V)) denotes the
space of smooth functions on V with support in Z; and with valued in the Fréchet space Val™® (V).
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Next let us compute the image of this valuation in CZ°(V, Val*(V)). We have

n—i

I\ d
@K = lemo(@ B voD(AK) + (B x 2A)).

For any valuation § € W, K € K(V),x € V one has
E(x + AK) = O(A') as A — +0;

this was the definition of W in [3], beginning of Sect. 3 (where it was denoted by
Wy). B
For such a &, its image & in W°/W, = C®(V,Val*(V)) is computed as
follows:
- 1
E@)(K) = lim &+ AK).
A>+0A

The limit necessarily exists and the map é takes values in Val{°(V).
For ¢ = ¢ - ¢ as above we have

1 a"
$VIE) = oo =y (@ B VoD (AAK +x) + (B x £A)) (15)
1 "
T ol 9Nigen—i |1—emo(@ B 00D (ARK) + ((x + B) X (x + £A)))
(16)
1 a"
T 9Nigen—i oo (T« B vo) (A(AK) + (B x €A)),  (17)

where (7_,)« denotes the push-forward on measures under the shift by —x, namely
[y = y — x]. We will need a lemma.

Lemma 2.5 Let 0 be a smooth measure on an n-dimensional vector space V. Let
A, B, K € KK(V). Define the function of (A, €) € [0, 00)? by
Fys(A,¢) := (0 Kvol)(A(AK) + (B x €A)).

Then the following holds:

(1) Fs € C*([0,00)?).
(2) For0 <i < ndefine

i

n! gegn—i |s=0F0(A75).

ha’i(l) =

Then hy;(A) = O(A)) as A — +0.
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(3) Jim " = o(B) - V(K[ Aln = i]).

Let us postpone the proof of Lemma 2.5 and finish the proof of Lemma 2.4. By
Lemma 2.5 and (17) we have

¢ - Y (x)(K) = (T—)x)(B) - V(K[i], A[n — 1]).

To summarize, we have proven so far the following: any smooth Val°(V)-valued
function on V of the form

x> o(x + B) - V(e[i],Aln — i])

belongs to the image of W% Nscl* (F7 (V) in W5 /W2, , , where A, B € K*=(V)
such that 0 € B, and w is a smooth measure on V such that supp(w) + B C Z;.
Now let us show that the closure of such functions in the usual Fréchet topology on
CZ2(V, Val>*(V)) is equal to the whole space.
1
Let B be the unit Euclidean ball in V. For any [ € N the function a;(xljllg li ).
ol
V(eli], A[n — i]) belongs to the image of W N scl*(F7)(V)). However obviously

w(x + }B)

W
— x)in C°(V) as [ — oo.
(1)~ @B

This implies that for any smooth function 4: V — C, any subanalytic A € K> (V)
with supp(h) C int(Z;) the function

[x = h(x) - V(e[i],A[n —i])] (18)

belongs to the closure of the image of W3 N scl*(FZ)(V)). Since i-homogeneous
mixed volumes are dense in Val>°(V) by Alesker [2] we deduce that for any & €
CZ (V) and any pu € Val* (V) the Val® (V)-valued function 2 ® p lies in the closure
of the image of W5 N scl*(FZ)(V)) (here it is the only place where we have used
that the boundary of Z; is smooth). But linear combinations of such elements are
dense in CZ7(V, Val*(V)). QE.D.

Proof of Lemma 2.5

(1) This was proved in [1] in a more general form.
(2) We have

Fy(h, &) = / (MK N (v — £A)] + B)dvol(y). (19)
YEAK €A

Obviously there exists a constant C such that for any A, ¢ € [0, 1]

lo([AK N (y —eA)] + B)| < C.
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Hence for A, ¢ € [0, 1] one has
|Fs (A, )| < Cvol(AK + eA) = Z Cielam i,
j=0

where C; are some constants. This implies that the Taylor expansion of F; at
(0,0) does not contain monomials e*A? with a + b < n. This implies part (2) of
the lemma.

It was shown (in a more general form) in [1] that if a sequence {oy} C C*®
converges to ¢ in C* (i.e. uniformly on compact subsets of V with all
derivatives) then

F,, — Fy in C%([0,00)%) as N — oo.

Hence to prove part (3) of the lemma it suffices to assume that ¢ has a
polynomial density on V. We may and will assume that

o = P-dvol,
where P is a homogeneous polynomial of certain degree d. Define the function
®(4,¢,68) := (6 Kvol)(AAK) + (6B x €A)), A, e > 0.

By [13] (see also [1]) this function @ is a polynomial in A, &, 5 > 0. Obviously
it is homogeneous of degree d + 2n. Let us write it

(L. e.8) =) DpyAlels”,

p.q.r

where p, g, r must satisfy
p+qg+r=d+2n (20)

Furthermore F,(A,¢) = ®(A,¢, 1) is a polynomial, hence let us write it

Fy(h.e) =) FpdPel.
pq

For the quantity we have to compute we clearly have

A—>+0 Al i

-1
fim i) _ (") Fini. 1)
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The identity F, (A, &) = ®(A, ¢, 1) immediately implies
Fin-i = Pin—id+n- (22)

To compute the last expression, let us write

d(A,8,8) = / . o ([AK N (y — A)] + 8B)dvol(y)
Y€ &

= / (8d+”a(B) + (lower degree terms in 8)) dvol(y)
YEAK €A
= 0(B) - vol(AK + £A) - 81" + (lower degree terms in §).

This immediately implies that

Pin—idtn = (?)0 (B)V(Ki], Aln — i]). (23)

Lemma follows from (21)—(23). Q.E.D.

Lemma 2.6 Let X be a smooth manifold and Z C X be a compact subset. Let
Z' C X be a compact neighborhood of Z. Then for any element € V;*(X)
there exists a sequence of elements from V27 (X) converging to y in the topology of
V°(X) (or equivalently in the weak topology on V~°°(X)).

Proof

Step 1. Let us prove the statement for X = R”. For this let us choose a sequence
{i;} of smooth non-negative compactly supported measures on the Lie group
Aff (R") of affine transformations of R" such that | agreemy Mi = 1 and supp{ii} —
{id} in Hausdorff metric on Aff (R"). Define .

V= / ¢ (1) - dpui(g).
SEA[f(R™)

In the proof of Lemma 8.2 in [8] it was shown that ¥; € V°°(X) for all i and
Yi — ¥ in V7°(X). It is also clear that for i >> 1 one has supp(y;) C Z'. This
implies the lemma for X = R”".

Step 2. Assume now that X is a general smooth manifold. Let us choose a finite
open covering {V,}, of Z and open subsets U, such that V, C U, C Z, the
closures U, are compact and are contained in the interior of Z’, and there exist
diffeomorphisms U, —>R".

Let us choose a partition of unity in valuations subordinate to the covering
{Va}a U {X\Z}; we denote it by {&,}, U {£} where supp(&,) C Vi, supp(§) C
X\Z,and ), & + & = x, where y is the Euler characteristic. Such partition of
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unity exists by Alesker [5], Proposition 6.2.1. Since supp(y) C Z we have
Y= ¥ &
o

Since ¥ - &, has compact support contained in V, C U, and U, >~ R", Step 1
implies that there exists a sequence {V,i}; C V2°(X) converging to ¥/ - & in the
topology of V™°°(X) as i — oo. Then the sequence

Vi = Z VYa.i

satisfies the proposition. Q.E.D.

Proof of Theorem 1.1 We consider only the real analytic case; the smooth case is
almost the same. We have to show that V,*°(X) C scl* (FZ)(X)) for a real analytic
manifold X. Let us fix a compact neighborhood Z| of Z; with infinitely smooth
boundary contained in the interior of Z,. By Lemma 2.6 for every element of
V7 (X) there exists a sequence of elements of VZO (X) converging to this element

in the weak topology on V~°°(X). Hence it suffices to show that
V;?(X) C scl*(Fz (X)). (24)

Notice that ng (X) N scl*(FZ' (X)) is a closed subspace of V%o (X) since ng (X) is
metrizable.

First let us prove (24) for X being a vector space. If this is not true then there
exists a unique integer 0 < i < n such that Wiofl,Z{ N scl*(FZ (X)) = W;‘_’LZ;
and Wf% N scl*(FZ (X)) # W;,);{' In this case the image of Wf% N scl*(FZ(X))
in Wi(,);f / Wiofl,zi is a closed subspace. However by Lemma 2.4 this image is dense.
Hence Wf% Nscl*(F7 (X)) = WIOZ which is a contradiction. This proves (24) when
X is a vector space.

Let us prove (24) for a general manifold X. Let us fix a finite open covering
{Uy} of Zj such that the closures U, C int(Z,) and each U, is real analytically
diffeomorphic to R". By Proposition 6.2.1 of [5] one can construct a partition of
unity in valuations subordinate to this covering, namely there exist valuations {¢, }
such that supp(¢) C U, and in a neighborhood of Z| one has ), ¢, = yx (here x
is the Euler characteristic). Any € ng (X) can be written = ), ¢y - V. Let us

choose compact sets Z,, C U, such that supp(¢y) C int(Zy2); hence Z,» C Z,.
Since supp(¢pq - ) C int(Zy2), by what we have shown for a vector space, we have

oY € SCl*(]:Ziz(Uoc))-

But obviously the extension by zero gives the natural closed imbedding
scl*(Fg! (Uy)) C scl*(FZ)(X)). Hence ¢ € scl* (F7)(X)). QE.D.
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Orbit Point of View on Some Results
of Asymptotic Theory; Orbit Type and Cotype

Limor Ben-Efraim, Vitali Milman, and Alexander Segal

Abstract We develop an orbit point of view on the notations of type and cotype
and extend Kwapien’s theorem to this setting. We show that such approach provides
an exact equality in the latter theorem. In addition, we discuss several well known
theorems and reformulate them using the orbit point of view.

1 Introduction

Let X = (R", || - ||) be an n-dimensional normed space. For a given integer k define
by «(k), B(k) the smallest possible constants, satisfying
N 172

E

k 1/2
< a(k) (Z ||xi||2)

i=1

k
E YiXi
i=1

and

2\ /2 « 1/2
E > B~ (k) (Z ||x,-||2)

i=1

k
E YiXi
i=1

for any {x,-}’{ C X and y; independent normalized Gaussian random variables. We
say that X has type 2 o where o = sup, (k). Similarly we say that X has cotype 2
constant 8 where § = sup, B(k). By a result of Tomczak-Jaegermann (see [11]), it
is known that ¢ < 2a(n) and B < 2f(n). Thus, up to a universal constant we may

L. Ben-Efraim (<)
Tel Aviv, Israel
e-mail: limor.benefraim @ gmail.com

V. Milman
Tel Aviv University, Tel Aviv, Israel

A. Segal
Afeka College of Engineering, Tel Aviv, Israel

© Springer International Publishing AG 2017 15
B. Klartag, E. Milman (eds.), Geometric Aspects of Functional Analysis,
Lecture Notes in Mathematics 2169, DOI 10.1007/978-3-319-45282-1_2


mailto:limor.benefraim@gmail.com

16 L. Ben-Efraim et al.

always deal with n-tuples in the definition of type and cotype for n-dimensional
spaces. Both notions play an important role in the study of Banach spaces and local
theory.

Remark 1.1 In this note we consider only Gaussian type and cotype constants, and
we do not deal with Rademacher type and cotype (see [6, 7, 11]).

Before we discuss a few examples, recall that given two n dimensional normed
spaces X, Y, the Banach Mazur distance between X, Y is

d(X,Y) = sup{||T||[|T""|| : T : X — Y is an isomorphism}.

Whenever Y is a Euclidean space, we will denote d(X, Y) by dx. The next theorem,
due to Kwapien, provides an upper bound for dx through type 2 and cotype 2
constants.

Theorem 1.2 (Kwapien [4]) Let X be a (finite or infinite) Banach space. Then, X
is isomorphic to a Hilbert space if and only if it has a finite type 2 and a finite cotype
2 constants. Moreover, in this case we have dx < aff, where « is the type 2 constant
and B is the cotype 2 constant of X.

It can be shown that the bound in Theorem 1.2 is not optimal. That is, we can find a
space X such that a8 is of order n, which is clearly not optimal since dx is always
bounded by +/n (John’s Theorem). In this note we present a new point of view
on the above result, which provides us an equality instead of an upper bound in
Theorem 1.2. To this end, we present the notion of orbits in normed spaces.

Definition 1.3 Let x = (x,...x) C X. We say that a k-tuple y = (y1,... %)
belongs to the orbit set of x if there exists U = (u;;) € O(k) such that

k

yi = E uijxj.

Jj=1
The set of all such k-tuples will be denoted by O(x) = {Ux : U € O(k)} and called
the orbit of x.

Using this notion, we may define the Gaussian type 2 and cotype 2 of an orbit x as
the smallest constants «(x), S(x) such that

N 1/2

E

X 1/2
< a(x) (Z ||y,-||2)

i=1

k
Z ViYi
i=1

and
2\ 1/2

E

P 1/2
> g7 (x) (Z ||y,-||2)

i=1

k
Z ViYi
i=1
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for all y € O(x). Clearly, ¢(x) = a(y) and B(x) = B(y) for all y € O(x), so the
constants are well defined. Denote

2

glx,y) =E

’

k
E ViXi
i=1

where y = {)/i}]f- Due to the rotation invariance of the standard Gaussian measure
we have that if y € O(x) then g(x,y) = g(y,y’), where y’ = {y/}* are independent
Gaussian variables, which are also independent of y (see e.g. [9, Chap. 2, p. 13]).
Hence,

k
Zi:l ||yi||2

1/2
Zk ||Z'||2) :y,z € O(x) (1)
i=1 1%

a(x)B(x) = inf (

Using the notion of orbits it is possible to write the exact formula for dx in
Theorem 1.2:

Theorem 1.4 For any n dimensional normed space X we have
dx = sup{a(x)Bx)|x = (x1,...x),k=1,2,...}.

Moreover,

dx < 4sup{a(x)B(x) :x = (x1,...x,)}.

Of course, the first formula is correct for infinite dimensional spaces as well.

Remark 1.5 The question of the exact formula for dy was also considered in the
Master Thesis of Limor Ben-Efraim, under the supervision of V. Milman (not
published).

Remark 1.6 It was noted by Pivovarov (private communication, 2016) that Theo-
rem 1.4 easily implies that dy < 4./n.

In the spirit of Theorem 1.4, it is possible to reformulate several well known
theorems regarding embeddings of l’l‘ and l’éo in X, such as Alon-Milman’s theorem
(see [1]) and Elton’s theorem (see [2]). However, since those theorems involve
Rademacher averaging instead of Gaussian averaging, the results will not be precise,
as those averages are not equivalent in the general case.

However, the following two theorems may be reformulated in an exact way:

Theorem 1.7 (Figiel-Lindenstrauss-Milman [3]) Let X be an n dimensional
normed space with the unit ball K. Let x = (x1, X2, .. .Xx,) be an orbit with cotype
2 constant B(x). If x is the orthogonal basis of the maximal volume ellipsoid of K
then X contains a subspace of dimension k = cnf(x)~? that is 2-isomorphic to I%,
for some universal constant ¢ > 0.
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Theorem 1.8 ([6, Theorem 9.7]) Let X be an n-dimensional normed space and let
x = (x1,...,x) C X be a k-tuple for some k < n. If O(x) has a 2-type constant o,
then the space E = span{x,-}/f contains a space of dimension m = [caz] which is
2-isomorphic to I3}, for some absolute constant ¢ > 0.

It may be an interesting question to analyze the Maurey-Pisier lemma for
equivalence of Rademacher and Gaussian averages (see [8, Proposition 3.2]) in this
context. However, one should consider a general orbit of cotype g which is not done
in this note.

2 Proof of the Extended Kwapien Theorem

Proof Before we proceed with the proof of Theorem 1.4, let us recall a few
definitions and facts.

Definition 2.1 An operator u : X — Y factors through a Hilbert space if there is
a Hilbert space H and operators B : X — H and A : H — Y such that u = AB.
Denote by I';(X, Y) the space of all such operators, equipped with the norm

y2(u) = inf{||A[l]| B }

where the infimum is taken over all factorizations of u.

A well known theorem by Lindenstrauss and Pelczynski (see [5], [7, Theo-
rem 2.4], [11, Proposition 13.11]) provides a necessary and sufficient condition
when an operator u belongs to [';(X, Y):

Theorem 2.2 u : X — Y belongs to I2,(X,Y) if and only if there exists a constant
C such that for all n and all n x n orthogonal matrices (a;;) we have,

N 172

n n n 1/2
313 a fc(z ||x,-||2)
i=1

i=1 | j=1
forallx,; ...x, € X. Moreover, y>(u) coincides with the smallest possible constant
C satisfying the above inequality.

Let x = (xj) be a k-tuple of elements of X and let (a;;) € O(k). By the definition
of Gaussian orbit cotype of x we have

N 1/2 N 1/2

k k k k
B D1 aw <[ED" v a . 2)
i=1 |[j=1 =1 =1
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By the definition of Gaussian orbit type we have

P 1/2
g ) <al) (Z ||x,-||2) . 3)
i=1

However, since g(x, y) = g(y, y) where

k

Vi = E aijXj,

=1
we get that

N 1/2
k k

X 1/2
NI am| | =ewpw (Z ||x,-||2) . “)
1

i=1 || j= i=1
Thus, the condition of Theorem 2.2 is satisfied with the constant
C = sup{a(x)B(x)}.

Clearly, B(x) and «(x) are the smallest possible numbers satisfying (2) and (3).
Therefore, sup,{co(x)B(x)} is the smallest possible number satisfying (4) for each
positive k and each k-frame x. Thus,

y2(ld) = sup{a(x)B(x)}.

However, y,(Id) = dx (by definition), so the first part of the proof of Theorem 1.4
is finished. O

Remark 2.3 In the case where dimX = dimY = n, one may consider only n x n
orthogonal matrices and the best constant C in Theorem 2.2 is equivalent to y, (u) up
to a factor of 4. This was noted independently by Tomczak-Jaegermann and Pisier
(private communication, 2000). Since the result was not published we will provide
a different argument which is due to Tomczak-Jaegermann.

To this end, we recall several facts regarding absolutely summing operators (see
[7, 11]).
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Definition 2.4 Let X and Y be Banach spaces. An operator u : X — Y is called
2-summing operator if there exists a constant C such that for all finite sequences

{X,'} CcX:
k 1/2 X 1/2
(Z ||ux,-||2) <C sup ( |s(x,-)|2) :
i=1 1

fexx Jgll<1

i=

The smallest possible C satisfying the above is denoted by 7> (u) and is called the
2-summing norm of u.

Now we will define a similar concept for an orbit and see how it relates to the
definition above. From now on, unless stated otherwise, it is assumed that X is an
n-dimensional normed space.

Definition 2.5 Given an operator u : l’é — X, denote

X 1/2
73 (u) = sup (Z ||uﬁ||2) :
i=1

& 1/2
8" (w) = inf (Z ||uf,-||2) ,
i=1

where {f,}’l‘ runs over all orthonormal bases of l’z‘.

Given an orbit x = {xi,...x} C X we will denote Jl’ék) x) = nék) (u), 8;") x) =
8® (u) where u is defined by

ue; = x;, 1<i<k

Remark 2.6 The standard definition of 7\ () slightly differs from definition
above. It is defined as the smallest possible constant satisfying

k 1/2 x 1/2
(Z||uxi||2) <C  sup ( |s(xi>|2) :
P sex* ligl<t \i5]

forall x,...x; € X.

By a theorem of Tomczak-Jaegermann [10] we have that for any operator u :
5 — X of rank n:

" w) < m) < 273 (). (5)
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Since the proof of (5) constructs an orthonormal basis (e;) of /3 that satisfies

" 1/2 !
(Z ||ue,.||2) > m),
i=1

we get that inequality (5) holds for our definition of né") (u) as well.
An easy consequence of the above is the following lemma:

Lemma 2.7 For eachk > nand x = (x1,...x;) C X there exists y € O(x) and a
subsety' C y of cardinality n such that

7P <22 0).

Proof Letu : I5 — X be the operator defined by ue; = x;, and denote E = ker(u)*.
Denote by P : l’z‘ — E the orthogonal projection such that u = u|gP. Letf, ...f, € E
and f,41 ...fi € E* be another orthonormal basis of l’z‘ and denote by y; = uf;.
Clearly,

W) < ma) = mule) < 27 ()

where y = (y1,...Ya). O
* is not necessaril d 5%
5 y convex, denote by d,
ék) Sék)

Since § the largest convex function

that is smaller than 8;") . The norms m, ~ and are dual norms on L(%, X) and

L(I%, X*). That is

70 () = sup{|trace(uv)| : v* € L, X*), 60 (v*) < 1}.

The proof of this fact is similar to the proof presented in [11, Proposition 9.9], for
the norms 7, and §,.
By a standard duality argument we get the following corollary.

Corollary 2.8 Let u : I — X be an operator, where k > n. Let E = (ker u)* with
dim E = n, and let P be the orthogonal projection P : l’z‘ — E. Defineu : E — X
such that u = uP. Then we have

89 (i) < 289 ().

Now, we may prove the key lemma required for our goal.

Lemma 2.9 [f C satisfies

V= (x....6) CX, ) <O, (6)
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then, for all k > n,

Vi=(x,...0) CX, 7P <40 (), (7
Proof Denote by X™ the space of all m-tuples of X. Take x € X" and consider

u : Iy — X an operator defined by ue; = x;. Clearly, by (6) and the convexity of 85‘

and 7"

" (x) < C8Y" (u).
Given k > n take x = (x1,...x¢), y € O(x) and define operator u as above. As
before, denote E = (keru)* and by P : l’; — E the orthogonal projection. Define

it : E — X suchthat u = @P. Letf;...f, € E and f,4,...f € E* be some
orthonormal basis of /5. Denote y; = uf; andy = (y1,...),Y = (J1,...ya)- Then,

70 = 70 < 27" ()
and
8" (@) = 285" (W) = vy" () = 205" ().
Thus,
0@ = 2 () = 208" @) < 40 ).

|

Now we may finish the second part of main theorem. Let x = (xj,...x;). Notice
that by (1), for each k

(k)
7T, ()
aWp@) = "2,
vy (x)
Applying Lemma 2.9 we get
(k) (n)
7, (%) 7, (%)
sup @ (x)B(x) = sup fk) <4su ?n)
xexk xexk vy (X) X€X" D, (X)
= 4 sup{a(x)B(x)}

XEX"

and the proof is complete.
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Concentration Properties of Restricted
Measures with Applications to Non-Lipschitz
Functions

Sergey G. Bobkov, Piotr Nayar, and Prasad Tetali

Abstract We show that, for any metric probability space (M, d, ;) with a subgaus-
sian constant 02(x) and any Borel measurable set A C M, we have 02(iy) <
clog(e/u(A)) 6>(iu), where ji, is a normalized restriction of y to the set A and ¢
is a universal constant. As a consequence, we deduce concentration inequalities for
non-Lipschitz functions.
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1 Introduction

It is known that many high-dimensional probability distributions x on the Euclidean
space R" (and other metric spaces, including graphs) possess strong concentration
properties. In a functional language, this may informally be stated as the assertion
that any sufficiently smooth function f on R”, e.g., having a bounded Lipschitz semi-
norm, is almost a constant on almost all space. There are several ways to quantify
such a property. One natural approach proposed by Alon et al. [2] associates with a
given metric probability space (M, d, ) its spread constant,

() = sup Var, (1) = sup [ (= m* .
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where m = [ f dy, and the sup is taken over all functions f on M with || f{|Lip < 1.
More information is contained in the so-called subgaussian constant 0> = o2(u)
which is defined as the infimum over all o> such that

/effdu <2 for all teR, 1)

in the class £y of all f on M with m = 0 and | f|lLip < I (cf. [8]). Describing
the diameter of Ly in the Orlicz space LY?(u) for the Young function v (f) =
e’ —1 (within universal factors), the quantity o>(xt) appears as a parameter in a
subgaussian concentration inequality for the class of all Borel subsets of M. As an
equivalent approach, it may also be introduced via the transport-entropy inequality
connecting the classical Kantorovich distance and the relative entropy from an
arbitrary probability measure on M to the measure u (cf. [7]).

While in general s < o2, the latter characteristic allows one to control
subgaussian tails under the probability measure p uniformly in the entire class of
Lipschitz functions on M. More generally, when || f||Lip < L, (1) yields

pAlf —m| = 1 <2e771C s, 2)

Classical and well-known examples include the standard Gaussian measure on
M = R" in which case s> = ¢2 = 1, and the normalized Lebesgue measure on the
unit sphere M = §"~! with s> = 0> = ' . The last example was a starting point in
the study of the concentration of measure phenomena, a fruitful direction initiated
in the early 1970s by V.D. Milman.

Other examples come often after verification that u satisfies certain Sobolev-type
inequalities such as Poincaré-type inequalities

A1 Var,, (u) §/|Vu|2d,u,

and logarithmic Sobolev inequalities

pEntM(uz) = p[/uzloguzd,u—/uzd,u log/uzdu} < 2/ |Vul? du,

where u may be any locally Lipschitz function on M, and the constants A; > 0 and
p > 0 do not depend on u. Here the modulus of the gradient may be understood in
the generalized sense as the function

|Vu(x)| = lim sup Jutx) = u(y)l, xeM

y—=x d(x,y)

(this is the so-called “continuous setting”), while in the discrete spaces, e.g., graphs,
we deal with other naturally defined gradients. In both cases, one has respectively
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the well-known upper bounds

1 1
s () < . o (n) < . 3)
1 1Y
For example, Ay = p = n — 1 on the unit sphere (best possible values, [17]),

which can be used to make a corresponding statement about the spread and Gaussian
constants.

One of the purposes of this note is to give new examples by involving the family
of the normalized restricted measures

1a(B) = “(2 (Q)B), B C M (Borel),

where a Borel measurable set A C M is fixed and has a positive measure. As an
example, returning to the standard Gaussian measure p on R”, it is known that
0%(jua) < 1 for any convex body A C R”. This remarkable property, discovered by
Bakry and Ledoux [3] in a sharper form of a Gaussian-type isoperimetric inequality,
has nowadays several proofs and generalizations, cf. [5, 6]. Of course, in general, the
set A may have a rather disordered structure, for instance, to be disconnected. And
then there is no hope for validity of a Poincaré-type inequality for the measure 1i4.
Nevertheless, it turns out that the concentration property of w4 is inherited from p,
unless the measure of A is too small. In particular, we have the following observation
about abstract metric probability spaces.

Theorem 1.1 For any measurable set A C M with (A) > 0, the subgaussian
constant 6% (ju4) of the normalized restricted measure satisfies

o?(ua) < clog( Yo (). )

eA )
w(A)
where ¢ is an absolute constant.

Although this assertion is technically simple, we will describe two approaches:
one is direct and refers to estimates on the y,-norms over the restricted measures,
and the other one uses a general comparison result due to Barthe and Milman on the
concentration functions [4].

One may further generalize Theorem 1.1 by defining the subgaussian constant
O'_%_—(/i) within a given fixed subclass F of functions on M, by using the same
bound (1) on the Laplace transform. This is motivated by a possible different level
of concentration for different classes; indeed, in case of M = R”", the concentration
property may considerably be strengthened for the class F of all convex Lipschitz
functions. In particular, one result of Talagrand [18, 19] provides a dimension-
free bound oé(u) < C for an arbitrary product probability measure i on the
n-dimensional cube [—1, 1]". Hence, a more general version of Theorem 1.1 yields
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the bound

2 < ( €
o3 u) = clog( A))
with some absolute constant ¢, which holds for any Borel subset A of [—1, 1]" (cf.
Sect. 6 below).

According to the very definition, the quantities 02(11) and 02(14) might seem to
be responsible for deviations of only Lipschitz functions f on M and A, respectively.
However, the inequality (4) may also be used to control deviations of non-Lipschitz
f—on large parts of the space and under certain regularity hypotheses. Assume, for
example, [ |Vf|du < 1 (which is kind of a normalization condition) and consider

A={xeM:|Vf¥)| =L} &)

If L > 2, this set has the measure u(A) > 1 — i > é, and hence, UZ(MA) < caz(u)
with some absolute constant c. If we assume that f has a Lipschitz semi-norm < L
on A, then, according to (2),

pafx €A |f —m| > 1} <2 CWL) 450 (6)

where m is the mean of f with respect to 4. It is in this sense one may say that f is
almost a constant on the set A.
This also yields a corresponding deviation bound on the whole space,

1
plx € M |f —m| > 1} < 2e7/erGOF L

Stronger integrability conditions posed on |Vf| can considerably sharpen the
conclusion. By a similar argument, Theorem 1.1 yields, for example, the following
exponential bound, known in the presence of a logarithmic Sobolev inequality for
the space (M, d, 1), and with % replaced by 1/p (cf. [7]).

Corollary 1.2 Letf be a locally Lipschitz function on M with Lipschitz semi-norms
< L on the sets (5). Iff eIV du < 2, then f is ju-integrable, and moreover,

plx € M2 |f —m| > 1} < 2e7 "0, t>0,

where m is the (1-mean of f and c is an absolute constant.

Equivalently (up to an absolute factor), we have a Sobolev-type inequality

If = mlly, = co() [VF v,

connecting the ¥;-norm of f — m with the y,-norm of the modulus of the gradient
of f. We prove a more general version of this corollary in Sect. 6 (cf. Theorem 6.1).
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As will be explained in the same section, similar assertions may also be made about
convex f and product measures u on M = [—1,1]", thus extending Talagrand’s
theorem to the class of non-Lipschitz functions.

In view of the right bound in (3) and (4), the spread and subgaussian constants for
restricted measures can be controlled in terms of the logarithmic Sobolev constant
p via

2 ) e 1
Pua) = 02ua) < clog( 7).

p(A)/ p
However, it may happen that p = 0 and 0?(u) = oo, while A; > 0 (e.g., for the
product exponential distribution on R"). Then one may wonder whether one can
estimate the spread constant of a restricted measure in terms of the spectral gap. In
that case there is a bound similar to (4).

Theorem 1.3 Assume the metric probability space (M, d, |1) satisfies a Poincaré-
type inequality with A1 > 0. For any A C M with uw(A) > 0, with some absolute
constant ¢

5 5 e 1
s°(na) < clog (M(A)) A (7

It should be mentioned that the logarithmic terms in (4) and (7) may not be
removed and are actually asymptotically optimal as functions of @(A), as w(A) is
getting small, see Sect. 7.

Our contribution below is organized into sections as follows:

. Bounds on ¥, -Norms for Restricted Measures.

. Proof of Theorem 1.1. Transport-Entropy Formulation.
. Proof of Theorem 1.3. Spectral Gap.

. Examples.

. Deviations for Non-Lipschitz Functions.

. Optimality.

. Appendix.

0N LN kWD

2 Bounds on ¥,-Norms for Restricted Measures

A measurable function f on the probability space (M, ) is said to have a finite
Yy-norm, o > 1, if for some r > 0,

/e(lfl/r)” dp < 2.
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The infimum over all such r represents the ¥, -norm | f1|y, or || f|lLv« (u)» Which is
just the Orlicz norm associated with the Young function v, (f) = el — 1.

We are mostly interested in the particular cases ¢ = 1 and o = 2. In this section
we recall well-known relations between the ; and y»-norms and the usual L”-
norms || fll, = I f gy = ([ |fP duw)'/?. For the readers’ convenience, we include
the proof in the Appendix.

Lemma 2.1 We have

1Al /11,

su <4 su , (8)
p311) N 1 £1l L V2 (n) = P N

171l 171l
sup P <1l () =< 6 sup " ®
pzl P pz=l P

Given a measurable subset A of M with (A) > 0, we consider the normalized
restricted measure 4 on M, i.e.,

_ m(ANB)
pa(B) = w) BCM.

Our basic tool leading to Theorem 1.1 will be the following assertion.

Proposition 2.2 For any measurable function f on M,
12( €
2 = 4etog" (0 ) Il (10)

Proof Assume that || f||,v(,) = 1 and fix p > 1. By the left inequality in (8), for
any g > 1,

¢ > / F1dn > w(A) / A1 dpa.

||f||Lq(,LA)<( 1 )l/q
Va o T \p@/)

But by the right inequality in (8),

SO

1l < 4sup M0 < 4 g gup Ml
4zl V4 q>p Vi
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Applying it on the space (M, [14), we then get

| £l ze e
A1l <4/p sup
) \/ q=p «/61

1 1/q 1 1/p
= 4vpsup (M(A)) = 4“”(M(A)) ‘

The obtained inequality,

1 1/p
T 4¢p(ﬂ( A)) ,

holds true for any p > 1 and therefore may be optimized over p. Choosing p =
log M&), we arrive at (10). O

A possible weak point in the bound (10) is that the means of f are not involved.
For example, in applications, if f were defined only on A and had p4-mean zero, we
might need to find an extension of f to the whole space M keeping the mean zero
with respect to w. In fact, this should not create any difficulty, since one may work
with the symmetrization of f.

More precisely, we may apply Proposition 2.2 on the product space (M XM, u ®
1) to the product sets A x A and functions of the form f(x) — f(v). Then we get

£ =)l oy < de log"”? ( ) £ =) 2

p(A)?

Since log ( <2log (u(eA))’ we arrive at:

M(Z)z )

Corollary 2.3 For any measurable function f on M,

£ ) =Dl @y < 4ev/2 log? ( 1f G =F D lzv2 (uepy-

e
M(A))

Let us now derive an analog of Proposition 2.2 for the 1/;-norm, using similar
arguments. Assume that || f{|;y:(,) = 1 and fix p > 1. By the left inequality in (9),
forany g > 1,

g = / Fl7dp = u(A) / nam

SO

Wl _ [ 1 \Va
q <<u(A)) '
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But, by the inequality (9),

1l < 6 sup Mo < 6 sup Ml
ezl 4 >p 94
Applying it on the space (M, j14), we get
(WAl
£l () = 6p sup (1a)
q=p q
<6 1 \Ve 6 1 \Up
= 6p sup ( ) = p< ) '
azp “H(A) W(A)

The obtained inequality,

1 \Ur
1A o uay = 6P (H(A)) ’

holds true for any p > 1 and therefore may be optimized over p. Choosing p =

e T .
log () We arrive at:

Proposition 2.4 For any measurable function f on M, we have

e
sy = 6102 (0 V1Mo

Similarly to Corollary 2.3 one may write down this relation on the product
probability space (M xM, u® p) with the functions of the form f(x, y) = f(x)—f(»)
and the product sets A = A x A. Then we get

e

170 =Wl guony < 12 T0g (0

JIF® =) g (D

3 Proof of Theorem 1.1: Transport-Entropy Formulation

The finiteness of the subgaussian constant for a given metric probability space
(M, d, u) means that ¥,-norms of Lipschitz functions on M with mean zero are
uniformly bounded. Equivalently, for any (for all) xo € M, we have that, for some
A >0,

/ed("”“’)z/xz du(x) < oo.
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The definition (1) of 0%(j4) inspires to consider another norm-like quantity

1
2 if
oy = fug[ﬂ/zlog/e du:|.

Here is a well-known relation (with explicit numerical constants) which holds in the
setting of an abstract probability space (M, ). Once again, we include a proof in
the Appendix for completeness.

Lemma 3.1 Iff has mean zero and finite \r,-norm, then

1
v

One can now relate the subgaussian constant of the restricted measure to the
subgaussian constant of the original measure. Let now (M,d, ) be a metric
probability space. First, Lemma 3.1 immediately yields an equivalent description
in terms of Y, -norms, namely

’ 1713, < of < 41£13,.

1 2 2 2
su <o <4 su , (12)
6 fP 171y, () fp 171y,

where the supremum is running over all f : M — R with pu-mean zero and || f||rip <
1. Here, one can get rid of the mean zero assumption by considering functions of the
form f(x) — f(y) on the product space (M x M, u @ u,d;), where d; is the [;-type
metric given by d;((x1,y1), (x2,¥2)) = d(x1,x2) + d(y1,y2). If f has mean zero,
then, by Jensen’s inequality,

/ / OOV 1 (x) du(y) > / SO du(x),
which implies that

£ ) = F O w2 ooy = 1 vz oy

On the other hand, by the triangle inequality,

/) —fOD vz ey < 21 v

Hence, we arrive at another, more flexible relation, where the mean zero assumption
may be removed.
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Lemma 3.2 We have
1
s I O 0 gy <020 = 4 sup /@) ~f 2 (uopy-

where the supremum is running over all functions f on M with || f|lLip < 1.

Proof of Theorem 1.1 We are prepared to make last steps for the proof of the
inequality (4). We use the well-known Kirszbraun’s theorem: Any functionf : A —
R with Lipschitz semi-norm || f||Lip < 1 on A admits a Lipschitz extension to the

whole space [10, 14]. Namely, one may put
f(x) = inf [f(a) + d(a,x)], xe€M.
a€A
Applying first Corollary 2.3 and then the left inequality of Lemma 3.2 to f, we get

1) = O oy = I =FO i s

2 e = 212
= (49‘/2) log (H(A)) ”f(x) —f) HLWZ (L®p)
2 e . 2 9
< (4ev2) log<M(A)) (4v6)" o (w).
Another application of Lemma 3.2 — in the space (A, d, (14) (now the right inequal-
ity) yields

0?(1a) = 4 (4ev2) 10g () - (4v/6) 0% ().

e
p(A)
This is exactly (4) with constant ¢ = 4 - (4ev/2)? (4+/6)> = 3 .22 =
90,796.72 . .. O

Remark 3.3 Let us also record the following natural generalization of Theorem 1.1,
which is obtained along the same arguments. Given a collection F of (integrable)
functions on the probability space (M, ), define 0} (u) as the infimum over all o
such that

/ U gy < P2 for all £ e R,

forany f € F, wherem = [ f du. Then with the same constant ¢ as in Theorem 1.1,
for any measurable A C M, £(A) > 0, we have

0% (1a) < ¢ 10g( o7 ().

u(A))

where F4 denotes the collection of restrictions of functions f from F to the set A.
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Let us now mention an interesting connection of the subgaussian constants with
the Kantorovich distances

Wi (. v) = inf / / d(x.y) 7(x.y)

and the relative entropies

dv
D(v|ln) = [ log Ay dv

(called also Kullback-Leibler’s distances or informational divergences). Here, v
is a probability measure on M, which is absolutely continuous with respect to u
(for short, v << ), and the infimum in the definition of W; is running over all
probability measures m on the product space M x M with marginal distributions u
and v, i.e., such that

7(BxM) = u(B), n(MxB)=v(B) (Borel B C M).

As was shown in [7], if (M,d) is a Polish space (complete separable), the
subgaussian constant 0> = o%(11) may be described as an optimal value in the
transport-entropy inequality

Wi(i,v) < v/202D(v]| ). (13)

Hence, we obtain from the inequality (4) a similar relation for measures v supported
on given subsets of M.

Corollary 3.4 Given a Borel probability measure p on a Polish space (M, d) and a
closed set A in M such that L(A) > 0, for any Borel probability measure v supported
onA,

e

Wi (pa.v) < co®(1)log (M(A)

) D lla).

where ¢ is an absolute constant.

This assertion is actually equivalent to Theorem 1.1. Note that, for v supported
on A, there is an identity D(v||ua) = log u(A) +D(v|| ). In particular, D(v]||pa) <
D(v||1), so the relative entropies decrease when turning to restricted measures.

For another (almost equivalent) description of the subgaussian constant, intro-
duce the concentration function

K. (r) = sup [1 — M(A’)] (r > 0),
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where A” = {x € M : d(x,a) < r for some a € A} denotes an open r-
neighbourhood of A for the metric d, and the sup is running over all Borel sets A C
M of measure ©(A) > ; As is well-known, the transport-entropy inequality (13)
gives rise to a concentration inequality on (M, d, u) of a subgaussian type (K.
Marton’s argument), but this can also be seen by a direct application of (1). Indeed,
for any function f on M with || f|lip < 1, it implies

/ / IO gy du(y) < F. teR,
and, by Chebyshev’s inequality, we have a deviation bound

(RO WX Y) EMXM:f(x)—f(y) >r} < /% r>o0.

In particular, one may apply it to the distance functions f(x) = d(A,x) =
inf,ea d(a, x). Assuming that 1(A) > !, the measure on the left-hand side is greater

than or equal to é (1 — u(A")), so that we obtain a concentration inequality
1= w(A") < 2e77/47,
Therefore,
K (r) < min {;, 2e—r2/402} < o,

To argue in the opposite direction, suppose that the concentration function admits
a bound of the form K, (r) < ¢~"/?” for all r > 0 with some constant b > 0. Given
a function f on M with | f|lLip < 1, let m be a median of f under p. Then the set

A = {f < m} has measure j1(A) > ! and by the Lipschitz property, A” C {f <
m + r} for all r > 0. Hence, by the concentration hypothesis,

wf—m=>r} <Ku@r) < eI,

A similar deviation bound also holds for the function —f with its median —m, so
that

pllf —ml = ry <2777 r>o0.

This is sufficient to properly estimate y,-norm of f —m on (M, p). Namely, for any
A< 1/b?,

o0
[ an =12 [ il =l =y
0

IA

o0 A2 2 /p? A
1+2)t/ re e dr = 1+ =2,
0 b2_A
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where in the last equality the value A = 21172 is chosen. Thus, [ el —mP2/C8) gy < 2,
which means that || f — m|y, < V2 b. The latter gives | f(x) —fO 2 uop =

2+/2 b. Taking the supremum over f, it remains to apply Lemma 3.2, and then we
get 0% () < 32b%
Let us summarize.

Proposition 3.5 Let b = b(u) be an optimal value such that the concentration
function of the space (M, d, ) satisfies a subgaussian bound IC,,(r) < e (r >
0). Then

P00 = 070 = 320,

Once this description of the subgaussian constant is recognized, one may give
another proof of Theorem 1.1, by relating the concentration function £C,,, to IC,,. In
this connection, let us state below as a lemma one general observation due to Barthe
and Milman (cf. [4], Lemma 2.1, p. 585).

Lemma 3.6 Let a Borel probability measure v on M be absolutely continuous with
respect to [L and have density p. Suppose that, for some right-continuous, non-
increasing function R : (0,1/4] — (0, 00), such that B(¢) = ¢/R(¢) is increasing,
we have

vixeM :p(x) >R(e)} <¢ (0<s§i).
Then
K, (r) <287 (Ku(r/2)), forall r=2K;" (B(1/4)).

Here ! denotes the inverse function, and K" (¢) = inf{r > 0: K, (r) < &}.

The 2nd Proof of Theorem 1.1 The normalized restricted measure v = u4 has

density p = M(IA) 14 (thus taking only one non-zero value), and an optimal choice of
1

R is the constant function R(g) = (A" Hence, Lemma 3.6 yields the relation

Ky, (r) < K, (r/2), for r> 2K, " (1u(A)/4).

2
w(A)
In particular, if IC,,(r) < e™"/? then

2
Ki() = gy €7/ for 1220V log(d/ p(a)).
"

Necessarily K,,, (r) < é, so the last relation may be extended to the whole positive
half-axis. Moreover, at the expense of a factor in the exponent, one can remove the
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4p?

. X .
factor M(ZA) ; more precisely, we get K, (r) < e /0" with b2 = log2 log ;L(4A)’ that is,
4 4
b < lo b ().
(na) = log2 %% () (n)
It remains to apply the two-sided bound of Proposition 3.5. O

4 Proof of Theorem 1.3: Spectral Gap

Theorem 1.1 insures, in particular, that, for any function f on the metric probability
space (M, d, ) with Lipschitz semi-norm || f|Lip < 1,

vmmuvscmg( )o%m

e
p(A)
up to some absolute constant c. In fact, in order to reach a similar concentration

property of the restricted measures, it is enough to start with a Poincaré-type
inequality on M,

A1 Var, (f) < / IV dp.

Under this hypothesis, a well-known theorem due to Gromov-Milman and
Borovkov-Utev asserts that mean zero Lipschitz functions f have bounded -
norm. One may use a variant of this theorem proposed by Aida and Strook [1], who
showed that

/w%musmanmmu. (1 flp < 1.
Hence

thus implying that || ||y, < jl . In addition,
1

// VM OO gy ()dp(y) < K2 and // MO0 gy (x)dpu(y) < 2K3 < 6.
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From this,
/e;m OOl g ()dpu(y) < 63 < 2.

which means that || f(x) —f (V) ||y, < jl

1
on the product space M x M. This inequality is translation invariant, so the mean
zero assumption may be removed. Thus, we arrive at:

with respect to the product measure © ®

Lemma 4.1 Under the Poincaré-type inequality with spectral gap A, > 0, for any
mean zero function f on (M, d, ) with || fllLip < 1,

2
1flly, < .
V1 \/Al

Moreover, for any f with || fl|Lip < 1,

1f @) =f O v uep = (14)

3
N
This is a version of the concentration of measure phenomenon (with exponential
integrability) in presence of a Poincaré-type inequality. Our goal is therefore to
extend this property to the normalized restricted measures (4. This can be achieved
by virtue of the inequality (11) which when combined with (14) yields an upper
bound

1
NZ%S
Moreover, if f has s-mean zero, the left norm dominates || f|lzv(,,, (by Jensen’s

inequality). We can summarize, taking into account once again Kirszbraun’s
theorem, as we did in the proof of Theorem 1.1.

1) =f O lert uagpen < 36€ log (u(efn)

Proposition 4.2 Assume the metric probability space (M,d, ) satisfies a
Poincaré-type inequality with constant A, > 0. Given a measurable set A C M
with (A) > 0, for any function f : A — R with pus-mean zero and such that
Ifllip < 1 on A,

e 1
11l () = 36e log(u(A)) VA '
1

Theorem 1.3 is now easily obtained with constant ¢ = 2 (36¢)? by noting that
L2-norms are dominated by L¥'-norms. More precisely, since e/l — 1 > é 12, one

has || /13, = 5 /13-
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Remark 4.3 Related stability results are known for various classes of probability
distributions on the Euclidean spaces M = R” (and even in a more general situation,
where (14 is replaced by an absolutely continuous measure with respect to w). See,
in particular, the works by Milman [15, 16] on convex bodies and log-concave
measures.

S Examples

Theorems 1.1 and 1.3 involve a lot of interesting examples. Here are a few obvious
cases.

1. The standard Gaussian measure # = y on R” satisfies a logarithmic Sobolev
inequality on M = R”" with a dimension-free constant p = 1. Hence, from
Theorem 1.1 we get:

Corollary 5.1 For any measurable set A C R" with y(A) > 0, the subgaussian
constant 62 (y4) of the normalized restricted measure y, satisfies

o*0m) = clog (o).

where ¢ is an absolute constant.

As it was already mentioned, if A is convex, there is a sharper bound 6% (y4) < 1.
However, it may not hold without convexity assumption. Nevertheless, if y(A) is
bounded away from zero, we obtain a more universal principle.

Clearly, Corollary 5.1 extends to all product measures & = v" on R” such that
v satisfies a logarithmic Sobolev inequality on the real line, and with constants ¢
depending on p, only. A characterization of the property p > 0 in terms of the
distribution function of the measure v and the density of its absolutely continuous
component may be found in [7].

2. Consider a uniform distribution v on the shell
Ac={xeR":1—¢< x| <1}, 0<e<l1 (n>2).

; ; 2 ¢
Corollary 5.2 The subgaussian constant of v satisfies 0-(v) < °, up to some
absolute constant c.

In other words, mean zero Lipschitz functions f on A, are such that ./nf are
subgaussian with universal constant factor. This property is well-known in the
extreme cases—on the unit Euclidean ball A = B, (¢ = 1) and on the unit sphere
A=5"1e=0).
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Let u denote the normalized Lebesgue measure on B,,. In the case ¢ > :l, the
shell A, represents the part of B, of measure

M(Ag)zl—(l—i)nzl—i.

Since the logarithmic Sobolev constant of the unit ball is of order rll, and therefore
o2 (n) < ;, the assertion of Corollary 5.2 immediately follows from Theorem 1.1.

Incase e < :l, the assertion follows from a similar concentration property of the
uniform distribution ,,—; on the unit sphere. Indeed, with every Lipschitz function f
on A, one may associate its restriction to S”~!, which is also Lipschitz (with respect

. . 1
to the Euclidean distance). We have [f(r0) — f(0)| < |[r— 1] < & < , for any
re[l—e 1]and @ € S"!. Hence,

F(10) — ()] < 1£©) —FO)] + 1£(°6) —F(O")] + | £(r8) —F(O)]
<176 —f(8)] + 2

whenever r, 7’ € [1 —e, 1] and 6,0’ € S, which implies

8
|f(78") = f(rO)* < 21£(6") —f(O) + 2

But the map (r,0) — 6 pushes forward v onto 0,—;, so, we obtain that, for any
c>0,

// expicn [f(F0)) —f(rO)|*ydv(r,0") dv(r,0)

< b / / exp{2cn | f(0") — £(0)*} do,—1(0") do,—1 (6).

Here, for a certain numerical constant ¢ > 0, the right-hand side is bounded by a
universal constant. This constant can be replaced with 2 using Jensen’s inequality.
The assertion follows from Lemma 3.2.

3. The two-sided product exponential measure p on R" with density 27"
e~ (ml++lu satisfies a Poincaré-type inequality on M = R" with a dimension-
free constant A; = 1/4. Hence, from Proposition 4.2 we get:

Corollary 5.3 For any measurable set A C R" with w(A) > 0, and for any function
f 1A — Rwith us-mean zero and || f||Lip < 1, we have

e
1A lLor oy = ¢ log (M(A))’
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where c is an absolute constant. In particular,

2 2 ¢
s°(na) < clog ( )
p(A)

Clearly, Corollary 5.3 extends to all product measures ;- = v” on R” such that v
satisfies a Poincaré-type inequality on the real line, and with constants ¢ depending
on Ay, only. A characterization of the property A; > 0 may also be given in terms of
the distribution function of v and the density of its absolutely continuous component

(cf. [7D).

4a. Let us take the metric probability space ({0, 1}",d,, ), where d, is the
Hamming distance, that is, d,(x,y) = #{i : x; # y:}, equipped with the
uniform measure p. For this particular space, Marton established the transport-
entropy inequality (13) with an optimal constant 6% = 4> cf. [12]. Using the
relation (13) as an equivalent definition of the subgaussian constant, we obtain
from Theorem 1.1:

Corollary 5.4 For any non-empty set A C {0,1}", the subgaussian constant
02(a) of the normalized restricted measure s satisfies, up to an absolute
constant c,

o%(a) < cn log( (15)

)

u(a)/”
4b. Let us now assume that A is monotone, i.e., A satisfies the condition
xX1,...,x) €A — O1,...,yn) €A, whenever y; > x;, i=1,...,n.
Recall that the discrete cube can be equipped with a natural graph structure: there is
an edge between x and y whenever they are of Hamming distance d,(x,y) = 1. For

monotone sets A, the graph metric d4 on the subgraph of A is equal to the restriction
of d, to A x A. Indeed, we have:

dn(x,y) < da(x,y) < da(x, xAY)+da(y, xAy) = dn(x, xAY)+du(y, xAY) = dn(x,y),

where x Ay = (x| Ay1,..., X, AYyy). Thus,

$?(a, dp) < 0% (a,dy) < cnlog( ¢ ) .
n(A)

This can be compared with what follows from a recent result of Ding and
Mossel (see [9]). The authors proved that the conductance (Cheeger constant) of
(A, ) satisfies ¢p(A) > "1(6/;). However, this type of isoperimetric results may not
imply sharp concentration bounds. Indeed, by using Cheeger inequality, the above
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inequality leads to A1 > cu(A)?/n? and s*(wa,da) < 1/ < cn?/ju(A)?, which is
even worse than the trivial estimate s> (4, ds) < é diam(A)? < n?/2.

5. Let (M,d, 1) be a (separable) metric probability space with finite subgaussian
constant 0% (). The previous example can be naturally generalized to the product
space (M", u), when it is equipped with the £'-type metric

dy(x,y) = Zd(x,-,y,-), x=0.... %), y=1,...,yn) € M".
i=1

This can be done with the help of the following elementary observation.

Proposition 5.5 The subgaussian constant of the space (M",d,, ") is related to
the subgaussian constant of (M, d, i) by the equality o> (") = no>(j).

Indeed, one may argue by induction on n. Let f be a function on M". The
Lipschitz property || f]lLip < 1 with respect to d,, is equivalent to the assertion that
f is coordinatewise Lipschitz, that is, any function of the form x; — f(x) has a
Lipschitz semi-norm < 1 on M for all fixed coordinates x; € M (j # i). Hence, in

this case, forall r € R,

242

[ e aute) < explr [ roraucn + 7)),

where 02 = o%(u). Here the function (xi,...,x,—1) — [, f(x)du(x,) is

also coordinatewise Lipschitz. Integrating the above inequality with respect to
du"'(x1,....x,—1) and applying the induction hypothesis, we thus get

2.2

/” e dut(x) < exp {t/M”f(x) du’(x) +n 02t }

But this means that 02(u") < no?(u).

For an opposite bound, it is sufficient to test (1) for (M", d,, 1") in the class of
all coordinatewise Lipschitz functions of the form f(x) = u(x;) + --- + u(x,) with
p-mean zero functions # on M such that ||u||r;p < 1.

Corollary 5.6 For any Borel set A C M" such that u"(A) > 0, the subgaussian
constant of the normalized restricted measure |1y with respect to the £'-type metric
d, satisfies

o) = eno” o) oz ()

where ¢ is an absolute constant.
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For example, if pu is a probability measure on M = R such that

ffzo e/ du(x) <2 (A > 0), then for the restricted product measures we have

Uz(uﬁ) < cnA? log< (16)

w*(A) )

with respect to the £'-norm ||x||; = |x;| + -+ + |x,| on R".
Indeed, by the integral hypothesis on u, for any f on R with || f||Lip < 1,

% oo A RaAECE
e du(x)dpu(y) < e dp(x)dpu(y)
—00 —00 —00 J—0O0

o0 o0 2 2 2
< / / PR gL du(y) < 4.
—00 —00

Hence, if f has p-mean zero, by Jensen’s inequality,

00 . o0 oo 2492
/ SO () < / / SOOI 1 (0)du(y) < 2,
— —00 J—00

(o]

meaning that || f{| ) < 2A. By Lemma 3.1, cf. (12), it follows that o%(n) < 1612,
s0, (16) holds true by an application of Corollary 5.6.

6 Deviations for Non-Lipschitz Functions

Let us now turn to the interesting question on the relationship between the
distribution of a locally Lipschitz function and the distribution of its modulus of
the gradient. We still keep the setting of a metric probability space (M, d, i) and
assume it has a finite subgaussian constant 6> = o(u)(o > 0).

Let us say that a continuous function f on M is locally Lipschitz, if |Vf(x)]| is
finite for all x € M. Recall that we consider the sets

A={xeM:|Vfx)| <L}, L>O0. (17)

First we state a more general version of Corollary 1.2.

Theorem 6.1 Assume that a locally Lipschitz function f on M has Lipschitz semi-
norms < L on the sets of the form (17). If u{|Vf| > Lo} < é, then for all t > 0,

@w{f®-fOl =1 =2 jinf [ 4 ufivr> 1] a8)

>Lo

where ¢ is an absolute constant.
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Proof Although the argument is already mentioned in Sect. 1, let us replace (6) with
a slightly different bound. First note that the Lipschitz semi-norm of f with respect
to the metric d in M is the same as its Lipschitz semi-norm with respect to the
metric on the set A induced from M (which is true for any non-empty subset of M).
Hence, we are in position to apply Theorem 1.1, and then the definition (1) for the
normalized restriction p, yields a subgaussian bound

// 6‘t(f()c)—f(y)) d,U«A(x)d,U«A(y) < ecosztz/Z’ for all r € R,

where A is defined in (17) with L > Ly, and where c is universal constant. From this,
for any ¢ > 0,

(b4 ® pa) {6, y) €A XA 1 |f(x) —F(y)| > 1} < 2¢7"/2e0’LY),

and therefore

(L@ W) {xy) €AXA:|f(x) —f()] = 1} < 27/ C°1),

The product measure of the complement of A x A does not exceed 2u{|Vf(x)| > L},
and we obtain (18). O

Iffe'vf|2 du < 2, we have, by Chebyshev’s inequality, u{|Vf| > L} < 2e7L,
so one may take Ly = /log 4. Theorem 6.1 then gives that, for any L?> > log 4,

(L@ W@ —fO) =1} < 27/ 4 g7,

For t > 20 one may choose here > = ; , leading to

(b @ W{lfx) —fO) = 1} < 67/,

for some absolute constant ¢ > 1. In case 0 < ¢ < 20, this inequality is fulfilled
automatically, so it holds for all # > 0. As a result, with some absolute constant C,

/@) =fWly, = Co,

which is an equivalent way to state the inequality of Corollary 1.2.

As we have already mentioned, with the same arguments inequalities like (18)
can be derived on the basis of subgaussian constants defined for different classes of
functions. For example, one may consider the subgaussian constant o} () for the
class F of all convex Lipschitz functions f on the Euclidean space M = R" (which
we equip with the Euclidean distance). Note that |Vf(x)| is everywhere finite in
the n-space, when f is convex. Keeping in mind Remark 3.3, what we need is the
following analog of Kirszbraun’s theorem:
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Lemma 6.2 Let f be a convex function on R". For any L > 0, there exists a convex
function g on R" such that f = g onthe set A = {x : |Vf(x)| < L} and |Vg| < L
on R".

Accepting for a moment this lemma without proof, we get:

Theorem 6.3 Assume that a convex function f on R" satisfies u{|Vf| > Lo} < é
Then for all t > 0,

(1 ® {If@) —fO] 2 1} < 2 finf [ 4 (19] > 1},

2

where 0° = o}(u) and c is an absolute constant.

For illustration, let 4 = ©; ®- - -® 1, be an arbitrary product probability measure
on the cube [—1, 1]". If f is convex and Lipschitz on R”, thus with |Vf| < 1, then

(@ W{f) —fO)| =1} < 277, (19)

This is one of the forms of Talagrand’s concentration phenomenon for the family
of convex sets/functions (cf. [11, 13, 18, 19]). That is, the subgaussian constants
cr%_- (u) are bounded for the class F of convex Lipschitz f and product measures i
on the cube. Hence, using Theorem 6.3, Talagrand’s deviation inequality (19) admits
a natural extension to the class of non-Lipschitz convex functions:

Corollary 6.4 Let (v be a product probability measure on the cube, and let f be a

; n 1
convex function on R". If u{|Vf| > Lo} < ,, then for allt > 0,

(1 ® {If@) —fO = 1} < 2 finf [+ 4 pu{|VF] > L}

where ¢ is an absolute constant.

In particular, we have a statement similar to Corollary 1.2—for this family of
functions, namely

I = mllpn gy < € IVFllL )

where m is the p-mean of f.

Proof of Lemma 6.2 An affine function I, ,(x) = a + (x,v) (v € R", a € R) may
be called to be a tangent function to f, if f > [ on R” and f(x) = I, ,(x) for at least
one point x. It is well-known that

f(x) = Sup{la,v(x) : la,v € E},
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where £ denotes the collection of all tangent functions /, . Put,
8) = suptlay(x) : lap € L, |v| < L}.

By the construction, g < f on R” and, moreover,

A

”g”Lip = Sup{”la,v”Lip oy €L, ] <L}
sup{|v| : loy € L, |v| < L} < L.

It remains to show that g = f on the set A = {|Vf| < L}. Letx € A and let /,, be
tangent to f and such that [, ,(x) = f(x). This implies that f(y) — f(x) > (y — x, v)
for all y € R” and hence

|[Vf(x)] = limsup IfO) =) > lim sup (y—x,v) —
y—=>x |y—x| y—>x |y_x|
Thus, |v| < L, so that g(x) > I,,(x) = f(x). .

7 Optimality

Here we show that the logarithmic dependence in (t(A) in Theorems 1.1 and 1.3 is
optimal, up to the universal constant c. We provide several examples.

Example 1 Let us return to Example 4, Sect.5, of the discrete hypercube M =
{0, 1}", which we equip with the Hamming distance d,, and the uniform measure y.
Let us test the inequality (15) of Corollary 5.4 on the set A C {—1, 1}" consisting of
n + 1 points

(0,0,0,...,0), (1,0,0,...,0), (1,1,0,...,0), ..., (I,1,1,...,1).

We have (A) = (n + 1)/2" > 1/2". The function f : A — R, defined by
. n
) =i =1y

has a Lipschitz semi-norm || f||Lip < 1 with respect to d and the j14-mean zero.

Moreover, [ fPrduy = "("142'2). Expanding the inequality [ elduy < e ) /2 g

the origin yields ffz dus < 0%(a). Hence, recalling that 0%() < ", we get

0% (1a) Z/fdeA > ’112

\

n , 1 ) 1
230 W 2 50T W log(M(A))'
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This example shows the optimality of (15) in the regime p(A) — 0.

Example 2 Let y, be the standard Gaussian measure on R” of dimensionn > 2. We
have o%(y,) = 1. Consider the normalized measure y, on the set

AR:{(xl,xz,...,xn)ER":x%+x%2R2}, R>0.

Using the property that the function é(xf + x3) has a standard exponential
distribution under the measure y,, we find that y,(Az) = e %/, Moreover,

1
L) = Vary, () = [y = 5 [6+ B 0

! / T erar = B2 (o)
= re” " dr = =lo .
e R12 Jraj 2 ¢ Yn(AR)
Therefore,
0’ (yap) = S (vag) = log( ¢ )
yn(AR)

showing that the inequality (4) of Theorem 1.1 is optimal, up to the universal
constant, for any value of y,(4) € [0, 1].

Example 3 A similar conclusion can be made about the uniform probability
measure p on the Euclidean ball B(0, \/n) of radius ./n, centred at the origin
(asymptotically for growing dimension 7). To see this, it is sufficient to consider
the cylinders

Ay ={(x1,y) e Rx R 1 |xy] < Vn— &2 and |y| <s}, 0<e<./n

and the function f(x) = x;. We leave to the readers corresponding computations.

Example 4 Let j1 be the two-sided exponential measure on R with density , e M In
this case 02(i) = oo, but, as easy to see, 2 < s*>(11) < 4 (recall that 1, (u) = 411). We
are going to test optimality of the inequality (7) on the sets Ag = {x € R : |x| > R}
(R > 0). Clearly, t(Ag) = e~ R, and we find that

2 *® 1 * 2
57 (Hag) = Vary, (x) :/ xzdp,AR(x) = e_R/R ree”"dr
—00
e
=R*+2R+2 > (R+1)* = log? )
=108 (L)

Therefore,

s*(1ag) > log® (M (:R) ) :
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showing that the inequality (7) is optimal, up to the universal constant, for any value
of w(A) € (0,1].
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Appendix

Proof of Lemma 2.1 Using the homogeneity, in order to derive the right-hand side

inequality in (8), we may assume that sup, ”;f/lllrf’ < 1. Then f |fIP du < pP/? for

all p > 1, and by Chebyshev’s inequality,
1= F() = pllf] = 1} < (‘/p) . for all 1> 0.

If t > 2, choose here p = 1 £2, in which case 1 — F(f) < 273t Integrating by parts,

we have, forany 0 < ¢ < log 2

/eé‘fz du = —/Ooo e d(1 — F(1))

2 o]
=1+2¢ / te’” (1 — F(t)) dt + 2¢ / te” (1 — F(t)) dt
0 2

IA

2 2 *© 2 log2 >
1+25/ te®! dt+2£/ e e” 4 U dt
0 2

— ey & o—(log2—4s) _ 648(1—}— e ))'

log2 log2
. e 2(7," —¢

Ife < 1052’ the latter expression does not exceed 3 ¢* which does not exceed 2
for e < log(j/ 3. Both inequalities are fulfilled for e = °¢2 and with this value

10 >
/ ¢’ dp < 2. Hence

o <, \/bgz 4,
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which yields the right inequality in (8). Conversely, if | f|ln() = 1, then

2p

3.2 . 32 . . . .
fe4f du < 2. Since u(f) = ? ¢~ 4" is maximized in ¢t > 0 at fp = \/3 s

get
) p
A1, = /u(lfl)efzdu <u(ty)-2=2 <\/31;) :

Hence, ”597” <2l \/ 32 < 1, which yields the left inequality.

e

we

Now, let us turn to (9) and assume that sup,, ||J; lo"— 1. Then [1fIPdu < p? for

all p > 1, and by Chebyshev’s inequality, for all # > 0,
_ P\P
1-roy=ulifizn = ()

If r > 2, we may choose here p = ; t in which case 1 — F(r) < 272 ! while for

1 <t<2wechoosep = 1,sothat 1 — F(r) < 1 Arguing as before, we have, for
log2

any 0 < ¢ < 5 s

1 2 00
el f] — &t _ &t _ st _
/e du =1 +e/0 e (1 F(t))dt—i—s/l e (1 F(t))dt—f—eL e (1 —=F(t))dt

1 2 et e log?2
1+8/ e”dt—i—e/ dt+e/ efle” 2 dr.
0 1 I 2

The pre-last integral can be bounded by flz ejs dt = e**log2, so

IA

& log2
/e‘g‘fl dp < e +ee*log2 + log2 e 207 ),
—¢
2

Fore = é, the latter expression is equal to 1.98903902 . . ., and thus fesm du < 2.
Hence

1
1Nl gy < e = 6.

Conversely, if || fllzv ) = 1, then fei\fl di = 2. Since u(t) = e i is
maximized at fp = p, we get

3 4 P
1715 = /”(|f|)e4m du < u(tp) -2 = 2(312) .

Hence, 171, < 21/1’34 < 1, which yields the left inequality. O
)4 e
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Proof of Lemma 3.1 First assume that || f||y, = 1, in particular | esf diu < 2.The
function

u(t) = log/e[f du

is smooth, convex, with #(0) = 0 and

In particular, #’'(0) = 0. Note that, by Jensen’s inequality, f e du > 1,s0u(t) > 0.
Further differentiation gives

iz _ ffzetfdlu“_(ffetfdlu“)z 2 ,1f
o=y [ £t an.

. 2442 . . 3
Using tf < ' 42—f and the elementary inequality xe™ 8" < ge_

2 i , Pt
freldu< [ ffe 2 du

= etZ/z/fze_?‘fzez%f2 dp < e'? je_l/egfzdﬂ <4

! we get, for |f| < 1,

Thus, u”(f) < 4, and by Taylor’s formula, u(r) < 2¢>.
On the hand, for |f| > 1, by Cauchy’s inequality,

2
/etfd,uf/g 1 i = etZ/Z/efz/Zd’u

47
< erz/z (/egfz du) — ¥ erz/z < e(;+;‘1og2)r2 < erz_

Hence, in this case u(f) < 72. Thus,

proving the right inequality of Lemma 3.1.
For the left inequality, let O'fz = 1. Then [e'du < ¢”/? for all t € R, which
implies ‘

1—F@)y=pilfl =83 <2772 1>0.
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.. . 1
From this, integrating by parts, we have, forany 0 < ¢ < ,,

/ e dy = /O o dF(1) = — /0 o d(1 — F(1))

o0
=1+ 28/ e (1 —F(t)dt
0

o0 o2 —t2/2 28
<1+4+4s¢ te® e dt = 1+ |
0 , — €
The last expression is equal to 2 for ¢ = é, which means that || f||y, < V6. O
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On Random Walks in Large Compact Lie
Groups

Jean Bourgain

Abstract Let G be the group SO(d) or SU(d) with d large. How long does it take
for a random walk on G to approximate uniform measure? It is shown that in certain

o . o c
natural examples an g-approximation is achieved in time (d log l) .

1 Introduction

In order to put the problem considered in this Note in perspective, we first recall
some other relatively recent results around spectral gaps and generation in Lie
groups.

It was shown in [5] (resp. [6]) that if A is a symmetric finite subset of SU(2)
(resp. SU (d)) consisting of algebraic elements, such that the countable group I' =
(A) generated by A is dense, then the corresponding averaging operators

1
f = o 1
f |A|Zf g 1)

gEA

acting on L*(G), has a uniform spectral gap (only depending on A). This result was
generalized in [2] to simple compact Lie groups.

It is not known if the assumption for A to be algebraic is needed, and one
may conjecture that it is not. Short of providing uniform spectral gaps, Varju [12]
established the following property which is the most relevant statement for what
follows.

Proposition 1 Let G be a compact Lie group with semisimple connected compo-
nent. Let 1 be a probability measure on G such that supp (L * ), ji defined by
[f@)dax) = [f(x""du(x), generates a dense subgroup of G. Then there is a
constant ¢ > 0 depending only on [ such that the following holds.
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Let ¢ € Lip (G), |l¢l2 = 1 and [, ¢ = 0. Then

H /@(h_lg)d,u(h) Hz <l—clog™(1 + |¢llzp) )

with A depending on G.

Using (2) and decomposition of the regular representation of G in irreducibles
(though this may be avoided), one deduces easily from (2) that it takes time at
most O(log" i) as ¢ — 0 for the random walk governed by u to produce an &-
approximation of uniform measure on G. Note that for G = SU(d), this statement
corresponds to the Solovay-Kitaev estimates on generation, cf. [7], which in fact
turns out to be equivalent.

Let us focus on G = SO(d) or SU(d). While the exponent A in (2) is a constant,
the prefactor ¢ depends on pi, hence on G, and seems to have received little attention.
Basically our aim is to prove a lower bound on ¢ which is powerlike in le and without
the need for uniform spectral gaps (which may not be always available). We focus
on the following model problem brought to the author’s attention by T. Spencer
(who was motivated by issues in random matrix theory that will not be pursued
here). The general setting is as follows (we consider the SU(d)-version). Fix some
probability measure 7 on SU(2) such that its support generates a dense group, i.e.
(supp 1) = SU(2). This measure n may be Haar but could be taken discrete as well.
Identify {0, 1,...,d — 1} with the cyclic group Z/dZ and denote v;; the measure 1
on SU(2) acting on the space [e;, ¢;]. Consider the random walk on SU(d) given by

1d—l

) = > | fgx)viiti(dg). 3)
d
i=0

How long does it take for this random walk to become an e-approximation of
uniform measure on G, with special emphasis on large d? Thus this is a particular
instance of the more general issue formulated in the title. While we are unable
to address the broader problem, specific cases such as (3) may be analyzed in a
satisfactory way (based partly on arguments that are also relevant to the general
setting).

We prove

Proposition 2 In the above setting, e-approximation of the uniform measure is
achieved in time C(dlog i)c, with C a constant independent of d.

Comment

If n is taken to be a uniform measure on SU(2), better results are available,
exploiting Hurwitz’ construction of Haar measure (see [8], Sect. 2). In this situation,
the operator T displays in fact a uniform spectral gap and the power of log ; can be
taken to be one (cf. [8], Theorem 1). Our interest in this presentation is a more robust
approach however.
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Basically, one could expect a more general phenomenon (though some additional
assumptions are clearly needed). In some sense, it would give a continuous version
of the conjecture of Babai and Seress [1] predicting poly-logarithmic diameter for
the family of non-Abelian finite simple groups (independently of the choice of
generators). Important progress in this direction for the symmetric group appears
in [10].

Independently of Spencer’s question, related spectral gap and mixing time issues
for specific random walks in large (not necessarily compact) linear groups appear in
the theory of Anderson localization for ‘quasi-one-dimensional’ methods in Math
Phys.

Consider the strip Z x Z/dZ and a random Schrédinger operator A + AV with
A the usual lattice Laplacian on Z x Z/dZ, V a random potential and A > O the
disorder. This model is well known to exhibit pure point spectrum with so-called
Anderson localization for the eigenfunctions. The issue here is how the localization
length (or equivalently, the Lyapounov exponents in the transfer matrix approach)
depend on d when d — oo.

The classical approach based on Furstenberg’s random matrix product theory
(acting on exterior powers of R?), cf. [3], is not quantitative and sheds no light on
the role of d. In fact, the first explicit lower bound on Lyapounov exponents seems
to appear in [4] (using different techniques based on Green’s function analysis),
with, roughly speaking exponential dependence on d (while the ‘true’ behaviour is
believed to be rather of the form d~¢). Clearly understanding the mixing time for
the random walk in the symplectic group Sp(2d) associated to the transfer matrix is
crucial. Note that this group is non-compact, which is an added difficulty (for very
small A, depending on d, [11] provides the precise asymptotic of the exponents,
based on a multi-dimensional extension of the Figotin-Pastur approach).

2 Some Preliminary Comments

The proof of Proposition 1 in [12] exploits the close relation between ‘generation’
and ‘restricted spectral gaps’. This point of view is also the key idea here in
establishing

Proposition 1 Let T be defined by (3). Then there is the following estimate
I7f 1> < 1= (C)™ (Tog(1 + || fllLip) ™) 4)

forf € Lip(G). Ifl2 =1, [¢f = 0.

Here C and A are constants (denoted differently, because of their different
appearance in the argument).

Unlike in [12], we tried to avoid the use of representation theory. The reason for
this is the following. If one relies on decomposition of the regular representation
of G in irreducibles and the Peter-Weyl theorem, one is faced in the absence of a
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uniform spectral gap with convergence issues of the generalized Fourier expansion
of functions on G of given regularity. Conversely, we also need to understand the
regularity of matrix coefficients of the representations of increasing dimension.
While these are classical issues, understanding the role of the dimension d does
not seem to have been addressed explicitly.

3 Proof of Proposition 1’

For simplicity, we take 7 to be a uniform measure on SU(2) and indicate the required
modifications for the general case in Sect. 5.
According to (3), denote

1 d—1
V= Z Vii+1 )
d i=0

Thus v = v and T is the corresponding averaging operator.
Letf € Lip(G). || fll. = 1 and [, f = 0. Assuming

| [arvan] = 1o 1-e ©®

(denoting T,f(x) = f (gx)) our aim is to obtain a lower bound on &.
Clearly (6) implies that

(f, / T (v * v)(dg)> S1—¢
and
/ 1 = 2ef 120 * v)(dg) < 2e. ™

Fix 1 > 0 to be specified later and denote B, an &;-neighborhood (for the
operator norm) of /d in SU(d). It is clear from (5) that v(B,,) 2 ei’ and hence (7)
implies

[ 15 = sl vide) < 7% ®)

for some g’ € B,,. Next, partitioning SU(2) in &;-cells Q, and denoting

Qqi =1{g €SU(d); g(ej) = ¢ for j&{i,i+ 1} and g|[ei,ei+1] € Qq}
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observe that v(2,;) > ;8? so that by (8)
f If = tyof I3 v(dg) < dei’ < 1. )
Qoi

Exploiting (9), it is clear that we may introduce a collection G C SU(d) with the
following properties

If = toflla < Ve e for g€ G. (10)
and

Given an element y € SU(2) and 1 < i < j < d, denote y;; in SU(d) the element
defined by

(e =¢; for k€ {i,j
gy,( O =ex for k¢ {ij} an
yij|[e;,ej] =V
Then, foreach y € SU(2) and 1 <i < d, thereis g € G s.t.
lg — viitill2 < 1. (12)
At this point, we will invoke generation. Since f of =0,
|- usidg =2
SU(d)
and we take some Ay € SU(d) s.t.
”f_ Th()f”Z = \/2
1
If ||hg — || < 6 ~ I fllip ® then
1 1
Itho f — T fll2 < (1 fllLipd) 2 < )
and consequently
If = fll > 1 if [lho — M|l < 6. (13)

In order to get a contradiction, we need to produce a word h; =
g1+°-8¢:81,...,8 € G such that

lho —g1---gell <6 (14)
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and

3
&

< Jedd

15)

Indeed, (10) implies then that

I f = znfll2 < N f = zoflla + -+ I f — ofll2 < L.

For1 <i < d,leto;;+; € Sym(d) be the transposition of i and i + 1.
Denote 6; .+ the corresponding unitary operator. Since

{iiv3i=1,...,d—1}

is a generating set for Sym(d) consisting of cycles of bounded length, it follows from
a result in [9] that the corresponding Cayley graph on Sym(d) has diameter at most
Cd. In particular, giveni,j ¢ Z/dZ,i # j, 6;; may be realized as a composition of
a string of elements 6;,41 of length at most Cd?. In view of (11), this implies that if
yeSUR)and 1 <i <j<d,then

lys — gll < cd®er (16)
for some g € Gy, , {1 < cd® (G = words of size £ written in g).
Letx > 0,
K2 > cd’e. (17)

Adopting the Lie-algebra point of view, the preceding implies that given s € R,
|s| < landz € C, |z] < 1, then

dist (Id + K(is(ei ®e) —is(e; @ e) +2(e; ®ej) —72(e; @ ei)), ggl) <k*  (18)
and therefore
dist (I + kA, Gpy,) < d*? (19)

for skew-symmetric A, ||[A|| < 2.
Let h € SU(d), h = ¢* with A as above. Taking k = i, we have

A= (erhy = (1 + iA)r + 0(1)
and therefore, by (19)

dZ
dist (ho, Goe,) < rd’,> = . (20)

r



On Random Walks in Large Compact Lie Groups 61
Taking k = lr =dCand e, = d 272, (20) ensure that

dist (h, Gyc1) < d€ forall h € SU(d). 21

Next, we rely on the Solovay-Kitaev commutator technique to produce approxi-

mations at smaller scale. This procedure is in fact dimensional free (see the comment

in [7] following Lemma 2 in order to eliminate a polynomial prefactor in &—which

actually would be harmless if we start from scales g = d~ ). The conclusion is that

dist (h,G¢) < © forall h € SU(d)

may be achieved with

1\A
< d (log ) .
T
Returning to (14), (15), we obtain the condition

d%log (1 + || fllLip) < —d G (22)

Jed

and Proposition 1 follows.

4 Proof of Proposition 2

The disadvantage of our approach is that 7 is not restricted to finite dimensional
invariant subspaces of L(G) so that strictly speaking, one can not rely on a spectral
gap argument to control the norm of iterates of 7.

But Proposition 1’ nevertheless permit to derive easily the following

Proposition 3 Assume f € Lip(G), || fl2 =1, [;f = 0.Let0 < p < . Then
IT'fIl> < p (23)
provided

1\ A+I
¢ > CdC.log(1 + ||f||Lip).(10g p) . (24)

Proof Let B = | f|lLip- Clearly || T%||Lip < B also.

. £
Fix some { and let f| = IITY;J{IIz' Hence || fillLip < IITg‘IIz'
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Applying Proposition 1’, it follows that

ITH Ll < 1T (1 — o)

with

))_A > cd(log(1 +B))_A(log (1 + ! ))_A.

go=cd (log(1+
( ( 712

B
1712

Hence, assuming | T¢f||» > p, we obtain

p< (1= ca(1og(1+B) *(1og ) ")

implying (24). O

Proof of Proposition 2 Apply Proposition 3 with logB ~ logi and log/l) ~
d*log ;

5 Variants

The previous argument is clearly very flexible and may be applied in other
situations.

Returning to Sect. 3, assume more generally 1 a probability measure on SU(2)
satisfying (supp n) = SU(2). Note that by Proposition 1, n© with £ ~ (log 611 )~
(logd)¢ provides an e;-approximation of Haar measure on SU(2). It follows
from (3), (7) that

/ 1 = o 2 % viss) (dg) < 2d%
and hence

[ 1 = o130 (dg) < €
f 1 = o 12 v, (dg) < baPere.
Qai

The collection G may then be introduced similarly. Proposition 2 remains valid.
Let us point out that it is unknown if in general the density assumption
(supp n) = SU(2) implies a uniform spectral gap (see the discussion on Sect. 1).
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Instead of (3), one may introduce at time k = Z the discrete average T; =
é(rg + T,—1) -+ where we first pick some i € Z/dZ and then choose a random
element g € SU(2) acting on [e;, ¢;+1] according to 1. In this situation, one obtains
random walks on SU(d) indexed by an additional probability space ®(Z/ dZ ®
SU(2))

T° =Ty They -~ Ty (25)

and may ask for the typical mixing time of a realization.

Rather straightforward adjustments of the arguments appearing in the proof of
Proposition 1’ combined with some Markovian considerations permit us to establish
the analogue of Proposition 2 for 7. Thus

Proposition 4 Let T be defined by (25). Then, with large probability in o, -
approximation of uniform measure on SU(d) may be achieved in time C(d log ;)C
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On a Problem of Farrell and Vershynin
in Random Matrix Theory

Jean Bourgain

Abstract We settle a question of Farrell and Vershynin on the inverse of the
perturbation of a given arbitrary symmetric matrix by a GOE element.

1 Introduction

In [1], the authors consider the invertibility of d x d-matrices of the form D + R, with
D an arbitrary symmetric deterministic matrix and R a symmetric random matrix
whose independent entries have continuous distributions with bounded densities. In
this setting, a uniform estimate

(D +R)~'|| = 0(d* (1)

is shown to hold with high probability. The authors conjecture that (1) may be
improved to O(+/d). The purpose of this short Note is to prove this in the case
R is Gaussian. Thus we have (stated in the Efi-normalized setting).

Proposition Let T be an arbitrary matrix in Sym(d). Then, for A (normalized) in
GOE, there is a uniform estimate

A+ T)7"| = 0) 2

with large probability.
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2 Proof of the Proposition

By invariance of GOE under orthogonal transformations, we may assume 7T
diagonal. Let K be a suitable constant and partition

(.. ..d=9,UQ
with
Q=1{j=1...4&|T)>K}.
Denote T = g, Trg,(i = 1,2) and A% = 7 Amq,(i.j = 1,2). Since
(A(l,l) + T(l))—l — (I + (T(l))—lA(l,l))(T(l))—l

and

1 1
TMY=1A0D ) < F a0y <
ITO)~at) < A <

with large probability, we ensure that
1A + 7)™ < 1. 3)
Next, write by the Schur complement formula

A+1)"!

((A(1’1)+T(1))_1 +(A(”)+T“))_IA“’Z)S_IA(Z*I)(A(”)+T(”)_1 —(A(l’l)+T(1))_1A(1‘2)S_1)

—S_IA(Z’I)(A(I‘I) + T(l))—l 51
“
defining
S = A(2,2) + T(2) —A(z’l)(A(l’l) + T(”)_IA(”). (5)
Hence by (4)
1A+ < + @D + 7O (A + AP IS~ ©

<GS



On a Problem of Farrell and Vershynin in Random Matrix Theory 67

Note that A?? and AZD (A1) 4-TM)~1A(12) are independent in the A randomness.
Thus S may be written in the form

§=A%? 15, (7

with Sy € Sym(d), |So|| < O(1) (by construction, |T®| < K) and A®>? and S,
independent.

Fixing Sy, we may again exploit the invariance to put Sy in diagonal form,
obtaining

AP 4 s0 with ) diagonal . ®)

Hence, we reduced the original problem to the case T is diagonal and ||T| <
K+ 1.

Note however that (8) is a (d; x dj)-matrix and since d; may be significantly
smaller than d, A®? is not necessarily normalized anymore. Thus after renormal-
ization of A2, setting

d 2
_ @2
Al <d1) A ©)
and denoting
N
T = (dl) s, (10)
we have
d\:
7l < () &+ an
while the condition [cf. (6)]
1(A%2 + 597 = 0(d) (12)
becomes
A1 + )7 = O(Vdd). (13)

At this point, we invoke Theorem 1.2 from [2]. As Vershynin kindly pointed out
to the author, the argument in [2] simplifies considerably in the Gaussian case.
Examination of the proof shows that in fact the statement from [2], Theorem 1.2
can be improved in this case as follows.
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Claim Let A be a d x d normalized GOE matrix and T a deterministic, diagonal
(d x d)-matrix. Then

P4+ T)7"| > Ad] < C(1 + [T|)A™. (14)

We distinguish two cases. If d; > Clzd, C, > C3, immediately apply the above
claim with d replaced by d;, A by A; and T by T). Thus by (11)

d _118 1 1
Bl +7) 7" > AVddi] < -+ (%, ) "2 < C(14+Vaak+D)A
(15)

and (12) follows. If d; < Clz d, repeat the preceding replacing A by A;, T by 7;. In
the definition of 21, replace K by K; = 2K, so that (3) will hold with probability at
least

| — e Kl = ] — g4k (16)
the point being of making the measure bounds e‘“us, s =0,1,2,... obtained in

an iteration, sum up to K — o(1).
Note that in (13), we only seek for an estimate

- VG

1

I+ 707 < 0" ) a7)
hence, cf. (12)

B d
1A + 8 )7l < 0<\élzd1) (18)

where A(12,2) and S/l,O are defined as before, considering now A; and 7;. Hence (13)
gets replaced by

C
|42 + 1271 = o ¢C12 Vaiay) (19)

where A,, T are (dy X dp)-matrices,

dl)z(zK+ 1. (20)
2

I <,
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Assuming d, > C12 d;, we obtain instead of (15)

1
9

P42 + T2) 7' > 4 JCCZ Vdids] < C(1+ VG (K, + 1))(\/CC2/\)_
! 1

< C(1 + YOk + 1)) 2C) C; )2
(21

1 1
and we take C; to ensure that 2C; C, "* < é

The continuation of the process is now clear and terminates in at most % logd
steps. At step s, we obtain if dy1 > ! d,

G
VG
C

Pl + T 1> 2

)s\/dxdx+l] < C(1 + \/CQ(K + 1))2_YA,_'5
(22)
Summation over s gives a measure estimate O(A~ é’) = o(1).

This concludes the proof of the Proposition. From quantitative point of view,
previous argument shows

Proposition’ Let T and A be as in the Proposition. Then
P[(A +T)7"|| > Ad] < O(A™10). (23)
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Valuations on the Space of Quasi-Concave
Functions

Andrea Colesanti and Nico Lombardi

Abstract We characterize the valuations on the space of quasi-concave functions
on RV, that are rigid motion invariant and continuous with respect to a suitable
topology. Among them we also provide a specific description of those which are
additionally monotone.

1 Introduction

A valuation on a space of functions X is an application it : X — R such that

w(f v g+ pn(frg = ulf)+ un@ (H

forevery f, g € X st. f Vv g,f A g € X; here “v” and “A” denote the point-wise
maximum and minimum, respectively. The condition (1) can be interpreted as a
finite additivity property (typically verified by integrals).

The study of valuations on spaces of functions stems principally from the theory
of valuations on classes of sets, in which the main current concerns convex bodies.
We recall that a convex body is simply a compact convex subset of R, and the
family of convex bodies is usually denoted by K. An application o : K¥Y — R is
called a valuation if

o(KUL)+0o(KNL)=0(K)+0o(L) 2)

for every K,L € KM such that K UL € KV (note that the intersection of
convex bodies is a convex body). Hence, in passing from (2) to (1) union and
intersection are replaced by maximum and minimum respectively. A motivation is
that the characteristic function of the union (resp. the intersection) of two sets is the
maximum (resp. the minimum) of their characteristic functions.

The theory of valuations is an important branch of modern convex geometry
(the theory of convex bodies). The reader is referred to the monograph [16]

A. Colesanti (b<)) « N. Lombardi
Dipartimento di Matematica e Informatica “U. Dini”, Viale Morgagni 67/A, 50134 Firenze, Italy
e-mail: andrea.colesanti @unifi.it; colesant@math.unifi.it; nico.lombardi @unifi.it

© Springer International Publishing AG 2017 71
B. Klartag, E. Milman (eds.), Geometric Aspects of Functional Analysis,
Lecture Notes in Mathematics 2169, DOI 10.1007/978-3-319-45282-1_6


mailto:andrea.colesanti@unifi.it; colesant@math.unifi.it
mailto:nico.lombardi@unifi.it

72 A. Colesanti and N. Lombardi

for an exhaustive description of the state of the art in this area, and for the
corresponding bibliography. The valuations on XV, continuous with respect to
the Hausdorff metric and rigid motion invariant, i.e. invariant with respect to
composition with translations and proper rotations (elements of O(N)), have been
completely classified in a celebrated result by Hadwiger (see [5-7]). Hadwiger’s
theorem asserts that any valuation o with these properties can be written in the form

N
o(K) =) cViK) VKeKk", (3)

i=0
where ¢y, ...,cy are constants and Vi,..., Vy denote the intrinsic volumes (see

Sect. 2, for the definition). This fact will be of great importance for the results
presented here.

Let us give a brief account of the main known results in the area of valuations on
function spaces. Wright, in his PhD thesis [21] and subsequently in collaboration
with Baryshnikov and Ghrist [2], characterized rigid motion invariant and continu-
ous valuations on the class of definable functions (we refer to the quoted papers for
the definition). Their result is very similar to Hadwiger’s theorem; roughly speaking
it asserts that every valuation is the linear combination of integrals of intrinsic
volumes of level sets. This type of valuations will be crucial in our results as well.

Rigid motion invariant and continuous valuations on I”(R") and on L7 (S"™ ")
(1 < p < o0) have been studied and classified by Tsang in [17]. Basically, Tsang
proved that every valuation u with these properties is of the type

() = / ¢ (/)dx 4

(here the integral is performed on R or §"~!) for some function ¢ defined on R
verifying suitable growth conditions. Subsequently, the results of Tsang have been
extended to Orlicz spaces by Kone in [8]. Also, the special case p = oo was studied
by Cavallina in [3].

Valuations on the space of functions of bounded variations and on Sobolev spaces
have been recently studied by Wang and Ma respectively, in [14, 19, 20] and [13].

In [4] the authors consider rigid motion invariant and continuous valuations (with
respect to a certain topology that will be recalled later on) on the space of convex
functions, and found some partial characterization results under the assumption of
monotonicity and homogeneity.

Note that the results that we have mentioned so far concern real-valued valu-
ations, but there are also studies regarding other types of valuations (e.g. matrix-
valued valuations, or Minkowski and Blaschke valuations, etc.) that are interlaced
with the results mentioned previously. A strong impulse to these studies have been
given by Ludwig in the works [9-12]; the reader is referred also to [18] and [15].

Here we consider the space CV of quasi-concave functions of N real variables. A
functionf : RV — R is quasi-concave if it is non-negative and for every ¢ > 0 the
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level set

L(f)={xeR" : f(x) =1}

is (either empty or) a compact convex set. CV includes log-concave functions and
characteristic functions of convex bodies as significant examples.

We consider valuations & : CV — R which are rigid motion invariant (with the
same notion as before for rigid motion transformations), i.e.

u(f) = p(foT)

for every f € CV and for every rigid motion T of RY. We also impose a continuity
condition on u: if f;, i € N, is a monotone (either increasing or decreasing) sequence
in CV, converging to f € C point-wise in R, then we must have

Jim 1 (fi) = ().

In Sect. 4.1 we provide some motivation for this definition, comparing this notion
of continuity with other possible choices.

There is a simple way to construct valuations on CV. To start with, note that if
f.geCVandt>0

Li(fvg =L(f)UL(g), L(fArg=L(f)NLg). (5)

Let ¥ be a function defined on (0, 00) and fix o > 0. Define, for every f € CV,

o (f) = Vn(Ly () (t0).

Using (5) and the additivity of volume we easily deduce that p is a rigid motion
invariant valuation. More generally, we can overlap valuations of this type at various
levels ¢, and we can further replace Vy by any intrinsic volume V;:

u(f)=/ Vk(Lt(f))llf(t)dt=/ ViL() dv(r), fec, (6)
(0.00) (0.00)

where v is the measure with density . This is now a rather ample class of
valuations; as we will see, basically every monotone valuation on CN can be written
in this form. To proceed, we observe that the function

t = Vi(L«(f))

is decreasing. In particular it admits a distributional derivative which is a non-
positive measure. For ease of notation we write this measure in the form —Si(f;-)
where now Si(f;-) is a (non-negative) Radon measure on (0, co). Then, integrating
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by parts in (6) (boundary terms can be neglected, as it will be clear in the sequel)
we obtain:

() = /( ERCLE ™

where ¢ is a primitive of ¥. Our first result is the fact that functionals of this type
exhaust, by linear combinations, all possible rigid motion invariant and continuous
valuations on CV.

Theorem 1.1 A map 1 : CY — R is an invariant and continuous valuation on CV
if and only if there exist (N + 1) continuous functions ¢, k = 0, ..., N defined on
[0, 00), and § > O such that: ¢ = 01in [0, 8] foreveryk =1,...,N, and

N
kD=3 [ avasirin vrec
k=0 ¥ [0.:00)

The condition that each ¢y, except for ¢, vanishes in a right neighborhood of the
origin guarantees that the integral in (7) is finite for every f € CV (in fact, it is
equivalent to this fact). As in the case of Hadwiger theorem, the proof of this result
is based on a preliminary step in which valuations that are additionally simple are
classified. A valuation y on CV is called simple if

f=0ae.inR¥Y = pu(f)=0.

Note that for f € C¥, being zero a.e. is equivalent to say that the dimension of the
support of f (which is a convex set) is strictly smaller than N. The following result
is in a sense analogous to the so-called volume theorem for convex bodies.

Theorem 1.2 A map i : CN — R is an invariant, continuous and simple valuation
on CN if and only if there exists a continuous function ¢ defined on [0, 00), with
¢ =0in|0,6] for some § > 0, such that

wth) = [ ptrnas vrec

or, equivalently,
wh = [ gtas(rin.
[0,00)

Here the equivalence of the two formulas follows from the layer cake principle.
The representation formula of Theorem 1.1 becomes more legible in the case of
monotone valuations. Here, each term of the sum is clearly a weighted mean of the
intrinsic volumes of the level sets of f.
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Theorem 1.3 A map p is an invariant, continuous and monotone increasing
valuation on CN if and only if there exists (N + 1) Radon measures on [0, 00),
Vi, k = 0,...,N, such that each vy, is non-negative, non-atomic and, for k > 1, the
support of vy is contained in [§, 00) for a suitable § > 0, and

N
n(f) = Z/ Vi(Li(f)) dvi(r), ¥ fecCV.
k=0 v [0.00)

We remark that the non-negativity of v; depends on the monotone increasing
property of i, as we will see in Sect. 8.

As we already mentioned, and it will be explained in details in Sect. 5.3, the
passage

/ (S (1) —>/ Vi(L()) dvi(0)
[0.00) [0.00)

is provided merely by an integration by parts, when this is permitted by the
regularity of the function ¢.

The paper is organized as follows. In the next section we provide some notions
from convex geometry. Section 3 is devoted to the basic properties quasi-convex
functions, while in Sect.4 we define various types of valuations on the space
CV. In Sect.5 we introduce the integral valuations, which occur in Theorems 1.1
and 1.3. Theorem 1.2 is proved in Sect. 6, while Sects. 6 and 7 contain the proof of
Theorems 1.1 and 1.3, respectively.

2 Notations and Preliminaries

We work in the N-dimensional Euclidean space RN, N > 1, endowed with the usual
scalar product (-,-) and norm || - ||. Given a subset A of R", int(A), cl(A) and dA
denote the interior, the closure and the topological boundary of A, respectively. For
every x € RY and r > 0, B,(x) is the closed ball of radius r centered at x; in
particular, for simplicity we will write B, instead of B,(0). We recall that a rigid
motion of RN will be the composition of a translation and a rotation of R" (i.e. an
isometry). The Lebesgue measure in RY will be denoted by V.

2.1 Convex Bodies

We recall some notions and results from convex geometry that will be used in the
sequel. Our main reference on this subject is the monograph by Schneider [16]. As
stated in the introduction the class of convex bodies is denoted by KN.ForK,L €
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KN, we define the Hausdorff distance of K and L as

8(K, H) = max{supdist(x, H), supdist(K, y)}.
x€K yEH

Accordingly, a sequence of convex bodies {K,},en € KV is said to converge to
K € KN if

8(K,,K) — 0, asn — +o0.

Remark 2.1 KN with respect to Hausdorff distance is a complete metric space.

Remark 2.2 For every convex subset C of R, and consequently for convex bodies,
its dimension dim (C) can be defined as follows: dim(C) is the smallest integer such
that there exists an affine sub-space of R containing C.

We are ready, now, to introduce some functionals operating on KV, the intrinsic
volumes, which will be of fundamental importance in this paper. Among the various
ways to define intrinsic volumes, we choose the one based on the Steiner formula.
Given a convex body K and € > 0, the parallel set of K is

K. = {x € RV |dist(x, K) < €}.

The following result asserts that the volume of the parallel body is a polynomial in
¢, and contains the definition of intrinsic volumes.

Theorem 2.3 (Steiner Formula) There exist N functions Vo, ..., Vy_1 : KN —
Ry such that, for all K € KN and for all € > 0, we have

N
VN(KG) = Z Vi(K)a)N_ieN_i,
i=0

where w; denotes the volume of the unit ball in the space RI. Vo(K), ..., Vy(K) are
called the intrinsic volumes of K.

Hence one of the intrinsic volumes is the Lebesgue measure. Moreover Vj is
the Euler characteristic, so that for every K we have Vy(K) = 1. The name
intrinsic volumes comes from the following fact: assume that K has dimension
j € {0,...,N}, ie. there exists a j-dimensional affine subspace of RY containing
K, and j is the lowest number with this property (we will write dim(K) = j). Then
K can be seen as a subset of R/ and V;(K) is the Lebesgue measure of K as a subset of
R/. Intrinsic volumes have many other properties, listed in the following proposition.

Proposition 2.4 (Properties of Intrinsic Volumes) For every k € {0,...,N} the
Sfunction Vy, is:

* rigid motion invariant;
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* continuous with respect to the Hausdorff metric;
e monotone increasing: K C L implies Vi(K) < Vi(L);
* avaluation:

VilKUL) 4+ Vi(KNL) = Vi(K)+ Vi(L) VK, LeKN st. KULe K.
We also set conventionally
Vi(@) =0, Vk=0,...,N.

The previous properties essentially characterizes intrinsic volumes as stated by
the following result proved by Hadwiger, already mentioned in the introduction.

Theorem 2.5 (Hadwiger) If o is a continuous and rigid motion invariant valua-

tion, then there exist (N + 1) real coefficients cy, . . ., cy such that
N
o(K) =) ciVi(K).
i=0

forall K € KN U {@}.

The previous theorem claims that {Vy,..., Vy} spans the vector space of all
continuous and invariant valuations on K¥ U {@}. It can be also proved that
Vo, ..., Vn are linearly independent, so they form a basis of this vector space.
In Hadwiger’s Theorem continuity can be replaced by monotonicity hypothesis,
obtaining the following result.

Theorem 2.6 If o is a monotone increasing (resp. decreasing) rigid motion
invariant valuation, then there exist (N + 1) coefficients cy, . .., cy such that ¢c; > 0
(resp. ¢c; < 0) for every i and

N
o(K) =Y cVi(K).
i=0

forall K € KN U {@}.

A special case of the preceding results concerns simple valuations. A valuation
W is said to be simple if

wK)=0 VK ek"st dim(K) <N.

Corollary 2.7 (Volume Theorem) Let o : KN U {@} — R be a rigid motion
invariant, simple and continuous valuation. Then there exists a constant ¢ such that

M= cVy.
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Remark 2.8 In the previous theorem continuity can be replaced by the following
weaker assumption: for every decreasing sequence K;, i € N, in KV, converging to
K e KN,

lim o(K:) = o(K).

This follows, for instance, from the proof of the volume theorem given in [6].

3 Quasi-Concave Functions

3.1 The Space CN

Definition 3.1 A function f : RY — R is said to be quasi-concave if

* f(x) > 0 forevery x € RV,
e foreveryt > 0, the set

L(f) =xeRY: fx) = 1}

is either a convex body or is empty.
We will denote with CV the set of all quasi-concave functions.

Typical examples of quasi-convex functions are (positive multiples of) charac-
teristic functions of convex bodies. For A € RY we denote by 1, its characteristic
function

1 ifxeA,

Li:RY SR, Lk =
! " §0 it ¢ A,

Then we have that s Ix € CN for every s > 0 and K € KV. We can also describe the
sets L;(slg), indeed

g ift>s,

Li(sIg) =
(sl =9 if0<r<s

The following proposition gathers some of the basic properties of quasi-concave
functions.

Proposition 3.2 Iff € CN then
e lim f(x) =0,

[Ix|]]=>+o00
* fis upper semi-continuous,
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e f admits a maximum in R", in particular

supf < 4-o00.
RN

Proof To prove the first property, let € > 0; as L.(f) is compact, there exists R > 0
such that L.(f) C Bg. This is equivalent to say that

fx)<e VYx st |x]| >R

Upper semi-continuity follows immediately from compactness of super-level sets.
Let M = supgw f and assume that M > 0. Let x,,, n € N, be a maximizing sequence:

lim f(x,) = M.
n—>o00

As f decays to zero at infinity, the sequence x,, is compact; then we may assume that
it converges to x € RY. Then, by upper semi-continuity

f®) = lim f(q) = M.

O
For simplicity, given f € CV, we will denote by M(f) the maximum of f in RV,

Remark 3.3 Letf € CV, we denote with supp(f) the support of f, that is

supp(f) = cl({x € RV . f(x) > 0}).

This is a convex set; indeed

supp(f) = cl(|_J{x e RV : f(x) = 1/k}).

k=1

The sets
{xeRY : f(x) > 1/k} keN,

forms an increasing sequence of convex bodies and their union is convex.

Remark 3.4 A special sub-class of quasi-concave functions is that formed by log-
concave functions. Let u be a function defined on all RY, with values in R U {+o00},
convex and such that limjj—, 1 o0 f(x) = -+00. Then the function f = ™ is quasi-
concave (here we adopt the convention e~*° = 0). If f is of this form is said to be a
log-concave function.



80 A. Colesanti and N. Lombardi
3.2 Operations with Quasi-Concave Functions

Let f,g : RY — R; we define the point-wise maximum and minimum function
between f and g as

Vv g() = max{f(x). g}, fAgk) = min{f(x),g(x)},

for all x € RM. These operations, applied on CV, will replace the union and
intersection in the definition of valuations on KN U {@}. The proof of the following
equalities is straightforward.

Lemma 3.5 Iff and g belong to CN and t > 0:

Li(fAng) = L(f) NLi(g), L(fVeg) =L(f)ULg).

As the intersection of two convex bodies is still a convex body, we have the
following consequence.
Corollary 3.6 Forallf,geCN,f AgeCV.

On the other hand, in general f, g € CV does not imply that f V g does, as it is shown
by the example in which f and g are characteristic functions of two convex bodies
with empty intersection.

The following lemma follows from the definition of quasi-concave function and
the fact that if 7 is a rigid motion of RV and K € KV, then T(K) € KN.

Lemma 3.7 Let f € CN be a quasi concave function and T : RY — R a rigid
motion, thenfoT € CN.

3.3 Three Technical Lemmas

We are going to prove some lemmas which will be useful for the study of continuity
of valuations.

Lemma 3.8 Letf € CN. For all t > 0, except for at most countably many values,
we have

L(f) = cl({x € RY: f(x) > 1}).
Proof We fix t > 0 and we define

Q) = xeRY: f() > 1}, Hi(f) = cl(u(S)).
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Q,(f) is a convex set for all # > 0, indeed

Q = JLiru(f).

keN

Consequently H; is a convex body and H; C L,(f). We define D, = L,(f) \ H;;
our aim is now to prove that the set of all # > 0 such that D, # & is at most
countable. We first note that if K and L are convex bodies with K C L, int(L) # @
and L\ K # @ then int(L \ K) # @, therefore

D/#3 & VyD)>0. (8)
It follows from
D= L(/)\H S L(NH\ Q) = xeR: fx) =1},
that
h# 6 = Dy(f)NDu(f) = 2. ©)

For the rest of the proof we proceed by induction on N. For N = 1, we observe
that if f is identically zero, then the lemma is trivially true. If supp(f) = {xo} and
f(xp) = to > 0, then we have

Li(f) = {xo} = cl(Qu(f)) Vi>0.1# 10,

and in particular the lemma is true. We suppose next that int(supp(f)) # @; let
to > 0 be a number such that dim(L,(f)) = 1, forall ¢ € (0, #p) and dim(Z,(f)) = 0,
for all t > . Moreover, let t; = maxg f > #,. We observe that

L(f) =cl(€(f) =2 Vi>n and L(f) =cl(Q(f) Vie(t.n).

Next we deal with values of t € (0, 7). Let us fix € > 0 and let K be a compact set
in R such that K D L,(f) for every r > ¢. We define, for i € N,

T = {te [e,t0) : Vi(Dy) > 1}

As D, C K forall t > € and taking (9) into account we obtain that 77 is finite . So

=17

ieN
is countable for every € > 0. By (8)

{t>¢€ : D, # @} 1iscountable
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for every € > 0, so that
{t>0: D, # @}

is also countable. The proof for N = 1 is complete.

Assume now that the claim of the lemma is true up to dimension (N — 1), and
let us prove in dimension N. If the dimension of supp(f) is strictly smaller than N,
then (as supp(f) is convex) there exists an affine subspace H of RV, of dimension
(N — 1), containing supp(f). In this case the assert of the lemma follows applying
the induction assumption to the restriction of f to H. Next, we suppose that there
exists #y > 0 such that

dim(L,(f)) =N, Vte(0,1)
and
dim(L,(f)) <N, Vit> 1.
By the same argument used in the one-dimensional case we can prove that
{t€ (0,1 : D, # &}

is countable. For ¢ > t, there exists a (N — 1)-dimensional affine sub-space of RY
containing L,(f) for every t > #y. To conclude the proof we apply the inductive
hypothesis to the restriction of f to this hyperplane. O

Lemma 3.9 Let {f;}ien C CN andf € CN. Assume that f; /' f point-wise in RN as
i = +4o00. Then, for all t > 0, except at most for countably many values,

oim L,(£) = L().

Proof For every t > 0, the sequence of convex bodies L;(f;), i € N, is increasing
and L,(f;) C L,(f) for every i. In particular this sequence admits a limit L, C L,(f).
We choose ¢ > 0 such that

L(f) =cl(fx e RN : f(x) > 1}).

By the previous lemma we know that this condition holds for every ¢ except at most
countably many values. It is clear that for every x s.t. f(x) > ¢ we have x € L,,
hence L, D {x € RV : f(x) > t}; on the other hand, as L, is closed, we have that
L; O L,(f). Hence L, = L,(f) and the proof is complete. O

Lemma 3.10 Let {f;}ien € CN andf € CV. Assume that f; \ f point-wise in RN as
i — +o00. Then forallt > 0

oim L,(£) = L().
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Proof The sequence L,(f;) is decreasing and its limit, denoted by L;, contains L,(f).
On the other hand, as now

L= ﬂ Li(fi)

keN

(see Lemma 1.8.1 of [16]), if x € L, then f;(x) > ¢ for every i, so that f(x) > ti.e.
X € Lt(.f)~ O

4 Valuations

Definition 4.1 A functional 4 : C¥ — R is said to be a valuation if

e 1(0) = 0, where 0 € CV is the function identically equal to zero;
 forallf and g € C" such thatf v g € CV, we have

w(f) +p(g) = n(fveg + ulfAg.

A valuation p is said to be rigid motion invariant, or simply invariant, if for every
rigid motion 7 : RV — R¥ and for every f € CV, we have

pu(f) = p(foT).

In this paper we will always consider invariant valuations. We will also need a notion
of continuity which is expressed by the following definition.

Definition 4.2 A valuation p is said to be continuous if for every sequence
{fitien € CY and f € CV such that f; converges point-wise to f in RY, and f; is
either monotone increasing or decreasing w.r.t. i, we have

u(fi) = n(f), fori — +oo.

To conclude the list of properties that a valuation may have and that are relevant
to our scope, we say that a valuation p is monotone increasing (resp. decreasing) if,
givenf,g € CV,

[ = g point-wise in RY implies u(f) < p(g) (resp. u(f) = p(g)).

4.1 A Brief Discussion on the Choice of the Topology in CN

A natural choice of a topology in CV¥ would be the one induced by point-wise
convergence. Let us see that this choice would too restrictive, with respect to the
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theory of continuous and rigid motion invariant (but translations would be enough)
valuations. Indeed, any translation invariant valuation p on CY such that

lim w(fi) = p(f)

for every sequence f;, i € N, in CV, converging to some f € C" point-wise, must be
the valuation constantly equal to 0. To prove this claim, let f € CV have compact
support, let e; be the first vector of the canonical basis of RV and set

fix) =f(x—ie;) VxeRM, VielN

The sequence f; converges point-wise to the function fy = 0 in RY, so that, by
translation invariance, and as u(fy) = 0, we have u(f) = 0. Hence u vanishes
on each function f with compact support. On the other hand every element of C is
the point-wise limit of a sequence of functions in CV with compact support. Hence
n=0.

A different choice could be based on the following consideration: we have seen
that CV C L% (RY), hence it inherits the topology of this space. In [3], Cavallina
studied translation invariant and continuous valuations on L (R"). In particular he
proved that there exists non-trivial translation invariant and continuous valuations
on this space, which vanishes on functions with compact support. In particular they
cannot be written in integral form as those found in the present paper. Noting that in
dimension N = 1 translation and rigid motion invariance provide basically the same
condition, this suggest that the choice of the topology on L>°(R") on C" would lead
us to a completely different type of valuations.

5 Integral Valuations
A class of examples of invariant valuations which will be crucial for our characteri-
zation results is that of integral valuations.

5.1 Continuous Integral Valuations

Letk € {0,...,N}.For f € CV, consider the function
t = u(t) = Vi(L,(f)) t>0.

This is a decreasing function, which vanishes for t > M(f) = maxgn f. In particular
u has bounded variation in [§, M(f)] for every § > 0, hence there exists a Radon
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measure defined in (0, co), that we will denote by S (f;-), such that
—Sk(f; ) is the distributional derivative of u

(see, for instance, [1]). Note that, as u is decreasing, we have put a minus sign in
this definition to have a non-negative measure. The support of Si(f;-) is contained
in [0, M(f)].

Let ¢ be a continuous function defined on [0, 00), such that ¢(0) = 0. We
consider the functional on CV defined by

() = /(0 s fect (10)

The aim of this section is to prove that this is a continuous and invariant valuation
on CN. As a first step, we need to find some condition on the function ¢ which
guarantee that the above integral is well defined for every f.

Assume that

36 > 0s.t. ¢(r) = 0 forevery ¢ € [0, 4]. 1D

Then

| orwasrin= [ grwasr
(0.00) [8.M(1)]

=M (Vi(Ls(f)) — Vi(M(f))) < o0,
where M(f) = maxgy f, M = max(smax,y /] $+ and ¢4 is the positive part of ¢.
Analogously we can prove that the integral of the negative part of ¢, denoted by ¢_,
is finite, so that u is well defined.

We will prove that, for k > 1, condition (11) is necessary as well. Clearly, if ©(f)
is well defined (i.e. is a real number) for every f € CV, then

¢4 (DdSi(fi1) < oo and ¢_(D)dS(f;1) < oo VfeclV.
(0,00) (0,00)

Assume that ¢ does not vanish identically in any right neighborhood of the origin.
Then we have

() = /0t¢+(r)dt >0 Vi>0.

The function

1
t — h(t) =/ Iﬁis)ds’ t € (0,1],
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is strictly decreasing. As k > 1, we can construct a function f € C" such that
Vi(L:(f)) = h(r) foreveryt > 0. (12)
Indeed, consider a function of the form
f@) =w(lxl), xeRY,

where w € C!([0, +00)) is positive and strictly decreasing. Then f € CV and
Li(f) = By, where

r(t) = w™' (1)
for every ¢ € (0,f(0)] (note that f(0) = M(f)). Hence

Vi(Li() = c (™' (0)"

where c is a positive constant depending on k and N. Hence if we choose

1\ -1
w = |:( h) :| ,
c
(12) is verified. Hence

1
dsi(f:1) = dt,

()
and
()
dsSi(f;t) = dt =
[ peasir /(O,M(m =0

In the same way we can prove that ¢_ must vanish in a right neighborhood of the
origin. We have proved the following result.

Lemma 5.1 Let ¢ € C([0,00)) and k € {1,...,N}. Then ¢ has finite integral with
respect to the measure Sy(f; ) for every f € CN if and only if ¢ verifies (11).

In the special case k = 0, as the intrinsic volume Vj, is the Euler characteristic,

1if0 <t < M(f),

“O =00t > M(p).

That is, Sy is the Dirac point mass measure concentrated at M(f) and p can be
written as

u(f)=¢M(f) Vfect
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Next we show that (10) defines a continuous and invariant valuation.

Proposition 5.2 Let k € {0,...,N} and ¢ € C([0, 00)) be such that ¢ (0) = 0. If
k > 1 assume that (11) is verified. Then (10) defines an invariant and continuous
valuation on CV.

Proof For every f € CV we define the function uy : [0, M(f)] — R as

up (1) = Vi(Li ().

As already remarked, this is a decreasing function. In particular it has bounded
variation in [, M(f)]. Let ¢;, i € N, be a sequence of functions in C*°(]0, 00)),
with compact support, converging uniformly to ¢ on compact sets. As ¢ = 0 in
[0, 8], we may assume that the same holds for every ¢;. Then we have

H(H = lim pu(f).

where
wi(f) = / $:(0dSu(fi1) Vfec.
[0,00)

By the definition of distributional derivative of a measure, we have, for every f and
for every i

[0,00) 0,00

$:()dSe(f: 1) = /[ w0 = /[0 o TR0

On the other hand, if f, g € CV are such that f v g € CV, forevery t > 0

Li(fvg =L(f)UL(g), L(fArg =L(f)NL(g). (13)

As intrinsic volumes are valuations

ViLi(f vV 8) + Vi(Li(f A 8)) = ViLi(f) + Vi(Li(8)).

Multiplying both sides times ¢/(7) and integrating on [0, co) we obtain

wi(f v g+ wi(f Ang)= wi(f) + wni(g).

Letting i — oo we deduce the valuation property for p.

In order to prove the continuity of @, we first consider the case k > 1. Let
fi.f € CN,i € N, and assume that the sequence f; is either increasing or decreasing
with respect to i, and it converges point-wise to f in RY. Note that in each case
there exists a constant M > 0 such that M(f;), M(f) < M for every i. Consider
now the sequence of functions uy. By the monotonicity of the sequence f;, and that
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of intrinsic volumes, this is a monotone sequence of decreasing functions, and it
converges a.e. to us in (0, o), by Lemmas 3.9 and 3.10. In particular the sequence
uy; has uniformly bounded total variation in [§, M]. Consequently, the sequence of
measures Si(fi;-), i € N, converges weakly to the measure Si(f;-) as i — oo.
Hence, as ¢ is continuous

lim u(f) = lim /[5 PO = /[0 |, SO = 1)

If k = 0 then we have seen that

w(f) =¢M(f) Vfect

Hence in this case continuity follows from the following fact: if fj, i € N, is a
monotone sequence in CV converging point-wise to f, then

lim M(f) = M(F).

This is a simple exercise that we leave to the reader.
Finally, the invariance of p follows directly from the invariance of intrinsic
volumes with respect to rigid motions. O

5.2 Monotone (and Continuous) Integral Valuations

In this section we introduce a slightly different type of integral valuations, which
will be needed to characterize all possible continuous and monotone valuations on
CV. Note that, as it will be clear in the sequel, when the involved functions are
smooth enough, the two types can be reduced one to another by an integration by
parts.

Letk € {0,...,N} and let v be a Radon measure on (0, +00); assume that

+o00
/ Vi(Li(f)dv(r) < 400, VfeCV. (14)
0

We will return later on explicit condition on v such that (14) holds. Then define the
functional u : C¥ — R by

+o00
() = /0 VL ()dv(t) Vfec. (15)

Proposition 5.3 Let v be a Radon measure on (0,00) which verifies (14); then
the functional defined by (15) is a rigid motion invariant and monotone increasing
valuation.
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Proof The proof that p is a valuation follows from (13) and the valuation property
for intrinsic volumes, as in the proof of Proposition 5.2. The same can be done for
invariance. As for monotonicity, note that if f, g € CV and f < g, then

Li(f) CL(g) Yi>0.

Therefore, as intrinsic volumes are monotone, Vi(L:(f)) < Vk(L/(g)) for every
t>0. O

If we do not impose any further assumption the valuation p needs not to be
continuous. Indeed, for example, if we fix r = #, > 0 and let v = §,, be the delta
Dirac measure at fy; then the valuation

1(f) = V(Lo (), Vf € CV,

is not continuous. To see it, let f = fylp, (recall that By is the unit ball of RY) and
let

1
ﬁ:l‘o(l—.)lgl VieN.
l

Then f; is a monotone sequence of elements of CV converging point wise to f in RV,
On the other hand

p(f) =0 VieN,

while u(f) = Vy(B1) > 0. The next results asserts that the presence of atoms is
the only possible cause of discontinuity for ©. We recall that a measure v defined
on [0, co) is said non-atomic if v({z}) = O for every t > 0.

Proposition 5.4 Let v be a Radon measure on (0, 4+00) such that (14) holds and
let | be the valuation defined by (14). Then the two following conditions are
equivalent:

i) v is non-atomic,
ii) | is continuous.

Proof Suppose that i) does not hold, than there exists #y such that v({tp}) = o > 0.
Define ¢ : Ry — R by

mozlgdww

@ is an increasing function with a jump discontinuity at #, of amplitude «. Now let
f =tlp andf; = to(1 — })IBI, for i € N. Then f; is an increasing sequence in CV,
converging point-wise to f in R". On the other hand

Mﬁafwwwmzwwmmmzwmmm
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and similarly
1
p(fi) = Vi(B1) ¢ | to — aE
Consequently
im pw(f)) < ().
i—+00

Vice versa, suppose that i) holds. We observe that, as v is non-atomic, every
countable subset has measure zero with respect to v. Let f; € CV, i € N, be a
sequence such that either f; /' f orf; ,/ f as i — =400, point-wise in RV, for some
feCVN. Set

ui(t) = ViLi(fi),  u(®) = Vi(L(f)) Vi=0, VkeN.

The sequence u; is monotone and, by Lemmas 3.9 and 3.10, converges to u v-
a.e. Hence, by the continuity of intrinsic volumes and the monotone convergence
theorem, we obtain

lim pu(f;) = lim / u;(t) dv :/
i—>00 i—00 (0,00) )

( )M(t) dv(t) = p(f).
O

Now we are going to find a more explicit form of condition (14). We need the
following lemma.

Lemma 5.5 Let ¢ : [0, +00) — R be an increasing, non negative and continuous
Sfunction with ¢ (0) = 0 and ¢(t) > 0, for all t > 0. Let v be a Radon measure such
that ¢ (1) = v([0,1]), for allt > 0. Then

1
1
dv(t) = +oo, Yk > 1.
/0 Pk (1)
Proof Fix a € [0, 1]. The function ¥ : [«, 1] — R defined by

k11¢“wgﬁk>L
v =9

In(¢ (7)) ifk=1,
is continuous and with bounded variation in [«, 1]. Its distributional derivative is

1
¢ "
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Hence, for k > 1,

1 1—k 1—k _ _ _ dv
e e =y v = [

The claim of the lemma follows letting « — 0. A similar argument can be applied
to the case k = 1. O

Proposition 5.6 Let v be a non-atomic Radon measure on [0, +00) and let k €
{1,...,N}. Then (14) holds if and only if:

38§ > 0 such that v(]0, §]) = 0. (16)

Proof We suppose that there exists § > 0 such that [0, §] N supp(v) = @. Then we
have, for every f € CV,

M(f) M(f)
u(f) = /5 VL)1) < VilLs(f) /5 v (1) (17)

= VilLs (/) ([0, M(H)]) — v([0.8]) < +o0. (18)

with M(f) = maxgw f.
Vice versa, assume that (14) holds. By contradiction, we suppose that for all
8 > 0, we have v(]0,8]) > 0. We define

¢ =v([0.1)), 1€]0,1]

then ¢ is continuous (as v is non-atomic) and increasing; moreover ¢(0) = 0 and
¢(t) > 0, for all r > 0. The function

v (1) 1€ (0.1],

1
()’

is continuous and strictly decreasing. Its inverse ¥~ is defined in [y(1), 00); we
extend it to [0, ¥ (1)) setting

v ' =1 Vrel0,y(l).
Then
(), Ve (0,1]
Vire[0,400): v i(r) = 1) =
0 Vi>1.

We define now the functionf : RY — Ras

f@ =y (k). VxeRY.
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Then
L(f) = txeR: y(ld) =1 =B 4 (0),

and

Vi(Li(f) = Ve (0.1],

1
© k)
where ¢ > 0 depends on N and k. Hence, by Lemma 5.5

O du(r)

+00 !
/0 Vi(L())dv(0) = /0 Vk<Lr<f>)d”<f)26/0 #w -

O
The following proposition summarizes some of the results we have found so far.

Proposition 5.7 Letk € {0,...,N} and let v be a Radon measure on [0, c0) which
is non-atomic and, if k > 1, verifies condition (16). Then the map u : C¥ — R
defined by (15) is an invariant, continuous and increasing valuations.

5.3 The Connection Between the Two Types of Integral
Valuations

When the regularity of the involved functions permits, the two types of integral
valuations that we have seen can be obtained one from each other by a simple
integration by parts.

Letk € {0,...,N} and ¢ € C'(]0, o)) be such that ¢(0) = 0. For simplicity,
we may assume also that ¢ has compact support. Let f € CV. By the definition of
distributional derivative of an increasing function we have:

(1) dSu(f1) = /[0 SO

[0,00)

If we further decompose —¢’ as the difference of two non-negative functions, and
we denote by v; and v, the Radon measures having those functions as densities, we
get

/ (1) dSu(F:1) = / VeL(N)dvi (1) — / Ve () dva(o).
[0,00) [0,00) [0,00)

The assumption that ¢ has compact support can be removed by a standard
approximation argument. In his way we have seen that each valuation of the
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form (10), if ¢ is regular, is the difference of two monotone integral valuations
of type (15).

Vice versa, let v be a Radon measure (with support contained in [§, 00), for
some § > 0), and assume that it has a smooth density with respect to the Lebesgue
measure:

dv(t) = ¢'(t)dt

where ¢ € C!(][0, 0)), and it has compact support. Then

/ VL) dv(t) = / (1) dSc(f:1).
[0.00) [0.00)

Also in this case the assumption that the support of v is compact can be removed.
In other words each integral monotone valuation, with sufficiently smooth density,
can be written in the form (10).

5.4 The Casek =N

If w is a valuation of the form (10) and k = N, the Layer Cake principle provides
and alternative simple representation.

Proposition 5.8 Ler ¢ be a continuous function on [0, 0o) verifying (16). Then for
every f € CN we have

s dsv(rin = [ ot (19)

[0,00)

Proof As ¢ can be written as the difference of two non-negative continuous
function, and (19) is linear with respect to ¢, there is no restriction if we assume
that ¢ > 0. In addition we suppose initially that ¢ € C'([0, o0)) and it has compact
support. Fix f € CV; by the definition of distributional derivative, we have

(1) dSn(f:1) = /[0 VLA 0

[0,00)

There exists ¢, ¢ € C'([0, 00)), strictly increasing, such that ¢ = ¢ — ¢». Now:
/ Vn(L()¢1()dt = / Vv({x € RY © ¢1(f(x) = s}ds = / $1(f(x))dx,
[0,00) [0,00) RN

where in the last equality we have used the Layer Cake principle. Applying the
same argument to ¢, we obtain (19) when ¢ is smooth and compactly supported.



94 A. Colesanti and N. Lombardi

For the general case, we apply the result obtained in the previous part of the proof
to a sequence ¢;, i € N, of functions in C'([0, 00)), with compact support, which
converges uniformly to ¢ on compact subsets of (0, c0). The conclusion follows
from a direct application of the dominated convergence theorem. O

6 Simple Valuations

Throughout this section 4 will be an invariant and continuous valuation on CV. We
will also assume that w is simple.

Definition 6.1 A valuation i on CV is said to be simple if, for every f € CV with
dim(supp(f)) < N, we have u(f) = 0.

Note that dim(supp(f)) < N implies that f = 0 a.e. in R", hence each valuation
of the form (19) is simple. We are going to prove that in fact the converse of this
statement is true.

Fix ¢ > 0 and define a real-valued function o, on KV U {@&} as

oK) = pn(tly) VKe kY, o/(2)=0.
LetK,L € KN be such that K U L € KN, As, trivially,

tix Vtl; = tlxy, and  tlx A tlp = tknyL,
using the valuation property of © we infer

0/(KUL)+0,(KNL) = 0i(K) + 0y(L),
i.e. 0; is a valuation on /CV. It also inherits directly two properties of 4 it is invariant
and simple. Then, by the continuity of u, Corollary 2.7 and the subsequent remark,
there exists a constant ¢ such that
0y(K) = cVy(K) (20)

for every K € KCN. The constant ¢ will in general depend on ¢, i.e. it is a real-valued
function defined in [0, c0). We denote this function by ¢y. Note that, as u(f) = 0

for f = 0, ¢n(0) = 0. Moreover, the continuity of  implies that for every 7o > 0
and for every monotone sequence f;, i € N, converging to fy, we have

dn(to) = lim g (t).

From this it follows that ¢y is continuous in [0, 00).
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Proposition 6.2 Let ju be an invariant, continuous and simple valuation on CV.
Then there exists a continuous function ¢y on [0, 00), such that

w(tlg) = ¢n(t) Vy(K)

for every t > 0 and for every K € KV,

6.1 Simple Functions

Definition 6.3 A function f : RY — R is called simple if it can be written in the
form

f=tlk, V- Viulg, (21)
where0 <t <---<t,and Ky, ..., K, are convex bodies such that
KiDK; D+ DKy

The proof of the following fact is straightforward.

Proposition 6.4 Let f be a simple function of the form (21) and let t > 0. Then

K; ift € (ti—1,t;] for somei=1,...m,
L(f)={xeR" : flx) =1} =
D ift > ty,
(22)
where we have set ty = 0.

In particular simple functions are quasi-concave. Let k € {0, ..., N}, and let f be
of the form (21). Consider the function

t = u(t) .= Vi(L(f)), t>0.

By Proposition 6.4, this is a decreasing function that is constant on each interval of
the form (#;—1, t;], on which it has the value V,(K;). Hence its distributional derivative
is —Si(f:-), where

m—1

Sk(f3) = Y (Vi(K) = Ve(Ki1) 8, () + Vi (K8, (). (23)

i=1
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6.2 Characterization of Simple Valuations

In this section we are going to prove Theorem 1.2. We will first prove it for simple
functions and then pass to the general case by approximation.

Lemma 6.5 Let  be an invariant, continuous and simple valuation on CV, and let
¢ = P be the function whose existence is established in Proposition 6.2. Then, for
every simple function f € CN we have

() = /[0 O dS

Proof Let f be of the form (21). We prove the following formula

m—1

w(f) =Y ) (Vw(K) = Viv(Kit1) + ¢ tn) Vir(Kp): (24)

i=1

by (23), this is equivalent to the statement of the lemma. Equality (24) will be proved
by induction on m. For m = 1 its validity follows from Proposition 6.2. Assume that
it has been proved up to (m — 1). Set

g=tlg, V- Vitylg, ,, h=tylg,.
We have that g, h € CV and
gvh=feC", gAnh=t,1l,.
Using the valuation property of & and Proposition 6.2 we get

w(f) = u(g Vv h) = pu(g) + n(h) — p(g Ah)
= M(g) + ¢(tm)VN(Km) - ¢(tm—l)VN(Km)-

On the other hand, by induction

m—2

u(g) = Z¢(fi)(VN(Ki) = Vn(Kit1) + ¢ (tm—1) VN (Kin—1)-

i=1
The last two equalities complete the proof. O

Proof of Theorem 1.2 As before, ¢ = ¢y is the function coming from Proposi-
tion 6.2. We want to prove that

() = /[0 RICENEY 25)
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for every f € CV. This, together with Proposition 5.8, provides the proof.

Step 1.  Our first step is to establish the validity of this formula when the support
of f bounded, i.e. there exists some convex body K such that

L(f)CK Vt>0. (26)
Given f € CV with this property, we build a monotone sequence of simple

functions, f;, i € N, converging point-wise to f in RV. Let M = M(f) be the
maximum of f on RY. Fix i € N. We consider the dyadic partition P; of [0, M]:

M
=3t =J _.
P, {, jzl

:j:0,...,2i}.

Set
2!
K =L/(f. fi=\ 1l
Jj=1

Jfi is a simple function; as 7;lx; < f for every j we have that f; < f in RM. The
sequence of function f; is increasing, since P; C Piy;. The inequality f; < f
implies that

lim fi(x) <f(x) YxeR

1—> 00

(in particular the support of f; is contained in K, for every i € N). We want to
establish the reverse inequality. Let x € RY; if f(x) = 0 then trivially

filx) =0 Vi hence E}m f[i(x) = f(x).

Assume that f(x) > 0 and fix € > 0. Let ip € N be such that 270M < e. Let
je{l,...,20 — 1} be such that

M M
709 € (i 3 G4 1|
Then

fo <M

M .
gip T gig Sfo(®) +€ = im fi(x) +e.

Hence the sequence f; converges point-wise to f in R"Y. In particular, by the
continuity of i we have that

wp = fim () = Jim [ gwasitsin
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By Lemma 3.9, a further consequence is that
lim u;(f) = u(r) fora.e.t e (0,00),
1—> 00

where

ui(t) = Vy(Li(f)). i €N, u(t) = Vn(L(f))

for t > 0. We consider now the sequence of measures Sy(f;;+), i € N; the total
variation of these measures in (0, 0o) is uniformly bounded by Vy(K), moreover
they are all supported in (0, M). As they are the distributional derivatives of
the functions u;, which converges a.e. to u, we have that (see for instance
[1, Proposition 3.13]) the sequence Sy(f;;-) converges weakly in the sense of
measures to Sy(f; ). This implies that

lim o (1) dSn(fis1) = /(0 )q?a) dSn(f;1) 27)

i—>00 (0,00)

for every function ¢ continuous in (0, c0), such that ¢(0) = 0 and ¢(7) is
identically zero for 7 sufficiently large. In particular (recalling that ¢ (0) = 0), we
can take ¢ such that it equals ¢ in [0, M]. Hence, as the support of the measures
Sy (fi; ) is contained in this interval, we have that (27) holds for ¢ as well. This
proves the validity of (25) for functions with bounded support.

Step 2. This is the most technical part of the proof. The main scope here is to

prove that ¢ is identically zero in some right neighborhood of the origin. Let
feCN.ForieN,let

Ji=fnM()g)

where B; is the closed ball centered at the origin, with radius i. The function f;
coincides with f in B; and vanishes in RV \ B;; in particular it has bounded support.
Moreover, the sequence f;, i € N, is increasing and converges point-wise to f in
RY. Hence

M(f)=igrgou(ﬁ)=igrgo o )¢(t)dSN(fi;t)-

Let ¢+ and ¢_ be the positive and negative parts of ¢, respectively. We have that

lim [ /( oo ¢+ () dSn(fist) + /( oo ¢ (1) dSn(fi: t)}

i—00

exists and it is finite. We want to prove that this implies that ¢ and ¢_ vanishes
identically in [0, §] for some § > 0.
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By contradiction, assume that this is not true for ¢4. Then there exists three
sequences t;, r; and €;, i € N, with the following properties: #; tends decreasing to
zero; r; > 0 is such that the intervals C; = [t; — r;, t; + r;] are contained in (0, 1]
and pairwise disjoint; ¢4 (f) > €; > 0 fort € C;. Let

c=Ja. a=01\cC
ieN

Next we define a function y : (0, 1] — [0, 00) as follows. y(f) = 0 for every
t € Q while, for every i € N, y is continuous in C; and

1
y(t;£r) =0, / y(@dt = .
Ci €;

Note in particular that y vanishes on the support of ¢_ intersected with (0, 1].
We also set

g =y®O+1 V>0
Observe that
1 1
/ o—(Hg(H)dt = / ¢_(t)dt < 0.
0 0

On the other hand

1 1 ()
/0 ¢+ (Dg(0)dt > /0 ¢(r)y<r>dr=; /C Gy

o0
> Ze,-/ y(t)dt = +o0.
i=1 i

Let

1
G(r) = / g(s)ds and p(t) = [GO]N, 0<t<1.

As y is non-negative, g is strictly positive, and continuous in (0, 1). Hence G is
strictly decreasing and continuous, and the same holds for p. Let

S=supp = lim p(7),
.1] =0t

and let p~! : [0,S5) — R be the inverse function of p. If S < oo, we extend p~!
to be zero in [S, 00). In this way, p~! is continuous in [0, 00), and C' ([0, S)). Let

f@=p"'(Ixl). VxeR".
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For ¢t > 0 we have

reRY x|l < p(n)}ifr < 1,

LN =14 ifr>1.

In particular f € CV. Consequently,
Vw(Li(f) = cp"() = cG(n) Ve (0.1],

where ¢ > 0 is a dimensional constant, and then

dSn(fi1) = cg(n)dr.

By the previous considerations

¢+ (DdSn(f. ) =c b+ (D)g(dr = oo, ¢+ (dSn(f.1) < 0.
[0.00) [0.00) [0.00)

Clearly we also have that

6 0aSu(r0 = Jim [ 90500,

[0,00)

and the same holds for ¢_; here f; is the sequence approximating f defined before.
We reached a contradiction.

Step 3.  The conclusion of the proof proceeds as follows. Let i : CV¥ — R be
defined by

ﬂm=A)Mwwmy

By the previous step, and by the results of Sect. 5.1, this is well defined, and is
an invariant and continuous valuation. Hence the same properties are shared by
W — ; on the other hand, by Step 1 and the definition of i, this vanishes on
functions with bounded support. As for any element f of CV there is a monotone
sequence of functions in CV, with bounded support and converging point-wise to
finRY, and as u — f1 is continuous, it must be identically zero on CV.

O

7 Proof of Theorem 1.1

We proceed by induction on N. For the first step of induction, let u be an invariant
and continuous valuation on C!. For ¢t > 0 let

bo(t) = p(tloy).
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This is a continuous function in R, with ¢o(0) = 0. We consider the application
Mo - C' - R:

po(f) = ¢o(M(f))

where as usual M(f) = maxgrf. By what we have seen in Sect.5.1, this is an
invariant and continuous valuation. Note that it can be written in the form

no(f) = /( R

Next we set i = 4 — o; this is still an invariant and continuous valuation, and it
is also simple. Indeed, if f € C! is such that dim(supp(f)) = 0, this is equivalent to
say that

f=tlyyy

for some ¢ > 0 and xy € R. Hence

p(f) = i) = ¢o(r) = po(f).

Therefore we may apply Theorem 1.2 to ©; and deduce that there exists a function
¢1 € C([0, 00)), which vanishes identically in [0, §] for some § > 0, and such that

ﬁ(f)=/(0 Gwasio vrec!

The proof in the one-dimensional case is complete.

We suppose that the Theorem holds up to dimension (N — 1). Let H be an
hyperplane of RY and define C&} = {f € CV : supp(f) € H}. Cy can be
identified with CV~!; moreover p restricted to Cg is trivially still an invariant and
continuous valuation. By the induction assumption, there exists ¢ € C(]0, 00)),
k=0,...,N— 1, such that

N—1
k=Y [ wwdsin vrecy,
k=0 v (0,00)

In addition, there exists § > 0 such that ¢, ..., ¢y—; vanishin [0,8]. Let i : CV —
Ras

N—1
i = dS,(f:1).
i) ; /( A0S
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This is well defined for f € CV and it is an invariant and continuous valuation. The
difference u — fi is simple; applying Theorem 1.2 to it, as in the one-dimensional
case, we complete the proof. O

8 Monotone Valuations

In this section we will prove Theorem 1.3; in particular we will assume that p is
an invariant, continuous and increasing valuation on CV throughout. Note that, as
w(fo) = 0, where f; is the function identically zero in RY, we have that w(f) > 0
for every f € CV.

The proof is divided into three parts.

8.1 Identification of the Measures vy, k =0,...,N

We proceed as in the proof of Proposition 6.2. Fix t > 0 and consider the application
o, KN > R:

oK) = n(tly), KeKkV.
This is a rigid motion invariant valuation on KV and, as p is increasing, o, has the

same property. Hence there exists (VN 4 1) coefficients, depending on ¢, that we
denote by ¥ (7), k =0, ..., N, such that

N
or(K) =Y _Y(Vi(K) VK ek (28)

k=0
We prove that each v is continuous and monotone in (0, co). Let us fix the index

k € {0,...,N}, and let A; be a closed k-dimensional ball in RV, of radius 1. We
have

Vi(Ay) =0 Vj=k+1,...,N,
and
Vi(Ar) =: c(k) > 0.
Fix r > 0; for every j, V; is positively homogeneous of order j, hence, for > 0,

k
witla) = Y PV A Y0).

J=0
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Consequently

Y1) = Vi(Ay) - lim M(t}{,:Ak)-

By the properties of u, the function ¢+ — j(#l,5,) is non-negative, increasing and
vanishes for ¢ = 0, for every r > 0; these properties are inherited by .

As for continuity, we proceed in a similar way. To prove that v is continuous
we observe that the function

t = wu(tho) = Yo(t)

is continuous, by the continuity of jt. Assume that we have proved that ¥, . .., Y
are continuous. Then by the equality

k
w(tly) = ZVJ-(Aij(l),

Jj=1
it follows that v is continuous.

Proposition 8.1 Let u be an invariant, continuous and increasing valuation on CV.
Then there exists (N + 1) functions ¥y, ..., Vn defined in [0, 00), such that (28)
holds for every t > 0 and for every K. In particular each V. is continuous,
increasing, and vanishes att = 0.

For every k € {0,..., N} we denote by v the distributional derivative of . In
particular as vy is continuous, vy is non-atomic and

Yie(t) = vie([0,8)), VYi=>0.

Since vy are non-negative functions, by Theorem 2.6, then v; are non-negative
measures.

8.2 The Case of Simple Functions

Let f be a simple function:
f=tlk, V- Vi,

with0 < <+ <ty K; D+ D K,and K; € KN for every i. The following
formula can be proved with the same method used for (24)

N m
w(F) =Y (W) = Ylti)) ValLyy () (29)

k=0 i=1
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where we have set tp = 0. As

V() — Yi(tim1) = vi((tim1, 1:])

and L;(f) = K; forevery t € (¢;,—1, t;], we have

N
k=Y [ v ano. (30)
k=0 v [0.00)

In other words, we have proved the theorem for simple functions.

8.3 Proof of Theorem 1.3

Letf € CV and let fi» i € N, be the sequence of functions built in the proof of
Theorem 1.2, Step 2. We have seen that f; is increasing and converges point-wise to
fin RV In particular, for every k = 0, ..., N, the sequence of functions Vi (L;(f})),
t > 0,i € N, is monotone increasing and it converges a.e. to Vi(L;(f)) in [0, co).
By the B. Levi theorem, we have that

lim Vi(Li(fi) dvi(1) = /[O )Vk(Lt(f)) dvi (1)

i—>00 [0,00)

for every k. Using (30) and the continuity of u we have that the representation
formula (30) can be extended to every f € CV.

Note that in (21) each term of the sum in the right hand-side is non-negative,
hence we have that

/ VeL(f) dut) < 00 Vf € CV.
[0,00)

Applying Proposition 5.6 we obtain that, if k > 1, there exists § > 0 such that the
support of vy is contained in [§, 0c0). The proof is complete. |
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An Inequality for Moments of Log-Concave
Functions on Gaussian Random Vectors

Nikos Dafnis and Grigoris Paouris

Abstract We prove sharp moment inequalities for log-concave and log-convex
functions, on Gaussian random vectors. As an application we take a reverse form
of the classical logarithmic Sobolev inequality, in the case where the function is
log-concave.

1 Introduction and Main Results

A function f : Rk — [0, 4+00) is called log-concave (on its support), if and only if

£ =)x+ Ay) = FO)TMF(0)h,

for every A € [0, 1] and x,y € supp(f). Respectively, f is called log-convex (on its
support), if and only if

£ =)x+ Ay) < fOU (",

for every A € [0, 1] and x,y € supp(f). The aim of this note is to present a sharp
inequality for Gaussian moments of log-concave and log-convex functions, stated
below as Theorem 1.1.

We work on R¥, equipped with the standard scalar product (-, -). We denote by |- |
the corresponding Euclidean norm and the absolute value of a real number. We use
the notation X ~ N(§, T), if X is a Gaussian random vector in R¥, with expectation
£ € R* and covariance the k x k positive semi-definite matrix 7. We say that X is
a standard Gaussian random vector if it is centered (i.e. EX = 0) with covariance
matrix the identity in R*, where in that case i stands for its distribution law. Finally,
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LP5(yx) stand for the class of all functions f € LP(yx) whose partial derivatives up

to order s, are also in L (y;).

Theorem 1.1 Let k € N and X be a Gaussian random vector in R¥. Let f : R¥ —
[0, +00) be alog-concave and g : R* — [0, +00) be alog-convex function. Then,

(i) foreveryr e [0,1]

Ef (v/rX) = (Bf(X)")r and Eg(/rX) < (Eg(X)")" (1)

(ii) foreveryq € [1,+00)

1 1
Ef(vaX) = Bf (X)) and Eg(/gX) = (EgX))s . )
In any case, equality holds if r = 1 = q or if f(x) = g(x) = e~®9F¢ where a € R¥
andc € R.

We prove Theorem 1.1 in Sect. 2, where we combine techniques from [7] along
with Barthe’s inequality [2].

The entropy of a function f : R¥ — R, with respect to a random vector X in R¥,
is defined to be

Entx (f) := E[f(X)[log|f(X)| — E|f(X)| log E[f(X)],

provided all the expectations exist. Note that (for f > 0)

Enix (/) = ;q[(Ef(X)q)‘l’}

g=1
and so, Theorem 1.1 implies the following entropy inequality:
Corollary 1.2 Letf : RY — [0, +-00) and X be a Gaussian random vector in R¥.

(i) Iff is log-concave, then

Enty(f) > ;w, VI (X)). 3)

(ii) Iff is log-convex, then

Enty(f) < ;w, VI (X)). “

In any case, equality holds if f (x) = exp ((a, x) + c), aeRKceR

1

Proof Letm(q) := (IEf(X)‘f) ¢ and h(q) := Ef(,/gX). Then we have

m(1) = Ef(X) = h(1), m'(1) = Entx(f) and /(1) = ;E(X, VX)),
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and Theorem 1.1 implies the desired result. O

The logarithmic Sobolev inequality, proved by Gross in [10], states that if X ~
N(0, I}), then

Enty(f%) < 2E|VF(X)]?, )

for every function f € L?(y;). Moreover, Carlen showed in [6], that equality holds
if and only if f is an exponential function. For more details about the logarithmic
Sobolev inequality we refer the reader to [4, 14, 19, 20] and to the references therein.

In Sect.3, we show that Corollary 1.2, after an application of the Gaussian
integration by parts formula (see Lemma 3.1), leads to the following reverse form
of Gross’ inequality, when the function is log concave:

Theorem 1.3 Let X be a standard Gaussian random vector in R* and f = e €
L2 (), be a positive log-concave function (on its support). Then

2E|VF(X)|> — Ef(X)*Av(X) < Entx(f?). (©6)

Theorem 1.3, ensures that if a log-concave function f = e™" is close to be an
exponential, in the sense that Ef(X)?>Av(X) is small, then the logarithmic Sobolev
inequality for f is close to be sharp.

For more properties and stability results on the logarithmic-Sobolev inequalities
we refer to the papers [8, 9, 11] and the references therein.

2 Proof of the Main Result

The first ingredient of the proof of Theorem 1.1, is the following inequality for
Gaussian random vectors, proved in [7]. We recall that for two square matrices A
and B, we say that A < B if and only if B — A is positive semi-definite.

Theorem 2.1 Let m,ny,...,n, € Nand set N = ZT:I n;. Foreveryi=1,...,m,
let X; be a Gaussian random vector in R™, such that X = (X1,...,X,) is a
Gaussian random vector in RN with covariance the N x N matrix T = Ty <ij<ms
where Tj; is the covariance n; X n; matrix between X; and X;, 1 < i,j <
m. Let p1,...,pm € R and consider the N x N block diagonal matrix P =
diag(p1T11, - . ., pmTmm). Then, for any set of nonnegative measurable functions f;
onRY i=1,...,m,

(i) if T <P, then

m 1

B[ Tacw < [ (Brcor)”. @

i=1 i=1
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(i) if T = P, then

B[ 1r00 = [ (o). ®)
i=1

i=1

Theorem 2.1 generalizes many fundamental results in analysis, such as Holder
inequality and its reverse, Young inequality with the best constant and its reverse
[3] and [5], and Nelson’s Gaussian Hypercontractivity and its reverse [17] and [15].
Actually, the first part of Theorem 2.1 is another formulation of the Brascamp-Lieb
inequality [5, 13], while the second part provides a reverse form.

Moreover, (8) implies (see [7]) F. Barthe’s reverse Brascamp-Lieb inequality [2],
which the second main tool in our the proof of Theorem 1.1. For more extensions
of Brascamp-Lieb inequality and similar results see [12] and [16].

For our purposes, we need the so-called geometric form (see [1]) of Barthe’s
theorem.

Theorem 2.2 Let n,m,ny,...,n, € Nwithn; < nforeveryi =1,...,m. Let U;
be a n; x n matrix with U;UF =1, fori =1,...,mand ci, ..., cy be positive real
numbers such that

Zm:C,' U,'*Ui = In.
i=1

Leth : R" — [0,4+00) and f; : R% — [0,400), i = 1,...,m, be measurable
functions such that

N m
h (Z ciUi*gi) > l_[fi@i)ci VE e R, )
i=1 i=1

i=1,...,m Then

[ rane =T1( [, swan) (10)

2.1 Decomposing the ldentity

We will apply Theorem 2.1 in the special case where the covariance is the kn x
kn matrix T = ([Tij])i\j<n’ with T; = Iy and Ty = I, if i # j, for some ¢ €
[— ! 1]. Equivalently, in that case X := (X1, ..., X,) ~ N(0,T), where X1, --- ., X,

n—1"
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are standard Gaussian random vectors in R¥, such that

Ly,i=j

0t (11)

E(XiX,'*) =

For any ¢ € [0, 1], a natural way to construct such random vectors is to consider
n independent copies Zy, ..., Z,, of aZ ~ N(0, I;) and set

Xi:=VtZ+N1—-tZ:, i=1,...,n.

However, we are going to use a more geometric approach. First we will deal with
the 1-dimensional case and then, by using a tensorization argument, we will pass to
the general k-dimensional case, for any k € N. We begin with the definition of the
SR-simplex.

Definition 2.3 We say that S = conv{vy,...,v,} € R"!is the spherico-regular
simplex (in short SR-simplex) in R*™!, if v{,..., v, are unit vectors in R"~! with
the following two properties:

(SR1) (vi,v;) =— "' ,foranyi#j,

(SR2) >, v;=0.

Using the vertices of the SR-simplex in R"™!, we create n vectors in R" with the
same angle between them. This is done in the next lemma.

Lemma 2.4 Letn > 2 and vy,...,V, be the vertices of any RS-Simplex in R"!,
Foreveryt € [— nll , 1], let uy, . .., u, be the unit vectors in R" with
th—1)+1 —1
u; = u(t) = \/ =1 e, + \/n (1=1 vi, (12)
n n
i=1,...,n Then we have that
(i, uj) =1, Vi#j. (13)
Moreover,

(i) ift €[0,1], then

n n—1
1 * nt *
ur + e = I, 14
t(n—1)+12””’ z(n—1)+1];ef€f (14)

i=1

(i) ift € [=,',,0], then

—nt
L Zu,ul* + | ntene: =1, (15)
i=1
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Proof A direct computation, using the properties (SR1), (SR2) and the fact that

n
n—1 "
E Vivi = Ip—1,
n ;
i=1

shows that (13)—(15) holds true. O

Remark 2.5 £ Z ~ N(0,1,), then X; := (u;,Z),i = 1,...,n, are standard Gaussian
random variables, satisfying the condition (11) in the 1-dimensional case.

For the general case we first recall the definition of the fensor product of two
matrices:

Definition 2.6 For any matrices A € R™" and B € R, their tensor product is
defined to be the km x £n matrix

ClllB CllnB
A®B = :

amB - a,B

Every vector a € R” is considered to be a n x 1 column matrix and with this
notation, we state some basic properties for the tensor product, that we will use.

Lemma 2.7 [. Leta = (ay,...,a,)* € R"andb = (by,...,b,)* € R". Then

arby --- aib,
a®b* =ab™ = e R™",

auby -+ aub,
and as a linear transformation, a ® b* = ab* : R" — R™ with
(a®b*)(x) = (ab*)(x) = (x,b)a, xeR".

2. Let A; € R™" and B € R™!. Then (),A;)) ® B=)_;A; ® B.
3. Let Ay € R™", By € R and A, € R, B, € RY. Then

(A ® B)) (A2 ® By) = (A1A2) ® (B1B») € Rkmxrs
4. For any matrices A and B,

(A®B)* =A* ® B*.
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For our k-dimensional construction, we consider the k£ x kn matrices

U, .= Ltl* QI = ([Millk] [Mm[k]), (16)

Ei=ef @l = ([enh] -+ [enhi]): 17
fori = 1...,n. Note that
UrU; = (uf @ I)*(uf @ I) = uu] Q I
and
EE; = (ef ® [)*(e] ® Ik) = eje; ® Iy,

for every i,j = 1,...,n. Thus by taking the tensor product with I, in both sides
of (14), we get that

n n—1
1 nt

Y UUi+ Y E'E =L, (18)
P S =

for every t € [0, 1], where p := (n — 1)t + 1. Moreover, we can now construct the
general case describing in (11). We summarize in the next lemma.

Lemma 2.8 Suppose that Z,, . ..,Z, are iid standard Gaussian random vectors in
RF and set Z. := Zi,....Z,) ~ N(0, Iy,). Consider the random vectors

Xi:=UZ=Y_ tiZa. i=1,....n, (19)
a=1
where U;, i = 1,...,n, are the matrices defined in (16). Then X; is a standard
Gaussian random vector in R, foreveryi=1,...,nand
Elx ®x7] = (EXXd) | = (80) _ =1 (20)

foreveryi # j.
Proof Clearly, EX; = 0, foreveryi,j = 1,...,n, and since

E[Za &® ZZ] = (E[ZarZM])r,[<k = Saﬂlk
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T )

= Z Z UigUjp E [Zarzbl]

a=1 b=1

we have that

= Z UiaUjq E [ZarZal]
a=1

n
= E uia“jagrl
a=1

= (I/li, I/lj) 8,»[.

The proof is complete, since |u;| = 1 for all i’s and by (13) (u;, u;) = ¢ for all i # j.
O

2.2 Proof of Theorem 1.1
The next proposition is the main ingredient for the proof of Theorem 1.1.

Proposition 2.9 Lett € [0,1], k,n € N, p = t(n—1)+ 1, X be a standard Gaussian
random vector in R¥ and X, --- , X,, be copies of X such that

E[X ®X] = (BN Xd) =t Vi#j

Then, for any log-concave (on its support) function f : R — [0, 4+-00), we have that
n 1
E (l_[ﬂxi)) < (Ef(X)ﬁ)” <Ef ( ZX ) @1
i=1
Note that, the log-concavity of f implies that

(Hf(x,-)) <f (}11 Zx,-) ,
i=1 i=1

where equality is achieved for the exponential function f(x) = e{®9%+¢ a € R¥ and
celR.
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Proof of Proposition 2.9 In order to prove the left-hand side inequality in (21), we
will apply Theorem 2.1. Note that the assumption of log-concavity will not be used.
The left-hand side inequality in (21) holds true for any non-negative measurable
function f.

To be more precise, let X, ..., X, be standard Gaussian random vectors in R¥
satisfying condition (20) and 7 € [— nil, 1]. Then, X := (X1, ..., X,), is a centered
Gaussian vector in R¥ with covariance the kn x kn matrix T = (T;); j<n, With block
entries the k x k matrices T;; = Iy and Tj; = tl}, for i # j. Setting

pi=m—-Dt+1 and ¢g:=1-1,

it’s not hard to check that, for any ¢ € [0.1], p is the biggest and ¢ is the smallest
singular value of T, while for any ¢ € [— nll , 0], ¢ is the biggest and p is the smallest
singular value of 7. Thus,

(i) if £ > 0, then

Glin =T = plin,
(i) if r <0, then

Plin =T < gl

In the above situation, Theorem 2.1 reads as follows:

Theorem 2.10 Letk,n € N, t € [— nll ,1]andlet Xy, ..., X, be standard Gaussian
random vectors in R, with E[Xi®Xj*] = th, foralli # j. Setp := (n—1)t+1,q :=
1 — t, and then for every measurable functions f; : Rf — [0,+00),i=1,...,n

(i) ift € [0, 1], then

n

[T(ercor)” < BT s < [ (ercor)”. (22)
i=1

i=1 i=1

(i) ift € [=,',,0], then

[T(ercer)” < e[ Troo =[] (Bro0r) . @3)
i=1

i=1 i=1

Now, the left-hand side inequality of (21) follows immediately from (22), by
taking f; = f/" foreveryi = 1,...,n.

In order to prove the right-hand side inequality of (21) we apply Barthe’s
theorem, using the decomposition of the identity in (18). In the following lemma
we gather some technical facts.
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Lemma 2.11 Let U;and E;, i = 1,...,nthe matrices defined in (16) and (17), and
setp=m—1t+1,q=1—t Then

—1
U;k:\/pen®1k—‘r\/n qV,'®Ik E]Rank.
n n

UiU;< = (I/li, Mj)[k

foreveryi <nandj <n-—1.

Proof The first and the second assertion can be verified, just by using the definitions.
For the third one, we have

UES = (uf @ I)(ef ® )"

n—1
= <\/Z€,T®Ik+\/ . qV;k@Ik) (ej ® I)

n—1
= \/2 (e ®I)(e; ® L) + \/ ) q(v; @ I)(¢; ® I)
—1
=\/pe:ej®lk+\/n qV;kEj@Ik
n n

n—1
= \/[7 (en,ej)lk + \/ q (Vi,ej')lk
n n

-1
=0+ \/n q (vi, ej)Ix.

n
|

To finish the proof of Proposition 2.9, we apply Barthe’s Theorem 2.2, using the
decomposition of the identity appearing in (18). We choose the parameters: n <> kn,
m:=2n—1,n;:=kforalli=1,...,2n—1, and

] ;,i:l,...,n
Ci = nt . .
» ,i=n+1,...,2n—1

Then, we apply Theorem 2.2 to the functions

P
- f(x)" ,i:l,...,n k
i(x) == , e R
fitx) { 1 Li=n+l,....20—1" "
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and

hix):=f (’11 Z U,-x) , xeRM
i=1

Forany &y, ...,

n

£, € R¥, by Lemma 2.11, we get that

a5 U§+ZmE§n+a

Jj= l

Lljl

ll]l

[

n n

n

—_—

i=1

15

>[Tre =
i=1

Thus, Theorem 2.2 implies

=Ef (}1 > U,-z) = 1 (re0f)” = (Ereo’)’
i=1 i=1

#(, 2
i=1

and the proof is complete.

ZZ Uiy +
;ZZ UUTE +

,,ZZ UiU*;

Lljl

al

nnl

3

Llal

1
nnnt\/

llal

(since Z v; = 0)

U E*En-i-a

Vza €q gn+a

1 1
; N » (i, u)§;

i=1 j=1

o (s+> e

H (r&’ ) Hf@ ).

i=1
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We close this section with the proof of our primary result.

Proof of Theorem 1.1 Suppose first that X ~ N(0, I;). Then, under the notation of
Lemma 2.8 we have that

1 — I /p l— [n—1
UZ = *®I)Z \/ =AY/
; ;:1 ; ;:1 \/n (e, ® NZ + i ;:1 , q(v; ®I)
P, 1 n—1 . *
= (e, ®INZ + q E Vi | ® Ik Z
n n n i1
1 1 (S
p n—
= E,Z ; ILZ

= \/pzn.
n

Thus, the right hand side of (21) can be written as

Ef(\/z X) > (f(X)Z)Z. (24)

wherep = (n—1)t+ 1,ne N,andz € [0, 1].

Consequently, if f : R — [0, 4+-00) is a log-concave function and r € (0, 1], then
there exist ¢ € [0, 1] and n € N, such that r = Z = (”_ln)H'l and so by (24) we get
that

Ef(V/rX) > (Ef (X)) (25)

for every r € (0, 1]. We consider now the case where » = 0. Since f is log-concave,
there exists a convex function v : R¥ — R such that f = e V. Then, for r = 0,
inequality (1) is equivalent to Jensen’s inequality

v(0) = v(EX) < Ev(X), (26)
and the proof of (1) is complete.

For every ¢ > 1 consider r = (11 € (0,1]. Let F(x) = f(x/+/r)"/" which is also
log-concave and so (25) for F and r implies

Ef(X)? > (Ef(v/gX))’, 27)

and (2) follows.
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Assume now that g : R" — [0, +00) is log-convex and r € (0, 1]. By the log-
convexity of g and Theorem 2.10(i), we have that

Eg (}11 ;Xi) < El}g(xi) b= (Ba)?) (28)

As we have seen at the beginning of the proof rll Y X < \/”: X. So, using (28)

(n—1)t+1
n

fort € [0, 1] and n € N such that Z = = r, we derive that

Eg (v/rX) < (Bg(X)")" ,

for every r € (0, 1]. The rest of the proof for a log-convex function g is identical to
the log-concave case.

For the equality case, a straightforward computation shows that for f(x) =
el 7+ we have that

Bf(yaX) = Cexp (41al) = (B (X))

for every g > 0.

Finally, suppose that X is a general Gaussian random vector in R¥ with
expectation £ € RF and covariance matrix T = UU* where U € R, Note,
that if f is log-concave (or log-convex) and positive function on R¥, then so is

F(x) := f(Ux — &). Moreover, if Z ~ N(0,I;) then UZ — & L x ~ N(,T).
The general case follows then, by applying the previous case on function F. O

3 Reverse Logarithmic Sobolev Inequality

In the next lemma, we state the Gaussian Integration by Parts formula (see [18,
Appendix 4] for a simple proof).

Lemma 3.1 Let X,Y1,...,Y, be centered jointly Gaussian random variables, and

F be a real valued function on R", that satisfy the growth condition

‘ }im |[F(x)|exp (—alx]’) =0  Va>0. (29)
X|—> 00

Then

E[XF(Y1.....Y,)] = > E[XV] E[0:F(Y1.....Y,)]. (30)

i=1
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Involving this formula, we can further elaborate Corollary 1.2.
Let ¢, be the class of all positive functions in R*, such that their first derivatives
satisfy the growth condition (29). Then for any f € ¥, by Lemma 3.1, we get that

k

E[(x. Vf(X))] = ) E[Xidf (X)]

i=1

i Xk: E[X:.X;) E[9,/(X)] = E[w(T Hy(X))].

where T is the covariance matrix of X and Hy(x) stands for the Hessian matrix of f at
x € R¥. In the special case where X ~ N(0, I;), Corollary 1.2 implies the following:

Corollary 3.2 Letk € N, and X be a standard Gaussian vector in R¥. Then

(i) for every log-concave functionf € %, we have

Entx(f) > ;EAf(X), a1

(ii) for every log-convex function f € %, we have
1
Enty(f) = EAf(X). (32)

Proof of Theorem 1.3 Let f € L*!(y;). Without loss of generality we may also
assume that Ef2(X) = 1. Suppose first that f has a bounded support. Then f? € %,
and Corollary 3.2, after an application of the chain rule éAf2 = |Vf|> +fAf, gives
that

E|VF(X)|” + Ef(X)Af(X) < Enty(f?) < 2E[Vf(X)[. (33)

Letf = e ", where v : supp(f) — R is a convex function. Again by the chain rule
we have fAf = |Vf|?> — f>Av, and so

Ef (X)Af(X) = E|VF ()| — Ef (X)* Av(X). (34)
Equations (33) and (34), prove Theorem 1.3 in this case.
To drop the assumption of the bounded support, we consider the functions f,, :=

fi, B> where lnB’g is the indicator function of the Euclidean Ball in R* with radius
n € N. Every f, has bounded support and so by the previous case,

2E|IVAX)? — Ef(X)* Avy(X) < Entx(f,). (35)
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In order to avoid any possible problem of infiniteness of the derivatives of f,,
n € N, we define the functions

F, = |Vf]*- L. H, =f*Av - L.

Notice that F,, = |Vf,|* and H, = f?Av, almost everywhere, since they could only
differ on the zero-measure set {x € R* : |x| = n}. Thus,

0<fi /'f. O<F, /IVf’. 0<H, /fAv,
and by the monotone convergence theorem
E|V/,(X)|> = EF,(X) — E|V/(X)* (36)
and
Ef,,(X)? Av,(X) = EH,(X) — Ef(X)?>Av(X). (37)

Moreover, f2logf? — f*logf? and |f?logf?| < |f*logf?|, for everyn € N
(where we have taken that 0log0 = 0). Since, by Gross’ inequality, > logf? €
L' (i), the Lebesgue’s dominated convergence theorem implies that

Enty(f?) — Enty(f?). (38)

Under the light of (36)—(38), the desired result follows by taking the limit in (35),
asn — 00. O
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(s, p)-Valent Functions

Omer Friedland and Yosef Yomdin

Abstract We introduce the notion of (F, p)-valent functions. We concentrate in
our investigation on the case, where F is the class of polynomials of degree at
most s. These functions, which we call (s, p)-valent functions, provide a natural
generalization of p-valent functions (see Hayman, Multivalent Functions, 2nd ed,
Cambridge Tracts in Mathematics, vol 110, 1994). We provide a rather accurate
characterizing of (s, p)-valent functions in terms of their Taylor coefficients, through
“Taylor domination”, and through linear non-stationary recurrences with uniformly
bounded coefficients. We prove a “distortion theorem” for such functions, com-
paring them with polynomials sharing their zeroes, and obtain an essentially sharp
Remez-type inequality in the spirit of Yomdin (Isr J Math 186:45-60, 2011) for
complex polynomials of one variable. Finally, based on these results, we present a
Remez-type inequality for (s, p)-valent functions.

1 Introduction

Let us introduce the notion of “(F,p)-valent functions”. Let F be a class of
functions to be specified later. A function f regular in a domain 2 C C is called
(F,p)-valent in Q if for any g € F the number of solutions of the equation
f(z) = g(z) in Q does not exceed p.

For example, the classic p-valent functions are obtained for F being the class
of constants, these are functions f for which the equation f = ¢ has at most p
solutions in €2 for any c. There are many other natural classes F of interest, like
rational functions, exponential polynomials, quasi-polynomials, etc. In particular,
for the class R, consisting of rational functions R(z) of a fixed degree s, the number
of zeroes of f(z) — R(z) can be explicitly bounded for f solving linear ODEs with
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polynomial coefficients (see, e.g. [4]). Presumably, the collection of (R, p)-valent
functions with explicit bounds on p (as a function of s) is much wider, including,
in particular, “monogenic” functions (or “Wolff-Denjoy series”) of the form f(z) =
Z;il ZZ"Z/_ (see, e.g. [13, 16] and references therein).

However, in this note we shall concentrate on another class of functions, for
which F is the class of polynomials of degree at most s. We denote it in short as
(s, p)-valent functions. For an (s, p)-valent function f the equation f = P has at
most p solutions in 2 for any polynomial P of degree s. We shall always assume
that p > s 4 1, as subtracting from f its Taylor polynomial of degree s we get zero
of order at least s + 1. Note that this is indeed a generalization of p-valent functions,
simply take s = 0, and every (0, p)-valent function is p-valent.

As we shall see this class of (s, p)-valent functions is indeed rich and appears
naturally in many examples: algebraic functions, solutions of algebraic differential
equations, monogenic functions, etc. In fact, it is fairly wide (see Sect. 2). It pos-
sesses many important properties: Distortion theorem, Bernstein-Markov-Remez
type inequalities, etc. Moreover, this notion is applicable to any analytic function,
under an appropriate choice of the domain €2 and the parameters s and p. In addition,
it may provide a useful information in very general situations.

The following example shows that an (s, p)-valent function may not be (s+ 1, p)-
valent:

Example 1.1 Letf(z) = 2% + 7" for N > 10p + 1. Then, fors = 0,...,p — 1, the
function f is (s, p)-valent in the disk D3, but only (p, N)-valent there.

Indeed, taking P(z) = Z’ + ¢ we see that the equation f(z) = P(z) takes the
form 7V = c¢. So for ¢ small enough, it has exactly N solutions in the Dy,3. Now, for
s = 0,...,p— 1, take a polynomial P(z) of degree s < p — 1. Then, the equation
f(2) = P(z) takes the form z” — P(z) + z¥ = 0. Applying Chebyshev theorem (for
more details see for example [17, Lemma 3.3]) to the polynomial Q(z) = 7 — P(2)
of degree p (with leading coefficient 1) we find a circle S, = {|z| = p} with 1/3 <
p < 1/2 such that |Q(z)| > (1/2)!% on S,. On the other hand ZV < (1/2)!%+1 <
(1/2)'% on s ». Therefore, by the Rouché principle the number of zeroes of Q(z) +zV
in the disk D,, is the same as for Q(z), which is at most p. Thus, f is (s, p)-valent in
the disk Dy /3, fors =0,...,p— L.

This paper is organized as follows: in Sect.2 we characterize (s, p)-valent
functions in terms of their Taylor domination and linear recurrences for their
coefficients. In Sect.3 we prove a Distortion theorem for (s, p)-valent functions.
In Sect.4 we make a detour and investigate Remez-type inequalities for complex
polynomials, which is interesting in its own right. Finally, in Sect. 5, we extend the
Remez-type inequality to (s, p)-valent functions, via the Distortion theorem.
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2 Taylor Domination, Bounded Recurrences

In this section we provide a rather accurate characterization of (s, p)-valent functions
in a disk Dg in terms of their Taylor coefficients. “Taylor domination” for an analytic
function f(z) = Y o, a;7* is an explicit bound of all its Taylor coefficients a;
through the first few of them. This property was classically studied, in particular, in
relation with the Bieberbach conjecture: for univalent f we always have |a;| < k|a;|
(see [2, 3, 12] and references therein). To give an accurate definition, let us assume
that the radius of convergence of the Taylor series for f is Ié, for0 < R < +o00.

Definition 2.1 (Taylor Domination) Let 0 < R < R, N € N, and S(k) be a
positive sequence of a subexponential growth. The function f is said to possess an
(N, R, S(k))-Taylor domination property if

la| R < S(k) max la;|R", k>N+1.

The following theorem shows that f is an (s, p)-valent function in Dg, essentially,
if and only if its lower s-truncated Taylor series possesses a (p — s, R, S(k))-Taylor
domination.

Theorem 2.2 Let f(z) = Y joo i’ be an (s,p)-valent function in Dg, and let
f(z) =Y, a2~ be the lower s-truncation of f. Putm = p—s. Then,fpossesses
an (m, R, S(k))-Taylor domination, with S(k) = (Ar’;’lk)zm, and A, being a constant
depending only on m.

Conversely, if f possesses an (m, R, S(k))-Taylor domination, for a certain
sequence S(k) of a subexponential growth, then for R* < R the function f is (s, p)-
valent in D/, where p = p(s + m, S(k), R'/R) depends only on m + s, the sequence
S(k), and the ratio R'/R. Moreover, p tends to oo for R'/R — 1, and it is equal to
m + s for R' /R sufficiently small.

Proof First observe that if f is (s, p)-valent in Dg, then f is m-valent there, with
m = p—s. Indeed, put P(z) = Y ;_, axz* +cz’, with any ¢ € C. Then, f(z) —P(z) =
2(f(z) — ¢ may have at most p zeroes. Consequently, f@) —c¢ may have at most
m zeroes in Dg, and thus f‘ is m-valent there. Now we apply the following classic
theorem:

Theorem 2.3 (Biernacki [3]) Iff is m-valent in the disk Dy of radius R centered
at0 € C then

Ak 2m )
|ak|Rk < ( " ) max |q|R', k>m+1,
m )

i=1,...m

where A, is a constant depending only on m.
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In our situation, Theorem 2.3 claims that the function f‘ which is m-valent in Dy,
possesses an (m, R, ( ”’k) m)-Taylor domination property. This completes the proof
in one direction.

In the opposite direction, for polynomial P(z) of degree s the function f — P has
the same Taylor coefficients as f starting with the index k = s4-1. Consequently, if f
possesses an (m, R, S(k))-Taylor domination, then f—P possesses an (s+m, R, S(k))-
Taylor domination. An explicit bound for the number of zeroes of a function
possessing Taylor domination can be obtained by using the following result [15,
Proposition 2.2.2] (which is announced here as appears in [1]):

Theorem 2.4 ([1, Theorem 2.3]) Let the function f possess an (N, R, S (k)) Taylor
domination property. Then for each R' < R, f has at most M = M(N, % zS(K)

zeros in Dy, where M depends only on N, R and on the sequence S(k), satisfying
limg_ M =oc0and M =N for suﬁ‘iczently small.
R

Now a straightforward application of the above theorem provides the required
bound on the number of zeroes of f — P in the disk Dg. O

A typical situation for natural classes of (s, p)-valent functions is that they are
(s, p)-valent for any s with a certain p = p(s) which depends on s. However, it is
important to notice that essentially any analytic function possesses this property,
with some p(s).

Proposition 2.5 Let f(z) be an analytic function in an open neighbourhood U of the
closed disk Dg. Assume that f is not a polynomial. Then, the function f is (s, p(s))-
valent for any s with a certain sequence p(s).

Proof Let f be given by its Taylor series f(z) = Y ro a;Z*. By assumptions, the
radius of convergence R of this series satisfies R > R. Since f is not a polynomial,
for any given s there is the index k(s) > s such that ayi # 0. Now, we need the
following result of [1]:

Proposition 2.6 ([1, Proposition 1.1]) If 0 < R < +oo is the radius of
convergence of f (2) = Y e ai7", with f # 0, then for each finite and positive
0 <R <R, f satisfies the (N, R, S (k))-Taylor domination property with N being
the index of its first nonzero Taylor coefficient, and S (k) = R¥|ax|(Jan|RY)™!, for
k> N.

Applymg the above proposition to the lower truncated series f ) =
> o2, as4xZt. Thus, we obtain, an (m, R.S (k))-Taylor domination for f for certain
m and S(k). Now, the second part of Theorem 2.2 provides the required (s, p(s))-
valency for f in the smaller disk Dg, with p(s) = p(s + m, S(k), R/ﬁ). O

More accurate estimates of p(s) can be provided via the lacunary structure of
the Taylor coefficients of f. Consequently, (s, p)-valency becomes really interesting
only for those classes of analytic functions f where we can specify the parameters
in an explicit and uniform way. The following theorem provides still very general,
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but important such class. We remark that the second part is known, see [15,
Lemma 2.2.3] and [1, Theorem 4.1].

Theorem 2.7 Letf(z) = Y po,aZ* be (s, s + m)-valent in D for any s. Then, the
Taylor coefficients a; of f satisfy a linear homogeneous non-stationary recurrence
relation

ax =Y ci(k)ay 1
=1

with uniformly bounded (in k) coefficients c;(k) satisfying |c;(k)| < Cp/, with C =
ezAfnm, p= R™Y where A,, is the constant in the Biernacki’s Theorem 2.3.
Conversely, if the Taylor coefficients ay of f satisfy recurrence relation (1), with
the coefficients cj(k), bounded for certain K,p > 0 and for any k as |c;j(k)| <
Ko, j = 1,...,m, then for any s, f is (s, s + m)-valent in a disk Dg, with R =
1

23mt1(2K+2)p"
Proof We need to prove only the first part. Let us fix s > 0. As in the proof of

Theorem 2.2, we notice that if f is (s, s + m)-valent in Dg, then its lower s-truncated
series f is m-valent there. By Biernacki’s Theorem 2.3 we conclude that

2m

An(m+1 . )

ml )) max |a,4;|R' < C max |as4|R',
m i=1,...m i=1,...m

|dsmrt|R"T! < (
with C = ezAf,j". Putting k = s +m + 1, and p = R~! we can rewrite this as

Hence we can chose the coefficients cj(k), k = s + m + 1, in such a way that
ar = Y7L ¢j(k)ar—j, and |¢;(k)| < Cp/, which completes the proof. O

Notice that the bound on the recursion coefficients is sharp, e.g. take f(z) =
[1—( ﬁ)m]_l, in this case, as well as for other lacunary series with the gap m, the
coefficients c;(k) are defined uniquely.

3 Distortion Theorem

In this section we prove a distortion-type theorem for (s, p)-valent functions which
shows that the behavior of these functions is controlled by the behavior of a
polynomial with the same zeroes.

First, let us recall the following theorem for p-valent functions, which is our main
tool in proof.
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Theorem 3.1 ([12, Theorem 5.1]) Let g(z) = ap + a1z + ... be a regular non-
vanishing p-valent function in D,. Then, for any z € D,

1- Izl)z‘” (1 + |z|)2p
= 1g&@)/ao] = .
(130) =te@ral = (5
Now, we are ready to formulate a distortion-type theorem for (s, p)-valent
functions.

Theorem 3.2 (Distortion Theorem) Let f be an (s, p)-valent function in D\ having
there exactly s zeroes zi,...,7s (always assumed to be counted according to
multiplicity). Define a polynomial

PQ) =AT[—2).
j=1

where the coefficient A is chosen such that the constant term in the Taylor series for
f(z)/P(z) is equal to 1. Then, for any x € D

AN (TN
Q+m)_vwwwu(h%0.

Proof The function g(z) = f(z)/P(z) is regular in D; and does not vanish there.
Moreover, g is p-valent in D;. Indeed, the equation g(z) = c is equivalent to f(z) =
¢P(2) so it has at most p solutions by the definition of (s, p)-valent functions. Now,
apply Theorem 3.1 to the function g. O

It is not clear whether the requirement for f to be (s, p)-valent is really necessary

in this theorem. The ratio g(z) = ];,((?) certainly may not be p-valent for f being

just p-valent, but not (s, p)-valent. Indeed, take f(z) = 2’ + z" as in Example 1.1.
By this example f is p-valent in D13 and it has a root of multiplicity p at zero. So
g(z) = f(z)/z" = 1 + 777 and the equation g(z) = ¢ has N — p solutions in D3
for ¢ sufficiently close to 1. So g is not p-valent there.

4 Complex Polynomials

The distortion Theorem 3.2, proved in the previous section, allows us easily
to extend deep properties from polynomials to (s,p)-valent functions, just by
comparing them with polynomials having the same zeros. In this section we make
a detour and investigate one specific problem for complex polynomials, which
is interesting in its own right: a Remez-type inequality for complex polynomial
(compare [14, 18]). Denote by

Vp(g) = {z: g(2)| = p}
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the p sub-level set of a function g. For polynomials in one complex variable a
result similar to the Remez inequality is provided by the classic Cartan (or Cartan-
Boutroux) lemma (see, for example, [11] and references therein):

Lemma 4.1 (Cartan’s Lemma [7], as Appears in [11]) Let a, & > 0, and let P(z)
be a monic polynomial of degree d. Then

V.a(P) C U;;lDrj,

where p < d, and D,,, . .. Dy, are balls with radii r; > 0 satisfying Zj;l rf‘ <
e(2e)*.

In [5, 6, 19, 20] some generalizations of the Cartan-Boutroux lemma to plurisub-
harmonic functions have been obtained, which lead, in particular, to the bounds on
the size of sub-level sets. In [5] some bounds for the covering number of sublevel
sets of complex analytic functions have been obtained, similar to the results of [18]
in the real case. Now, we shall derive from the Cartan lemma both the definition of
the invariant ¢4, and the corresponding Remez inequality.

Definition 4.2 Let Z C D;. The (d, o)-Cartan measure of Z is defined as

1/«

p
cio(Z) = min Z r
j=1

where the minimum is taken over all covers of Z by p < d balls with radii r; > 0.

Clearly, the invariant c¢;,(Z) satisfies the following basic properties. It is
monotone in Z, thatis, for Z; C Z, we have ¢y 4(Z1) < c44(Z). And, also monotone
ind, that is, for d; < d we have c;4(Z) < c4, «(Z). Finally, for any Z C D, we have
ca«(Z) < 1. Note also that the o-dimensional Hausdorff content of Z is defined in
a similar way

Hy(Z) = inf Z rj‘?‘ : there is a cover of Z by balls with radii r; > 0
J

Thus, by the above definitions, we have H,;[ly (2) < cau(2).

For « = 1 the (d, 1)-Cartan measure c¢;4(Z) was introduced and used, under
the name “d-th diameter”, in [8, 9]. In particular, Lemma 3.3 of [8] is, essentially,
equivalent to the case @« = 1 of our Theorem 4.3. In Sect. 4.1 below we provide
some initial geometric properties of ¢, 4(Z) and show that a proper choice of « may
improve the geometric sensitivity of this invariant.

Now we can state and proof our generalized Remez inequality for complex
polynomials:
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Theorem 4.3 Let P(z) be a polynomial of degree d. Let Z C D,. Then, for any
a>0
Gella \? 6e \«
max |[P(z)| < max |P(z)| < max |P(z)].
wxip@ = () maxirai = (%)) max i)

Proof Assume that |P(z)| < 1 on Z. First, we prove that the absolute value A of the
leading coefficient of P satisfies

(2)
A< .
caa(Z)
Indeed, we have Z C V,(P). By the definition of ¢;4(Z) for every covering of
Vi(P) by p disks D, . .. , Dy, of the radii ry, . .., ry (which is also a covering of Z)

we have Zj.i:l r¢ > cqo(Z)*. Denoting, as above, the absolute value of the leading
coefficient of P(z) by A we have by the Cartan lemma that for a certain covering as
above

d o) a
Caa2)* <Y 1 < e(Al/d) :
i=1

Now, we write P(z) = A ]_[7=1 (z — zj), and consider separately two cases:

ciaa(Z)
(2) Forj=1,...,d <d, |z| <2, while |zj| > 2forj=d; +1,...,d. Denote

« \d
(1) All |3 < 2. Thus, maxp, [P(z)] < A3? < ( 2/ ) 37, as required.

di d
P =AJe-2). P@= ] @-2),
=1

j=di+1

and notice that for any two points vy, v, € D; we have |Py(v;)/Pa(v2)| < 3974,
Consequently we get

maxp, |P(2)| d—a, Maxp, |P1(2)]
maxz |P(z)| maxz |P1(2)|

All the roots of Py are bounded in absolute value by 2, so by first part we have

maxp, |P1(2)| _ ( 2el/ )d1 0 ( 2el/ )d )
< 39 < 34
maxz |P1(2)] caa(Z) caa(Z)

where the last inequality follows from the basic properties of the invariant ¢4 4(Z)
described after Definition 4.2. Finally, application of the inequality H,(Z) <
c4.0(Z)* completes the proof. O
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Let us stress a possibility to chose an optimal ¢ in the bound of Theorem 4.3. Let

Gel/e \¢ 6e “
K4(Z) = inf . KJ(z)=inf .
@=m( ) - K@=nt(,5,)
Corollary 4.4 Let P(z) be a polynomial of degree d. Let Z C Dy. Then,

max [P(2)] = Ka(Z) max |P(2)] = K/ (Z) max |P(2)].

4.1 Geometric and Analytic Properties of the Invariant cq

In addition to the basic properties of ¢;, we also have

Proposition 4.5 Let oo > 0. Then, cg4(Z) > 0 if and only if Z contains more than d
points. In the latter case, cq4(Z) is greater than or equal to one half of the minimal
distance between the points of Z.

Proof Any d points can be covered by d disks with arbitrarily small radii. But, the
radius of at least one disk among d disks covering more than d 4- 1 different points is
greater than or equal to the one half of a minimal distance between these points. 0O

The lower bound of Proposition 4.5 does not depend on «. However, in general,
this dependence is quite prominent.

Example 4.6 Let Z = [a, b]. Then, for « > 1 we have ¢,4(Z) = (b — a)/2, while
for o < 1 we have ¢, o(Z) = de~'(b— a)/2.

Indeed, in the first case the minimum is achieved forr; = (b —a)/2,r, = -+ =
rs = 0, while in the second case forr; = r, =---=ry; = (b—a)/2d.

Proposition 4.7 Let a > B > 0. Then, for any Z
1_1
Caa(Z) < cap(Z) < d'P™ ey (2). 2)

Proof Letr = (ry,...,rs) and y > 0. Consider ||r||, = (Z}i=1 r}/);. Then, by the

definition, ¢4, (Z) is the minimum of ||r||, over all r = (ry,...,r,) being the radii
of d balls covering Z. Now we use the standard comparison of the norms ||r||,, that
is, for any x = (z1,...,24) and fora > 8 > 0,

1_1
llzlle < Hzllp < d' ™[zl
Take r = (r1, ..., rq) for which the minimum of ||r||g is achieved, and we get

caa(Z) = |Irlla = |Irllp = cap(Z2).
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Now taking r for which the minimum of ||r||, is achieved, exactly in the same
way we get the second inequality. O

Now, we compare c;,(Z) with some other metric invariants which may be
sometimes easier to compute. In each case we do it for the most convenient value of
«. Then, using the comparison inequalities of Proposition 4.7, we get corresponding
bounds on ¢, 4(Z) for any @ > 0. In particular, we can easily produce a simple lower
bound for ¢y, (Z) through the measure of Z:

Proposition 4.8 For any measurable Z C D we have

ca2(Z) = (ua(2) /7).

Proof For any covering of Z by d disks Dy, ..., D, of the radii ry, ..., r; we have
7 1) = pa(2). o

However, in order to deal with discrete or finite subsets Z C D; we have to
compare c44(Z) with the covering number M(e, Z) (which is, by definition, the
minimal number of e-disks covering Z).

Definition 4.9 Let Z C D;. Define

wea(Z) = supe(M(e, Z) — d)'/?,

if |Z| > d, and w.4(Z) = 0 otherwise. Put p;(Z) = de(, where &g is the minimal &
for which there is a covering of Z with d e-disks. Note that, writing y = M(e, Z) =
W(e), and taking the inverse ¢ = W~!(y), we have &g = ¥~'(d).

As it was mentioned above, a very similar invariant

wy(Z) = supe(M(e,Z) — d),

if |Z| > d, and w.4(Z) = 0 otherwise, was introduced and used in [18] in the real
case. We compare w.4 and w, below.

Proposition 4.10 Let Z C Dy. Then, w.4(Z)/2 < c42(Z) < cq1(Z) < pa(2).

Proof To prove the upper bound for ¢, 1(Z) we notice that it is the infimum of the
sum of the radii in all the coverings of Z with d disks, while p,(Z) is such a sum for
one specific covering.

To prove the lower bound, let us fix a covering of Z by d disks D; of the radii
ri with c42(Z) = (X0, )2 Let & > 0. Now, for any disk D; with r; > ¢
we need at most 4rj2/ g* e-disks to cover it. For any disk D; with r; < & we need
exactly one e-disk to cover it, and the number of such D; does not exceed d. So,
we conclude that M(e, Z) is at most d + (4/&?) Z?:l r2. Thus, we get c42(Z) =
L, )2 > g/2(M(e, Z) — d)'/2. Taking supremum with respect to & > 0 we
getca2(2) = wea(2)/2. o
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Since M (e, Z) is always an integer, we have
wa(Z) = we(2).

For Z C D; of positive plane measure, w;(Z) = oo while w.(Z) remains
bounded (in particular, by p,(Z)).

Some examples of computing (or bounding) w,(Z) for “fractal” sets Z can be
found in [18]. Computations for w.;(Z) are essentially the same. In particular,
in an example given in [18] in connection to [10] we have that for Z = Z, =
{1, 1/2",1/3", ..., 1/k",...}

r 2r+ 1)

wa(Z;) < (r+ )r+igr” waa(Zy) = Qr + 2)rHlgrt1/e”

The asymptotic behavior here is for d — oo, as in [10].

4.2 An Example

We conclude this section with one very specific example. Let
Z=2(d.h) ={z1,22,...,224-1,2a} , 7z €C,d>2.

We assume that Z consists of d, 2n-separated couples of points, with points in
each couple being in a distance 2h. Let 2D(Z) be the diameter of the smallest disk
containing Z. Assume & < 1, 2n > h.

Proposition 4.11 Let Z be as above. Then,

(1) wa(Z) = dh.

() wea(Z) = dh.

(3) Fora > 0, we have cq4(Z) < dleh.

(4) Fora > 1, we have cyo(Z) = deh.

(5) Fork = [logd(D;Z))]_l, we have cq,.(Z) > 1.

Proof For ¢ > h, we have M(e,Z) < d, and hence M(e,Z) — d is non-positive.
For ¢ < h, we have M(e,Z) = 2d, and M(¢,Z) — d = d. Thus the supremum of
e(M(e,Z) — d), or the supremum of e(M (e, Z) — d) 2 , is achieved as € < h tends to
h. Therefore, w;(Z) = dh, and w.4(Z) = Jdh.

Covering each couple with a separate ball of radius &, we get for any o > 0 that
caa(Z) <d «h. Foro > 1itis easy to see that this uniform covering is minimal.
Thus, for such « we have the equality cy(Z) = d ah.

Now let us consider the case of a “small” @ = k. Take a covering of Z with
certain disks Dj, j < d. If there is at least one disk D; containing three points of Z or
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more, the radius of this disk is at least 7. Thus, for this covering (Z;i:l ri )i > If

each disk in the covering contains at most two points, it must contain exactly two,
otherwise these disks could not cover all the 2d points of Z. Hence, the radius of
each disk D; in such covering is at least 4, and their number is exactly d. We have,

by the choice of «, that (Z;;l rj’.‘)i >dih = D(Z) > 1. 0

Let us use two choices of « in the Remez-type inequality of Theorem 4.3: o = 1
and o = k. We get two bounds for the constant K;(Z) :

6e d 6ellx d
K@) = (Cd,l(Z)) or K@) = (Cd,K(Z)) ‘

By Proposition 4.11 we have ¢;1(Z) < dh, while c;4,(Z) > n. Therefore we get

6e \* 6e\? Gel/k \? Gel/k\¢
(cin) (@) e () = (%) o
Cd,1 (Z) dh Cdx (Z) n
But e'/* = eloza(”) = (D;Z))I"ld. So the second bound of (3) takes a form

d
6D(Z) Ind
mms(m%).
We see that for d > 3 and for & — 0 the asymptotic behavior of this last bound,
corresponding to o = k, is much better than of the first bound in (3), corresponding
to @ = 1. Notice, that x depends on /& and D(Z), i.e. on the specific geometry of the
set Z.

5 Remez Inequality

Now, we present a Remez-type inequality for (s, p)-valent functions. We recall that
by Proposition 2.5 above, any analytic function in an open neighborhood U of the
closed disk Dg is (s, p(s))-valent in Dg for any s with a certain sequence p(s).
Consequently, the following theorem provides a non-trivial information for any
analytic function in an open neighborhood of the unit disk D;. Of course, this results
becomes really interesting only in cases where we can estimate p(s) explicitly.

Theorem 5.1 Let f be an analytic function in an open neighborhood U of the closed
disk Dy. Assume that f has in Dy exactly s zeroes, and that it is (s, p)-valent in D;.
Let Z be a subset in the interior of D1, and put p = p(Z) = min{n : Z C D,}. Then,
forany R < 1 function f satisfies

max F@ < 0, (R, p)Ks(Z) max [f (2)],
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2p
where 0,(R, p) = (14——115 . i*_’;’) .
Proof Assume that |[f(z)| is bounded by 1 on Z. Let zy, ..., z; be zeroes of f in D;.
Consider, as in Theorem 3.2, the polynomial

1
PR =A][-2).
j=1

where the coefficient A is chosen in such a way that the constant term in the Taylor
series for g(z) = f(z)/P(z) is equal to 1. Then by Theorem 3.2 for g we have

1— [z \* L+ [2[\*
( ) < lg@ = :
1+ |z| 1—|z|
We conclude that P(z) < (t//:)Zp on Z. Hence by the polynomial Remez
inequality provided by Theorem 4.3 we obtain

2p
ran<x@ ()0

on D,. Finally, we apply once more the bound of Theorem 3.2 to conclude that

2p 2p
rol=x@(, 7)) (177

on Dg. O
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A Remark on Projections of the Rotated Cube
to Complex Lines

Efim D. Gluskin and Yaron Ostrover

Abstract Motivated by relations with a symplectic invariant known as the “cylin-
drical symplectic capacity”, in this note we study the expectation of the area of a
minimal projection to a complex line for a randomly rotated cube.

1 Introduction and Result

Consider the complex vector space C" with coordinates z = (zj,...,z,), and
equipped with its standard Hermitian structure (z, w)¢ = Z;l=1 Zjwj. By writing
Zj = xj + iy;, we can look at C" as a real 2n-dimensional vector space C" =~
R?>" = R" @ R" equipped with the usual complex structure J, i.e., J is the linear
map J : R — R?" given by J(x;,y;) = (—y;,x;). Moreover, note that the real part
of the Hermitian inner product (-, -)c is just the standard inner product on R?*, and
the imaginary part is the standard symplectic structure on R?*. As usual, we denote
the orthogonal and symplectic groups associated with these two structures by O(2n)
and Sp(2n), respectively. It is well known that O(2r) N Sp(2n) = U(n), where the
unitary group U(n) is the subgroup of GL(n, C) that preserves the above Hermitian
inner product.

Symplectic capacities on R?" are numerical invariants which associate with every
open set Y < R>" a number c(d) € [0, oc]. This number, roughly speaking,
measures the symplectic size of the set U (see e.g. [3], for a survey on symplectic
capacities). We refer the reader to the Appendix of this paper for more information
regarding symplectic capacities, and their role as an incentive for the current paper.
Recently, the authors observed (see Theorem 1.8 in [8]) that for symmetric convex
domains in R?", a certain symplectic capacity ¢, which is the largest possible
normalized symplectic capacity and is known as the ‘“cylindrical capacity”, is
asymptotically equivalent to its linearized version given by

Copon U) =

SGIisrrl;(fzn) Area(n (S(L{))). H
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Here, 7 is the orthogonal projection to the complex line E = {z € C" | z; = O forj #
1}, and the infimum is taken over all S in the affine symplectic group ISp(2n) =
Sp(2n) x T(2n), which is the semi-direct product of the linear symplectic group and
the group of translations in R?". We remark that in what follows we consider only
centrally symmetric convex bodies in R?", and hence one can take S in (1) to be a
genuine symplectic matrix (i.e., S € Sp(2n)).

An interesting natural variation of the quantity ¢, , which serves as an upper
bound to it and is of independent interest, is obtained by restricting the infimum
on the right-hand side of (1) to the unitary group U(n) (see the Appendix for more
details). More precisely, let L C R?" be a complex line, i.e., L = span{v,Jv} for
some non-zero vector v € R?", and denote by ;. the orthogonal projection to the
subspace L. For a symmetric convex body K C R?", the quantity of interest is

Cum (K) = Uérlljf(n) Area(7(U(K))) = inf{Area(nL(K)) | L € R*" is a complex line}.
(2)

In this note we focus on understanding ¢, (OQ), where O € O(2n) is a random
orthogonal transformation, and Q = [—1, 1]2" C R? is the standard cube. We
remark that in [8] it was shown that, in contrast with projections to arbitrary two-
dimensional subspaces of R?”", there exist an orthogonal transformation O € O(2n)
such that for every complex line L C R?* one has that Area(7,(0Q)) > \/ n/2.
Here we study the expectation of ¢, (OQ) with respect to the Haar measure on the
orthogonal group O(2n). The main result of this note is the following:

Theorem 1.1 There exist universal constants C, ¢1, c2 > 0 such that

p {0 € O(2n) | 3 a complex line L C R*" with diam(r(0Q)) < ¢1+/n} < Cexp(—c,n),

where [ is the unique normalized Haar measure on O(2n).

Note that for any rotation U € O(2n), the image UQ contains the Euclidean unit
ball and hence for every complex line L one has Area(rr,UQ) > diam(sr, UQ). An
immediate corollary from this observation, Theorem 1.1, and the easily verified fact
that for every O € O(2n), the complex line L := Span{v, Jv}, where v is one of the
directions where the minimal-width of OQ is obtained, satisfies Area(wr; (0Q)) <
4+/2n, is that

Corollary 1.2 With the above notations one has

Ey ey (00)) = v/, 3)

where E,, stands for the expectation with respect to the Haar measure (1 on O(2n),
and the symbol < means equality up to universal multiplicative constants.
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Remark 1.3 We will see below that for every O € O(2n), the quantity ¢, (0OQ)
is bounded from below by the diameter of the section of the 4n-dimensional
octahedron B‘l‘” by the subspace

Lo ={(x.y) e R @ R™ | y = 0*JOx}. (4)

This reduces the above problem of estimating [, (CUW (OQ)) to estimating the
diameter of a random section of the octahedron B‘l‘” with respect to a probability
measure v on the real Grassmannian G(4n,2n) induced by the map O — Lo
from the Haar measure ;. on O(2n). By duality, the diameter of a section of the
octahedron by a linear subspace is equal to the deviation of the Euclidean ball
from the orthogonal subspace with respect the /,-norm. The right order of the
minimal deviation from half-dimensional subspaces was found in the remarkable
work of Kasin [11]. For this purpose, he introduced some special measure on the
Grassmannian and proved that the approximation of the ball by random subspaces
is almost optimal. In his exposition lecture [17], Mitjagin treated Kashin’s work as
a result about octahedron sections, which gave a more geometric intuition into it,
and rather simplified the proof. At about the same time, the diameter of random
(this time with respect to the classical Haar measure on the Grassmannian) sections
of the octahedron, and more general convex bodies, was studied by Milman [14];
Figiel, Lindenstrauss and Milman [4]; Szarek [22], and many others with connection
with Dvoretzky’s theorem (see also [1, 5-7, 15, 19], as well as Chap. 5 of [20]
and Chaps. 5 and 7 of [2] for more details). It turns out that random sections
of the octahedron B‘I‘", with respect to the measure v on the real Grassmannian
G(4n,2n) mentioned above, also have almost optimal diameter. To prove this we
use techniques which are now standard in the field. For completeness, all details
will be given in Sects. 2 and 3 below.

Notations The letters C, ¢, ¢y, c2, ... denote positive universal constants that take
different values from one line to another. Whenever we write o < 8, we mean that
there exist universal constants c¢q, ¢c; > 0 such that cja < 8 < cpa. For a finite set V,
denote by #V the number of elements in V. For a € R let [¢] be its integer part. The
standard Euclidean inner product and norm on R" will be denoted by (-, -), and | - |,
respectively. The diameter of a subset V C R" is denoted by diam(V) = sup{|x—y| :
x,y € V}.For 1 < p < oo, we denote by [, the space R" equipped with the norm
I+ 1l given by [lxll, = (i, Ix:l")'77 (where ||x]loc = max{|x||i = 1,....n}),
and the unit ball of the space [) is denoted by B) = {x € R"[[x], = 1}. We
denote by S" the unit sphere in R"*1, ie., S" = {x € R""!||x|> = 1}, and by o,
the standard measure on S”. Finally, for a measure space (X, ;) and a measurable
function ¢ : X — R we denote by E ¢ the expectation of ¢ with respect to the
measure /L.
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2 Preliminaries

Here we recall some basic notations and results required for the proof of Theo-
rem 1.1.

Let V be a subset of a metric space (X, p), and let ¢ > 0. A set F C V is called
an e-net for V if for any x € V there exist y € F such that p(x,y) < . Itis a well
known and easily verified fact that for any given set G with V C G, if T is a finite
e-net for G, then there exists a 2¢-net F of V with #F < #7 .

Remark 2.1 From now on, unless stated otherwise, all nets are assumed to be taken
with respect to the standard Euclidean metric on the relevant space.

Next, fix n € Nand 0 < 6 < 1. We denote by G the set G} := §"~' N 6/nB].
The following proposition goes back to KaSin [11]. The proof below follows
Makovoz [12] (cf. [21] and the references therein).

1
2

such that #T < exp(en), and which is a 80 \/ln(lf) -net for G,

Proposition 2.2 For every € such that 81‘:1" < & < ,, there exists a set T C Gj

For the proof of Proposition 2.2 we shall need the following lemma.

Lemma 2.3 Fork,n € N, the set Fi,, := Z" NkBY is a \/k-netfor the set kB", and
#Fin < Qe(1 + n/k))", (5)

Proof of Lemma 2.3 Letx = (x1,...,x,) € kBY, and set y; = [|x;|] - sgn(x;), for
1 <j < n Notethaty = (y1,...,¥n) € Fin, and |x; — y;| < min{l, |x;|} for any
1 <j<nThus, [x—y* = 30, |5 —yl* < Y/, |xj| = k. This shows that Fy,

is a +/k-net for kB}. In order to prove the bound (5) for the cardinality of F ,, note
that by definition

n n+1
#Fin =#u e 2" ) |u| <k} < 2% e 2| ) v =k}

i=1 i=1
_ o n+k <2k(e(n+k))k
k]~ k '

This completes the proof of the lemma. O

Proof of Proposition 2.2 We assume n > 1 (the case n = 1 can be checked

directly). Set k = [Slrf(’l‘ /5)]. Note that since ¢ > 8“;”, one has that k > 1. From

Lemma 2.3 it follows that 6 ‘{"]—'kﬂ isaf ‘é" -net for 0./nB;. From the remark
in the beginning of this section and Lemma 2.3 we conclude that there is a set
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T C G} C 6/nB} whichis a 20 \/ i -net for Gjj, and moreover,

HT < #Fi, < (2¢(1 4+ n/k))".

Finally, from our choice of ¢ it follows that k >
k/n

1615?1/5)’ and hence 260,/ <

86 \/ 1“(18/ ?), and moreover that (2e(1 + n/k))""" < ¢°. This completes the proof of
the proposition. O

We conclude this section with the following well-known result regarding con-
centration of measure for Lipschitz functions on the sphere (see, e.g., [16], Sect. 2
and Appendix V).

Proposition 2.4 Let f : S*! — R be an L-Lipschitz function and set Ef =
fS,,,lfdan_l, where 6,_ is the standard measure on S"~'. Then,

on1 ({x € S| [f(x) — Bf| = 1}) < Cexp(—«t’n/L?),

where C,k > 0 are some universal constants.

3 Proof of the Main Theorem

Proof of Theorem 1.1 Let Q = [—1,1]*" C R?". The proof is divided into two steps:
Step I (s-Net Argument): Let L C R?" be a complex line, and e € S~ N L.

Note that the vectors e and Je form an orthogonal basis for L, and for every
x € R?" one has
w(x) = (x,e)e + (x, Je)Je.
Thus, one has
diam(r (UQ)) = 2max V/|{Ux e) | + | (Usx. Je) [
> max max{|{x, U*e)|, |{x, U*Je)|} (6)
= max{[[U"e]1, [U" Jel|,}.

It follows that for every U € O(2n), the minimum over all complex lines satisfies

min diam(r,(UQ)) = min max{|v]lr. |U"JU]|1} )
VEST
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Next, for a given constant § > 0, denote Gy := S**~' N 6. /nB>", and

Ay := {U € O(2n) | 3 a complex line L C R** with diam(rr,(UQ)) < A+/n}.
(®)

Recall that in order to prove Theorem 1.1, we need to show that there is a constant
A for which the measure of Ay C O(2n) is exponentially small, a task to which
we now turn. From (7) it follows that for any U € A, one has

G, NU*JUG, # @.
Indeed, if U € A;, then by (6) one has that |U*e|; < A./n and

|(U*JU)U*e|; < As/n, so z := U*e; € Gy and U*JUz € G,. Hence, we
conclude that

A, C{U € OQ2n) | Gy N U*JUG, # 0}.

Next, let F be a §-net for G, for some § > 0. For any U € A, there exists
x € G, NU*JUG,, and y € F for which |y — x| < §. Thus, one has

U JUy |y < IU*JUx[ly + |U*JU(y — )|l
< AJn+ V20U JU(y — x)| < +/n(A + +/26).

It follows that

A, v eoen | utivy e Gy, ) ©)
yEF

From (9) and Proposition 2.2 from Sect. 2 it follows that for every A > 0

p(Ay) <) pdU € 02n) | U*IUy € G,y o)
YEF

<exp(2en) sup pu{U € OQ2n) |U*JUy € G, 155}

yeSanl

(10)

where 81“;2”) <e<l),andé = g,\\/ln(l/s).
n &

Step II (Concentration of Measure): For y € $?'~! let v, be the push-forward
measure on S?*~! induced by the Haar measure & on O(2n) through the map
f : 0@2n) — S$*! defined by U +— U*JUy. Using the measure vy, we can
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rewrite inequality (10) as

((Ay) < expen) sup vy (G, 1)

yeszn—l

= exp(2en) sup vyfx € S |x]; < V(A + V26)}. (11)
yesn—l

Note that if V € O(2n) preserves y, i.e., Vy =y, then
V(f(U)) = V(U"JUy) = (UV*)"J(UV*)(Vy) = f(UV).

Thus, the measure v, is invariant under any rotation in O(2n) that preserves y.
Note also that for any y € $>*~! one has

(U*JUy,y) = (JUy, Uy) = 0.

This means that v, is supported on §2"=1' N {y}+, and hence we conclude that vy,
is the standard normalized measure on $**~' N {y}*.

Next, let Sy = S2"~'N{y}+. Forx € Sy set p(x) = |x|;. Note that ¢ is a Lipschitz
function on S, with Lipschitz constant |[¢||Lip < +/2n. Using a concentration of
measure argument (see Proposition 2.4 above), we conclude that for any o« > 0

ny{x € Sy | 9(x) < B9 —av/n} < Cexp(—*a’n’/|lg|lf;,) < Cexp(—ka’n),
(12)
for some universal constants C and «.

Our next step is to estimate the expectation [E, ¢ that appear in (12). For this
purpose let us take some orthogonal basis {z;,...,zs,—1} of the subspace L =
{y}t C R¥.For 1 <j < 2n, denote by w; the vector w; = (z1()j), .. -, z20-1(})),
where z;(j) stands for the jth coordinate of the vector z;. Then, the measure vy,
which is the standard normalized Lebesgue measure on $¥*~' N {y}1, can be
described as the image of the normalized Lebesgue measure 0,,—, of §2"=2 yunder
the map

2n—1

>a=(ay,...,am—1) Z arze = ({a, wi), (@, wa), ... {a, wa)) € S,.
k=1

SZn—Z
Consequently,

2n 2n
1 2
EMD = Eazn—z(a = E |(a, W}>|) = \/ E |Wj|'
' Voan—1 V=

j=1
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Since {z1, . .., 221, y} is a basis of R*", one has that |w;|> + yj2 = 1 and hence

2n
1 2 1 2 1
E, ¢ = \/ E \/1_23 \/ 2n—1)> _/n.
ne V2n—1 e i V2n—1 7T( ) 2

Thus, from inequality (12) with @ = i we conclude that

K*n

16 )

13)

1 1
vix € Syl p(x) < 4\/’7} =ni{xeSlek) <E,¢— 4\/”} < Cexp(—

In other words, for any § < ; and any y € S*"~! one has that

K2n
Vy(Gy) < Cexp(— 16 )s

for some constant k. Thus, for every A such that A + V28 <1 /4, we conclude
by (11) that

K*n

p(Ay) < Cexp(2ne) - exp( — 16 )-

To complete the proof of the Theorem it is enough to take & = x2/64, and A which
satisfies the inequality )L(l + 16\/ ln(i/ 8)) <1/4. O

Acknowledgements The authors would like to thank the anonymous referee for helpful comments
and remarks, and in particular for his/her suggestion to elaborate more on the symplectic topology
background which partially served as a motivation for the current note. The second-named author
was partially supported by the European Research Council (ERC) under the European Union’s
Horizon 2020 research and innovation programme, starting grant No. 637386, and by the ISF
grant No. 1274/14.

Appendix

Here we provide some background from symplectic topology which partially served
as a motivation for the current paper. For more detailed information on symplectic
topology we refer the reader e.g., to the books [10, 13] and the references therein.
A symplectic vector space is a pair (V, ), consisting of a finite-dimensional
vector space and a non-degenerate skew-symmetric bilinear form w, called the
symplectic structure. The group of linear transformations which preserve w is
denoted by Sp(V, w). The archetypal example of a symplectic vector space is the
Euclidean space R?* equipped with the skew-symmetric bilinear form « which
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is the imaginary part of the standard Hermitian inner product in R** ~ C”.
More precisely, if {xi,...,X,,1,..., Yy} stands for the standard basis of R?", then
o(x;,x) = o@i,y) = 0, and w(x;,y;)) = &;. In this case the group of linear
symplectomorphisms is usually denoted by Sp(27). More generally, the group of
diffeomorphisms ¢ of R?" which preserve the symplectic structure, i.e., when the
differential dp at each point is a linear symplectic map, is called the group of
symplectomorphisms of R?", and is denoted by Symp(R?", w). In the spirit of
Klein’s Erlangen program, symplectic geometry can be defined as the study of
transformations which preserves the symplectic structure. We remark that already
in the linear case, the geometry of a skew-symmetric bilinear form is very different
from that of a symmetric form, e.g., there is no natural notion of distance or angle
between two vectors. We further remark that symplectic vector spaces, and more
generally symplectic manifolds, provide a natural setting for Hamiltonian dynamics,
as the evolution of a Hamiltonian system is known to preserve the symplectic form
(see, e.g., [10]). Historically, this is one of the main motivations to study symplectic
geometry.

In sharp contrast with Riemannian geometry where, e.g., curvature is an obstruc-
tion for two manifolds to be locally isometric, in the realm of symplectic geometry
it is known that there are no local invariants (Darboux’s theorem). Moreover,
unlike the Riemannian setting, a symplectic structure has a very rich group of
automorphisms. More precisely, the group of symplectomorphisms is an infinite-
dimensional Lie group. The first results distinguishing (non-linear) symplecto-
morphisms from volume preserving transformations were discovered only in the
1980s. The most striking difference between the category of volume preserving
transformations and the category of symplectomorphisms was demonstrated by
Gromov [9] in his famous non-squeezing theorem. This theorem asserts that if
r < 1, there is no symplectomorphism v of R?* which maps the open unit ball
B?'(1) into the open cylinder Z*"(r) = B?(r) x C"~!. This result paved the way
to the introduction of global symplectic invariants, called symplectic capacities,
which are significantly differ from any volume related invariants, and roughly
speaking measure the symplectic size of a set (see e.g., [3], for the precise definition
and further discussion). Two examples, defined for open subsets of R?", are the
Gromov radius c(U) = sup{mr? : B*(r) < U}, and the cylindrical capacity
cU) = inf{mr? : U < zm (r)}. Here <% stands for symplectic embedding.

Shortly after Gromov’s work [9] many other symplectic capacities were con-
structed, reflecting different geometrical and dynamical properties. Nowadays, these
invariants play an important role in symplectic geometry, and their properties,
interrelations, and applications to symplectic topology and Hamiltonian dynamics
are intensively studied (see e.g., [3]). However, in spite of the rapidly accumulating
knowledge regarding symplectic capacities, they are usually notoriously difficult to
compute, and there are very few general methods to effectively estimate them, even
within the class of convex domains in R?* (we refer the reader to [18] for a survey
of some known results and open questions regarding symplectic measurements of
convex sets in R?"). In particular, a long standing central question is whether all
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symplectic capacities coincide on the class of convex bodies in R>" (see, e.g., Sect. 5
in [18]). Recently, the authors proved that for centrally symmetric convex bodies,
several symplectic capacities, including the Ekeland-Hofer-Zehnder capacity cy,,,
spectral capacities, the cylindrical capacity ¢, and its linearized version ¢y ,, given
in (1), are all equivalent up to an absolute constant. More precisely, the following
was proved in [8].

Theorem 3.1 For every centrally symmetric convex body K C R

4

<cyy(K)<cK) =<c K) < ,
Wlgen = o) =)= oo =

where ||J||go—k is the operator norm of the complex structure J, when the latter
is considered as a linear map between the normed spaces J : (R?, | - ||x°) —

@R, - lI&)-

Theorem 3.1 implies, in particular, that despite the non-linear nature of the
Ekeland-Hofer-Zehnder capacity c,,, and the cylindrical capacity ¢ (both, by defi-
nition, are invariant under non-linear symplectomorphisms), for centrally symmetric
convex bodies they are asymptotically equivalent to a linear invariant: the linearized
cylindrical capacity cg,,,. Motivated by the comparison between the capacities
¢ and cg,,, in Theorem 3.1, it is natural to introduce and study the following
geometric quantity:

¢, (K) = ;2{; Area(n(g(K))), (14)

where K lies in the class of convex domains of R*" ~ C" (or possibly, some other
class of bodies), 7 is the orthogonal projection to the complex line £ = {7 €
C"|zj = Oforj # 1}, and G is some group of transformations of R?". One possible
choice is to take the group G in (14) to be the unitary group U(n), which is the
maximal compact subgroup of Sp(2n). In this case it is not hard to check (by looking
at linear symplectic images of the cylinder Z?"(1)) that the cylindrical capacity c is
not asymptotically equivalent to ¢, . Still, one can ask if these two quantities are
asymptotically equivalent on average. More precisely,

Question 3.2 Ts it true that for every convex body K C R?" one has
E, (c(OK)) < E, (CUW (OK)) ?,

where p is the Haar measure on the orthogonal group O(2n).

The answer to Question 3.2 is negative. A counterexample is given by the
standard cube Q = [—1,1]*" in R*". We remark that the quantity E, (c,,, (0Q))
is the main objects of interest of the current paper. To be more precise, we turn now
to the following proposition, which is a direct corollary of Theorem 3.1, and might
be of independent interest. For completeness, we shall give a proof below.
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Proposition 3.3 For the standard cube Q = [—1, 1]** C R*" one has

]E;L (CEHZ(OQ)) = Ell (C(OQ)) = EN (CSp(Zn) (OQ)) = \/ !

Inn’

where | is the Haar measure on the orthogonal group O(2n).

Note that the combination of the main result of the current paper (in particular,
Corollary 1.2) with Proposition 3.3 above gives a negative answer to Question 3.2,
and thus further emphasizes the difference between the symplectic and complex
structures on R*" ~ C".

Proof of Proposition 3.3 Note that by definition one has that

J = max |Jx = max ||0*JOx||eoc = max [0*JOe;| co,
Mlowr00 = mas. Velog = max [0°10oe = max, 0°J0c 1

where {e; 1'221 stands for the standard basis of R?". It follows from Step II of the proof
of Theorem 1.1 above that for a random rotation O € O(2n), the vector O*JOe;
is uniformly distributed on $%"2 ~ §2=! N {¢;}* with respect to the standard
normalized measure o,, , on $**~2. The distribution of the /X_-norm on the sphere
S is well-studied, and in particular one has (see e.g., Sects. 5.7 and 7 in [16]) that
for every e;

Ey (1(0°10e) o) = /™" (15)
and
B {(1(0°J0e) oo — B, (1(0°J0e)loc) > 1} < crexp(—ca’n),  (16)

for some universal constants ¢, c; > 0. From (15) and (16) it immediately follows
that

Ey (M llooe—00) = \/h}l"- a7
Moreover, one has that for some universal constants c3, ¢4 > 0,
P {71l 00)e—(00) < C3\/h;"} = . (18)
Indeed, from the above it follows that

P/l 0ore—00) <1} <P {((0*J0e) oo < 1} =Py, {lIvlleo < 1}
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Using the standard Gaussian probability measure y, , on R*"~!, one can further
estimate

A

Py, Alleo = 1} =¥, {liglloo = 1ligll2}

= Valligloo = 2v2n =11} + ., {ligl2 = 2v/2n - 1},

where g is a Gaussian vector in R*"~! with independent standard Gaussian coordi-
nates. One can directly check that (18) now follows from the above inequalities, and
the following standard estimates for the Gaussian probability measure y, on R¥, and
O0<e<:

—?
Velllgloo < o) < [1=/2 P72 andy, L e R¥ gl = X, b < exp(—7k/4).

Taking into account the fact that «/12n < logy>—(00) < 1, we conclude from (17)
and (18) above that

E. ((Mll0g2—00) ") = \/I:n'

Together with Theorem 3.1, this completes the proof of Proposition 3.3. O
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On the Expectation of Operator Norms
of Random Matrices

Olivier Guédon, Aicke Hinrichs, Alexander E. Litvak, and Joscha Prochno

Abstract We prove estimates for the expected value of operator norms of Gaussian
random matrices with independent (but not necessarily identically distributed) and
centered entries, acting as operators from El”,* to EZ’, l1<p*<2<g<oc.

1 Introduction and Main Results

Random matrices and their spectra are under intensive study in Statistics since the
work of Wishart [28] on sample covariance matrices, in Numerical Analysis since
their introduction by von Neumann and Goldstine [25] in the 1940s, and in Physics
as a consequence of Wigner’s work [26, 27] since the 1950s. His Semicircle Law,
a fundamental theorem in the spectral theory of large random matrices describing
the limit of the empirical spectral measure for what is nowadays known as Wigner
matrices, is among the most celebrated results of the theory.

In Banach Space Theory and Asymptotic Geometric Analysis, random matrices
appeared already in the 70s (see e.g. [2, 3, 9]). In [2], the authors obtained asymptotic
bounds for the expected value of the operator norm of a random matrix B = (by);;Z,
with independent mean-zero entries with |b;| < 1 from £} to EZ’, 2 < g < o0.Tobe
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more precise, they proved that
E|B: € — | < C,-max (m"9, /n),

where C; depends only on g. This was then successfully used to characterize
(p, g)-absolutely summing operators on Hilbert spaces. Ever since, random matrices
are extensively studied and methods of Banach spaces have produced numerous
deep and new results. In particular, in many applications the spectral properties
of a Gaussian matrix, whose entries are independent identically distributed (i.i.d.)
standard Gaussian random variables, were used. Seginer proved in [22] that for
an m x n random matrix with i.i.d. symmetric random variables the expectation
of its spectral norm (that is, the operator norm from ¢} to £}') is of the order
of the expectation of the largest Euclidean norm of its rows and columns. He
also obtained an optimal result in the case of random matrices with entries
gjja;;, where g; are independent Rademacher random variables and a; are fixed
numbers. We refer the interested reader to the surveys [6, 7] and references
therein.

It is natural to ask similar questions about general random matrices, in particular
about Gaussian matrices whose entries are still independent centered Gaussian
random variables, but with different variances. In this structured case, where we
drop the assumption of identical distributions, very little is known. It is conjectured
that the expected spectral norm of such a Gaussian matrix is as in Seginer’s result,
that is, of the order of the expectation of the largest Euclidean norm of its rows and
columns. A big step toward the solution was made by Latata in [15], who proved
a bound involving fourth moments, which is of the right order max(./m, \/n) in
the i.i.d. setting, but does not capture the right behavior in the case of, for instance,
diagonal matrices. On one hand, as is mentioned in [15], in view of the classical
Bai-Yin theorem, the presence of fourth moments is not surprising, on the other
hand they are not needed if the conjecture is true.

Later in [20], Riemer and Schiitt proved the conjecture up to a log n factor. The
two results are incomparable—depending on the choice of variances, one or another
gives a better bound. The Riemer-Schiitt estimate was used recently in [21].

We would also like to mention that the non-commutative Khintchine inequality
can be used to show that the expected spectral norm is bounded from above by the
largest Euclidean norm of its rows and columns times a factor/log n (see e.g. (4.9)
in [23]).

Another big step toward the solution was made a short while ago by Bandeira
and Van Handel [1]. In particular, they proved that

E | (aygp) : 85— 5] < C(IAll + Viog minn.m) - max Jay]). (M

where [|A[|| denotes the largest Euclidean norm of the rows and columns of (a;),
C > 0 is a universal constant, and g;; are independent standard Gaussian random
variables (see [1, Theorem 3.1]). Under mild structural assumptions, the bound (1)
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is already optimal. Further progress was made by Van Handel [24] who verified the
conjecture up to a +/log log n factor. In fact, more was proved in [24]. He computed
precisely the expectation of the largest Euclidean norm of the rows and columns
using Gaussian concentration. And, while the moment method is at the heart of the
proofs in [22] and [1], he proposed a very nice approach based on the comparison of
Gaussian processes to improve the result of Latata. His approach can be also used
for our setting. We comment on this in Sect. 4.

The purpose of this work is to provide bounds for operator norms of such
structured Gaussian random matrices considered as operators from £7, to £'.

In what follows, by g;, g, i > 1,j > 1 we always denote independent standard
Gaussian random variables. Let n,m € N and A = (ay)];Z;, € R™". We write
G = Ga = (aygy);;Z,. For r > 1, we denote by y, ~ +/r the L,-norm of a
standard Gaussian random variable. The notation f &~ h means that there are two
absolute positive constants ¢ and C (that is, independent of any parameters) such
that ¢f < h < Cf and f ~,, h means that there are two positive constants c(p, q)
and C(p, q), which depend only on the parameters p and ¢, such that c(p, g)f < h <
Cp.q)f

Our main result is the following theorem.

Theorem 1.1 Forevery 1 < p* <2 < q < o0 one has
7\ /4
E[G: 4. — e = (E|G: 6.~ er]")

< Cpttogm |y, max e by + 7, Emax ey |

Jj=n

+ 24y, max || (@), 4.
j<n

where C is a positive absolute constant.
We conjecture the following bound.

Conjecture 1.2 Forevery 1 < p* <2 < g < oo one has

E|G: 4. — )] ~ max @i ll, + max @)z llg + EI&%} |ajgil-

j=n

Here, as usual, p is defined via the relation 1/p + 1/p* = 1. This con-
jecture extends the corresponding conjecture for the case p = g = 2 and
m = n. In this case, Bandeira and Van Handel proved in [1] an estimate with
\/log min(m, n) max |a;| instead of E max |a;g;| (see Eq. (1)), while in [24] the
corresponding bound is proved with /loglog n in front of the right hand side.

Remark 1.3 The lower bound in the conjecture is almost immediate and follows
from standard estimates. Thus the upper bound is the only difficulty.
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Remark 1.4 In the case p* = 1 and ¢ > 2, a direct computation following along
the lines of Lemma 3.2 below, shows that

E|G: 6] - €' <, max I(ag)itillg + Emax|agg;l.

Jj=n

Remark 1.5 Note that if 1 < p* < 2 < g < o0, in the case of matrices of tensor
structure, that is, (a;);;—; = x®y = (x; - yi with x,y € R", Chevet’s theorem
[3, 4] and a direct computation show that

n
ij=1°

E|G: &y — ] ~pq I¥lllixlloo + I¥lloo lx1l,-

If the matrix is diagonal, that is, (a,;j)l'.“j: , = diag(aiy, . .., am), then we immediately
obtain

E|G: €. — €] = El(aigi)i=illoc ~ max VinG +3) -af ~ |l(@), lu,

where (a)i<n is the decreasing rearrangement of (|a;i|)i<, and M, is the Orlicz

function given by
2 (% _
M,y(s) = \/ / e » dt
T Jo

(see Lemma 2.2 below and [11, Lemma 5.2] for the Orlicz norm expression).
Slightly different estimates, but of the same flavour, can also be obtained in the
case ] <g<2<p*<oo.

2 Notation and Preliminaries

By ¢,C, Cy,... we always denote positive absolute constants, whose values may
change from line to line, and we write ¢,, C,p, . .. if the constants depend on some
parameter p.

Given p € [1,00], p* denotes its conjugate and is given by the relation
I/p + 1/p* = 1. For x = (x)i<n € R", |lx]|, denotes its £,-norm, that is
[x]loo = max;<, |x;| and, for p < oo,

n 1/p
Il = (3 bat)
i=1

The corresponding space (R", || - [|,) is denoted by £7, its unit ball by By.

P’
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If E is a normed space, then E* denotes its dual space and Bg its closed unit ball.
The modulus of convexity of E is defined for any ¢ € (0, 2) by

Se(e) := inf{l — Hx;

Yy

| elle =1 Iylle = 1, k=l > ).
We say that E has modulus of convexity of power type 2 if there exists a positive
constant ¢ such that for all & € (0,2), 8z(g) > ce?. Itis well known that this property
(see e.g. [8] or [18, Proposition 2.4]) is equivalent to the fact that

Hx+yH2 ”_2Hx_yH2 - Ixl1Z + [IyllZ
2 lE 2 lE 2

holds for all x,y € E, where A > 0 is a constant depending only on c. In that case,
we say that E has modulus of convexity of power type 2 with constant 1. We clearly
have 8z (¢) > &2/(2A2).

Recall that a Banach space E is of Rademacher type r for some 1 < r < 2 if
there is C > 0 such that for all » € N and for all xq,...,x, € E,

n o 1/2 n 1/r
(& ] sc(Zuxiuf) ,
i=1 i=1
where (&)

2, is a sequence of independent random variables defined on some
probability space (2, P) such that P(s; = 1) = P(g; = —1) = é for every i € N.
The smallest C is called type-r constant of E, denoted by 7,(E). This concept was
introduced into Banach space theory by Hoffmann-Jgrgensen [14] in the early 1970s
and the basic theory was developed by Maurey and Pisier [17].

We will need the following theorem.

o]

Theorem 2.1 Let E be a Banach space with modulus of convexity of power type 2
with constant A. Let X, ..., X, € E* be independent random vectors, g > 2 and
define

1 1/2
B:= CA4T2(E*)\/ O’gnm (JEm<ax IIXiIIfé*) :

and

YEBE

Lo 1/q
o = sup (mZEI(X,-,yH") :
i=1

Then

m

S~ Bl e

i=1

E sup < B>+ B-072

YEBE
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Its proof is done following the argument “proof of condition (H)” of [13] in com-
bination with the improvement on covering numbers established in [12, Lemma 2].
Indeed, in [12], the argument is only made in the simpler case ¢ = 2, but it can be
extended verbatim to the case g > 2.

We also recall known facts about Gaussian random variables. The next lemma is
well-known (see e.g. Lemmas 2.3, 2.4 in [24]).

Lemma 2.2 Let a = (a;)i<, € R" and (a})i<n be the decreasing rearrangement of
(lail)izn- Then

E max |a;g;| ~ max v/In(i + 3) - a}.
i<n i<n

Note that in general the maximum of i.i.d. random variables weighted by coordinates
of a vector a is equivalent to a certain Orlicz norm ||a||s, where the function M
depends only on the distribution of random variables (see [10, Corollary 2] and
Lemma 5.2 in [11]).

The following theorem is the classical Gaussian concentration inequality (see
e.g. [5] or inequality (2.35) and Proposition 2.18 in [16]).

Theorem 2.3 Let n € Nand (Y, ||-||y) be a Banach space. Let yi,...,y, € Y and
X = Y"I_, &i- Then, for every t > 0,

t2
(|11, - By 2 1) <20 (=, "), @

/
where oy (X) = sup|g|,.=1 (er‘l=1 IE(Y!’)IZ)I 2-

Remark 2.4 Letp > 2. Leta = (aj)j<» € R" and X = (a;gj)j<n. Then we clearly
have

op(X) = max |aj.
Thus, Theorem 2.3 implies for X = (a;g))j<n
2
P(JIX1l, — ENXI,| > 1) =2 exp( — . 3
Wl = £, > 1) <2exp( =, ") G

Note also that

n

1/p
Bl < (Ll Blst) =yl @

j=1
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3 Proof of the Main Result

We will apply Theorem 2.1 with E = EZ*, 1 <p* <2and X,...,X, being the
rows of the matrix G = (aijgij)z]l!il. We start with two lemmas in which we estimate
the quantity o and the expectation, appearing in that theorem.

Lemma 3.1 Letm,ne N, 1 <p* <2 <gq,andfori <mletX; = (aijgij);‘=l. Then

1 m p 1/q Ya
o= sup (m;ﬂz\(x,-,y)\) = T ma )

yEB;‘}*

Proof For every i < m, (X;,y) = 27:1 a;jy;gij» 1s a Gaussian random variable with
variance [|(a;y;)j— |l.- Hence,

yq q/2
o? = sup Z]El X y)7= "7 sup Z(Zla,]y] ) .

m
yGB” yeBn*L 1 =1

Since p* < 2 < g, the function

¢(2) = Z (Z || |Z/|2/p )

i=1 j=1

/2

is a convex function on the simplex § = {z € R"| Z};l <L Vj: gz >0}
Therefore, it attains its maximum on extreme points, that is, on vectors of the
canonical unit basis of R", ey, ..., e,. Thus,

q/2
sup Z(Zlam ) = Sup(2) = sup(er) = max )

}EBH*L 1 ~j=1

which completes the proof. O

Now we estimate the expectation in Theorem 2.1. The proof is based on the
Gaussian concentration, Theorem 2.3, and is similar to Theorem 2.1 and Remark 2.2
in [24].

Lemma3.2 Letm,neN, 1 <p* <2 <g,andfori <mletX; = (a,;jg,;j)]’.‘zl. Then

1/q
(Emax Ixi5) " < maxEIX;ll, + Cy, Emax|a;g;l
i<m i<m i<m

Jj=n

= yp max |[(ay)i—y |l + Cyy Emaxa;gyl.

j=n

where C is a positive absolute constant.
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Proof We have

1/q
(Emax 1x02) < | max |1Xll,  BIXil, | + max ENXil, |,

1/q
< (Emax |11, — EIXil,|*) " + maxE|X],.
For alli < m and ¢t > 0 by (3) we have

tz
P(|||Xi||,, —EIX:,| > r) <2exp ( - ) (5)

2 manSn |a,;,~|2

By permuting the rows of (a;))

m,n
i

"_» We can assume that
max |agj| > -+ > max |a;|.
Jj=<n Jj=n
For each i < m, choose j(i) < n such that |a;;)| = max;<, |aj|. Clearly,

max |a;ig;| > max|a;i)| - |y
i=m i<m

Jj=n

and hence, by independence of g;’s and Lemma 2.2,

b := Emax |a;g;| > Emax |azq) - 18] = ¢ max /log(i + 3) - |ag|,
i<m i<m i<m

j=n
where the latter inequality follows since |ayji)| > -+ > |ayjcn)|. Thus, for i < m,

b2

2 =d2. < :
I}lSanX |aj] Qijiy = clog(i + 3)

By (5) we observe for every ¢ > 0,

. ct*log(i + 3)
]P)(rge},f“lxl”p ~ElIXil,| > f) <2 Zexp ( — o2 )

i=1

m 1 ct2/2172 00 B t2/2b2
=2 Z <2 XTI gy
—\i+3 -7 5

< 6 . 3—Ct2/2b2

whenever ct?/b* > 4. Integrating the tail inequality proves that

1/q
q
(Eij (11, — EIX1, | ) < Ci/gb < Cy v, Emax|azgy.
i<m i=m
Jj=n
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By the triangle inequality, we obtain the first desired inequality, the second one
follows by (4). O

We are now ready to present the proof of the main theorem.

Proof of Theorem 1.1 First observe that

N\ V4 - q Va
E|G: €. — ] < (Ee: g - e2])) " = (E sup 31, ) .

YEB x =1

We have

E sup Y [(X;y)|" <E sup [Z\(Xi,y>|"—E|<X,-,y>|‘1] + sup Y E[(X;. )"

yEB;’}* i=1 yEBp* i=1 YEB « =]

=m-E sup |:; Z |(Xi,y>i‘1 _ ]Ei(Xi,y)i‘i:| +m-o4.

veB . | T i=1
Hence, Theorem 2.1 applied with E = El’;* implies
E|G:t — " <m-[B*+ Bo"?| + m-0 < 2m (B> + o),
where B and o are defined in that theorem. Therefore,
(BlG: . — )" <2Vomt/s (589 + o).

Now, recall that 7>(£}) ~ /p and that BZ* has modulus of convexity of power type
2 with A=2 &~ 1/p (see, e.g., [19, Theorem 5.3]). Therefore,

10 1/q 1/q
o = crminrie () (2ma )
m i<m
2/q,,5/4 Vay,=1/4 7))
= 214 (log m)/m/+ (Emax |ig)
Applying Lemma 3.1, we obtain
1/q
. pn m|q
(ElG: 6. — €]
21/q . 5/q 1/q 0)"
< (2C*)71. p’9. (logm) (]Emax ||Xi||p)
i<m
+ 2"y, - max || (az)i, |-
Jj=n

The desired bound follows now from Lemma 3.2. O
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Remark 3.3 This proof can be extended to the case of random matrices whose rows
are centered independent vectors with multivariate Gaussian distributions. We leave
the details to the interested reader.

4 Concluding Remarks

In this section, we briefly outline what can be obtained using the approach of [24].
We use a standard trick to pass to a symmetric matrix. The matrix G4 being given,

define S as
S=1 0 GI .
2\Gy4 O

Then, S is a random symmetric matrix and

sup{Sw,w) = sup sup (Gau,v) = HGA e — Z;”H,

w u€B", veB™,
p* a*

where the supremum in w is taken over all vectors of the form (u, v)” with u € BZ*
andv € BZ’*. Repeating verbatim the proof of Theorem 4.1 in [24] one gets

n 1/p
B160 6~ 1 B (S latlast )

j=1
m l/q

+ E max (Zl |g,-|‘f|a,;,~|g) +Emax ¥,
=

where Y ~ N(0,A™) and A~ is a positive definite matrix whose diagonal elements

are bounded by
4 4
J i

However, the bounds obtained here and in Theorem 1.1 are incomparable. Depend-
ing on the situation one may be better than the other.
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The Restricted Isometry Property
of Subsampled Fourier Matrices

Ishay Haviv and Oded Regev

Abstract A matrix A € C?™V satisfies the restricted isometry property of order
k with constant € if it preserves the £, norm of all k-sparse vectors up to a factor
of 1 + €. We prove that a matrix A obtained by randomly sampling ¢ = O(k -
log? k - log N) rows from an N x N Fourier matrix satisfies the restricted isometry
property of order k with a fixed € with high probability. This improves on Rudelson
and Vershynin (Comm Pure Appl Math, 2008), its subsequent improvements, and
Bourgain (GAFA Seminar Notes, 2014).

1 Introduction

A matrix A € C7*V satisfies the restricted isometry property of order k with constant
€ > 0 if for every k-sparse vector x € CV (i.e., a vector with at most k nonzero
entries), it holds that

(1 =) - lIxl3 = lAx]l3 = (1 +€) - |Ix]5 - (1)

Intuitively, this means that every k columns of A are nearly orthogonal. This
notion, due to Candes and Tao [9], was intensively studied during the last decade
and found various applications and connections to several areas of theoretical
computer science, including sparse recovery [8, 20, 27], coding theory [14], norm
embeddings [6, 22], and computational complexity [4, 25, 31].

The original motivation for the restricted isometry property comes from the area
of compressed sensing. There, one wishes to compress a high-dimensional sparse
vector x € CV to a vector Ax, where A € C*V is a measurement matrix that enables

A preliminary version appeared in Proceedings of the 27th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 2016, pages 288-297.
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reconstruction of x from Ax. Typical goals in this context include minimizing the
number of measurements ¢ and the running time of the reconstruction algorithm. It
is known that the restricted isometry property of A, for € < +/2 — 1, is a sufficient
condition for reconstruction. In fact, it was shown in [8, 9, 11, 12] that under this
condition, reconstruction is equivalent to finding the vector of least £; norm among
all vectors that agree with the given measurements, a task that can be formulated as
a linear program [13, 16], and thus can be solved efficiently.

The above application leads to the challenge of finding matrices A € C#*V that
satisfy the restricted isometry property and have a small number of rows g as a
function of N and k. (For simplicity, we ignore for now the dependence on €.)
A general lower bound of ¢ = Q(k - log(N/k)) is known to follow from [18]
(see also [17]). Fortunately, there are matrices that match this lower bound, e.g.,
random matrices whose entries are chosen independently according to the normal
distribution [10]. However, in many applications the measurement matrix cannot be
chosen arbitrarily but is instead given by a random sample of rows from a unitary
matrix, typically the discrete Fourier transform. This includes, for instance, various
tests and experiments in medicine and biology (e.g., MRI [28] and ultrasound
imaging [21]) and applications in astronomy (e.g., radio telescopes [32]). An
advantage of subsampled Fourier matrices is that they support fast matrix-vector
multiplication, and as such, are useful for efficient compression as well as for
efficient reconstruction based on iterative methods (see, e.g., [26]).

In recent years, with motivation from both theory and practice, an intensive line
of research has aimed to study the restricted isometry property of random sub-
matrices of unitary matrices. Letting A € C?V be a (normalized) matrix whose
rows are chosen uniformly and independently from the rows of a unitary matrix
M € CV*N | the goal is to prove an upper bound on g for which A is guaranteed to
satisfy the restricted isometry property with high probability. Note that the fact that
the entries of every row of A are not independent makes this question much more
difficult than in the case of random matrices with independent entries.

The first upper bound on the number of rows of a subsampled Fourier matrix that
satisfies the restricted isometry property was O(k - log® N), which was proved by
Candes and Tao [10]. This was then improved by Rudelson and Vershynin [30] to
O(k-log® k-log(klog N)-log N) (see also [15, 29] for a simplified analysis with better
success probability). A modification of their analysis led to an improved bound of
O(k - log® k - log N) by Cheraghchi, Guruswami, and Velingker [14], who related
the problem to a question on the list-decoding rate of random linear codes over
finite fields. Interestingly, replacing the log(klog N) term in the bound of [30] by
log k was crucial for their application.! Recently, Bourgain [7] proved a bound of
O(k - logk - log*> N), which is incomparable to those of [14, 30] (and has a worse
dependence on €; see below). We finally mention that the best known lower bound
on the number of rows is Q(k - log N) [5].

'Note that the list-decoding result of [14] was later improved by Wootters [33] using different
techniques.
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1.1 Owur Contribution

In this work, we improve the previous bounds and prove the following.

Theorem 1.1 (Simplified) Let M € CN*N be a unitary matrix with entries of
absolute value O(1/+/N), and let € > 0 be a fixed constant. For some q =
O(k-log? k-logN), let A € CT*N be a matrix whose q rows are chosen uniformly and
independently from the rows of M, multiplied by \/N/q. Then, with high probability,
the matrix A satisfies the restricted isometry property of order k with constant €.

The main idea in our proof is described in Sect.1.3. We arrived at the proof
from our recent work on list-decoding [19], where a baby version of the idea
was used to bound the sample complexity of learning the class of Fourier-sparse
Boolean functions.” Like all previous work on this question, our proof can be
seen as a careful union bound applied to a sequence of progressively finer nets,
a technique sometimes known as chaining. However, unlike the work of Rudelson
and Vershynin [30] and its improvements [14, 15], we avoid the use of Gaussian
processes, the “symmetrization process,” and Dudley’s inequality. Instead, we
follow and refine Bourgain’s proof [7], and apply the chaining argument directly
to the problem at hand using only elementary arguments. It would be interesting to
see if our proof can be cast in the Gaussian framework of Rudelson and Vershynin.

We remark that the bounds obtained in the previous works [14, 30] have a
multiplicative O(¢~?) term, whereas a much worse term of O(e~®) was obtained
in [7]. In our proof of Theorem 1.1 we nearly obtain the best known dependence on
€. For simplicity of presentation we first prove in Sect. 3 our bound with a weaker
multiplicative term of O(e™*), and then, in Sect.4, we modify the analysis and
decrease the dependence on € to O(e~2) up to logarithmic terms.

1.2 Related Literature

As mentioned before, one important advantage of using subsampled Fourier
matrices in compressed sensing is that they support fast, in fact nearly linear time,
matrix-vector multiplication. In certain scenarios, however, one is not restricted to
using subsampled Fourier matrices as the measurement matrix. The question then is
whether one can decrease the number of rows using another measurement matrix,
while still keeping the near-linear multiplication time. For k < N'/>77 where y > 0
is an arbitrary constant, the answer is yes: a construction with the optimal number

2The result in [19] is weaker in two main respects. First, it is restricted to the case that Ax is in
{0, 1}9. This significantly simplifies the analysis and leads to a better bound on the number of rows
of A. Second, the order of quantifiers is switched, namely it shows that for any sparse x, a random
subsampled A works with high probability, whereas for the restricted isometry property we need
to show that a random A works for all sparse x.
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O(k - log N) of rows follows from works by Ailon and Chazelle [1] and Ailon and
Liberty [2] (see [6]). For general k, Nelson, Price, and Wootters [27] suggested
taking subsampled Fourier matrices and “tweaking” them by bunching together
rows with random signs. Using the Gaussian-process-based analysis of [14, 30] and
introducing further techniques from [23], they showed that with this construction
one can reduce the number of rows by a logarithmic factor to O(k - log*(klog N) -
log N) while still keeping the nearly linear multiplication time. Our result shows that
the same number of rows (in fact, a slightly smaller number) can be achieved already
with the original subsampled Fourier matrices without having to use the “tweak.” A
natural open question is whether the “tweak” from [27] and their techniques can be
combined with ours to further reduce the number of rows. An improvement in the
regime of parameters of k = w(+/N) would lead to more efficient low-dimensional
embeddings based on Johnson-Lindenstrauss matrices (see, e.g., [1-3, 22, 27]).

1.3 Proof Overview

Recall from Theorem 1.1 and from (1) that our goal is to prove that a matrix A given
by a random sample Q of g rows of M satisfies with high probability that for all
k-sparse x, [|Ax||5 & |lx||3. Since M is unitary, the latter is equivalent to saying that
[Ax|3 ~ ||Mx]||3. Yet another way of expressing this condition is as

21 A 2y,
E L))~ E [(ma)]

i.e., that a sample Q C [N] of g coordinates of the vector |Mx|?> gives a good
approximation to the average of all its coordinates. Here, |Mx|? refers to the
vector obtained by taking the squared absolute value of Mx coordinate-wise. For
reasons that will become clear soon, it will be convenient to assume without loss
of generality that ||x||; = 1. With this scaling, the sparsity assumption implies that
[|Mx|3 is not too small (namely at least 1/k), and this will determine the amount of
additive error we can afford in the approximation above. This is the only way we
use the sparsity assumption.

At a high level, the proof proceeds by defining a finite set of vectors  that forms
a net, i.e., a set satisfying that any vector |Mx|? is close to one of the vectors in H.
We then argue using the Chernoff-Hoeffding bound that for any fixed vector 1 € H,
a sample of ¢ coordinates gives a good approximation to the average of &. Finally,
we complete the proof by a union bound over all & € H.

In order to define the set H we notice that since ||x||; = 1, Mx can be seen
as a weighted average of the columns of M (possibly with signs). In other words,
we can think of Mx as the expectation of a vector-valued random variable given
by a certain probability distribution over the columns of M. Using the Chernoff-
Hoeffding bound again, this implies that we can approximate Mx well by taking the
average over a small number of samples from this distribution. We then let H be the
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set of all possible such averages, and a bound on the cardinality of H follows easily
(basically N raised to the number of samples). This technique is sometimes referred
to as Maurey’s empirical method.

The argument above is actually oversimplified, and carrying it out leads to
rather bad bounds on g. As a result, our proof in Sect. 3 is slightly more delicate.
Namely, instead of just one set H, we have a sequence of sets, H, H», ..., each
being responsible for approximating a different scale of |[Mx|>. The first set
approximates |Mx|?> on coordinates on which its value is highest; since the value
is high, we need less samples in order to approximate it well, as a result of which
the set #; is small. The next set H, approximates |Mx|> on coordinates on which
its value is somewhat smaller, and is therefore a bigger set, and so on and so forth.
The end result is that any vector |Mx|?> can be approximately decomposed into a
sum Y, i with h? € H;. To complete the proof, we argue that a random choice
of g coordinates approximates all the vectors in all the H; well. The reason working
with several H; leads to the better bound stated in Theorem 1.1 is this: even though
as i increases the number of vectors in H; grows, the quality of approximation that
we need the g coordinates to provide decreases, since the value of [Mx|? there is
small and so errors are less significant. It turns out that these two requirements on ¢
balance each other perfectly, leading to the desired bound on g.

2 Preliminaries

Notation The notation x /., y means thatx € [(1 —€)y —, (1 + €)y + «]. Fora
matrix M, we denote by M the £th column of M and define | M| oo = max;; |M;;|.

The Restricted Isometry Property The restricted isometry property is defined as
follows.

Definition 2.1 We say that a matrix A € C?*V satisfies the restricted isometry
property of order k with constant € if for every k-sparse vector x € CV it holds
that

(1 =)~ lIxl3 =< llAx]3 = (1 + ) - [Ix]3.

Chernoff-Hoeffding Bounds We now state the Chernoff-Hoeffding bound (see,
e.g., [24]) and derive several simple corollaries that will be used extensively later.

Theorem 2.2 Let X|,...,Xy be N identically distributed independent random
variables in [0, a] satisfying E[X;] = u for all i, and denote X = 11, . ng=1Xi~
Then there exists a universal constant C such that for every 0 < € < 1/2, the
probability that X ~ | is at least 1 — 2e~CNue/a,

Corollary 2.3 Let Xi,...,Xy be N identically distributed independent random
variables in [0, a] satisfying E[X;] = u for all i, and denote X = 11, . ng=1Xi~
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Then there exists a universal constant C such that for every 0 < € < 1/2 and
o > 0, the probability that X ~, @ is at least 1 — 2e=CNee/e,

Proof If u > % then by Theorem 2.2 the probability that X ~.o pu is at least

1 — 2¢=CNue/a wwhich is at least 1 — 2e~CNe€/a_ Otherwise, Theorem 2.2 for § =
o

L € implies that the probability that X =~z u, hence X =g, u, is at least

1 — 2¢=CNuE/a_and the latter is at least 1 — 2e~CNee/a, [ |

Corollary 2.4 Let Xi,...,Xy be N identically distributed independent random
variables in [—a, +a] satisfying E[X;] = w and E[|X;|]] = [i for all i, and denote
X = ]1, . Zf\;l Xi. Then there exists a universal constant C such that for every

0 < & < 1/2and a > 0, the probability that X =~ .ji+o |t is at least
1— 4e—C~Nozs//a.

Proof The corollary follows by applying Corollary 2.3 to max(X;,0) and to
— min(X;, 0). [ |

We end with the additive form of the bound, followed by an easy extension to the
complex case.

Corollary 2.5 Let Xi,...,Xy be N identically distributed independent random
variables in [—a, +a] satisfying E[X;] = p for all i, and denote X = 11, . va=1 Xi.
Then there exists a universal constant C such that for every b > 0, the probability
that X =~ | is at least 1 — 4o CN0*/a@®,

Proof We can assume that b < 2a. The corollary follows by applying Corollary 2.4
to, say, « = 3b/4 and €’ = b/(4a). |

Corollary 2.6 Let Xi,...,Xy be N identically distributed independent complex-
valued random variables satisfying |X;| < a and E[X;] = u for all i, and denote
X = 1{, . vazl Xi. Then there exists a universal constant C such that for every b > 0,
the probability that |X| ~¢ 5 || is at least 1 — e CNb/a,

Proof By Corollary 2.5 applied to the real and imaginary parts of the random
variables X, ..., Xy it follows that for a universal constant C, the probability that

Re(X) ~,,,.,» Re(n) and Im(X) =, /, Im(p) is at least 1 — ge—CNV /@ By
triangle inequality, it follows that with such probability we have |X| =, |u|, as
required. -

3 The Simpler Analysis

In this section we prove our result with a multiplicative term of O(¢~*) in the bound.
This will be obtained in Theorem 3.7 as an easy corollary of the following theorem.

Theorem 3.1 For a sufficiently large N, a matrix M € CN*N, and sufficiently small
e,n > 0, the following holds. For some ¢ = O(e>n~'logN - log*(1/7)), let Q
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be a multiset of q uniform and independent random elements of [N). Then, with
probability 1 — 2~ HlogNlog(1/m) jt holds that for every x € CV,

E [1M0)i*] ~ ez B [1(Mx);1] .
‘I.EQ[ il R nlnMnoojE[N][ iI°]

Throughout the proof we assume without loss of generality that the matrix M €
CN*N satisfies |M||oo = 1. For €, > 0, we denote t = log,(1/7), r = log,(1/€2),
and y = n/(21).

We now define the approximating vector sets H;, i = 1,...,t, each responsible
for coordinates of | Mx|? of a different scale (the larger the i the smaller the scale). We
start by defining the “raw approximations” G;, which are essentially vectors obtained
by averaging a certain number of columns of M. We then define the vectors in H; by
restricting the vectors in G; (actually G;,) to the set of coordinates B; where there
is a clear “signal” and not just noise. This is necessary in order to make sure that the
small coordinates of |Mx|? are not flooded by noise from the coarse approximations.
Details follow.

The Vector Sets G; For every 1 < i <t + r, let G; denote the set of all vectors
g” € CN that can be represented as

)2
g(): .

D DICOLRTE @

,s)EF

for a multiset F of O(2' - log(1/y)) pairs in [N] x {0,1,2,3}. A trivial counting
argument gives the following.

Claim 3.2 Foreveryl <i<t+r, |G| < NO@Hlog(1/7))

The Vector Sets 7; For a t-tuple of vectors (g7, ..., gy € G4, x---x Gy,
and for 1 < i < ¢, let B; be the set of all j € [N] for which i is the smallest index
satisfying | g;'+r) | > 2272 For such i, define the vector 1) by

R = min(|g{™*" 2 Lieg,. 9-277). 3)

Let H, be the set of all vectors A1) that can be obtained in this way.
Claim 3.3 Forevery 1 <i <1, |H;| < NOE *2"log(1/y),

Proof Observe that every h) € H; is fully defined by some (¢!, ..., (") €
Gi4r X -+ X Giy,. Hence

1Ml < Gigr| -+ |Gisr| < NOWEBA/M)IQIFTH2H 44277 NO(0g(1/y) 27+

Using the definition of r, the claim follows. |
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Lemma 3.4 For every i > 0 and some ¢ = O(¢ 7 'logN -log(1/y)), let Q
be a multiset of q uniform and independent random elements of [N). Then, with
probability 1 — 2~ oeNoe/N) it holds that for all 1 < i < t and h'¥) € H; ,

5 )~ 2, )
jeol e LY
Proof Fix an 1 < i < t and a vector /') € H,, and denote ;1 = Ejep] [hl(.i)]. By
Corollary 2.3, applied with « = fjand @ = 9 - 2~ (recall that hl(.i) < a for every

J)., with probability 1 — 272" _it holds that Ejeg[h\’] A p. Using Claim 3.3,
the union bound over all the vectors in #, implies that the probability that some
h" € H; does not satisfy EjEQ[h;')] R 7 [ is at most

N0(€72'2"'10g(1/1/)) Q2 gel) < 2—9(672'2i'10gN'log(l/y)) .

We complete the proof by a union bound over i. |
Approximating the Vectors Mx

Lemma 3.5 For every vector x € CN with ||x||, = 1, every multiset Q < [N], and
every 1 < i < t+ r, there exists a vector g € G; that satisfies |(Mx);| ~g iz |gjl
for all but at most y fraction of j € [N] and for all but at most y fraction of j € Q.

Proof Observe that for every £ € [N] there exist pg.o, pe.1, Pe2, pes > 0 that satisfy

3 3
Zp(,s = |Xg| and \/2 Zpé’s . (_1)5/2 = x.
5s=0

5s=0

Notice that the assumption ||x||; = 1 implies that the numbers p; ; form a probability
distribution. Thus, the vector Mx can be represented as

N

N 3
Me=x- MO =V2. 3" 3 py (1) MO = B [V2-(=1)/2-mO),
(
=1

(=1 s=0 £s)~D

where D is the distribution that assigns probability p ; to the pair (£, s).

Let F be a multiset of O(2'-1og(1/y)) independent random samples from D, and
let g € G; be the vector corresponding to F as in (2). By Corollary 2.6, applied with
a = /2 (recall that |[M|leo = 1) and b = 27%/2, for every j € [N] the probability
that

|(Mx);| ~02-i2 |81 4)

is at least 1 — y/4. It follows that the expected number of j € [N] that do not
satisfy (4) is at most yN/4, so by Markov’s inequality the probability that the
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number of j € [N] that do not satisfy (4) is at most YN is at least 3/4. Similarly, the
expected number of j € Q that do not satisfy (4) is at most y|Q|/4, so by Markov’s
inequality, with probability at least 3/4 it holds that the number of j € Q that do not
satisfy (4) is at most y|Q|. It follows that there exists a vector g € G; for which (4)
holds for all but at most y fraction of j € [N] and for all but at most y fraction of
j € 0, as required. |

Lemma 3.6 For every multiset Q C [N] and every vector x € CN with ||x||; = 1
there exists a t-tuple of vectors (hV, ..., h") € H; x -+ x H, for which

1. Ejeo [|(Mx);’] ~o().0m) Ejeo [Z§=l h*’@] and
2. Eje [|(Mx); 2] ~000.00) Ejein) [Z’;l h’('i)]'

Proof By Lemma 3.5, for every | < i < ¢ there exists a vector g/t € Gy, that
satisfies

i+
|(Mx);| ~2—i+n2 |g;l 7| (3)

for all but at most y fraction of j € [N] and for all but at most y fraction of j € Q. We
say thatj € [N] is good if (5) holds for every 1 < i < t, and otherwise that it is bad.
Notice that all but at most ry fraction of j € [N] are good and that all but at most ry
fraction of j € Q are good. Let (hV, ..., h®") and (B;.,...,B;) be the vectors and
sets associated with (g'*7, ..., g(*") as defined in (3). We claim that 1D, ..., h®)
satisfy the requirements of the lemma.

We first show that for every good j it holds that |(Mx);|> 3oy > i, hl(.i). To
obtain it, we observe that if j € B; for some i, then ‘

2277 < g <3272, (6)

The lower bound follows simply from the definition of B;. For the upper bound,
which trivially holds for i = 1, assume that i > 2, and notice that the definition of

B; implies that | g](.H'r_l) | < 2-270=D/2 Using (5), and assuming that € is sufficiently
small, we obtain that
g1 < 1] + 27N < gV 4 27D g gm0
<2242 et e) <327

Hence, by the upper bound in (6), for a good j € B; we have hj(.i) = | gj(,H'r) |> and

h](.i/) = 0 for i/ # i. Observe that by the lower bound in (6),

. o . .
[(Mx);| € [|g) ™" |—27/2 || 427 002) € [(1—€)- g/, (1+¢)-Ig ],
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and that this implies that |(Mx);|*> a3c0 Z, I h](') On the other hand, in case that j

is good but does not belong to any B;, recalling that t = log,(1/7), it follows that
(M) < [gF7] 4 270F0/2 < 9972 4 92 < 397 <3y

and thus |(Mx);|* =09, 0 = Y iz lhj(l)

Finally, for every bad j we have

t

< max (|(Mx)j|2 Zhj(.i)) <2.

i=1

‘|(Mx),-|2 - Zh(”

i=1

Since at most ¢y fraction of the elements in [N] and in Q are bad, their effect on the
difference between the expectations in the lemma can be bounded by 2¢y. By our
choice of y, this is 1, completing the proof of the lemma. |

Finally, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1 By Lemma 3.4, applied with 7 = n/(2f), a random multiset
Q of size

q= 0(6_3?’}_1 -t-logN - log(l/y)) = 0(6_37]_1 logN - logz(l/r)))

satisfies with probability 1 — 2~2(€ *logNlog(1/m) that forall 1 < i < ¢and h? € H,,

in which case we also have

gl sl5]

JEIN]
We show that a Q with the above property satisfies the requirement of the
theorem. Let x € CN be a vector, and assume without loss of generality that |x||; =

1. By Lemma 3.6, there exists a t-tuple of vectors (2", ..., h) € H; x --- x H,
satisfying Items 1 and 2 there. As a result,

127 A 12
gEQ[I(Mx)zl ] ~o.0m) E [l(Mx); ] .

and we are done. |
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3.1 The Restricted Isometry Property

Equipped with Theorem 3.1, it is easy to derive our result on the restricted isometry
property (see Definition 2.1) of random sub-matrices of unitary matrices.

Theorem 3.7 For sufficiently large N and k, a unitary matrix M € CN*V satisfying
[M|loo < O(1/+/N), and a sufficiently small € > 0, the following holds. For some
g = O(e™*-k-log*(k/€) -1ogN), let A € CPN be a matrix whose q rows are chosen
uniformly and independently from the rows of M, multiplied by \/N /q. Then, with
probability 1 — 2~ HogNlogk/€)  the matrix A satisfies the restricted isometry
property of order k with constant €.

Proof Let Q be a multiset of ¢ uniform and independent random elements of [N],
defining a matrix A as above. Notice that by the Cauchy-Schwarz inequality, any
k-sparse vector x € CV with |lx||, = 1 satisfies |x||; < ~v/k. Applying Theorem 3.1

with €/2 and some 7 = Q(e/k), we get that with probability 1 —2~ (¢ *log N-log(k/e))
it holds that for every x € CV with ||x|, = 1,

IAx]3 =N+ E [|(Mx);|*] ~ej2ep N E [|(Mx);1*] = [Mx|3 = 1.
Jjeo JEIN]

It follows that every vector x € CV satisfies [|Ax||3 a0 ||x||3, hence A satisfies the
restricted isometry property of order k with constant €. |

4 The Improved Analysis

In this section we prove the following theorem, which improves the bound of
Theorem 3.1 in terms of the dependence on €.

Theorem 4.1 For a sufficiently large N, a matrix M € CNV | and sufficiently small
€,n > 0, the following holds. For some g = O(log*(1/€)-¢'n~" log N-log?(1/n)),
let Q be a multiset of q uniform and independent random elements of [N]. Then, with
probability 1 — 2~ %0eNlog(1/m) it holds that for every x € CV,

0 [120)1°] 2otz e [1 ()] A

We can assume that € > 7, as otherwise, one can apply the theorem with
parameters n/2,7n/2 and derive (7) for €,n as well (because the right-hand size
is bounded from above by |x||? - [|[M]||%,). As before, we assume without loss of
generality that ||M|oc = 1. For e > n > 0, we define t+ = log,(1/n) and
r = log,(1/€?). For the analysis given in this section, we define y = 1/(60(t + r)).
Throughout the proof, we use the vector sets G; from Sect. 3 and Lemma 3.5 for this
value of y.
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The Vector Sets D;,, For a (¢ + r)-tuple of vectors (g, ..., g ) € G| x --- x
Gi4+r and for 1 < i<t let C; be the set of all j € [N] for which i is the smallest
index satisfying | g](.l) | >2.2772. Form = i,...,i+ rdefine the vector 1™ by

h,(-i’m) = |g,(~m)|2 “Liec,s (®)

and for other values of m define A" = 0. Now, for every m, let AWM be the vector
defined by

h;i,m) _ h](i,m—l)’ if |h](zm) _ h;i,m—1)| < 30 - 2—(i+m)/2;

0, otherwise.

(im) _
A = (€))

Note that the support of A®™ is contained in C;. Let D;,, be the set of all vectors
AG™ that can be obtained in this way.

Claim4.2 Foreveryl <i<tandi<m <i+r, |Dj,| < NO@™log(1/y))

Proof Observe that every vector in D, is fully defined by some (g, ..., g™) ¢
Gy x --+x G,,. Hence

IDim| < Gl -+ |G| < NOWE/Y)-QIH22442") < NOllog(1/y) 2"

and the claim follows. |

Lemma 4.3 For every ,ij > 0 and some ¢ = O(E~'f'logN - log(1/y)), let
Q be a multiset of q uniform and independent random elements of [N]. Then, with
probability 1 — 27%0eN10e/) it holds that for every 1 < i < t, m, and a vector
ACm ¢ D m associated with a set C;,

im im ~ ~A—i Ci ~
E [A}’ )] ~or B [Ajn ’] for b= 0(8'2 : INI +n) . (10)
J J

Proof Fix i, m, and a vector AEm ¢ D associated with a set C; as in (9). Notice
that

E [|A"™]] < 30.270Hm/2. <
jem N

By Corollary 2.4, applied with
6/ — g . 2(m—i)/27 o = ﬁ, and a= 30 . 2—(i+m)/2,

we have that (10) holds with probability 1 — 222" Using Claim 4.2, the union
bound over all the vectors in D;,,, implies that the probability that some A" € D;,,
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does not satisfy (10) is at most

NOQ@™og(1/7)) | 9=Q(2"gEi) < H—Q(2"logNlog(1/7)) |

The result follows by a union bound over i and m. |
Approximating the Vectors Mx

Lemma 4.4 For every multiset Q - [N] and every vectorx € (CN with ||x||1 =1

i <1t), for which

L. Bjew [|(Mx)?] = i, 270 161 -,
2. Ejeo [|(Mx)j| ] Ro(e).o) Ejeo [Zl 1 ZH" A(’ m):l and
3. Ejew [|(Mx); 2] ~o0.00) Ejern) [Zz 1Zl+r A(l m)]

Proof By Lemma 3.5, for every 1 < i < t + r there exists a vector g¥) € G; that
satisfies

|(Mx);| ~ -1 || (11

for all but at most y fraction of j € [N] and for all but at most y fraction of j € Q. We
say that j € [N] is good if (11) holds for every i, and otherwise that it is bad. Notice
that all but at most (¢ + r)y fraction of j € [N] are good and that all but at most
(t + r)y fraction of j € Q are good. Consider the sets C; and vectors h("™ | AU
associated with (g1, ..., g"*")) as defined in (8). We claim that A" satisfy the
requirements of the lemma.

Fix some 1 < i < t. For every good j € C;, the definition of C; implies that
|g](.i)| > 2.27"2 50 using (11) it follows that

Mx);| > |g| — 272 > 272, (12)
J J
We also claim that |(Mx);| < 3 - 270D/ This trivially holds for i = 1, so assume

that i > 2, and notice that the definition of C; implies that | g](.i_l)| <2.27@D/2 50
using (11), it follows that

|(x))] < Jg " + 270N <3276, (13)
Since at most (¢ 4 r)y fraction of j € [N] are bad, (12) yields that

G|

E [1040,°] = Zz_i' i —(t+ry/2> Zz—l' N

i=1

3

IE[

as required for Item 1.
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Next, we claim that every good j satisfies

t
|(Mx);? ~o.00) 30T (14)

i=1

Foragoodj e C;andm > i,
‘|(Mx),-|2 - h](.’*'")‘ <2-|(Mx);| - 27" 427" < 10.27HM/2, (15)

where the first inequality follows from (11) and the second from (13). In particular,
for m = i + r (recall that r = log,(1/€?)), we have

1205 = HH7] <10+ €27 < 10- € [(M0)

and thus |(Mx);]1> 200 h](.i’H'r) . Since every good j belongs to at most one of the

sets C;, for every goodj € |J C; we have |(Mx);|*> ~ow)0 D ie; h](.i’i+r). On the other

hand, if j is good but does not belong to any C;, by our choice of z, it satisfies
(M)l < 18] +272 <3272 =3,

and thus |(Mx);|> =09, 0 = Y i_, h;i’i+r) . This establishes that (14) holds for every

good j.

Next, we claim that for every good j,

t i+r

|(M);? o003 D A (16)

i=1 m=i

This follows since for every 1 < i < t, the vector A“*") can be written as the
telescopic sum

i+r
h(i,i+r) — Z(h(tm) _ h(i,m—l)) ,
m=i

where we used that 2%~D = 0. We claim that for every good j, these differences
satisfy

Ih(i,m) _ h(i,m—l)| <30- 2—(i+m)/2
J J - ’

thus establishing that (16) holds for every good j. Indeed, form > i+ 1, (15) implies
that

Ih;i,m) _ ]’l](-i'm_l)| < 10 - (2—(i+m)/2 + 2—(i+m—l)/2) < 30 - 2—(i+m)/2’ (17)

and for m = i it follows from (11) combined with (13).
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Finally, for every bad j we have

t i+r i+r
12 (i,m) . —(i+m)/2
10 ;Z_:Aj (<1430 11151?;(2_:2 )=60.

Since at most (¢ + r)y fraction of the elements in [N] and in Q are bad, their effect
on the difference between the expectations in Items 2 and 3 can be bounded by
60(t + r)y. By our choice of y this is 7, as required. |

Finally, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1 Recall that it can be assumed that ¢ > 7. By Lemma 4.3,
applied with € = €/r and i) = n/(rt), a random multiset Q of size

q= O(e_ln_l -r?-t-logN - log(l/)/))

0(10g2(1/e) e 'pogN - logz(l/n))

satisfies with probability 1 — 27%(oeN1oe(1/m) " that for every 1 < i < t, m, and
AGM e D, associated with a set C;,

Ci
Jalon

E I:Aj('i,m):l ~op; [AQM)] for bi = O(i 2 N rt)’

) ) J
Jj€Q JEIN]
in which case we also have

t  itr toitr ;
B [ZZAI(IWI)} ~op E [ZZAJ(zm):| for b — O(G‘Zz—i‘ l?""ﬂ) '

A g JEINL LS i i=1 3
(18)

We show that a Q with the above property satisfies the requirement of the
theorem. Let x € CM be a vector, and assume without loss of generality that

associated with sets C; (1 < i < 1), satisfying Items 1, 2, and 3 there. Combined
with (18), this gives

127 12
j§Q[|(Mx)z| | ~o©.0m jeﬂ[*lm [1(Mx);1°]

and we are done. |

4.1 The Restricted Isometry Property

It is easy to derive now the following theorem. The proof is essentially identical to
that of Theorem 3.7, using Theorem 4.1 instead of Theorem 3.1.
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Theorem 4.5 For sufficiently large N and k, a unitary matrix M € CN*V satisfying
[M|loo < O(1/+/N), and a sufficiently small € > 0, the following holds. For some
g = O(log?(1/€)e2-k-log?(k/€)-log N), let A € CPN be a matrix whose q rows are
chosen uniformly and independently from the rows of M, multiplied by \/ N/q. Then,
with probability 1 — 27eN10ek/O) the matrix A satisfies the restricted isometry
property of order k with constant €.
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Upper Bound for the Dvoretzky Dimension
in Milman-Schechtman Theorem

Han Huang and Feng Wei

Abstract For a symmetric convex body K C R", the Dvoretzky dimension k(K) is
the largest dimension for which a random central section of K is almost spherical. A
Dvoretzky-type theorem proved by V.D. Milman in 1971 provides a lower bound for
k(K) in terms of the average M(K) and the maximum b(K) of the norm generated by
K over the Euclidean unit sphere. Later, V.D. Milman and G. Schechtman obtained a
matching upper bound for £(K) in the case when Abl((g)) > ¢ logn(”) ) 2. In this paper, we
will give an elementary proof of the upper bound in Milman-Schechtman theorem
which does not require any restriction on M(K) and b(K).

1 Introduction

Given a symmetric convex body K in R”, we have a corresponding norm ||x|x =
inf{r > 0, x € rK}. Let | - | denote the Euclidean norm, v, denote the normalized
Haar measure on the Euclidean sphere, S and vux denote the normalized Haar
measure on the Grassmannian manifold Gr,x. Let M = M(K) = [, [|x[|xdv,
and b = b(K) := sup{||x|x . x € S"'} be the mean and the maximum of the norm
over the unit sphere.

In 1971, V.D. Milman proved the following Dvoretzky-type theorem [3]:

Theorem 1 Let K be a symmetric convex body in R". Assume that ||x||x < b|x| for
all x € R". For any € € (0, 1), there is k > C.(M/b)*n such that

VailF € Gup : (1 —e)M < || - |knr < (1 + &)M} > 1 — exp(—ck)

where ¢ > 0 is a universal constant, Cc > 0 is a constant depending only on €.

The quantity C, was of the order > log™!( i ) in the original proof of V.D. Milman.
It was improved to the order of €2 by Gordon [2] and later, with a simpler argument,
by Schechtman [6].
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In 1997, Milman and Schechtman [5] found that the bound on k appearing
in Theorem 1 is essentially optimal. More precisely, they proved the following
theorem.

Theorem A (Milman-Schechtman, See e.g., Sect.5.3in [1]) Let K be a symmet-
ric convex body in R". For € € (0, 1), define k(K) to be the largest dimension k such
that

bk ((F € G : Y € ST OF (1= )M < sl < (L+ M) > pusc = i .
Then,

Cen(M/b)* = k(K) = Cen(M/b)°
when ' > c(logn("))% for some universal constant ¢ > 0, where || - | denotes the

norm corresponding to the convex body K N F in F, and C..C. > 0 are constants
depending only on €.

Because the Dvoretzky-Milman theorem cannot guarantee the lower bound with
small Abl 1 for ppx = n-an’ the original proof required an assumption that Al;[ >
c(logn("))z for some c. In [1, p. 197], S. Artstein-Avidan, A.A. Giannopoulos, and
V.D. Milman addressed it as an open question whether one can prove the same
result when p,; is a constant, such as ; When p,; = é, the lower estimate on
k(K) is a direct result of Dvoretzky-Milman theorem [3], but the upper bound was
unknown. In this paper, we are going to give upper bound estimate with p,; = é,
our main result is the following theorem:

Theorem B Let K be a symmetric convex body in R". Fix a constant € € (0, 1), let
k(K) be the largest dimension k such that

1
Vg AF € Gy - (1= )M < || - |knr < (1 + )M} > 5

Then,
Cn(M/b)* > k(X) = Ccn(M/b)?

where C > 0 is a universal constant and C. > 0 is a constant depending only on €.

In the next section, we will provide a proof of Theorem B with no restriction on

Abl . In fact, from the proof, one can see that ; can be replaced by any ¢ € (0, 1) or

1 — exp(—ck), which is the probability appearing in Milman-Dvoretzky theorem.
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2 Proof of Theorem B

Let P; be the orthogonal projection from S"~! to some fixed k-dimensional
subspace, and | - | be the Euclidean norm. The upper estimate is related to the
distribution of |Py(x)|, where x is uniformly distributed on S"~ .

Recall the concentration inequality for Lipschitz functions on the sphere (see,
e.g., [4]):

Theorem 2 (Measure Concentration on S"~') Letf : S"~! — R be a Lipschitz
continuous function with Lipschitz constant b. Then, for every t > 0,

v(tx € 8" | f(0) = E(N)] = br}) < 4exp(—cor’n)

where co > 0 is a universal constant.
Theorem 2 implies the following elementary lemma.

Lemma 3 Fix any ¢; > 0, let Py be an orthogonal projection from R" to some
subspace RF. If t > f/‘n and v,({x € "7 |Pv(x)| < 1)) > ; then k < cyt’n,

where ¢ > 0 is a constant depending only on c;.

Proof |Py(x)| is a 1-Lipschitz function on $"~! with E|P;(x)| about \/ ”; . If we want

the measure of {x : |Px(x)| < t} to be greater than 1/2, then measure concentration

will force E|P;| to be bounded by the size of ¢, which means k < c¢,#*n for some

universal constant ¢,. Since n > ¢7, we may and shall assume k is bigger than

some absolute constant in our proof, then adjust c;.
To make it precise, we will first give a lower bound on E|Py|. By Theorem 2,
V(| |P(0)| = E[PL@)|* > 1) < 4exp(—com).
Thus,
E|P* = (E|Pi])* = E(IPil (x) — E|Pi])?

< / v([Pe@)] — E|Pe@)| > dr
0

IA

o0
/ 4 exp(—cotn)dt =
0

con

With E|P > = EY L, x> = &, we get E(|Py]) > \/ﬁ - an. If we assume that

k> ig, then we have

1k

5Gr) > )
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Assuming k > 8¢%n, we have

E(|P|) t>\/1k t>1\/1k>0
k on T 2Vaon T

Applying Theorem 2 again, we obtain

V1Pl < 1) < vy ([|1P] = EIPE| > E(IPi]) — 1) < 4exp(—co(E(PL]) —1)°n)

1 1k 1
< 4exp(—aol \/ , n)zn) < 4exp(—C8°k) <dexp(=3) < .

which proves our result by contradiction. O

Theorem 4 Let K be a symmetric convex body with inradius ;. Fore € (0,1), let
k be the largest integer such that

1
Vi dAF € Gy - (1= )M < || - [|[knr < (1 + )M} > 5

Then k < Cn(lg)2 where C > 0 is an absolute constant.

Proof We may assume |lej]|x = b, then K C § = {x € R" : |x| < 117}, thus
lxllx = llxlls = bl{x, e1)]. This implies

(VeGu : VxevVvnsS" ' (1—eM < |x||x < (1 4+ e)M}
C{VEGu : Yxe VNS |xls < (1 +e)M}

M
={VeG,: sup (xre))<(1+¢€)  }
xevns—1 b

M
={VeGu : [Py(er)| < (1 +¢) b H ey

where Py is the orthogonal projection from R" to V. If V is uniformly distributed
on G, and x is uniformly distributed on $"!, then |Py, (x)| and |Py(e;)| are equi-
distributed for any fixed k-dimensional subspace V. Therefore,

eV € Gus * 1Pv(en] < (140 ) = i e 7 1Py (ol < 1407 )

As shown in the Remark 5.2.2(iii) of [1, p. 164], the ratio IZI has a lower bound

jn. Setting ¢; = ¢’ and t = (1 + €)™, it is easy to see that if
1

VngdF € Guy : (1 — )M < || - [lknr < (1 + )M} > 5

then k < c1(1 + €)? ()*n < Cn(*)? by Lemma 3 and (1). o
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Now we can prove Theorem B as a corollary of Theorems 4 and 1:

Proof of Theorem B Theorem 1 shows that if C.(M/b)’n > k’gz(z), then there is
k > C.(M/b)?*n such that

1
bialF € Gua: (1= M < |- [lr < (1 + )M} > 1 —exp(~ek) >

Otherwise, (M/b)*n < lofc(f) . Therefore, k(K) > min{lggc(fz), C.}(M/b)*n. Combin-
ing it with Theorem 4, we get

C( )2}1 > k(K) > mln{ (2) ,C (M /b)°n.

Remark

(1) It is worth noticing that the number ; plays no special role in our proof. Thus,
if we define the Dvoretzky dimension to be the largest dimension such that

Vni{F € Gui: (1 =e)M < ||+ lknr < (1 + €)M} > ¢

for some ¢ € (0, 1), then exactly the same proof will work. We will still have

k(K) ~ (Ab’l )?n. Similarly, if we fix € and replace ; by 1 — exp(—ck), then

the lower bound of k(K) is the one from Theorem 1. For k bigger than some

absolute constant, we have 1 — exp(—ck) > ; Thus, the upper bound is still
of order (AZ )2 n. Therefore, we can replace ; by 1 — exp(—ck) in Theorem A.
With this probability choice, it also shows Theorem 1 provides an optimal k
depending on M, b.

(2) Usually, we are only interested in € € (0, 1). In the lower bound, C, = o.(1). It
is a natural question to ask if we could improve the upper bound from a universal
constant C to o.(1). Unfortunately, it is not possible due to the following
observation. Let K = conv(B}, Re;)°. By passing from the intersection on K
to the projection of K°, one can show that k(K) does not exceed the maximum
dimension & such that v, (Pr(Rx) < 1 4+ €) > é Choosing R = \/ T, we get
n(AZ )> ~ I and k(X) ~ [ by Theorem 2 and a similar argument to that of
Lemma 3. This example shows that no matter what A; is, one can not improve
the upper bound in Theorem A from an absolute constant C to oc(1).

Acknowledgements We want to thank our advisor Professor Mark Rudelson for his advise and
encouragement on solving this problem. And thank both Professor Mark Rudelson and Professor
Vitali Milman for encouraging us to organize our result as this paper.

Partially supported by M. Rudelson’s NSF Grant DMS-1464514, and USAF Grant FA9550-
14-1-0009.



186 H. Huang and F. Wei
References

1. S. Artstein-Avidan, A.A. Giannopoulos, V.D. Milman, Asymptotic Geometric Analysis. Part I.
Mathematical Surveys and Monographs, vol. 202 (American Mathematical Society, Providence,
RI, 2015)

2. Y. Gordon, Some inequalities for Gaussian processes and applications. Isr. J. Math. 50, 265-289
(1985)

3. V.D. Milman, New proof of the theorem of A. Dvoretzky on sections of convex bodies. Funct.
Anal. Appl. 5(4), 288-295 (1971)

4. V.D. Milman, G. Schechtman, Asymptotic Theory of Finite-Dimensional Normed Spaces. With
an appendix by M. Gromov. Lecture Notes in Mathematics, vol. 1200 (Springer, Berlin, 1986)

5. V.D. Milman, G. Schechtman, Global versus local asymptotic theories of finite dimensional
normed spaces. Duke Math. J. 90, 73-93 (1997)

6. G. Schechtman, A remark concerning the dependence on € in Dvoretzky’s theorem, in
Geometric Aspects of Functional Analysis (1987-88). Lecture Notes in Mathematics, vol. 1376
(Springer, Berlin, 1989), pp. 274-277



Super-Gaussian Directions of Random Vectors

Bo’az Klartag

Abstract We establish the following universality property in high dimensions: Let
X be a random vector with density in R”. The density function can be arbitrary.
We show that there exists a fixed unit vector § € R” such that the random variable
Y = (X, 0) satisfies

min {P(Y > M), P(Y < —tM)} > ce~" forall 0 <t < &/n,

where M > 0 is any median of |Y/|, i.e., min{P(|Y| > M),P(|Y| < M)} > 1/2.
Here, c¢,¢, C > 0 are universal constants. The dependence on the dimension n is
optimal, up to universal constants, improving upon our previous work.

1 Introduction

Consider a random vector X that is distributed uniformly in some Euclidean ball
centered at the origin in R”. For any fixed vector 0 # 6 € R”, the density of
the random variable (X, 0) = ) ,6,X; may be found explicitly, and in fact it is
proportional to the function

2 (n=1)/2
t— (1 - ) (teR) (1)

2
A*n ),

where x4 = max{x, 0} and A > 0 is a parameter depending on the length of 6 and
the radius of the Euclidean ball. It follows that when the dimension # is large, the
density in (1) is close to a Gaussian density, and the random variable Y = (X, 0)
has a tail of considerable size:

P(Y > tM) > cexp(—Cr?) forall 0 <t < &v/n. )
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area = 1/2

— 2
area > ce

-M M M

Fig. 1 An example of a density of a Super-Gaussian random variable

Here, M = Median(|Y]) is any median of |Y/|, i.e., min{P(|Y| > M), P(|Y| < M)} >
1/2,and ¢, ¢, C > 0 are universal constants. Both the median and the expectation of
|Y| differ from A by a factor which is at most a universal constant. We prefer to work
with a median since in the cases we will consider shortly, the expectation of |Y] is
not guaranteed to be finite. The inequality in (2) expresses the property that the tail
distribution of Y/M is at least as heavy as the standard Gaussian tail distribution,
for 4/n standard deviations. The dependence on the dimension 7 is optimal, since
for ¢ > @\/n, the probability on the left-hand side of (2) vanishes (Fig. 1).

Our goal in this paper is to show that a similar phenomenon occurs for essentially
any random vector in R”, and not only for the uniform distribution on the high-
dimensional Euclidean ball. Recall that when n is large and the random vector
X = (Xi,...,X,) has independent coordinates, the classical central limit theorem
implies that under mild assumptions, there exists 0 # 6 € R” for which (X, 8) is
approximately Gaussian. It is curious to note that a Gaussian lower bound on the
tail persists, even when the independence assumption is completely dropped.

Let Y be a real-valued random variable and let L > 0. We say that Y is Super-
Gaussian of length L with parameters @, 8 > 0 if P(Y = 0) = 0 and for any
0<r<IL,

min {P(Y > tM),P(Y < —tM)} > ae /¥,

where M = Median(|Y]) is any median of |Y|. The requirement that P(Y = 0) = 0
is necessary only to avoid trivialities. A Gaussian random variable is certainly super-
Gaussian of infinite length, as well as a symmetric exponential random variable.
Write |x| = \/ {x, x) for the standard Euclidean norm of x € R”, and denote §"~! =
{xeR"; |x| =1}.

Theorem 1.1 Let X be a random vector with density in R". Then there exists a fixed
vector 0 € S" such that (X, 0) is Super-Gaussian of length c| \/n with parameters
ca,c3 > 0, where ¢y, c2, c3 > 0 are universal constants.

Theorem 1.1 improves upon Corollary 1.4 from [5], in which the dependence on
the dimension n was logarithmic. In the case where X is distributed uniformly in a
1-unconditional convex body in R", Theorem 1.1 goes back to Pivovarov [9] up to
logarithmic factors. In the case where X is distributed uniformly in a convex body
satisfying the hyperplane conjecture with a uniform constant, Theorem 1.1 is due to
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Paouris [8]. Theorem 1.1 provides a universal lower bound on the tail distribution,
which is tight up to constants in the case where X is uniformly distributed in a
Euclidean ball centered at the origin. In particular, the dependence on the dimension
in Theorem 1.1 is optimal, up to the value of the universal constants.

The assumption that the random vector X has a density in R” may be somewhat
relaxed. The following definition appears in [2, 5] with minor modifications:

Definition 1.2 Let X be a random vector in a finite-dimensional vector space B and
let d > 0. We say that “the effective rank of X is at least d”, or in short that X is of
class eff.ranks, if for any linear subspace E C B,

P(X € E) < dim(E)/d, (3

with equality if and only if there is a subspace FF € Bwith E® F = Band P(X €
EUF)=1.

Intuitively, when X is of class eff.rank-, we think of the support of X as
effectively spanning a subspace whose dimension is at least d. Note, however, that
d is not necessarily an integer. By substituting £ = B in (3), we see that there are no
random vectors in R" of class eff.rank>, with d > n. We say that the effective rank
of X is d when X is of class eff.ranks 4, but for any ¢ > 0 the random vector X is not
of class eff.ranks ;4.. The effective rank of X is d~ if X is of class eff.ranks,_, for
all 0 < € < d but X is not of class eff.ranks,4. In the terminology of [5], the random
vector X has an effective rank greater than d if and only if it is e-decent for some
e < 1/d.

There are many random vectors in R” whose effective rank is precisely n. For
example, any random vector with density in R”, or any random vector X that is
distributed uniformly on a finite set that spans R” and does not contain the origin. It
was shown by Boroczky et al. [1] and by Henk and Linke [4] that the cone volume
measure of any convex body in R" with barycenter at the origin is of class eff.rank-,
as well. Note that a random variable Y is Super-Gaussian of length L with parameters
a, B > 0 if and only if for any number O # r € R, also Y is Super-Gaussian of
length L with the same parameters «, 8 > 0. Theorem 1.1 is thus a particular case
of the following:

Theorem 1.3 Let d > 1 and let B be a finite-dimensional linear space. Let X be
a random vector in B whose effective rank is at least d. Then there exists a non-
zero, fixed, linear functional £ : B — R such that the random variable £(X) is
Super-Gaussian of length c1+/d with parameters cy,c3 > 0, where c1,c2,¢3 > 0
are universal constants.

Theorem 1.3 admits the following corollary, pertaining to infinite-dimensional
spaces:

Corollary 1.4 Let B be a topological vector space with a countable family of
continuous linear functionals that separates points in B. Let X be a random vector,
distributed according to a Borel probability measure in B. Assume that d > 1 is
such that P(X € E) < dim(E)/d for any finite-dimensional subspace E C B.
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Then there exists a non-zero, fixed, continuous linear functional £ : B — R such
that the random variable £(X) is Super-Gaussian of length ci~/d with parameters
c2,c3 > 0, where ¢y, ¢2, c3 > 0 are universal constants.

The remainder of this paper is devoted to the proof of Theorem 1.3 and
Corollary 1.4. We use the letters c, C, 6‘ c1,C, etc. to denote various positive
universal constants, whose value may change from one line to the next. We use
upper-case C to denote universal constants that we think of as “sufficiently large”,
and lower-case c to denote universal constants that are “sufficiently small”. We write
#(A) for the cardinality of a set A. When we write that a certain set or a certain
number are fixed, we intend to emphasize that they are non-random.

We denote by 0,,—; the uniform probability measure on the sphere $"~!, which is
the unique rotationally-invariant probability measure on S"~!. When we say that
a random vector 6 is distributed uniformly on $"~!, we refer to the probability
measure 0,—1. Similarly, when we write that a random subspace E is distributed
uniformly over the Grassmannian G, of k-dimensional subspaces of R", we refer
to the unique rotationally-invariant probability measure on G, .

2 Proof Strategy

The main ingredient in the proof of Theorem 1.3 is the following proposition:

Proposition 2.1 Let X be a random vector in R" with P(X = 0) = 0 such that
X \* 5
E ,0) < forall 6 € S" . 4)
X n

Then there exists a fixed vector 0 € S"™' such that the random variable (X, 0) is
Super-Gaussian of length c1 i/n with parameters c,, c3 > 0, where ¢y, c2,c¢3 > 0 are
universal constants.

The number 5 in Proposition 2.1 does not play any particular role, and may be
replaced by any other universal constant, at the expense of modifying the values of
c1, ¢y and c3. Let us explain the key ideas in the proof of Proposition 2.1. In our
previous work [5], the unit vector § € §"~! was chosen randomly, uniformly on
§"~!. In order to improve the dependence on the dimension, here we select 6 a bit
differently. We shall define 0 and 6, via the following procedure:

(i) Let M > 0 be a 1/3-quantile of |X|,i.e., P(|X| > M) > 1/3 and P(|X| < M) >
2/3. We fix a vector 6; € S"~! such that

X 1 1 X 1
P(|X|2Mand’ —91’5 )Z - sup IF’(|X|ZMand‘ —n‘f )
X] 5) 72,50 1X] 5
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(ii) Next, we fix a vector 6, € S"~! with {6, 6,)| < 1/10 such that

1 1 X 1
< > - sup P[|X]>Mand -l < .
s)=20 Lk 1X| 5

[(n.61)1=<1/10

]P’(|X| > M and

In the following pages we will describe a certain subset F3 C $"~! which satisfies
0n—1(F3) = 1 —=C/n‘ and 0, — 0; & F3. We will show that for any 6; € F3, the
random variable (X, 6) is Super-Gaussian of length ¢\/n with parameters c;, ¢, > 0,
where 0 is defined as follows:

01— 6+ 63
0= . 5
|01 — 6, + 03] )

Thus, 6, and 6, are fixed vectors, while most choices of 83 will work for us, where

by “most” we refer to the uniform measure on §"~!. The first step the proof below
is to show that for any unit vector 6 € st

Median (|(X, 0)|) < CM//n, (6)

that is, any median of |(X, )| is at most CM/ \/n. Then we need to show that when
03 € F3 and 0 is defined as in (5), forall 0 < ¢ < c/n,

min{]P’(Yz %),P(Yﬁ—%)} > e, 7)

The proof of (7) is divided into three sections. The case where ¢ € [0, v/log n] may
essentially be handled by using the methods of [5], see Sect. 3. Let 7y > 0 be defined

via
5) ’ )

In order to prove (7) in the range ¢ € [/logn, ], we will use tools from the local
theory of Banach spaces, such as Sudakov’s inequality as well as the concentration
of measure on the sphere. Details in Sect.4 below. The remaining interval ¢ €
[fo, c+/n] is analyzed in Sect. 5. In Sect. 6 we deduce Theorem 1.3 and Corollary 1.4
from Proposition 2.1 by using the angularly-isotropic position, along the lines of

[5].

X
e =P (|X| > M and ‘ — 6
1X|




192 B. Klartag
3 Central Limit Regime

This section is the first in a sequence of three sections that are dedicated to the proof
of Proposition 2.1. Thus, we are given a random vector X in R” with P(X = 0) =0
such that (4) holds true. We fix a number M > 0 with the property that

P(x|=M)=1/3,  P(X|=M)=2/3. ©)

That is, M is a 1/3-quantile of |X|. Our first lemma verifies (6), as it states that for
any choice of a unit vector 6, any median of the random variable |(X, )| is at most

CM/ /n.

Lemma 3.1 Forany € S",
P (|(X.0)] = CM//n) < 1/2,

where C > 0 is a universal constant.

Proof 1t follows from (4) that for any § € §*!,

2 2
X,9>§5M

2
E [(X, 0)? 1{\X\5M}] <E [(X’ 6) |A;|2} =M 'E<IX|

n
By the Markov-Chebyshev inequality,
P ((X.0)" Tz = 35M%/n) < 1/7.

Since P(|X| > M) < 1/3, we obtain

oM oM 1
P [(X,0)] = <P(X|>M)+P|[[(X,0)] > and [X| <M ) <
Jn Jn 3
+1 - 1
7 2
The lemma follows with C = 6. O

The rest of this section is devoted to the proof of (7) in the range ¢ € [0, 4/logn].
The defining properties of 6,0, € S"~! from the previous section will not be used
here, the entire analysis in this section applies for arbitrary unit vectors 8; and 6,.

Lemma 3.2 Let 0;,0, € S"~! be any two fixed vectors. Then,

1ox1y _ 1
Jn 5

10/X|

Jn

P(|X| o, 15,001 = PO na jx 6 <
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Proof By (4) and the Markov-Chebyshev inequality, forj = 1, 2,
101X x \2 5 1
Pz "< " m(X gy < S
Jn 100 |X| 100 » 20
Thanks to (9), we conclude that

10[X] 10[X| 2 1 1\ 1
Pl|X|>M, |(X,0)] < , (X, 6,)]| < >1— .
(= oo = ) o < 10 T+t a0) > s

Let 1 < k < n. Following [5], we write O C (R™)* for the collection of all
k-tuples (vy, ..., vx) with the following property: There exist orthonormal vectors

Ui:Zaijo fori=1,...,k. (10)
j=1

In other words, Oy consists of k-tuples of vectors that are almost orthogonal. By
recalling the Gram-Schmidt process from linear algebra, we see that (v, ..., V) €
O assuming that

|Projg,_ vil < |vil/k*  fori=1,... k, (11)

where E; is the subspace spanned by the vectors vy, ...,v; € R" and Projg, is the
orthogonal projection operator onto E; in R". Here, Ey = {0}.

Lemma 3.3 Assume that 1 < k < n and fix (vy,...,v) € O Then there exists
F S Y witho,_((F) > 1— Cexp(—c\/k) such that forany 0 € F and 0 <t <
JNogk,

v
# lfifk;(vi,G)zcll i, > 00 OF Lk,
n

where c1, ¢y, C3, c, C > 0 are universal constants.

Proof Let wy,...,w and (a;) be as in (10). By applying an orthogonal trans-

formation in R”, we may assume that w; = e;, the standard ith unit vector.
Let ' = (I'1,...,I,) € R” be a standard Gaussian random vector in R”. For
i=1,...,nandt > 0, it is well-known that

o0
P(T;>1) = / 25 e [ce_rz, Ce_rz/z].

1
V2 )
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Therefore, by the Chernoff large deviations bound (e.g., [3, Chap. 2]), for any ¢ > 0,
. O c . 2 . 7 = 2

P(#{lfsz,I‘,zt}zz e k)zl Cexp( Ze k) (12)

From the Bernstein large deviation inequality (e.g., [3, Chap. 2]),
k A
P(IT| <24/n) = 1—Ce ", P (Z |T;| < Zk) >1—Ce ™, 13)

i=1

Note that when Zf=1 |T;| <2k, foranyi=1,...,k,

i k
ajj > =1 Tl 2
(I vi) = aii - <F, ety ‘]€j> > aji (Fi - 2 Zai\Ti— ).

aij
j=2
(14)
Moreover, a; = |v; — 2152 ajejl > |vi| — aii/k for all i = 1,..., k. Therefore
a;; > |v;|/2 for all i. It thus follows from (14) that when ZLI |T;| < 2k, for any i,

I >t — (F, Ui) > aiil"i/Z > IU,‘II/4 for all ¢t > 4/k

Hence we deduce from (12) and (13) that for all ¢ > 4 /k,

Hv; _ ~ - _
]P’(#{i; (T, v)) > ':'} zg.e fz.k) > 1—Cexp<—ce ’zk). (15)

Write I = {£ € Z; £ > 2, 2* < \/logk/5}. By substituting t = 2¢ into (15) we see
that

P (ve e L#{i; (M) = 22ul} = ©.e7@ .k) >1-CY exp (—Ee_(zl)zk) .
2
tel
The latter sum is at most C exp(—c~/k). Moreover, suppose that x € R” is a fixed
vector such that #{i; (x,v;) > t|v;|/4} > (c/2)e_’2k forall 1 <t < /logk/5 of

the form ¢ = 2¢ for an integer £ > 2. By adjusting the constants, we see that for any
real number t with 0 < ¢ < /logk,

#4i (ev) = etjvily > ek
Consequently,

P (v; € [0, iogk], #1{i: (T v)) = cytfuil} = ce~CF .k) > 1 — Ce~oVk,
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Recall that |T'| < 2./n with a probability of at least | — Ce™". Therefore, as k < n,

r t|v; - 7 A A
]P’(Vte [0, v/log 4], #{i;< >z |U|} > e sz.k) > 1 — Cemtvk,

IT| » Ui C1 2 \/n
(16)
Since I'/|T| is distributed uniformly on §"~!, the lemma follows from (16). O
Let E C R" be an arbitrary subspace. It follows from (4) that
2 dim(E) 2 .
) X dim(E)
E |Proj =FE < ,u,~> <5 , (17
FIx| ; x| n
where uy, ..., u,, is an orthonormal basis of the subspace E for m = dim(E).

Lemma 3.4 Set { = |n'/%| and let 6,,0, € S""' be any fixed vectors. Let
X1, ..., Xy be independent copies of the random vector X. Then with a probability
of at least 1 — C/{ of selecting X\, . .., Xy, there exists a subset I C {1,...,4} with
the following three properties:

(i) k= #(I) > £]10.
(ii) We may write I = {i\,...,ix} such that (X;,,...,X;) € O
(iii) Forj=1,....k
Xyl = M, (X, 01)| < 10|X;]|/~/n and [(X;;, 62)| < 10|X;]//n.

ljs
Here, C > 0 is a universal constant.

Proof We may assume that £ > 10, as otherwise the lemma trivially holds with any
C > 10. Define

I={l<i<t:|X]|=M, |[(Xi0) <101Xi|/n, |(Xi.02)] < 10Xi|//n} .

Denote k = #(I) and let i} < i, < ... < i be the elements of /. We conclude from
Lemma 3.2 and the Chernoff large deviation bound that

P@#(I) > £/10) > 1 — Cexp(—c). (18)

Thus (i) holds with a probability of at least 1 — C exp(—c¥). Clearly (iii) holds true
with probability one, by the definition of /. All that remains is to show that (ii) holds
true with a probability of at least 1 — 1/£. Write F; for the subspace spanned by
X1, ..., X;, with Fy = {0}. It follows from (17) that fori = 1, ..., ¢,

2 . .
X; < S'dll’n(Fi_l) < 5([— 1) < 50 < 1

E ) !
X

Projr

- n n n L%
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as 10 < £ < n'/8 Tt follows from the Markov-Chebyshev inequality that with a
probability of at least 1 — 1/¢,

X; 1
Projr, < foralli=1,... 4.
rO]Fz—l |Xl| EZ l
Write E; for the subspace spanned by X, ... s Xi. Then E; 1 C F ii—1- Therefore,
with a probability of at least 1 — 1/¢,
Proje 0| < lproj, i<l < forallj=1,....k
T0JE, r0j 1. orallj=1,... k.
| Sl T e S e ’

In view of (11), we see that (ii) holds true with a probability of at least 1 — 1/£, thus
completing the proof of the lemma. O

By combining Lemmas 3.3 and 3.4 we arrive at the following:

Lemma 3.5 Let £, 0y, 0, be as in Lemma 3.4. Then there exists a fixed subset F C
"V with 0,1 (F) = 1 — C/~/{ such that for any 65 € F the following holds:
Define 0 via (5). Let X1, . . ., X¢ be independent copies of the random vector X. Then
with a probability of at least 1 — C/ N/ of selecting X1, . .., Xy,

M
#{1 <i<{;(X;,0)>c J -t} > cze‘c"z-ﬁ, forall0 <t < \/loge,
n
(19)
and
. M —C32
#il<i<{;(X;,0) < _Clx/ “ty > e forall0 <t < \/logﬁ.
n
(20)

Here, ¢y, ¢y, Cs,c, C > 0 are universal constants.

Proof Let ® be a random vector, distributed uniformly on $"~'. According to
Lemma 3.4, with a probability of at least 1 — C/{ of selecting Xy, ..., X,, there
exists a subset

[={in,....id C{1,.... 0}

such that properties (i)—(iii) of Lemma 3.4 hold true. Let us apply Lemma 3.3. Then
under the event where properties (i)—(iii) hold true, with a probability of at least
1 — Cexp(—&+/£) of selecting © € §"',

X,
#91<j=<k: (X;,0) = |\/’| 1 > ek forall 0 < 7 < \/logk,
n
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and moreover k > £ /10 with

X 8 X 8
|x,,| : |X,J| ?

Consequently, under the event where properties (i)—(iii) hold true, with a probability
of at least 1 — C exp(—+/£) of selecting ® € §",

max

Jn

10 .
=< forj=1,... k.

X;. t
%1 <j<k; <|x R -6, + o> > CZ‘ J } > e Ok fort e [80/c1, /loghl.
ij n

Since k > £/10, the condition ¢ € [80/cy, /logk] can be upgraded to € [0, \/log {]
at the cost of modifying the universal constants. Recall that by Lemma 3.3(iii),
we have that |X;| > M for all j. By the triangle inequality, with probability one,
0<|6p—6,+ ®| < 3. Hence,

1X;;1/160 — 0> + ©| = M/3.

Therefore, under the event where properties (i)—(iii) hold true, with a probability of
atleast 1 — Cexp(—Z’\/ﬂ) of selecting ©® € §*!,

0 —6,+ 0 M
Vte[O,\/logZ], #{1§i§5;<xi,| 2t >

> ¢ . > ¢ _63’2.[
6 —6,+ 0] = un t} = e
2D

Write A for the event that the statement in (21) holds true. Denoting X =
(Xi,...,X¢), we have shown that

P((©,X) € A) > 1 — Cexp(—iv/€) — C/t > 1 — C/L.
Denote
F= {ees" L PL((6,X) € A) > 1—CN£}
Then,

1€ <po. X)eA)<IP’(®e]—‘)+(

= ¢ ) P(® ¢ F). 22)

Ve

It follows from (22) that 0, (F) = P(® € F) > 1 — 1//L. By the definition
of F C §"!, for any 63 € F, with a probability of at least 1 — C+/£ of selecting
Xi,..., Xy,

0—0,+6 M
Vvt € [0, log /], #{1 §i§€;< RCRIE > ¢

12
i > 1y > Cre O g,
|61 — 62 + 05 L n }
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This completes the proof of (19). The argument for (20) requires only the most
trivial modifications, and we leave it for the reader to complete. O

We will use the well-known fact that for any random variable Y and measurable
sets Ay, ...,Aq, by the Markov-Chebyshev inequality,

4

ZP(YGA)— EY liyeay = P(#{i: Y € A} = 5) (s > 0).
i=1

Corollary 3.6 Let 0,,0, € S"~!' be any fixed vectors. Then there exists a fixed
subset F C 8" with 0,—1(F) > 1 — C/n¢ such that for any 63 € F, defining 0
via (5),

Vie[0,5/logn], min {]P’ ((X, 0) > ¢, j‘;n ~z) P ((X,H) <—q j‘;n z)} > cpe O

where ¢, C, ¢y, c2, C3 > 0 are universal constants.

Proof We may assume that n exceeds a certain fixed universal constant, as otherwise
the conclusion of the lemma trivially holds for 7 = @. Set £ = |»n'/%] and let F be
the set from Lemma 3.5. Let 63 € F and define 6 via (5). Suppose that Xj, ..., X,
are independent copies of the random vector X. Then for any 0 < ¢ < \/ log ¥,

M —C312 M
IP’((X,G) =a, -r) = (e C Cze_a,z_ ZIP’(X,,G =a, -t)
M
> e O P (#{i; Mo ze "% > cpeCF 'Z) > 00O (1= C/V0).
n

where the last passage is the content of Lemma 3.5. We may similarly obtain a
corresponding lower bound for P ((X,0) < —citM/\/n). Since £ = |n'/%], the
desired conclusion follows by adjusting the constants. O

4 Geometry of the High-Dimensional Sphere

This is the second section dedicated to the proof of Proposition 2.1. A few geometric
properties of the high-dimensional sphere will be used here. For example, the sphere
§"~! does not contain more than n mutually orthogonal vectors, yet it contains
¢ mutually almost-orthogonal vectors. Moreover, for the purpose of computing
the expectation of the supremum, a family of e** standard Gaussians which are
almost-orthogonal in pairs behaves approximately like a collection of independent
Gaussians.
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While Corollary 3.6 takes care of the interval # € [0, 54/logn], in this section we
deal with the range 7 € [54/logn, fy] where £, is defined in (8). We begin with some
background on Sudakov’s minoration theorem and the concentration of measure
inequality on the sphere. Given a bounded, non-empty subset S € R”, its supporting
functional is defined via

hs(6) = sup(x, 6) %)

X€S

The supporting functional Ay is a convex function on R” whose Lipschitz constant
is bounded by R(S) = sup,g |x|. The mean width of S is 2M*(S) where

M*(S) = /S _hs(8)do,1(6).

The concentration inequality for Lipschitz functions on the sphere (see, e.g., [7,
Appendix V]) states that for any » > 0,

ot ({v € 8715 |hs(v) = M*(S)| = r-R(S)}) < Ce™"™. (23)

A lower bound for M*(S) is provided by the following Sudakov’s minoration
theorem (see, e.g., [6, Sect. 3.3]):

Theorem 4.1 (Sudakov) Let N > 1,a > 0 and let x1,...,xy € R". Set § =
{x1, ..., xn} and assume that |x; — xj| > « for any i # j. Then,

M*(S) > ca\/logN,
n

where ¢ > 0 is a universal constant.
We shall need the following elementary lemma:

Lemma 4.2 Let Z,,...,Zy be random variables attaining values in {0, 1}. Let 1 <
k < N,0 < e <1, and assume that for any A C {1,...,N} with #(A) = k,

P@icA Z=1)>1—c¢ 24)

Then,
al N
P Z; > >1-—2e. 25
(3= 5) =12 @

Proof If k > N/3 then (25) holds true, since it follows from (24) that with a
probability of at least 1 — &, there is a non-zero element among Zy, . . ., Zy. Suppose
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now that k& < N/3. The number of k-elements subsets A < {1,...,N} with
max;es Z; = 0 equals
N-YL 7
. .

Write £ for the event that Zf\;l Z; < N/(3k). Conditioning on the event £,

! . _ (VTR N/ (k) \*
o) #mz);k]P’(VzeA, Zi=0[&) > &) > (1— N_k)

However, by (24),

1
£ > Z]P’(VieA,Zi=0)

N
(k) #(A)=k
1 .
= M Y PE)-P(VicA z=0]&) = PE)/2.
k) #)=k
Hence P(£) < 2¢ and the lemma is proven. O

Sudakov’s theorem is used in the following lemma:

Lemma 4.3 Let N > nandletxy,...,xy € 8" be such that (xi,x5) < 49/50 for
any i # j. Then there exists F € S"~' with 0,—1(F) > 1 — C/n° such that for any
0eF

#{1 <i<N; (x,0) > 1t/ /n)

N > cre O forall t € [\/logn, /logN],

(26)

where c1, ¢y, C3, c, C > 0 are universal constants.

Proof Denote S = {xi,...,xy} C " ! and note that |x;—x;| > \/2 —49/25=1/5
forall i # j. Fix anumber 7 € [4/logn, 1/log N]. Let A C {xi,...,xy} be any subset
with #(A) > exp(#?). By Theorem 4.1,

M*(A) > ct//n. 27

Next we will apply the concentration inequality (23) with r = M*(A)/(2R(A)).
Since R(A) = 1, it follows from (23) and (27) that

* 2
ou—1 ({0 € 8" ha(0) = M*(A)/2}) = 1 — Cexp (—cn (Afg(f:;)) ) >1—Ce
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Let ® be a random vector, distributed uniformly over~S”_1. By combining the last
inequality with (27), we see that for any fixed subset A C {1,...,N} with #(A) =

[exp(1*)].
]P(Eii €A;(x.0) > ct/Jn) >1- Ce™".

Let us now apply Lemma 4.2 for Z~, = Li(x,.0)=c1/ ny- Lemma 4.2 now implies that
with a probability of at least 1 — 2Ce™ of selecting ® € §"~1,
N N 2

HISiSN @ O) za/ bz = e

We now let the parameter ¢ vary. Let I be the collection of all integer powers of two
that lie in the interval [4/logn, 4/log N]. Then,

~

- ¢
> 1—Z2Ce_“2 > 01—

nC

>

(wer =T Ol )

tel

The restriction ¢ € I may be upgraded to the condition ¢ € [4/logn, /log N] by
adjusting the constants. The lemma is thus proven. O

Recall the construction of 8; and 6, from Sect. 2, and also the definition (8) of the
parameter #y. From the construction we see that for any v € §"~! with |(v, 6;)| <
1/10,

X
P(|X|2Mand‘ —v
X

where M > 0 satisfies P(|X| > M) > 1/3 and P(|X| < M) > 2/3.

1 -2
=5)= 2e70, (28)

Lemma 4.4 Assume that ty > 5./logn and set N = Le’g/ﬂ. Let X, ...,Xy be
independent copies of X. Then with a probability of at least 1 — C/n of selecting
X1, ..., Xy, there exists I C {1, ..., N} with the following three properties:

(i) #(I) = N/10.

(ii) Foranyi,j € I withi # jwe have (X;, X;) < (49/50) - |Xi| - |Xj].
(iii) Foranyi € I,

(Xil = M, |(Xi.01)] < 10|Xi|/v/n and |(X;, 02)] < 10|Xi|//n.

Here, C > 0 is a universal constant.

Proof We may assume that n > 10%, as otherwise for an appropriate choice of the
constant C, all we claim is that a certain event holds with a non-negative probability.
Write

A={veR"; Jv] = M, max |(v/[v].6)| < 10/+/n}.
J=1
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According to Lemma 3.2, fori = 1,...,N,
PX;e A) > 1/5.
Denote ] = {i=1,...,N; X; € A}. By the Chernoff large deviation bound,
P#() > N/10) > 1 — Cexp(—cN).

Note that 10//n < 1/10 and that if v € A then |{v/|v]|, ;)| < 1/10. It thus follows
from (28) that for any i,j € {1, ..., N} with i # j,

(. . X 1)
Pli,jel and — <
X 1Xif]— 5
X; , 2
<P(X;eAand |7 ‘XGA <27 <
= (’ o '|X| x| =5 ) M
Consequently,
o (57 e 1witni £ jand | ¥ _ V[ 1) VO =D 2
i, with i an < < .
J P X T x| T s 2 TNt T A2

We conclude that with a probability of at least 1 — Cexp(—cN) — 1/N* > 1 —C/n,

X;
IXi|  1Xj]

1

#=N/I0  and  Vijeli#j] = 75

Note that (X;,X;) < (49/50) - |X;| - |X;| if and only if [X;/|Xi| — X;/|X/|| = 1/5.
Thus conclusions (i)—(iii) hold true with a probability of at least 1 — C/n, thereby
completing the proof. O

By combining Lemmas 4.3 and 4.4 we arrive at the following:

Lemma 4.5 Assume that ty > 5./logn and set N = Ler(zl/ *|. Then there exists
a fixed subset F C "' with 0,_1(F) > 1 — C/n° such that for any 63 € F
the following holds: Define 6 via (5). Let X1, ..., Xy be independent copies of the
random vector X. Then with a probability of at least l—é/nE of selecting X1, . .., Xy,

#{15;‘51\/; (Xi,e)zclyn-t}

" > cze_c3’2, forallt e [\/logn, to],
(29)
and
#{15;<N (X, 0) < —c1 M -t
N v } > cze_c3’2, forallt e [\/logn, fo].

(30)
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Here, ¢1, ¢, Cs,¢,C, ¢, C > 0 are universal constants.

Proof This proof is almost identical to the deduction of Lemma 3.5 from Lem-
mas 3.3 and 3.4. Let us spell out the details. Set X = (X, ..., Xy) and let ® be a

random vector, independent of X, distributed uniformly on S"~!. We say that Xe A
if the event described in Lemma 4.4 holds true. Thus,

P(X € A)) > 1—C/n.

Assuming that 5( € A, we may apply Lemma 4.3 and obtain that with a probability
of at least 1 — C/n° of selecting ® € §"~1,

Xi _
#{1 <i<N; <|x|’®> > clt/Jn} > e~ (N/10) forall € [\/logn, /logN].
i

Assuming that Xe A, we may use Lemma 4.4(iii) in order to conclude that with a
probability of at least 1 — C/n of selecting © € §"!, fort € [/logn, 4./log N],

#{1§i§N;<Xi 91—92+®> M

, 1 1l > Ge O LN, 31
|6 — 6, + O] }_Cze ©1)

>l Jn t
Write A, for the event that (31) holds true for all # € [\/log n, 4./log N]. Thus,
P(©.X) € A) > 1—C/n—C/n° = 1—C/n".
Consequently, there exists F € S"~1 with
0u1(F) = 1= C/nf

with the following property: For any 83 € F, with a probability of at least 1 — c /n¢
of selecting X1, ..., Xy, for all € [/logn, 4.,/log N],

. 91—92+93> M } e
#I11 <i<N;({X, > Sty > e 3N,
{ < |61 — 62 + 05 Jn

Recalling that 4./log N > 1, we have established (29). The proof of (30) is similar.
|

The short proof of the following corollary is analogous to that of Corollary 3.6.

Corollary 4.6 There exists a fixed subset F C S"~! with 0,—1(F) > 1 —C/n¢ such
that for any 6 € F, defining 0 via (5),

Vt e [\/logn,to], min{]P’((X,@) > ¢ M -t) ,P((X,O) < —c M t){ > cze_c3’2,
Jn Jn

where ¢, C, ¢y, cp, C3 > 0 are universal constants.
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Proof We may assume that n exceeds a certain fixed universal constant. Let F be the
set from Lemma 4.5, denote N = [exp(#3/4)], and let X;, ..., Xy be independent
copies of X. Then for any 6; € F, defining 6 via (5) we have that for any 7 €

[\/IOg n, tO],

#{i; (X, 0) > e M -t}
N

_ 2
Z cre Cst

M
Pl (X,0) > c ) > cze_c3’2 P
Jn

> © e_c3’2,

-2
where the last passage is the content of Lemma 4.5. The bound for ]P’((X ,0) <
—c1tM/ /n) is proven similarly. O

S Proof of the Main Proposition

In this section we complete the proof of Proposition 2.1. We begin with the
following standard observation:

Lemma 5.1 Suppose that X is a random vector in R" with P(X = 0) = 0. Then
there exists a fixed subset F C S"! of full measure, such that P({X,0) = 0) = 0
forall 6 € F.

Proof For a > 0, we say that a subspace E € R” is a-basic if P(X € E) > a while
P(X € F) < a for all subspaces FF & E. Lemma 7.1 in [5] states that there are
only finitely many subspaces that are a-basic for any fixed a > 0. Write S for the
collection of all subspaces that are a-basic for some rational number a > 0. Then
S is a countable family which does not contain the subspace {0}. Consequently, the
set

F={0eS " VE€S, E¢ 6}

is a set of full measure in $"~!, as its complement is the countable union of spheres
of lower dimension. Here, 8+ = {x e R"; (x,0) = 0}. Suppose that 6 € F, and let
us prove that P({(X, 8) = 0) = 0. Otherwise, there exists a rational number a > 0
such that

P((X,0) = 0) > a.

Thus 6~ contains an a-basic subspace, contradicting the definition of F. O

Recall the definition of M, 8; and 6, from Sect. 2.
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Lemma 5.2 Let F3 C {93 e S (65, 0,)] < 110 and |03, 0,)] < 110}. Then for
any 03 € Fyandv € 8",

1 1
-6 < ,0,—0 ;) > , 32
v 1|_5 = (v,.601 — 0, + 3)_10 (32)
and
1 1
[v—6s < 5 - (v,6) — 0, + 63) < ~ 1o (33)

Proof Recall that |(0;, 8,)] < 1/10. Note that for any 3 € F3 and i,j € {1,2,3}
with i # j,

V9/5 <16, — 6] < V11/5.

Let v € $""! be any vector with |[v — 6;| < 1/5. Then for any 63 € F3 andj = 2,3
we have that

1

9 1 11
N B P R T e S

5

and hence forj = 2,3,

2 2
1 1 o1 1 9 1
0y =1—_-|v—6;? 1— . \/ 1= . \/ —
(v. 6) =l e 2(5+5) 2(55

33
[27] o

However, (v,6;) > 49/50 for such v, and hence (32) follows from (34). By
replacing the triplet (6, 6,, 65) by (62, 61, —63) and repeating the above argument,
we obtain (33). ]

Proof of Proposition 2.1 From Corollaries 3.6 and 4.6 we learn that there exists
F < 8" with 0,1 (F3) > 1 — C/n€ such that for any 03 € F, defining 6 via (5),

Vt e [0,l0], IIlll’l{ED ((X,e) > ﬁ’l 'l) P ((X,e) < —( ﬁ’l l)} > Cze_c3t2.

According to Lemma 5.1, we may remove a set of measure zero from F and
additionally assume that P((X,6) = 0) = 0. From Lemma 3.1 we learn that any
median of |(X, 8)| is at most CM/\/n. Hence (35) shows that for any 6; € F,
defining 6 via (5) we have that (X, 0) is Super-Gaussian of length c#,, with



206 B. Klartag

parameters ¢, c¢3 > 0. We still need to increase the length to ¢14/n. To this end,
denote

1 1
F= {93 €F; 65,00 < | and [(65,60)] < 10}'

Then 6,_; (F3) > 0,—1(F) — Cexp(—cn) > 1 — C/n°. Recall from Sect. 2 that for
j=12

X
]P’(|X| > M and ‘
X

Let us fix 7 € [fo, o/n], 63 € F3 and define 0 via (5). Since 0 < |0 — 6, + 63| < 3,
by (36) and Lemma 5.2,

-6

R (36)
- e .
- 5) 72

Mt Mt
P((x.0) > >P((X.0,— 6, +03) >
(0002 455) 2e (oo v0= 7 )
X M
>P L0 — 0, +03) >
= (<|X| Rl 3>—10|X|)
sp(xi=m | X o<t} tiecis o
IX| 5) 72 2
Similarly,

Mt X M
¥ (<X’ o= _30¢n) =¥ (< xp et 93> =" 10|X|)

X — b0y < ;) = > e

> P(IXI > M,
1X]

Therefore, we may upgrade (35) to the following statement: For any 65 € F and
t € [0, /n], defining 6 via (5),

min{]P)((X,@)zclj‘/ln-t),]P((X,Q)5—813{1-t)} > 2ye O

We have thus proven that (X, 8) is Super-Gaussian of length ¢ ./n with parameters
c2,c3 > 0. O
6 Angularly-Isotropic Position

In this section we deduce Theorem 1.3 from Proposition 2.1 by using the angularly-
isotropic position which is discussed below. We begin with the following:
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Lemma 6.1 Letd, X, B be as in Theorem 1.3. Set n = [d]. Then there exists a fixed
linear map T : B — R" such that for any € > 0, the random vector T(X) is of class

eff-ranks 4_,.

Proof We will show that a generic linear map 7" works. Denote N = dim(B) and
identify B = R". Since the effective rank of X is at least d, necessarily d < N
and hence also n = [d] < N. Let L € R" be a random n-dimensional subspace,
distributed uniformly in the Grassmannian Gy ,. Denote T = Proj; : RN — L, the
orthogonal projection operator onto the subspace L.

For any fixed subspace E € RY, with probability one of selecting L € Gy ,,

dim(ker(7T) N E) = max{0, dim(E) — n},

or equivalently,

dim(T(E)) = dim(E) — dim(ker(7) N E) = min{n, dim(E)}. (37
Recall that for a > 0, a subspace E € R is g-basic if P(X € E) > a while
P(X € F) < afor all subspaces FF € E. Lemma 7.1 in [5] states that there exist only
countably many subspaces that are a-basic with a being a positive, rational number.
Write G for the collection of all these basic subspaces. Then with probability one of
selecting L € Gy,

VEeG,  dim(T(E)) = min{n, dim(E)}. (38)

We now fix a subspace L € Gy, for which T = Proj; satisfies (38). Let S C L be
any subspace and assume that a € Q N (0, 1] satisfies

P(T(X) € S) > a.
Then P(X € T7'(S)) > a. Therefore T~'(S) contains an a-basic subspace E. Thus
E € G while E € T7!(S) and P(X € E) > a. Since the effective rank of X is at least
d, necessarily dim(E) > a - d. Since T(E) C S, from (38),
dim(S) > dim(7(E)) = min{n, dim(E)} > min{n, [a-d|} = [a - d].

We have thus proven that for any subspace S € Landa € QN (0, 1],

P(T(X) e S)>a == dim(S) > [a-d]. (39)
It follows from (39) that for any subspace S € L,

P(T(X) € S) < dim(S)/d.

This implies that for any ¢ > 0, the random vector 7'(X) is of class eff.rank>4—.. O
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Lemma 6.2 Let d, X, B be as in Theorem 1.3. Assume that d < dim(B) and that
for any subspace {0} # E < B,

P(X € E) < dim(E)/d. (40)

Then there exists € > 0 such that X is of class eff.rank ;. .

Proof Since the effective rank of X is at least d, necessarily P(X = 0) = 0. Assume
by contradiction that for any € > 0, the random vector X is not of class eff.ranks ;4.
Then for any & > 0 there exists a subspace {0} # E C B with

P(X € E) > —¢ + dim(E) /d.

The Grassmannian of all k-dimensional subspaces of B is compact. Hence there is a
dimension 1 < k < dim(83) and a converging sequence of k-dimensional subspaces
E\, E,,... C Bwith

P(X € E) > —1/€ + dim(E,)/d = —1/{ + k/d forall£ > 1.  (41)

Denote Ey = limy E;, which is a k-dimensional subspace in B. Let U C B be an
open neighborhood of Ej with the property that tx € U for all x € U, t € R. Then
E; C U for a sufficiently large £, and we learn from (41) that

P(X € U) > k/d. (42)

Since Ej is the intersection of a decreasing sequence of such neighborhoods U, it
follows from (42) that

P(X € Ey) > k/d = dim(E,)/d. (43)
Since d < dim(B), the inequality in (43) shows that Ey # 5. Hence 1 < dim(Ej) <
dim(B) — 1, and (43) contradicts (40). The lemma is thus proven. |

The following lemma is a variant of Lemma 5.4 from [5].

Lemma 6.3 Let d,X,B be as in Theorem 1.3. Then there exists a fixed scalar
product (-, -) on B such that denoting |0| = \/(9, 0), we have

X O\ oP
]E<|X|’9> < Idl forall 6 € B. (44)

Proof By induction on the dimension n = dim(B). Assume first that there exists a
subspace {0} # E < B, such that equality holds true in (3). In this case, there exists
asubspace F C Bwith E® F = Band P(X € EU F) = 1. We will construct
a scalar product in B as follows: Declare that £ and F are orthogonal subspaces,
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and use the induction hypothesis in order to find appropriate scalar products in the
subspace E and in the subspace F. This induces a scalar product in B which satisfies

x \*_ 0P
E ,0) < forall@ e EUF.
1X| d

For any 8 € B we may decompose 6§ = 6g + 0p with 0 € E,0r € F. Since
P(X € EUF) = 1, we obtain

X \? X 2 X 2 102 + 1052 10)?
E< 79>:E< ,95>+E< ,9F>§|E|+|F| :I|7
1X] IX] 1X] d d

proving (44).

Next, assume that for any subspace {0} # E < B, the inequality in (3) is strict.
There are two distinct cases, either d = n or d < n. Consider first the case where
d = n = dim(B). Thus, for any subspace E C B with E # {0} and E # B,

P(X € E) < dim(E)/n.

This is precisely the main assumption of Corollary 5.3 in [5]. By the conclusion of
the corollary, there exists a scalar product in 3 such that (44) holds true. We move
on to the case where d < n. Here, we apply Lemma 6.2 and conclude that X is of
class eff.ranks 44, for some ¢ > 0. Therefore, for some ¢ > 0,

P(X € E) < dim(E)/(d + ¢) VE C B. (45)

Now we invoke Lemma 5.4 from [5]. Its assumptions are satisfies thanks to (45).
From the conclusion of that lemma, there exists a scalar product in 3 for which (44)
holds true. O

The condition that the effective rank of X is at least d is not only sufficient but
is also necessary for the validity of conclusion (44) from Lemma 6.3. Indeed, it
follows from (44) that for any subspace E C B,

5 dim(E) 2 .
. X dim(E)
P(X € E) < E |Proj = E< ,ui> < , (46)
FIX] ; 1X| d
where uy,...,u, is an orthonormal basis of the subspace E with m = dim(E).

Equality in (46) holds true if and only if P(X € E U E1) = 1, where E* is the
orthogonal complement to E. Consequently, the effective rank of X is at least d.

Definition 6.4 Let X be a random vector in R” with P(X = 0) = 0. We say that X
is angularly-isotropic if

X \* 1
E .0) = forall @ € §"7. 47)
1X| n
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For 0 < d < n we say that X/|X| is sub-isotropic with parameter d if

E X (92<1 forall § € §"! (48)
) = ora .
1X| d

We observe that X is angularly-isotropic if and only if X/|X| is sub-isotropic with
parameter n. Indeed, suppose that (48) holds true with d = n. Given any § € S"~!
we may find an orthonormal basis 6y, ..., 6, € R" with 6; = 6. Hence

n

X | " <X >2 1
1=FE K 6 < =1,
‘IXI‘ ; 1X] ;n

and (47) is proven.

Proof of Theorem 1.3 According to Lemma 6.1, we may project X to a lower-
dimensional space, and assume that dim(53) = n = [d] and that the effective rank
of X is at least n/2. Lemma 6.3 now shows that there exists a scalar product in B
with respect to which X /|X| is sub-isotropic with parameter n/2. We may therefore
identify B with R” so that

x \* 2
E ,0) < forall @ € "7
1X| n

Thus condition (4) of Proposition 2.1 is verified. By the conclusion of Proposi-
tion 2.1, there exists a non-zero linear functional £ : R" — R such that £(X) is
Super-Gaussian of length ¢y 4/n > c+/d with parameters c;, c3 > 0. O

Proof of Corollary 1.4 By assumption, P(X € E) < dim(E)/d for any finite-
dimensional subspace E € . Lemma 7.2 from [5] states that there exists a
continuous, linear map 7 : B — RY such that T(X) has an effective rank of at least
d/2. We may now invoke Theorem 1.3 for the random vector 7(X), and conclude
that for some non-zero, fixed, linear functional £ : RY — R, the random variable
(€ o T)(X) is Super-Gaussian of length ¢ +/d with parameters ¢, c3 > 0. O

Remark 6.5 We were asked by Yaron Oz about analogs of Theorem 1.1 in the
hyperbolic space. We shall work with the standard hyperboloid model

n
H" = (.X(),...,Xn)ERrH_l;—X%+ZX?Z—I,X0>O
i=1

where the Riemannian metric tensor is g = —dx% + >0, dxf. For any linear
subspace L € R"T!, the intersection L N H" is a totally-geodesic submanifold
of H" which is called a hyperbolic subspace. When we discuss the dimension of
a hyperbolic subspace, we refer to its dimension as a smooth manifold. Note that
an (n — 1)-dimensional hyperbolic subspace E C H" divides H" into two sides.
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A signed distance function dg : H" — R is a function that equals the hyperbolic
distance to E on one of these sides, and minus the distance to E on the other side.
Given a linear functional £ : R"*! — R such that E = H" N {x € R"!; {(x) = 0}
we may write

dg(x) = arcsinh(« - £(x)) (x e H")

for some 0 # o € R. It follows from Theorem 1.3 that for any absolutely-
continuous random vector X in H", there exists an (n — 1)-dimensional hyperbolic
subspace E € H" and an associated signed distance function dg such that the
random variable sinh(dg(X)) is Super-Gaussian of length ¢;+/n with parameters
¢2,c3 > 0. In general, we cannot replace the random variable sinh(dg(X)) in the
preceding statement by dg(X) itself. This is witnessed by the example of the random
vector

X=| [1+R> Z2.RZ.....RZ, | e R""!

i=1

which is supported in H". Here, Z;,...,Z, are independent standard Gaussian
random variables, and R > 1 is a fixed, large parameter.
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A Remark on Measures of Sections of L,-balls

Alexander Koldobsky and Alain Pajor

Abstract We prove that there exists an absolute constant C so that
W(K) < Cyp max u(KNgH) K|V
gesn—

for any p > 2, any n € N, any convex body K that is the unit ball of an n-
dimensional subspace of L,, and any measure p with non-negative even continuous
density in R”. Here £ is the central hyperplane perpendicular to a unit vector
£ € §"7!, and |K| stands for volume.

1 Introduction

The slicing problem [1, 4, 5, 29], a major open question in convex geometry, asks
whether there exists a constant C so that for any n € N and any origin-symmetric
convex body K in R”,

K|""' < C max |KNEL
EES”71

where |K| stands for volume of proper dimension, and £ is the central hyperplane
in R” perpendicular to a unit vector £. The best-to-date result C < O(n'/*) is due
to Klartag [15], who improved an earlier estimate of Bourgain [6]. The answer is
affirmative for unconditional convex bodies (as initially observed by Bourgain; see
also [3, 14, 29]), intersection bodies [10, Theorem 9.4.11], zonoids, duals of bodies
with bounded volume ratio [29], the Schatten classes [23], k-intersection bodies
[21, 22]; see [7] for more details.
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The case of unit balls of finite dimensional subspaces of L, is of particular interest
in this note. It was shown by Ball [2] that the slicing problem has an affirmative
answer for the unit balls of finite dimensional subspaces of L,, 1 < p < 2. Junge
[13] extended this result to every p € (1,00), with the constant C depending on
p and going to infinity when p — oo. Milman [27] gave a different proof for
subspaces of L,, 2 < p < oo, with the constant C < O(,/p). Another proof of
this estimate can be found in [22].

A generalization of the slicing problem to arbitrary measures was considered
in [18-21]. Does there exist a constant C so that for every n € N, every origin-
symmetric convex body K in R”, and every measure p with non-negative even
continuous density f in R",

p(K) = € max p(KNEY) |K['"? (1
gesn—
For every k-dimensional subspace of R”, 1 < k < n and any Borel set A C E,

n(A) = /A Fdx,

where the integration is with respect to the k-dimensional Lebesgue measure on E.

Inequality (1) was proved with an absolute constant C for intersection bodies
[18] (see [16], this includes the unit balls of subspaces of L, with 0 < p < 2),
unconditional bodies and duals of bodies with bounded volume ratio in [20], for
k-intersection bodies in [21]. For arbitrary origin-symmetric convex bodies, (1) was
proved in [19] with C < O(4/n). A different proof of the latter estimate was recently
given in [8], where the symmetry condition was removed.

For the unit balls of subspaces of L,, p > 2, (1) was proved in [21] with
C < O(n'/>7'/P)_1In this note we improve the estimate to C < O(/p), extending
Milman’s result [27] to arbitrary measures in place of volume. In fact, we prove a
more general inequality

w(K) = (Cyp)t max p(K N H) K", @

where 1 < k < n, Gr,— is the Grassmanian of (n — k)-dimensional subspaces of
R”", K is the unit ball of any n-dimensional subspace of L,, p > 2, i is a measure
on R” with even continuous density, and C is a constant independent of p, n, k, K, 1.

The proof is a combination of two known results. Firstly, we use the reduction of
the slicing problem for measures to computing the outer volume ratio distance from
a body to the class of intersection bodies established in [20]; see Proposition 1.
Note that outer volume ratio estimates have been applied to different cases of the
original slicing problem by Ball [2], Junge [13], and Milman [27]. Secondly, we use
an estimate for the outer volume ratio distance from the unit ball of a subspace of
L,, p > 2, to the class of origin-symmetric ellipsoids proved by Milman in [27].
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This estimate also follows from results of Davis, Milman and Tomczak-Jaegermann
[9]. We include a concentrated version of the proof in Proposition 2.

2 Slicing Inequalities

We need several definitions and facts. A closed bounded set K in R” is called a star
body if every straight line passing through the origin crosses the boundary of K at
exactly two points, the origin is an interior point of K, and the Minkowski functional
of K defined by

|x|lx = min{a >0 : x € aK}

is a continuous function on R”.
The radial function of a star body K is defined by

() = x5, xe R x#£0.

If x € $"~! then pk(x) is the radius of K in the direction of x.
We use the polar formula for volume of a star body

1
K| = / 01" 6. 3)
n Jsgn—1

The class of intersection bodies was introduced by Lutwak [25]. Let K, L be
origin-symmetric star bodies in R”. We say that K is the intersection body of L if
the radius of K in every direction is equal to the (n — 1)-dimensional volume of
the section of L by the central hyperplane orthogonal to this direction, i.e. for every
fes,

gl = 1LN g™

1 1
= 9 —n+ld9: R . —n+1 ,
n—l/SnlmEJ_ o1 C_RAUEIET @

Pk (§)

where R : C(S"™') — C(§" ") is the spherical Radon transform
me=[  swa weos
Sn—lmEL

All bodies K that appear as intersection bodies of different star bodies form the class
of intersection bodies of star bodies. A more general class of intersection bodies is
defined as follows. If w is a finite Borel measure on S"~! then the spherical Radon
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transform Ry of y is defined as a functional on C(S"~") acting by

(Rif) = (u.Rf) = / RFHR(),  Vf e C(s™).

sn—1

A star body K in R" is called an intersection bodyif || - || ' = Ru for some measure
M, as functionals on C(S”_l), ie.

/ Il = / RFdp().  Vf e s,
Sn—l Sn—l

Intersection bodies played a crucial role in the solution of the Busemann-Petty
problem and its generalizations; see [17, Chap. 5].

A generalization of the concept of an intersection body was introduced by Zhang
[30] in connection with the lower dimensional Busemann-Petty problem. For 1 <
k < n—1, the (n — k)-dimensional spherical Radon transform R, : C(S"™!) —
C(Gr,—) is a linear operator defined by

R,—1g(H) = / gx)dx, VH € Gry,—
Sn—lnH

for every function g € C(S"™").

We say that an origin symmetric star body K in R” is a generalized k-intersection
body, and write K € BP}, if there exists a finite Borel non-negative measure y on
Gr,—i so that for every g € C(S"™")

[ iRtew as= [ Rocsten den. @

When k = 1 we get the class of intersection bodies. It was proved by Goodey and
Weil [11] for & = 1 and by Grinberg and Zhang [12, Lemma 6.1] for arbitrary
k (see also [28] for a different proof) that the class BP;, is the closure in the radial
metric of k-radial sums of origin-symmetric ellipsoids. In particular, the classes BP},
contain all origin-symmetric ellipsoids in R" and are invariant with respect to linear
transformations. Recall that the k-radial sum K + L of star bodies K and L is defined
by

Pk = Pk + P
For a convex body K in R” and 1 < k < n, denote by

ICI

1/n
:KCcC, CeBP;}
|K|) ¢

ov.r.(K,BP}) = inf§ (

the outer volume ratio distance from a body K to the class BPy.
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Let B} be the unit Euclidean ball in R”, let | - |» be the Euclidean norm in R”,
and let o be the uniform probability measure on the sphere $"~! in R". For every
x € R”, let x; be the first coordinate of x. We use the fact that for every p > —1

NG

; 5
NZINGD ®

/ 1 Pdo () =
Srt*l

see for example [17, Lemma 3.12], where one has to divide by [§"7!| =
27 (=72 ['(%), because the measure o on the sphere is normalized.

In [20], the slicing problem for arbitrary measures was reduced to estimating the
outer volume ratio distance from a convex body to the classes BP}, as follows.

Proposition 1 Foranyn € N, 1 < k < n, any origin-symmetric star body K in R",
and any measure |1 with even continuous density on K,

w(K) < (ovr(K,BP})) Cuk  Max (K 0 H) |K "/,
T'n—k

kN
n—k
where ¢, = |B§|("_k)/”/|Bg_k| € (e_k/z, 1).

It appears that for the unit balls of subspaces of L,,, p > 2 the outer volume ration
distance to the classes of intersection bodies does not depend on the dimension. As
mentioned in the introduction, the following estimate was proved in [27] and also
follows from results of [9]. We present a short version of the proof.

Proposition2 Letp > 2, n € N, 1 < k < n, and let K be the unit ball of an
n-dimensional subspace of L,. Then

ov.r.(K,BP;) < Cy/p,

where C is an absolute constant.

Proof Since the classes BP; are invariant under linear transformations, we can
assume that K is in the Lewis position. By a result of Lewis in the form of [26,
Theorem 8.2], this means that there exists a measure v on the sphere so that for
every x € R”

Il = [ I,
Mo
and

= [ lwoPav.

Also, by the same result of Lewis [24], K C nl/z_l/PBg.



218 A. Koldobsky and A. Pajor

Let us estimate the volume of K from below. By the Fubini theorem, formula (5)
and Stirling’s formula, we get

[ et = [ [ iworaoin

C r/2
- / b1 Pdo (x) dv(u)f( P ) / dv (u).
sn—1 sn—1 n + P sn—1

Now

Cp / )2/P (/ ) )2/P
dv(u > x|vdo (x
(@) = ([ o
z(/ ||x||;"da(x)) =( ) ~ Nk
sn—1 |BZ| n

because |B}|!/" ~ n~!/2. On the other hand,

- /Sn_l /S”_l o (dviu) = | /S dv(w).

Cp n2/p > 1|K|—2/n’
n+p n

SO

and

1/2—1/p
K[/ 2 et [" TP g,
np VP

Finally, since K C n'/27'/PB%, and B} € BP} for every k, we have

1/2—1
|n!/ /PBg

1/n
o.v.r.(K,BP}) < ( K| l) <C./p.

where C is an absolute constant.
‘We now formulate the main result of this note.

Corollary 1 There exists a constant C so that foranyp > 2, n € N, 1 <k < n,
any convex body K that is the unit ball of an n-dimensional subspace of L,, and any
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measure [L with non-negative even continuous density in R",

w(K) = (Cyp)* max p(KNH) K"
€Grp—i

Proof Combine Proposition 1 with Proposition 2. Note that ", € (1, é),andc,; €
(e_"/ 2, 1), so these constants can be incorporated in the constant C. O
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Sharp Poincaré-Type Inequality
for the Gaussian Measure on the Boundary
of Convex Sets

Alexander V. Kolesnikov and Emanuel Milman

Abstract A sharp Poincaré-type inequality is derived for the restriction of the
Gaussian measure on the boundary of a convex set. In particular, it implies a
Gaussian mean-curvature inequality and a Gaussian iso-second-variation inequality.
The new inequality is nothing but an infinitesimal equivalent form of Ehrhard’s
inequality for the Gaussian measure. While Ehrhard’s inequality does not extend to
general CD(1, co) measures, we formulate a sufficient condition for the validity of
Ehrhard-type inequalities for general measures on R” via a certain property of an
associated Neumann-to-Dirichlet operator.

1 Introduction

We consider Euclidean space (R”,(-,-)) equipped with the standard Gaussian
measure y = ¥, dx, ¥, (x) = Qm)™? exp(— |x|2 /2).Let K C R”" denote a convex
domain with C? smooth boundary and outer unit-normal field v = vjg. The second
fundamental form II = Iljx of K at x € 9K is as usual (up to sign) defined by
ILX,Y) = (Vxv,Y), X, Y € T, 0K. The quantities:

H(x) :=tr(Ily) , Hy(x) := H(x) — {x,v(x)) ,

are called the mean-curvature and Gaussian mean-curvature of dK at x € 9K,
respectively. It is well-known that H governs the first variation of the (Lebesgue)
boundary-measure Volyx under the normal-map ¢ — exp(tv), and similarly H,
governs the first variation of the Gaussian boundary-measure yyx := ¥, Volyk, see
e.g. [15] or Sect. 2.

Recall that the Gaussian isoperimetric inequality of Borell [4] and Sudakov—
Tsirelson [20] asserts that if E is a half-plane with y(E) = yp(K), then
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yax(0K) > yse(0E) (in fact, this applies not just to convex sets but to all Borel
sets, with an appropriate interpretation of Gaussian boundary measure). In other
words:

Yok (0K) = I, (y (K))

with equality for half-planes, where 7, : [0,1] — R, denotes the Gaussian
isoperimetric profile, given by I, := ¢ o @~! with ¢(f) = len exp(—*/2) and

D) = f:oo @(s)ds. Note that I, is concave and symmetric around 1/2, hence it is
increasing on [0, 1/2] and decreasing on [1/2, 1].

Our main result is the following new Poincaré-type inequality for the Gaussian
boundary-measure on dK:

Theorem 1.1 For all convex K andf € C'(9K) for which the following expressions
make sense, we have:

2
/ H, Pdysx — (log 1) (y(K) ( / fdyaK) < / (1150 Vax f. Vo f) dar.
0K 0K 0K (1)

Here Vykf denotes the gradient of f on 0K with its induced metric, and
(logl,)'(v) = =@~ (v) /1, (v).
This inequality is already interesting for the constant function f = 1:

Corollary 1.2 (Gaussian Mean-Curvature Inequality)
| Ay = G0g 1,y (/®)yax 0K @
K

In particular, if y(K) > 1/2 then necessarily faK H,dyx < 0.

The latter inequality is sharp, yielding an equality when K is any half-plane E.
Indeed, since I, (y(E)) = yye(dE), it is enough to note that E = (—oo, 1] x R""!
has constant Gaussian mean-curvature H, = —t = (log ¢)'(1) = I,,(y(E)).

More surprisingly, we will see in Sect. 4 that Corollary 1.2 in fact implies the
Gaussian isoperimetric inequality (albeit only for convex sets). Furthermore, we
have:

Corollary 1.3 (Gaussian Iso-Curvature Inequality) If E is a half-plane with
y(E) = y(K) = 1/2, then the following iso-curvature inequality holds:

/ H,ydya < / H,dyas ( < 0).
0K oE
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Proof This is immediate from (2), the Gaussian isoperimetric inequality ysx (0K) >
va£(OF), the assumption that (logZ,)'(y(K)) < 0, and the equality in (2) for half-
planes.

Clearly, by passing to complements, the latter corollary yields a reverse inequality
when applied to K, the complement to a convex set C satisfying y(K) < 1/2 (since
dK = dC with reverse orientation and thus their generalized mean-curvature simply
changes sign). It is also easy to check that a reverse inequality holds when K is a
small Euclidean (convex) ball centered at the origin. It is probably unreasonable to
expect that a reverse inequality holds for all convex K with y(K) < 1/2, but we
have not seriously searched for a counterexample.

We proceed to give the following interpretation of the latter two corollaries.
Denoting:

33K = 7(K) . 5)(K) = yuxK) . K) = [ty

we note that 8; (K) is precisely the i-th variation of the function ¢ — y(K;), where
K, = {xeR"; d(x,K) <t} and d denotes Euclidean distance. Consequently,
Corollary 1.3 may be rewritten as:

Corollary 1.4 (Gaussian Iso-Second-Variation Inequality) If E is a half-plane
with y(E) = y(K) > 1/2, then the following iso-second-variation inequality holds:

55(K) < 63(E) (=< 0).

It is interesting to note that we are not aware of an analogous statement on any other
metric-measure space, and in particular, for the Lebesgue measure in Euclidean
space, as all known isoperimetric inequalities only pertain (by definition) to the first-
variation (and with reversed direction of the inequality). Furthermore, in contrast to
the isoperimetric inequality, it is easy to see that the second-variation inequality
above is false without the assumption that K is convex, as witnessed for instance
by taking the complement of any non-degenerate slab {x € R" ; a < x; < b} of
measure 1/2. As for Corollary 1.2, we see that it may be rewritten as:

Corollary 1.5 (Minkowski’s Second Inequality for Euclidean Gaussian
Extensions)

82(K) < (log 1, (%(K)) (51 (K))™. 3)

This already hints at the proof of Theorem 1.1. To describe the proof, and put the
latter interpretation in the appropriate context, let us recall some classical facts from
the Brunn-Minkowski theory (for the Lebesgue measure).
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1.1 Brunn-Minkowski Inequality

The Brunn—Minkowski inequality [13, 19] asserts that:
Vol((1 — K + tL)/" > (1 — ))Vol(K)'/™ + tVol(L)V" , VY1 € [0,1], 4)

for all convex K,L C R”; it was extended to arbitrary Borel sets by Lyusternik.
Here Vol denotes Lebesgue measure and A + B := {a + b ; a € A, b € B} denotes
Minkowski addition. We refer to the excellent survey by Gardner [13] for additional
details and references.

For convex sets, (4) is equivalent to the concavity of the function # > Vol(K +
tL)'/". By Minkowski’s theorem, extending Steiner’s observation for the case that L
is the Buclidean ball, VoI(K + tL) is an n-degree polynomial Y i (1) W,—i(K, L)',
whose coefficients

Wy (K.L) = (n;l)’ (d)l

0 Vol(K +1L) &)

=0

are called mixed-volumes. The above concavity thus amounts to the fol-
lowing “Minkowski’s second inequality”, which is a particular case of the
Alexandrov—Fenchel inequalities:

Wn—l (Ks L)Z = Wn—Z(Kv L) Wn (Kv L) . (6)

Specializing to the case that L is the Euclidean unit-ball D, noting that K; = K 4-tD,
and denoting by §°(K) the i-th variation of 7 — Vol(K,), we have as before:

§°(K) = Vol(K) , §"(K) = Volyk(3K) , §*(K) = / HdVoly.
oK

The corresponding distinguished mixed-volumes W,_;(K) = W,_;(K, D), which
are called intrinsic-volumes or quermassintegrals, are related to §'(K) via (5).
Consequently, when L = D, Minkowski’s second inequality amounts to the
inequality:

1

20y < 11 1 k)2
PR =" ) 61

The analogy with (3) becomes apparent, in view of the fact that (log 1)’ (v) = ”;1 11),
where I(v) = cnv”71 is the standard isoperimetric profile of Euclidean space
(R", {-,-)) endowed with the Lebesgue measure.

An important difference to note with respect to the classical theory, is that
in the Gaussian theory, 8)2,(1() may actually be negative, in contrast to the non-

negativity of all mixed-volumes, and in particular of §2(K). One reason for this
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is that the Gaussian measure is finite whereas the Lebesgue measure is not, so that /
is monotone increasing whereas /I, is not. This feature seems to also be responsible
for the peculiar iso-second-variation corollary.

1.2 Ehrhard Inequality

A remarkable extension of the Brunn-Minkowski inequality to the Gaussian setting
was obtained by Ehrhard [11], who showed that:

7 (y((1 =K +1L) = (1 =D~ (y(K)) + 1@~ (y(L)) Vre[0.1],

for all convex sets K, L C R", with equality when K and L are parallel half-planes
(pointing in the same direction). This was later extended by Latata [16] to the case
that only one of the sets is assumed convex, and finally by Borell [6, 7] to arbitrary
Borel sets. As before, for K, L convex sets, Ehrhard’s inequality is equivalent to the
concavity of the function 7 — F, (1) := @~ (y((1 — HK + 1L)).

To prove Theorem 1.1, we repeat an idea of A. Colesanti. In [9] (see also
[10]), Colesanti showed that the Brunn-Minkowski concavity of ¢ +— F(f) :=
Vol((1 — )K + tL)"/" is equivalent to a certain Poincaré-type inequality on 9K, by
parametrizing K, L via their support functions and calculating the second variation
of F(t). Repeating the calculation for F,(f), Theorem 1.1 turns out to be an
equivalent infinitesimal reformulation of Ehrhard’s inequality for convex sets.

1.3 Comparison with Previous Results

Going in the other direction, we have recently shown in our previous work [15] how
to directly derive a Poincaré-type inequality on the boundary of a locally-convex
subset of a weighted Riemannian manifold, which may then be used to infer a
Brunn-Minkowski inequality in the weighted Riemannian setting via an appropriate
geometric flow. In particular, in the Euclidean setting, our results apply to Borell’s
class of 1/N-concave measures [5] ( 1{, € [—o0, :l]), defined as those measures ( on
R" satisfying the following generalized Brunn-Minkowski inequality:

(1= DA +1B) > (1 = Dp)™ + u(®)'™)",

for all + € [0, 1] and Borel sets A,B C R" with w(A), u(B) > 0. It was shown
by Brascamp-Lieb [8] and Borell [5] that the absolutely continuous members of
this class are precisely characterized by having density ¥ so that (N — n)@!/(V=") ig
concave on its convex support £2 (interpreted as log ¥ being concave when N = 00),
amounting to the Bakry—Emery CD(0,N) condition [1, 2, 14]. Our results from
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[15] then imply that for any (say) compact convex K in the interior of £2 with C?
boundary, and any f € C'(3K), one has:

1

N-—1 2
H, f2dusx — (/ d )5/ I Vg £, Vg £ d ok |
/3K wf dpok N ) BKf Kok BK( ok Vox [ Vo f) dok .

with pyx = ¥Volyx denoting the boundary measure and H, = H + (log ¥, v) the
u-weighted mean-curvature. Note that the Gaussian measure y satisfies CD(1, oo)
and in particular CD(0, c0), as log ¥, is concave on R". Consequently, applying (7)
with N = oo, we have:

1 2
/ H, f*dysx — ( / deaK) < / (% Vax f. Vax f) dyax - ®)
9K )’(K) 9K 9K

It is easy to verify that (log/Z,)' (v) < 11) for all v € (0, 1), and hence Theorem 1.1
constitutes an improvement over (8).

A very important point is that the latter improvement is strict only for test func-
tions f with non-zero mean, | ok Jdvax # 0. Put differently, the entire significance of

Theorem 1.1 lies in the coefficient in front of the ( fBK fdyaK)2 term, since by (7), for
zero-mean test functions, the inequality asserted in Theorem 1.1 holds not only for
the Gaussian measure, but in fact for Borell’s entire class of concave (or CD(0, 0))
measures (using our convention from [14, 15] that NJ;I = —oo when N = 0 and
that oo - 0 = 0).

Unfortunately, our method from [15], involving L2-duality and the Reilly formula
from Riemannian geometry, cannot be used in the Gaussian setting without some
additional ingredients, like information on an associated Neumann-to-Dirichlet
operator, see Sect.3. In particular, we observe in Sect.4 that Theorem 1.1 (or
equivalently, Ehrhard’s inequality for convex sets) and even Corollary 1.2, are
simply false for a general CD(1, co) probability measure in Euclidean space, having
density ¥ = exp(—V) with V2V > Id.

2 Proof of Theorem 1.1

The general formulation of Theorem 1.1 is reduced to the case that K is compact
with strictly-convex C* smooth boundary (Il;x > 0) by a standard (Euclidean)
approximation argument—this class of convex sets is denoted by ‘Ki (and anal-
ogously we define the class ‘Ki). As explained in the Introduction, the proof of
Theorem 1.1 boils down to a direct calculation of the second variation of the
function:

t> & (y((1 =K + L))
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for an appropriately chosen L. Ehrhard’s inequality ensures that this function is
concave when K, L are convex.

The second variation will be conveniently expressed using support functions.
Recall that the support function of a convex body (convex compact set with non-
empty interior) C is defined as the following function on the Euclidean unit sphere
sl

he(6) = sup{(6,x);xe C}, B s

It is easy to see that the correspondence C +— h¢ between convex bodies and
functions on S"~! is injective and positively linear: huc,+bc, = ahc, + bhc, for
alla,b > 0.AsK € ‘643_ we know that g is C? smooth [19, p- 106].

Now let f € C*(3K), and consider the function hp = f o UB_Kl S 5 R
Since K € ‘fj’_ this function is well-defined and C? smooth. Moreover, it is not hard
to show (e.g. [19, pp. 38, 111], [9]) that for ¢ > 0 small enough, hgx + th, is the
support function of a convex body K; € ‘642_ for all ¢ € [0, €]. It follows by linearity
of the support functions that K, = (1 —t)K + tK, forall ¢ € [0, 1], and so Ehrhard’s
inequality implies that:

t Fy(n) == &7 (y(K)
is concave on [0, €].
The first and second variations of r + u(K;) were calculated by Colesanti in
[9] for the case that p is the Lebesgue measure, and for general measures p with

positive density ¥ by the authors in [15] (in fact in a general weighted Riemannian
setting, with an appropriate interpretation of K; avoiding support functions):

8" 1= (d/dn)°|i=o u(K,) = p(K) ,
o= @/ o K = [ i
§% := (d/dt)* =0 w(K;) = /3 . H,f*dusk — /a ; (U Vax f. Vax f) d ok -
Applying the above formulae for u = y, calculating:
0= FJ(0) = (@7)"(6")(6") + (@7 ("),
dividing by (@7')(8°) > 0 and using that:

(@)'(v) _
(@71 (v)

Theorem 1.1 readily follows for f € C?(dK). The general case for f € C'(3K) is
obtained by a standard approximation argument.

—(log1,)' (v),
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Going in the other direction, it should already be clear that Theorem 1.1 implies
back Ehrhard’s inequality. Indeed, given K, L € €2, consider K, = (1 — 1)K + tL
for ¢ € [0, 1], and note that hg, = (1 — f)hx + thy. Fixing 7 € (0, 1), it follows that
tho+e = hKro + €(hy — hg). Inspecting the proof above, we see that the statement
of Theorem 1.1 for K;, and f = (hy — hg) o v € C'(dK), is precisely equivalent
to the concavity of the function € — @~ !(y(K,+c)) at € = 0. Since the point
to € (0, 1) was arbitrary, we see that Theorem 1.1 implies the concavity of [0, 1]
t— @ ' (y((1—H)K+1L)) forK,L € ‘Kf_ The case of general convex K, L follows
by approximation.

3 Neumann-to-Dirichlet Operator

In this section, we mention how a certain property of a Neumann-to-Dirichlet
operator can be used to directly obtain an Ehrhard-type inequality for general
measures & = exp(—V(x))dx on R" (say with C? positive density). Define the
associated weighted Laplacian L = L, as:

L=1L,:=exp(V)V-(exp(=V)V) = A—(VV,V) .

Given a compact set 2 C R" with C' smooth boundary, note that the usual
integration by parts formula is satisfied for f, g € C?(£2):

/Q L(f)gdu = faMfugduaM— /Q (V. V) dp = fa (g dunn+ /Q Lig)fd.

where u, = v - u.
Given a compact convex body K € 47 and f € C'“(9K), let us now solve the
following Neumann Laplace equation:

1

Lu=
YT )

/ fduax on K, u, =f on oK. 9
K

Since the compatibility condition |, x Ludp = /: ax JAd ok 1s satisfied, it is known (e.g.
[15]) that a solution u € C>*(K) exists (and is unique up to an additive constant).
The operator mapping f + u is called the Neumann-to-Dirichlet operator.

Theorem 3.1 Assume that there exists a function F : Ry — R so that for all K, f
and u as above:

Flu())( /3 ) < /8 (Vi Vo) + ) . (10)
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Denote G(v) := | — F(v) and @, (v) == flv/z exp(— flt/z G(s)ds)dt. Then for all
f e C'(9K):

2
/ H, frdpsx — G(u(K)) (/ fd,uaK) =< / (IralévaKf, Vo f)dpak,  (11)
K K K
and for all convex K,L C R" and t € [0, 1]:
o, (1=K +1L) = (1 - 0@, (K) + 1P, (L). (12)

For the proof, we require the following lemma. We denote by || Viu H the Hilbert-
Schmidt norm of the Hessian Vu.

Lemma 3.2 With the above notation:
/ ((vzv Vu, Vi) + HV2u||2) dy = /8 (Vo f. Voxu) + uyof ) dptog.
K K

Remark 3.3 The integrand on the left-hand-side above is the celebrated Bakry—
Emery iterated carré-du-champ I'(u), associated to (K, (-,-) , i) [2].

Proof Denoting Vu = (uy, ..., u,), we calculate:

V2u|d =/nVi2d =/nwid —/nLiid.
/KH e K;Iul 1 aK;u,uuaK Ki; (u)uidp

To handle the L(u;) terms, we take the i-th partial derivative in the Laplace
equation (9), yielding:

Consequently, we have:
> L(uu; = (V?V Vu, Vu),
i=1
and therefore:
/ ((vzv Vu, Vu) + | V2u||2) du = / > uiuidpo.
K K ‘2
Recalling that f = u,, the assertion follows.

Proof (Proof of Theorem 3.1) As in [15], our starting point is the generalized Reilly
formula [14], which is an integrated form of Bochner’s formula in the presence of a
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boundary. In the Euclidean setting, it states that for any u € C?(K) (see [14] for less
restrictions on u):

u)? = 2M2 2 u,vu
/K(L)du /KHV I d,u+/K(VVV,V)du

+ / Hy () 2o+ / (k. Vi, Vo) djtox—2 / (Viktty, Voxt) djtox.
0K 0K 0K

13)

As we assume that Iljx > 0, we may apply the Cauchy—Schwarz inequality to the
last-term above:

2 (Vakuy, Vaxu) < (Uagx Vaxu, Vogxu) + (g Vaguy, Vogu,) (14)

yielding:
/ (Lu)*dp > / | V2u® dp + / (V2V Vu, Vu)dp
K K K
+ / HM(MV)zd,U,;)K —_ / (IIE)_Ié VaKI/lV, VaKMV>dM3K .
K K

Given f € C'*(3K), we now apply the above inequality to the solution u of the
Neumann Laplace equation (9). Together with Lemma 3.2, this yields:

1 2
/a H G s = ( /K fdu) 4 /a (Vi Vi) + 1) dpa

< / (g Vox f. Vax f) dak.
K

Invoking our assumption (10), the asserted inequality (11) follows for f € C'*(3K).
The case of a general f € C'(3K) follows by a standard approximation argument.

Lastly, (12) is an equivalent version of (11). Indeed, the proof provided in Sect. 2
demonstrates how to pass from (12) to (11), with:

(@) (v)

0= ooy

= (log((®,)))' (v).

To see the other direction, repeat the argument described in the previous section.
After establishing (12) for K,L € ‘642_, the general case follows by a standard
approximation argument.
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Unfortunately, we cannot claim that condition (10) is equivalent to the Ehrhard-
type inequality (12), since the proof of Theorem 3.1 involved an application of the
Cauchy-Schwarz inequality (14). Consequently, we pose this as a question:

Question 1 (Gaussian Neumann-to-Dirichlet Operator on Convex Domains)
Does (10) hold for © = y the Gaussian measure with F(v) = 11) — (log 1) (v)?

Note that the analogous question for Ib-concave measures [, 1{, € (—o0, :l], has
a positive answer: (10) holds for any K € ‘642_ in the support of p with F(v) = 11, ll)
Indeed, if u = ¥(x)dx = exp(—V(x))dx satisfies on its support:

V2@ v 1
~WN-n) . =viv- VV®VV >0,
1/ N-—n

N—n -

then by several applications of the Cauchy—Schwarz inequality (see [14]):
2
/ (Vax f, Vogu) + uyof) dirox = / ((VZV Vu, Vu) + H V2u|| )dp,
K K

1 1 1
E/K(N—n(VM’VV>2+n(Au)z)du‘z/KN(A”_(V”’VV))sz

1 1 1
= /K Lol = o /3 R

4 Concluding Remarks

4.1 Refined Version

Peculiarly, as in [15], it is possible to strengthen Theorem 1.1 by applying ittof + z
and optimizing over z € R. This results in the following stronger inequality:

(fo fBdyox)’

2 _ / 2
/BMHyf dugm — (logly) (V(K))(/adeyaK) + Jox Bdvox

< / (g Vo f. Vax f)dyax .
0K
where:

B(x) := (log 1))’ (v (K))yax (0K) — H (x) .

Note that indeed fBK Bdysx = 0 by Corollary 1.2, so the additional third term

appearing above is always non-negative.
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Recall that our original weaker inequality (1) is an equivalent infinitesimal form
of Ehrhard’s inequality, and so one cannot hope to obtain a strict improvement in the
cases when Ehrhard’s inequality is sharp (and indeed when X is a half-plane we see
that B = 0). On the other hand, it would be interesting to integrate back the stronger
inequality above and obtain a refined version of Ehrhard’s inequality, which would
perhaps be better suited for obtaining delicate stability results (cf. [12, 18] and the
references therein). We leave this for another occasion.

4.2 Mean-Curvature Inequality Implies Isoperimetric
Inequality

As explained in Sect. 2, Theorem 1.1 is an equivalent infinitesimal form of Ehrhard’s
inequality (for convex domains K, L), i.e. equivalent to the concavity of [0, 1] 3 ¢ —
@~ (y((1 =K +tL)). Similarly, Corollary 1.2, which is obtained by setting f = 1
in Theorem 1.1, is an equivalent infinitesimal form of the concavity of:

Ry >t F(t):= @ ' (y(K +tB})),

where B} denotes the Euclidean unit-ball; indeed, Corollary 1.2 expresses precisely
that F”(0) < 0.

It is worthwhile to note that the latter concavity may be used to recover the
Gaussian isoperimetric inequality (albeit only for convex sets). The following is
a variant on an argument due to Ledoux (private communication), who showed how
Ehrhard’s inequality with L being a multiple of B}, may be used to recover the
Gaussian isoperimetric inequality (for general Borel sets). Indeed, the concavity of
F implies that:

F)—FO) _
t t—>00

i @7 O/0BY)

t—>00 t

F(t
F'(0) > lim @
—00 t

A straightforward calculation (e.g. [3]) verifies that the right-hand-side is equal to
1, and hence:

1 < F'(0) = (@71 (y(K))ysx (9K),

or equivalently:

Yok (0K) > I, (y(K)),

as asserted.
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4.3 Ehrhard’s Inequality is False for CD(1, co) Measures

It is well known (e.g. [17]) that various isoperimetric, functional and concentration
inequalities which are valid for the Gaussian measure are also valid for any measure
w = exp(—V)dx on R" with V2V > Id, the so-called class of CD(1, co) measures
in Euclidean space.

However, we remark that it is not possible to extend Ehrhard’s inequality (and
hence Theorem 1.1) to this more general class, providing in particular a negative
answer to Question 1 for several natural members of this class. Indeed, this is
witnessed already by considering the probability measure  obtained by condition-
ing the one-dimensional Gaussian measure onto a half-line (—oo, b] (which may
clearly be approximated in total-variation by probability measures exp(—V)dx with
V" > 1). It is not true that:

O (u((1 = DK +1L)) = (1 — D~ (w(K)) + 1" (u(L)),

even for half-lines K, L. If that were the case, it would mean that the function
(—00,b] 3 t = D1 (D(r)/P(b)) is concave, but it is easy to see that this is not
the case as t — b. The same argument shows that Ry > 7 > &~ (u(K + t[—1, 1]))
is not concave even for a half-line K, and so we see that even Corollary 1.2 cannot
be extended to the CD(1, co) setting.

4.4 Dual Inequality for Mean-Convex Domains

Lastly, for completeness, we specialize a dual Poincaré-type inequality obtained in
[15], for the case of the Gaussian measure:

Theorem 4.1 (Dual Inequality for Mean-Convex Domains) Let K C R” denote
a compact set with C* smooth boundary which is strictly Gaussian mean-convex,
i.e. H, > 0 on dK. Then for any f € C*(dK) and C € R:

! (Laxs + -0 )zdyaK.

/ (o Vox f. Vax f) dyax. < /
9K 2

oK Hy

Here Lyg = Ayjx — (x, Vyk) denotes the induced Ornstein—-Uhlenbeck generator on
oK.
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Rigidity of the Chain Rule and Nearly
Submultiplicative Functions
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Abstract Assume that 7 : C'(R) — C(R) nearly satisfies the chain rule in the
sense that

IT(f o g)(x) = (TN (N (TR (X = Sx, (f © 8)(x). g(x))

holds for all f, g € C'(R) and x € R, where S : R? — R is a suitable fixed function.
We show under a weak non-degeneracy and a weak continuity assumption on 7 that
S may be chosen to be 0, i.e. that T satisfies the chain rule operator equation, the
solutions of which are explicitly known. We also determine the solutions of one-
sided chain rule inequalities like

T(f o)) = (TN () (Tg)(x) + S(x, (f 0 8)(x). g(x))

under a further localization assumption. To prove the above results, we investigate
the solutions of nearly submultiplicative inequalities on R

$(aB) = p()p(B) +d

and characterize the nearly multiplicative functions on R

¢ (@p) —p(@)p(B)| < d

under weak restrictions on ¢.
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1 Introduction and Results

Several fundamental operations in analysis and geometry such as derivatives, the
Fourier transform, the Legendre transform, multiplicative maps or the duality of
convex bodies may be characterized, essentially, by elementary properties or as
solutions of simple operator functional equations on classical function spaces, cf.
[2-4]. The latter may be abstract versions of the Leibniz or the chain rule. In this
paper, we concentrate on the question to what extent the chain rule and perturbations
of the chain rule determine the derivative. It turns out that the chain rule shows a
remarkable rigidity and stability which we will study in this paper. This involves
the investigation of nearly multiplicative functions on the real line, i.e. functions
which are multiplicative up to some fixed error. We start with known results on the
solutions of chain rule equation before considering perturbations of it.
Let T : C!(R) — C(R) be an operator satisfying the chain rule equation

T(fog) =((Tf)og)-Tg . f.geC'(R).

By Artstein-Avidan et al. [3], if T is not identically zero on the bounded functions
and T(—Id)(0) < 0, T has the form

Ho
17 =" sans' 111

for a suitable p > 0 and a continuous function H : R — R.(. The equation is very
stable: if it is replaced by

V(fog)=((Tif)og) - (hg) . f.geC(R)

for operators V, Ty, T, : C'(R) — C(R), its solutions under a mild condition of
non-degeneracy of V are of a very similar type:

Vf=(ciof)-c2-Tf , Tif = (c10f)-Tf , Tof = c2- If

where c1,c; € C(R) and T has the above form, cf. [5]. It is also stable in another
sense: if § : R®* — R is a function such that

T(fog) =((Tf)og)-Tg+ S(.fog().g()) . f.geC'®R)

holds, under weak conditions one may show that the only possible choice is S = 0,
i.e. that T satisfies the chain rule equation properly, cf. [5]. The stability even extends
to the chain rule inequality

T(fog) <((If)og)-Tg . f.g€C(R)
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which under weak assumptions on 7 has only solutions of the form

f o =0
T =
Hof p
AP f <0

with p and H as before and a constant A > 1; A = |T(=Id)(0)|, cf. [6]. In this
paper, we study a joint extension of the last two problems. We consider the one-
sided operator inequality

T(fog) < ((Tf)og) - Tg+S(.fog().g() . f.geC(R)

and the two-sided operator inequality

IT(fog) = ((Tf)og)-Tgl < S(.fog().g() . f.geCR)

and determine the general form of their solutions under reasonable assumptions
on T. In the case of the last operator inequality, S may be chosen to be 0, i.e. T
actually again satisfies the chain rule operator equation. Hence these equations and
inequalities are very rigid and stable under perturbations.

In our previous papers the difference T(f o g) — ((Tf) o g) - Tg was assumed to
be a function of (x, (f o g)(x), g(x)) which is much stronger than assuming that it is
only bounded by a function of these three parameters as done in this paper.

After localizing the problem of the two-sided operator inequality, i.e. showing
that there is a function F : R® — R such that 7f (x) = F(x,f(x),f (x)),f € C/(R),
x € R, the two operator inequalities for 7 turn into functional inequalities for F.
To solve these, we have to characterize continuous functions ¢ : R — R which are
submultiplicative up to constants. We start with a result for these functions which
has some independent interest.

Assumption 1 Let ¢ : R — R be continuous with limy—, o ¢ () = co. Suppose
also that there is oy > 0 such that ¢ (—a) < O.

Theorem 1 Let ¢ : R — R satisfy Assumption 1 and suppose that there is d € R
such that for all a, B € R

P(@p) < p()p(P) +d. (1)

Then d > 0 and there are p > 0 and A > 1 such that for all o« > 0
1
(o) =a’ , —Ad? < p(—a) < min(—AaP, —Ad? +d) . 2)

(=)

exists and A = limg—00 “_ "

Moreover the limit limy— oo ¢:2‘)
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The case d = 0 was considered in Theorem 1.1 of [6]. For d # 0, in general
¢|r_, is not of power type, although it is a bounded perturbation of the power
type function —Aa”, and the estimates in (2) are the best possible, as the following
example shows forp = 1,A =2andd = ;:

Example 1 Define the continuous, piecewise affine function ¢ : R — R by
o >0
;oz a€[-1,0)

¢(a) :=
3+ 70 ac[-2,-1)

20 o € (—o0,—2)

Then ¢(ef) < ¢p(x)p(B) + d forall o, B € R, where d = ; Obviously, ¢ (¢f) =
$()p(B) fora, f = 0.

Fora, B <0, ¢p(af) = af. Clearly ¢(x) < ;a. Hence if 8 < =2, ¢(a)pp(B) >
La2B = af = ¢(af). I a. f € [-2,01, p(@)p(B) = ad(B) = af — 3. The last
inequality is easily checked for 8 € [—1,0] and 8 € [—2, —1] separately.

Fora < 0 < B, ¢(B) = B and ¢(a) > 2, hence ¢(x)p(B) > 2af. If
af € (—00,-2], p(@f) = 2B < $()P(P). If af € [~1,0), $(af) = lap <
208 + 3 < ¢p(a)p(B) + 5. I ap € [-2,~1), ¢(aB) — p(@)$(B) < 3+ Jap) —
2a,3:3+§a,3§;.

This shows that ¢(ef) < ¢(x)p(B) + ; holds for all «, 8 € R, and that the
estimate in (2) with A = 2, p = 1 cannot be improved, in general.

For the analogue of Theorem 1 for nearly supermultiplicative functions we need
a modified assumption.

Assumption 2 Let ¢ : R — R be continuous with lim,_, . ¢(—a) = —oo.
Suppose also that there is «p > 0 such that ¢ (op) > 0.

Theorem 2 Let ¢ : R — R satisfy Assumption 2 and suppose that there is d € R
such that for all a, B € R

P(ap) = p(@)p(B) —d .
Then d = 0 and there are p > 0 and 0 < B < 1 such that for all o > 0
1
$(@) =0’ max(— o, —Bo” —d) < §(~0) < —Bo".

¢ (—a)

—aP

()

Moreover the limit limy—s oo S -

exists and B = limgy—s o0
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As an immediate consequence of both theorems we get

Corollary 3 Suppose that ¢ : R — R satisfies Assumptions 1 and 2 and that there
is d € R such that for all a, p € R

lp(@pf) —¢()p(B)] < d.

Then there is p > 0 such that for alla € R

¢ () = sgna |af? .

We will use the previous results to study the rigidity and the stability of the chain
rule operator equation. To formulate our result, we need the following assumptions.

Definition An operator T : C'(R) — C(R) is called pointwise continuous provided
that for any functions f,f, € C'(R), n € N such thatf, — f and f, — f’ converge
uniformly on compact subsets of R, we have that (7f,)(x) — (7f)(x) converges
pointwise for all x € R.

Definition An operator T : C'(R) — C(R) is called non-degenerate provided
that

(a) for all open intervals I C R, all x € I and all # > 0 there are functions fi,f, €
C'(R) with i (x) = f4(x) = x, Imf; C I, Imf> C I and (Tf,)(x) > 1, (Tf>)(x) <
—t,

(b) for some xy € R, T(—Id)(x) < 0.

We then have the following rigidity result for the chain rule operator inequality.

Theorem 4 Assume that T : C'(R) — C(R) is pointwise continuous and non-
degenerate. Suppose further that there is a function S : R> — R such that the
perturbed chain operator inequality

IT(f o)) = (TN (X)) - (T ()| = S(x. (f © &) (x). g(x)) 3)

holds for all f,g € C'(R) and all x € R. Then there are p > 0 and a positive
continuous function H : R — R such that for all f € C'(R) and all x € R

1w = " senr o 7o

This implies, in particular, that we may choose S = 0, i.e. that we have equality

T(fog)x) = (IN(gW) (Te)(x) . f.geC'(R).xeR.
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The proof of Theorem 4 relies on the following localization result:

Proposition 5 Assume that T : C'(R) — C(R) is non-degenerate and pointwise
continuous. Suppose further that there is a function S : R® — R such that the
perturbed chain rule inequality

IT(f o g)(x) = (TN (TR (X = Sx, (f ° 8)(x). g(x))

holds for allf, g € C'(R) and all x € R. Then there is a function F : R — R such
that for all f € C'(R) and all x € R

(TH(x) = Fx.f(x).f'(x)) .

This means that 7f(x) depends only on x, f(x) and f’(x), i.e. the germ of f at x,
and does not depend on values or derivatives of f on values y different from x. The
two-sided chain rule operator inequality then turns into two functional inequalities
for F which we then will solve using Theorems 1 and 2. In the case of the one-sided
operator inequality

T(fo@)(x) = (TN (E))(Tg)(x) + S(x, (f 0 &) (), g(x)) .

localization is not true, in general, as the following example shows, even though it
satisfies the non-degeneracy and the pointwise continuity assumption.

Example 2 For f € C'(R), x € R with f/(x) € (—1,0), let I;, denote the interval
Iy =[x+ /()1 + f'(x)),x]. Then 0 < [I;.| < }. Let Jf(x) := ‘Iflx‘ flfle(y) dy.
Choose any non-constant function H € C(R) with 4 < H < 5. For f € C'(R),
x € R put

MDF () F)=0
e @ =2
Tf (x) :=
IO (7 1 5 () ~2 < f' () < 1
YW - <rw <0

Then T maps C!(R) into C(R) and satisfies

T(fog)() < (TNH(EW) - TP +5 : f.geC(R), xeR,

We will prove this statement in Sect. 4. Obviously, T is not localized.
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However, assuming that T is defined locally, we can determine the general form
of solutions of the one-sided chain rule operator inequality:

Theorem 6 Assume that T : C'(R) — C(R) is pointwise continuous and non-
degenerate. Suppose further that there is a function S : R®> — R such that the
perturbed chain operator inequality

T(f o g)(x) = (Tf)(g(x) - (Te)(x) + S(x. (f 0 g)(x), g(x)) “4)

holds for all f,g € C'(R) and all x € R. Assume also that there is a function
F : R® — R such that

Tf(0) = Fx.f(0).f'®) : feC'(R), xeR.

Then there are p > 0, A > 1, a positive continuous function H : R — R, and a
function K : R? x Ry — R which is continuous in the second and third variable
with

H(x)

1
—Ad? < K(x,z,—a) < min(— o, —Ac” + min[S(x, z,x), S(x, z,2)]) ,
A H(2)

K(x,z/é—ﬁ)
—Ap
A = limgsoo K0P such that for all f € C'(R) and x € R

forallx,z € R, a > 0, where the limits limg_ exist for all x, 7 € R with

ey =0

Tf(x) =
’ IO K (x. f(0).f () f'x) <0

The property of K means that for negative values of f'(x), Tf(x) is

reasonably close to —A Hg;%” |/ (x)|P, deviating from this value by at most

max[S(x,f(x),x),S(x,f(x),f(x))]. The inequality case with § = 0 has been
considered in Theorem 1.2 of [6] and the equality case that

T(f o g)(x) = (TN (&) - (TR (x) + S(x, (f 0 &)(x). g(x))

with general S has been solved in Theorem 8 of [5].
A similar result holds for the perturbed supermultiplicative operator inequality

T(f o @)(x) = (T)(g()) - (Tg)(x) — S(x. (f © )(x). g(x))
with the property of K being replaced by

1 K s Ve T
— o <K(x,y,—a) <—Ba’ , 0< lim .y, —F) =B<1
B B—>00 —pp

forallx,y e Rand o > 0.
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Of course, Theorem 4 is a consequence of Proposition 5, Theorem 6 and its
supermultiplicative analogue.

2 Proof of Theorems 1 and 2

To prove Theorem 1, we need a lemma.

Lemma 7 Under the assumptions of Theorem 1, $(1) = 1, $(0) = 0 and ¢|r_, <
0 < ¢|r.,- Moreover

lim ¢(¢) =00 , lim ¢(—a)=—00,
o—>00 o—>00

where both limits exist. The same is true under the assumptions of Theorem 2.
Proof
(i) If there would be 0 # & € R with ¢ (@) = 0, by (1)

P() < ¢>(&)¢(g) +d.acR

so that ¢ would be bounded from above, contradicting Assumption 1. Since ¢
is continuous and lim,—, 5 ¢ (o) = 00, we have that ¢ («) > O for all > 0
since otherwise there would be a zero of ¢. Hence ¢|g_, > 0.

(i) By assumption, limy—, ¢(c¢) = 00. Choose ¢, — oo with lim, o ¢ (ct,) =
oo. Then ¢(a,) < ¢p(1)@p(vn) + d implies p(1) > 1:if 0 < ¢(1) < 1,
sup,ey ¢ (@n) < d/(1 —¢(1)) would be bounded. Since ¢ is continuous, M :=
sup ¢|o,1] is finite. Choose ng € N such that for all n > no, ¢(cr,) > 2d. Then
forall > a,, n > nyg

D) < 9(U)p(@) +d < Mp(@) + plan)

(o) > 2}M¢>(ozn). Hence lim,_,  ¢(0) = oo and therefore the limit
limy— o0 ¢ (@) exists and is co.
(iii) By Assumption 1 there is ap > 0 with ¢(—ap) < 0. Forall o > 0

#(-0) < B(-00)p( ) +d.

Hence limy o ¢(;‘0) = oo implies that limy—c0 ¢ (—a¢) = —o0 and

¢(—a) < p(D)p(—a) +d
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yields ¢(1) < 1. Hence ¢(1) = 1. Again by continuity, ¢|r_, < 0, since
otherwise ¢ would have a zero in R. Since ¢ is continuous and ¢|g_, < 0 <
@R $(0) = O follows.

@iv) In the case of Theorem 2, under Assumption 2, again there is no non-zero &
with ¢ (&) = 0, since otherwise in view of

$(—a) > ¢(&)¢<—g> —d=—d

¢ would be bounded from below, contradicting lim,_, ., ¢ (—a) = —oo. This
again yields that ¢|r_, < 0 < ¢|r_,. We claim that limy o ¢ (—) = —o00:
Choose o, — oo with ¢(—«,) — —oo. There is ny € N such that for all
n > ng, |¢(—o,)| = —¢(—a,) > 2d. Also M := sup ¢|[ 1 is finite. Therefore
forall > o, n > ny

M) = ¢ (" )p(-0) = pan) +d = ;¢>(—an) ,

p(—a) < 1 ¢(—a,) proving limy—eo p(—) = —oo. Since (o) >
¢ (=1 (—a) — d, also limg_s 00 (@) = 00. O
Proof of Theorem 1

(a) Forany b > 1, by Lemma 7 there is Yy = yo(b) > 1 such that for any o, € R
with af > yy we have ¢ (o) > bfld and for all &, B € R with a8 < —y we
have ¢ (aff) < —bild. Then by (1) for ¢ > o

1 1 b—1
R COR R ICOR R ACT)
= $(@h) = (@ (B) +d .9 (@) < bp(@$(B) . o« = 0.

Also by (1) for a8 < —yo

bg(ap) = ¢(ap) + (b —Dgp(af) < ¢(ap) —d < ¢p(0)p(B) .
bp(ap) = p(@)p(B) . aBf = —vo.

Let ¢y := b, ¢ := ,¢. Then ¢; = b’ and

d1(af) <1 (@)p1(B), aB = yo
$(@f) < pr()p2(B) . af < —yo.

&)

i.e. we have submultiplicativity for large |aB| .
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(b) Define f : R — R by f(¢) := In¢i(exp(?)), t € R and put #y := to(b) :=
Inyp(b) > 0.Foralla > 0

$1(a) = exp(f(Ina)) , ¢(a) = exp(f(Ina) —Inb).

Forall 5,1 € R with t 4+ s > 19, exp(#) exp(s) > yo and hence by (5)

J(t 4 s) = Ingi(exp(r) exp(s))
< In¢1(exp(n)) + In¢i(exp(s)) = f(1) +f(s) (6)

fort + s > 1. Since limy— o0 @1 () = 00, ¢1(0) = 0 and ¢, is continuous, we
have

lim f(f) =00, lim f(f) = —o0.
—>00 —>—00
By (6), f(to) <f(to —t) + f(¢), t € R which yields for t — oo with

flo)  flo=1 _f®)
t —t Tt
that lim,_, 4 (t’) > 0. Note here that for large r > 0, f(fo—f) < 0 and Y (r:r) > 0.
Hence p := infs,, f (t’) € R is finite, using that f is continuous since ¢; is. We
claim that

= inf Fo =1

>t t t—>o0 f

im0 -

and that the limit exists. To see this, let € > 0. Choose ¢ > #, > 0 with / (:') <
p + €. For any t > 2¢, choose n € N with t € [(n + 1)c, (n + 2)c]. Then
t—nc € [c,2c]. Let M := supf/ic.2. By (6)

o O _fet (=) _nf(©) | fG—ne) _nef@) M

t t t t ~t c t
Since ”f — 1 for t — oo, we find for any € > 0
t t
pflimf()fp—i-é:inff()—}-e.
t—>o00 t =1t

Hence lim,_ o/ (:) exists and is equal to p = inf,s,, (:). Since limy 00 f(f) =

o0, it follows that p > 0.
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()

(d)

By (6), f(t) < f(0) + f(¢) for any ¢t > ty. Therefore f(0) > 0. For any ¢ € R,
choose s € R such that s > ¢y and s + # > #,. Then by (6)

f&) =fls+0)+f(=0) =f() +f@O) +f(=1) .
Hence f(f) + f(—t) > O for any r € R. Define a : R — R by f(¢) = pt + a(?),

t € R. Then by (7), a(t) > 0 for any ¢t > fy and lim,, “(r’) = 0 as well as
a(s+t) < a(s) + a(r) for s + t > ty. Note that f(t) > —f(—t) implies

1
$1(a) = exp(f(In@)) = exp(—f(—Ina)) = | .
é1(,)
We now turn to ¢|g_,. Define g : R — R by g(¢) := In|pa(—exp(?))],
t € R. Recall that ¢ = ¢, ¢ = b’ and ¢o|r_, < 0 so that ¢r(—ar) =

—exp(g(lne)) for any @« > 0. For any t,s € Rwithr + s > # = Inyy,
—exp(7) exp(s) < —yo and by (5)

$2(—exp(t) exp(s)) =< da(—exp(t))p2(exp(s)) .
|¢p2(—exp(1) exp(s))| = |¢h2(—exp(1))[$2(exp(s)) = |d2(—exp(1))| b12¢1(eXp(S)) :
This yields
gt+5)=g()+f(s)—2Inb, 1+s5s>19. (®)
We find for any ¢ € R using (8) and f(s) > —f(—s)

8(to) = g(t) +f(to —1) —2Inb = g(1) — f(t — to) —21Inb
=g(t)—pt—ty) —a(t—1ty) —21Inb.
Define ¢ := g(t)) — pto. Then
gy <C+pt+alt—t))+2Inb, teR. 9

For t > t, there is a reverse type inequality since by (8)

g(t) > g(to) + f(t —t9) —2Inb
= g(to) + p(t —ty) +a(t —ty) —21nb,
gy=C+pt+alt—t))—2Inb,r>1. (10)
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Note that for t > 2ty, t — fp > ty, a(t — tp) > 0 in (9) and (10). Since
lim,— 00 “’ = 0, (9) and (10) imply, in particular, that lim, .o ** = p and
fort > ¢y

lg() = (€ + pt + a(t — 1))| < 21nb. (1D
We know that a is submultiplicative for large arguments. We now want to show

that a satisfies a weak form of supermultiplicativity for large arguments and that
a is bounded. Let A := exp({). Then for any a > yy = exp(f) by (11)

exp(g(In(e)) = Ao exp(a(ln ;‘ ) O .
0

where ,]12 < 0, < b*. Therefore we have by definition of f and g

{ $(@) = L@ = Jorexplaline)) , @ >0 }

¢(—0) = bgp(—a) = —bexp(g(Inw)) = —Ae? exp(a(ln 7))bba . @ = yo
12)

where ), <6, <b? Leta >y, 8 > 0.By (1)

p(—af) < p(-)p(B) +d

where ¢ (—a) < 0 < ¢(B), ¢(—aB) < 0. Hence by (12)
—A(aBy exp(a(ln(joﬂ)»b?’ < p(—ap) < p(—)p(B) +d

< o expla(in(® ) | B7 explain(B)) | + d
Yo b b

which yields
b expla(in %) + In(8)] = explatin( ) + atn(gyl - |
Yo - Yo A(ap)?
This yields for any ¢t = ln()‘/’;) >0ands =1n(B) e R
o) +als) < WP expla+ )+, P .
B Ayg exp(p(t + 5))

Since forany x > 1 and € > 0

In(x + €) = Inx + In(1 + 6)flnx—i—ln(l—i—e)flnx+e,
X
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we find fort + s > fy when a(t + s) > O0and ¢ > 0

an?

a(t) +a(s) <a(t+s)+5nb+ AyE exp(p(i +5)

In particular, for t = s > éto = éto(b)

an?

2a(t) < a(2t) + 5Inb + .
Ay exp(2pr)

We know that p > 0. Assume first that p > 0. Then there is t; = #;(b) > éto(b)
such that for all t > £

2a(f) < a(2f) + 61nb . (13)

We claim that this implies a(f) < § := 61nb for all r > ;. If this would be
false, there would be B > 1 and 7 > f; such that a(f) > B§. Then by (13)

2B§ <2a(t) <a(2t) +56, 2B—1)5 < a(2i) .
Iterating this, we get
2(2B — 1)6 < 2a(2t) < a(4t) + 6, (4B —3)5 < a(4?)
and by induction

2"(B—1)§ < (2"B—2"+ 1)§ < a(2") .

- a(2"r)

é
0<(B-1)_
<( )t_ 2nt

However, lim,,—, o “(22:7’) = 0. This yields a contradiction.

We now show that p = 0 is impossible. If p = 0, instead of (13) we would
have for all ¢ > éto

2

db
2a(t) < a(2t) + 5Inb + A

The same proof as above then shows that a(r) < 5Inb+ dzZ =: g forallt > ;to.
Hence a is bounded and for ¢« — oo

¢(a) = of exp(a(lna)) = exp(a(Inw))
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would be bounded, contradicting Assumption 1. Hence p > 0 and 0 < a(f) <
61nb holds for all £ > ¢4.

Let #, := max(f,#;) and y, := exp(t2). The previous bound for a and (12)
together imply foralla > y, > 1

1 1
ba" <¢(a) = ba” exp(a(lne)) < b’a”
and forall ¢ > yoy» =: 1
1
—AD o < p(—a) = —Ad” exp(a(ln © )bl < A,
Yo

Hence for all @ > y;

b ol b —Aa?
Since b > 1 was arbitrary, we find
im ?@ 21 m P09 o
a—>o00 P a—o00 —AqP

Note here that by definition of A, A formally depends on b. However, 117 <
q&_(;;}) < b’ for all @ > y(b) implies for b — 1 and @ — oo that
limy—1 A(D) =: A exists.

We now claim that for all « > 0, ¢ () = oP. Let @ > 0. Choose 8 > 0 so large
that «ff > y1(> yo) and B > y;. Then by (5) and (14)

L@BY < 9(@h) < bp(PIP(@) < FP@) . o < pl@).

Since this holds for all b > 1, ¢ (@) > o. For the same choice of 8 > 0, again
by (5) and (14)

1 1
—Ab’(@B)’ < p(—ap) < L@ (P)d(@) = =4, Bé(e) . ¢le) < b'a”,

i.e. ¢(a) < o for b — 1. This proves that ¢ (o) = o for all & > 0.
We now show ¢ (—«) > —Aca? for all @ > 0. Let « > 0 and choose 8 > y,
such that ¢ > y;. Then by (5), (14) and part (g)

1 1
~AQBYY < ¢(-ap) <, p(-)p(B) = , $(-e)f . A" < $(~0).

Since b > 1 was arbitrary, ¢ (—«) > —Aa? forall @ > 0.



Rigidity of the Chain Rule and Nearly Submultiplicative Functions 249

Next we prove ¢ (—a) < —/iocf’ for all @ > 0. Let @ > 0 and choose § >
y1 such that ¢f > y;. We get similarly as before, noting that ¢(—a) < 0,

$(=p) <0,

1 1
@) = $(eh) = bp(~a)p (=) = bp(—a)(-AP"’) . () = — @’
and forb — 1, ¢(—a) < — ) a”, & > 0. Clearly, A > 1.
Let o« > 0 and choose 8 > 0 such that « > y,. Then by (1) and (14)

Bo0) = B(ap 1) < (ap)  +d == AP g, +d == Ao +d.

For b — 1 we get a second estimate for ¢ (—a): ¢p(—a) < —Aa? + d. |

Proof of Theorem 2 The proof of Theorem 2 for nearly supermultiplicative func-
tions is similar to the one of Theorem 1, reversing inequalities. We indicate some
changes. In particular, by Lemma 7, for any b > 1 there is yy = yo(b) > 1 such that
foralle, B € R

1
¢ep)=, . d . af=y.

b
¢(05,8)§—b_1d s O[IBS_)/O-

Then for ¢1 1= ¢, ¢ 1= b, d» = b’y

$1(@p) = p1(@)p1(B) . af >y,
$(af) = p2()p2(B) . aBf < —yo.

Let f(#) := In¢i(exp(?)), t € Rand 1o := Inyg > 0. Defining p := sup,5,, f(:),
one shows that the limit lim,_, o (tr) exists and is equal to p. Then p > 0. Define
a:R — Rby f(f) = pt + a(t). Then a(t) < 0 for all ¢+ > #; and hence ¢ («) < o
for all @ > yy. Since limy—,  f(f) = 00, p > 0 follows immediately. Also a(0) <0
and a(t) < —a(—t) forall r € R as well as a(t + s) > a(t) + a(s) fort + s > 1.
Again, let g(7) := In|¢2(—exp(r))|, t € R. Then (9) and (10) are replaced by

g > +pt+at—1ty)—2Inb, teR,
gty <t +pt+alt—1t)) +2Inb, t>1,

with ¢ 1= g(fo) — pto. Again lim,— o g(tr) = p follows. Parts (e) to (h) of the proof
of Theorem 1 are easily adapted by reversing signs, with 0 < B:=exp(¢) < 1. O
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Corollary 3 is a combination of Theorems 1 and 2. However, there is a much
simpler direct proof of Corollary 3 which we now give

Second Proof of Corollary 3 By Lemma 7, limy oo [¢(e)] = oo. Hence by

assumption forall € Rand 8 — oo

0@ _ ) <

() sl

This yields that

 p@p)
o) = lim b

where the limit exists. Therefore

L pen) $(B9)
sep® = tm T

Now ¢ (ay)¢(B8) < ¢p(afyd) + d and ¢(y)$(8) = ¢(y5) — d. Hence

s@p(B) < tim PO _ L @By

yé—oo Py —d N y,81—I>noo P (y8) = ¢(ap) .

Similarly, ¢ ()¢ (B) > ¢(af). Hence ¢ : R — R is multiplicative, ¢ ()¢ (B) =
¢(apf) forall @, B € R which implies by Lemma 13 of [3] that ¢ (o) = sgne |« |P for
a suitable p € R and all & € R. Since ¢ is continuous in 0 and limy— o ¢ (@) = o0,
we have p > 0. O

3 Further Results on Submultiplicativity

To prove the rigidity and stability results for the chain operator inequalities, i.e.
Theorems 6 and 4, we need a proposition on two nearly submultiplicative functions.

Proposition 8 Ler ¢,y : R — R be continuous functions and d, e, f, g € R with
f > 0 be such that for all o, B € R

¢(ap) < p()p(B) +d (15)

V(ap) = y(@)¢(B) +e (16)

¢la) < f(x) +¢. a7
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Suppose also that ¢ satisfies Assumption 1. Then there existp > 0,A > land C > 0
such that for all o« > 0

1

@) = , —Ad’ <¢(—a) < min(—Aoc”, —Ad? +d),
1
Y(a) =Co’ , —ACK <yY(—a) < min(—A Ca?,—ACo’ + ¢) .

Also, limg—s oo *T% = A and limy—s oo wﬁ;,‘f) = AC, where both limits exist.

—aP

Hence ¢|r_, and ¥|r_, are bounded perturbations of the power type functions
—Aa? and —ACa®.

Proof

(a) Since limy—oo ¢(x) = 00, (17) implies that limy— o ¥ () = oco. If there
would be oy # 0 with ¥ (ag) = 0, (16) would yield

V(@) < w(ao)qs(o‘fo) te=e,

i.e. ¥ would be bounded above, a contradiction. Since v is continuous, this
implies that ¥|g_, > 0. By Lemma 7, ¢(—1) < 0, and hence (16) yields

V(=) = ¥(@)p(=1) +e,

i.e. limy—oo ¥ (—o) = —o0. Therefore by the continuity of ¥, ¥|r_, < 0 and
¥(0) = 0.

(b) We claim that C := limgoo %) exists with C < vy (1). By (15) and
Theorem 1, there are p > 0 and A = limy— oo ¢i;ﬁ) > 1 such that for all
oa>0

. 1
@) = , —Ad’ <¢(—a) < m1n(—Aoc”, —Ao? +d) .

By (16), ¥ (o) < ¥ (1)¢(ax) + e = ¥ (1)a? + e. Hence

0<tim Y@ < 1im Y9 <yq).

a—oo QP T a—oo P
For any € > 0, there is g > 0 such that

v V@

24 a—oo QP
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Choose 8, — oo such that

o V@B _ L Y@
im = lim .

=% (0B, oo ar

Since ¥ (o B) < Y (o)P(Br) +e = Y(ag)B? + e,

fim V@ _ i V@B _v@) _ v
a0 af  n=00 (Bl T oy T a—soo OF

Hence C := limy— o Wofg) exists and C < ¥ (1).

(c) We claim that D := limy— wi;ﬁ‘) exists with D < |y (—1)| 4+ e. We use (16)
for @ > 0 in the form

1 1 1
YD) =y ) <y0)p( )te=y(-a) +e,
a a o
0< wi;,f‘) < |¥(=1)| + e and e > 0. Therefore

0<tim YO0 < gim YOV _
a—o00 —O a—o00 —P

For any € > 0, choose &; > 0 such that & > 1/€ and

) oy
—Olf T a0 —U '
Choose 8, — oo such that
V(—aiBn) _ V(—a) '

lim = lim
n—o0 —(a1 B,)P al>oo —aP

By (16)
V(o) = ¥(—anfn ﬂl ) < (o B( ﬂl )+ = Y(—aif) ﬁl,, e,
hence
v aB)  v(w) e Y@
U‘ll’ng" —aP :"ll’nf}o —(o1B,)P = —af +0!1P§all>n;o aP Tree.

Therefore D := limg—oo "% exists and D < |[y(—1)| + e.

—aP
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(d)

(e)

(H)

We now show that D = AC. By (16), for «, 8 — o0,

Yo) _ Ve | (=P) _

D =
a,f—00 —(O(IB)P T a—oo qf pooo _IBP

CA.

On the other hand, by (17), ¢ (@) < fy(a) + g, yielding for « > 0 and then
a— 00
_ 9 _ v

@ 8
af f ol +ocf”1§fc'

1

Also by (17), p(—a) < fY(—a) + g, i.e. withf > |

- - D
A= tim Y 5 gim VOO o D
a—o00 —qP a—o00 —qP C

Therefore D > CA > C2. = D, D = CA.
We now claim that ¥ («) = Co? for all « > 0. Let « > 0. For any € > 0, there
is a large B > 0 such that, using (16),

(C—e)(ap) = Y(af) =¥ (@)p’ +e,

(C—e) <y¥(a) + ﬂep. This yields for e — 0, 8 — oo that Co? < Y ().
Similarly, for any € > 0, there is a large 8 > 0 such that by (16)
—(D+ @By =y (—ap) < v ()$p(=p) +e.
$(—B) e
—Br Br-

This together with (d) implies for e — 0, 8 — oo that

(D + €)a” = ¢r(a)

Doa? > Yy(@)A , V(o) < ia” = Cao? .

Therefore ¥ (o) = Ca? forall @ > 0.
We now show —ACo? < {(—a) < —j‘CaP for any o > 0. Let @ > 0. For any
€ > 0, there is a large f > 0 such that

—(D+e)ap) =y (—ap) =Y (-)p(B) +e=Y(-)p’ +e,
ie.

—ACof = —Dof < Y (—a) .



254 H. Konig and V. Milman

Also, there is a large 8 > 0 such that

(C—e)ap) = ¥(aB) = Y (-)p(=p) + e,

Col <—Y(—a)A , Y(—a)< —iCa" .

Finally we claim that ¢ (—a) < —ACo” + e for any & > 0. Given any o > 0
and € > 0, there is a large 8 > 0 such that, using (16),

Vo) = Y(-aB ) < Y(ap) g e < —D-O@PY 4 +e = —(D=a’ +e
which implies for € — 0 that ¥ (—«) < —ACa” + e. |
The supermultiplicative analogue of Proposition 8 is
Proposition 9 Let ¢,y : R — R be continuous functions and d, e, f, g € R with
f > 0 be such that for all o, § € R
¢(ap) = ¢p()p(B) —d
V(eB) = y()¢(B) —e
¢la) = fY(a) —g.

Suppose also that ¢ satisfies Assumption 2. Then there existp > 0,0 < B < 1 and
C > 0 such that for alla« > 0

1
¢(a) = max(—BaP, —Ba? —d) < ¢(—a) < —Ba?
1
Y(a) = Ca? max(—BCot", —Baf —e) < Y (—a) < —BCa” .

Also, limy s o0 d)i;g) = B and limy_s o wi;[‘f) = BC, where both limits exist.
Both results together imply

Corollary 10 Ler ¢, ¥ : R — R be continuous functions and d, e, f, g > 0 be such
that forall o, f € R
lp(aB) —dp()p(B)| = d
[V (af) — v ()¢(B)] <e
lp() —fU ()] <¢g.
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Assume also that ¢ satisfies Assumptions 1 and 2. Then there existp > 0 and C > 0
such that for all « € R

¢(a) = sgnar |’ . Y(@) = Csgna |af’ = Co(a) .

Proof Just note that by Propositions 8 and 9

hence A = B = 1. Therefore we have with AC = C = limy— VD S 0 that

—aP

¢(—a) = —of, Y (—a) = —Co® holds for all @ > 0. We remark that C = } |

4 Proof of the Rigidity and the Stability of the Chain Rule

We now show that in the case of the two-sided chain rule operator inequality
T is determined locally by function and derivative evaluations. The proof of
Proposition 5 relies on the following lemma.

Lemma 11 Let T : C'(R) — C(R) be non-degenerate, pointwise continuous and
satisfy the perturbed chain rule inequality

T(fog)(x) < ((Tf)og)(x)-(Tg)(x) +S(x, (fog)(x).8(x)) : f.g€ C'(R).xeR.

Then we have for any open interval I C R:

(a) Letc € R, f € C'(R) with f|; = c. Then Tf|; = 0.
(b) Letf € C'(R) with f|; = 1d|;. Then Tf|; = 1.
(c) Assuming that

|T(fog)(x)—((T)og) (x)-Tg(x)| < S(x.fog(x).g(x)) ; f.g€C (R),xeR,

we have for any fi,f>» € CL(R) with fi|; = fo|; that TH |1 = Th|;.
Proof

(a) For the constant function ¢, c o g = ¢ for any g € C'(R), hence

Te(x) = T(cog)(x) < Te(g(x)) Tg(x) + S(x,c,g(x)) for any x € I. By
non-degeneration of T, we find g, ;, g2; € C'(R) with 8ii(x) = x, Im(g;;) C 1,
Jje{1,2},i € Nand lim;— o0 Tg1.i(x) = 00, lim;—, o0 Tg2.(x) = —00. Assuming
Tc(x) > 0, we get Tc(x) < 0 by applying Te(x) < Te(g(x)) Tg(x)+S(x, ¢, x) for
g = g».;and letting i — oo, a contradiction. Assuming Tc(x) < 0, and applying
g1.i» we find for i — oo that Tc(x) = —oo, again a contradiction. Therefore
Tc(x) =0forall x € 1.
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Now assume thatf € C'(R) satisfies f|; = c. Choose g1, g2 foralli € N as

before. Thenf o g;; = ¢,j € {1,2},i € N and hence, by what we just showed,
forx € I,0 = Te(x) < Tf (x) Tg;i(x) + S(x, ¢, x), implying Tf (x) = 0.
Assume that f € C!(R) satisfies f|; = Id|;. Let x € I and choose again
81,82, € CI(R) with gj,i(x) = X, Im(gj,i) Cclje {1, 2},[ € N with
lim; 00 Tg1,i(x) = oo and lim;0 782,i(x) = —oo. Then f o g;; = g;; for
je{l,2},ie Nand

Tgji(x) = T(f o g)(x) < Tf (x) Tg;(x)
+ S0, x,x), (1 = Tf(x))Tgji(x) < B(x,x,x) .
If Tf (x) < 1 would hold, Tg; ;(x) would be bounded from above, a contradiction
when choosing j = 1. If Tf (x) > 1 would hold, Tg;;(x) would be bounded from
below, a contradiction when choosing j = 2. Therefore 7f(x) = 1.
Now assume that the two-sided inequality holds
IT(f o )(x) — ((Tf) 0 &) (x) - Tg(x)]|
= S(-xvf ° g(-x)s g(x)) s _S(-xvf ° g(-x)s g(x))
=T(fog)x) — ((Tf) o g)(x) - Tg(x)
= S(x.fog(x).gl)) .
Let I C R be open and fi,f> € C'(R) be such that fi|; = f>|;. We claim that

Tfi|r = Tf>|r holds. Let x € I. Choose g; for all i € N with g;(x) = x, Im(g;) C [
and lim;, o 7g;(x) = oo. Then for g = g; and f = f; by the above inequalities

=S, f1(x),x) = T(fi 0 g)(x) = (Tfi)(x) - Tgi(x) = S(x.f1(x), %) .

Since lim;— oo S("T‘f;g{;”‘) = 0, we get by dividing the previous inequality by
Tg;(x) that
T i
7 = tim TU100)0)
imoo  Tgi(x)

where the limit exists. Now note that f] o g; = f> o g;. Therefore the quotient on
the right side stays the same by exchanging f; with f, and hence Tf; (x) = Tf>(x)
forallx € I. |

Proof of Proposition 5 Fix xo € R and consider f € C'(R). Let J; := (xo, 00) and

.121

= (—00, xp). Consider the tangent of f at xo, g(x) := f(x0) + (x — x0)f" (x0), x €

R. It suffices to prove that (Tf)(xo) = (Tg)(xo). Define h € C'(R) by

_lex) xen
h“”‘{fu) xeL}'
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Thenh |;,= g |, and i |;,= f |,. Hence by Lemma 11(c)

(Tg) |5,=(Th) |5, and  (Th) |,= (If) |1, -

These equalities extend by continuity to xo € J; N J,. We conclude that (7g)(xo) =
(Th)(x0) = (Tf)(xo). Therefore the value (7f)(xo) depends only on the two
parameters f(xp) and f”(xo), for any fixed xo € R. We encode this information by
letting (Tf)(x0) = Fy(f(x0).f (x0)), where Fy, : R* — R is a fixed function for
any xo € R. Finally denoting F(x,y, z) := Fy(y, z), we have that for any x € R and
feC'®)

Tf(x) = F(x.f(x).f'(x)) .

Proof of the Claim in Example 2 'We show that the operator T defined by

T @ f@)z0
e @ =2

T = ’
IO (7 4 P (0) -2 < /() < 1
WOl oleg <0

with H € C(R), 4 < H < 5 non-constant, maps C' (R) into C(RR) and satisfies

T(fog)() < (TN - THW +5 : f.geC(R), xeR,

This operator is not localized since the term containing H(Jf(x)) involves the
integral of f over some interval. Note that 7f € C(R): If x, € R are such that
f'(x,) € (—1,0) and x, — x, f'(x,) = —1 orf'(x,) — 0, then Jf(x,) — f(x) since
|I,x,| = 0. Further, 7 + 12505 = 4o fora = —2and 7 + 125a = éoz foro = —1.
Therefore T maps C'(R) into C(R). The operator T is not localized since Jf(x) is

not locally defined. Clearly we have 2 < Zg )) < 2 for all y,z € R. To prove the

claimed inequality, we distinguish several cases. For f,g € C'(R), x € R, denote

a :=f'(g(x)) and B := ¢'(x). Then af = (f 0 )’ (x).

(i) Ifa > 0and B > 0, T(f 0 g)(x) = (Tf)(g(x))(T8) ().

(i) fa <0and B <0, (fog)(x) >0and0 < T(fog)(x) = "4 ap < Jap.

Note that (Tg)(x) < J 2B < 0; indeed, if B € (—1,0), this follows directly
from the definition of Tg, if § € [-2,—1], we get 7 + 125ﬂ < 5,3, and if

1
B < —2,wefind4p < 2,3.
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Ifa <=2, (TH)(gx)) = H;I’;:fg)))%c < 4a. Therefore

4 14 32
(INE)TW = (4 () p) = b .

10 9)00 ~ (INE) T < — >2)af =~ ° af <0

If 8 < —2and @ < 0, the same argument holds with « and 8 exchanged.
If bothe, B € [-2,0),0 < aff < 4 and

(I ETW = () 2 af = _af
T 0 )00~ (INE) T < — Jaf <5.

(i) o <0< B, T(fog)x) <0, (T)(g(x) <0and0 < (Tg)(x) = "¥V B <
5
iB

(a) Assume first that @ < —1 Then (Tf)(g(x)) > 4%’;:;";;)))0(, since for o €
[-2,—1], we have 7 + 2 So > 4a. Hence
H(fogx) = H(gx))

. _ H(Fo5()
INEE T = @ p -~ e ) =47

If af < —2, the right side is just T(f o g)(x). If B € (=2, —1],

100 - (e T = 125 1 4 Dap —dap)

af .

5 7 35
7 < 5.
< 0+ 0p) =y <

Ifaf € (—1,0), T(fog)(x) < égaﬂ and
T 0 )~ (INEENTR < () g —42)of < - <5

b) Now assume that —1 < & < 0. Then (7f)(g(x)) = } HU Gy >

2 H(g(k) o

15
24

(INETIE = () Ja(\f) = L (ap.
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Ifaf < 2, T(f o g)() = 4”4V ap < 41ap and

T 0 )00~ (INENTRE = (44— ) C))ap < 0.

If-2<af <0, T(fog)x) < égaﬁ and therefore

T 0 ) ~ INEENTN0 = (g — (I <1

(iv) For B < 0 < «, the argument is essentially the same as in (iii), with & and
being exchanged. |

In the situation of Theorems 4 and 6, we have localization: There exists a function
F : R? — R such that

Tf (x) = F(x.f(x).f'(x) (18)

holds for all f € C'(R) and all x € R. In the case of Theorem 4, this is
true by Proposition 5, and in the case of Theorem 6, by assumption. Further by
Lemma 11 (b) T(Id) = 1, i.e. F(x,x,1) = 1 for all x € R. The chain rule operator
inequalities then translate into functional inequalities for the function F the structure
of which we have to determine. Whereas there is extensive knowledge on functional
equations, cf. [1], less is known about functional inequalities.

Proof of Theorem 6

(a) Foranyx,y,z € R,a,p €R,choose f,g € C'(R) with g(x) = y,f(y) = z and
g (x) = B,f'(y) = «. Using (18), the operator inequality (4) for T is equivalent
to the functional inequality for F,

F(x,z,aB) < F(v,z,)F(x,y, B) + S(x,2,y) , (19)

x,y,z,¢, 8 € R. Forx,z € R, define ¢,, ¥,, : R > R by ¢.() := F(x,x, @),
Yo (@) := F(x,z,a). Letd, :== S(x,x,x). By (19) forx =y =z

Px(@f) < Ppe(@)p(B) +dx . a. p € R. (20)

For x,z,a € R, define f,., € C'(R) by fi.o(y) := ay + (z — ax). Then
frza(x) = zand f]_ ,(x) = a. Hence (Tf;)(x) = F(x,z, ). For sequences
Zn —> zand @, = o, frz0, = frza and fy_ , — fi_, uniformly on compact
subsets of R. By the assumption of pointwise continuity of 7,

F(x, Zn, an) = (fo.,zr,,ar,)(x) g (Tf\f,z,ot)(x) = F(x, 2, O‘) .
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Therefore F is continuous in the second and third variable. In particular, in the

constant case z, = z, all ¥, and for x = z all ¢, are continuous functions.
Since for f € C'(R) with f(x) = x we have Tf(x) = F(x,x,f'(x)) by the

assumption of non-degeneration of 7, we conclude that for all x € R

sup ¢y () = sup F(x,x, ) = 00 .

a€R a€R

By the above, F(x,-, 1) and F(x,-,—1) are continuous functions. Assume
there would be y € R with F(x,y, 1) < 0. Then, since F(x,x,1) = T(d)(x) =
1 > 0, by continuity there would be also z € R with F(x,z, 1) = 0. But then
by (19)

F(x,x,0) < F(z,x,0)F(x,z,1) + S(x, x,2) = S(x, x,2)

would imply sup,cp ¢x(r) < S(x, z, 2), i.e. ¢, would be bounded from above on
R, a contradiction. Hence F(x,z,1) > 0 forall x,z € R.

By assumption, there is xop € R with T(—Id)(xy) = F(x9, —x9,—1) < O.
Since T(—Id) is continuous, if there were x; € R with T(=Id)(x;) > 0, there
would be also x, € R with F(x;, —x;, —1) = T(—Id)(x;) = 0. But then, using
again (19)

O, (@) = F(x2,x2,0) < F(—x2, 22, —)F(x2, —x2, —1) + S(x2, %2, —x2)

- S(-x27-x25 _-XZ) 5

¢, would be bounded from above on R, a contradiction. Hence F'(x, —x, —1) <
0 for all x € R. Assume now there would be xo € R with ¢, (=1) =
F(xg,x0,—1) > 0. Since F(x, —xo,—1) < 0, by continuity of F(xo,-, —1),
there would be z € R with F(xp,z,—1) = 0. Then

¢x0(a) = F(x()ax()?a) 5 F(Zax09 _C\f)F(.x(), 2, _1) + S('x()?-x()a Z) = S(-x()?-x()a Z) )

ie. ¢y, would be bounded from above, a contradiction. Hence ¢.(—1) =
F(x,x,—1) < 0 holds for all x € R.

We now claim that limy_, o0 ¢x(0) = oo for all x € R. If not, there would
be xo € R such that limy o ¢y, (o) < 00 and hence limy o0 dr(—r) = 00
since we know that sup,cp ¢x, (o) = 0o and that by continuity ¢,, is bounded
on compact subsets of R. Then by (20)

G (=) = Py (@) Py (1) + dy, -



Rigidity of the Chain Rule and Nearly Submultiplicative Functions 261

(b)

Since ¢,,(—1) < 0, this implies that lim,_, . ¢, (0t) = —oo. Thus there would
be ap > 0 with ¢y, (o) < 0. But ¢, (1) = T(Id)(xp) = 1 > 0 and by continuity
of ¢y, there would be oy > 0 with ¢, («r;) = 0. Hence by (20)

b (B) =< &y (al)¢X()(fl) +dy, =dy, ,

i.e. supgeg ¢y (B) < 00, a contradiction. This shows that limy— e $r(at) = 00
and that Assumption 1 is satisfied for all ¢,.
Hence by Theorem 1 there are p(x) > 0 and A(x) > 1 such that forall @ > 0

1
(@) = aP® , _A(x)ap(x) < ¢u(—a) < min(_A( )ap(x)’ _A(x)ap(x) +d,)
X

and A(x) = limg o0 #0¢ > 1.

Lete,, := S(x,z,x) and g, := S(x, z, 7). Putting y = x in (19), we find that

Yrz(@B) < Yieo(@)he(B) + e . peR.

Fory = zin (19), we get after exchanging « and 8,

Vez(@B) < V(@)@ (B) + grz» @, B ER.

Let fi. := F(z,x,1). Replacing z by x and putting y = z, @ = 1 in (19), we get
after renaming S by o
Fx,x,0) < F(z,x, DF(x, z,00) + S(x, x, 2)
(@) < froVne(@) + e, @ €R,

with A, := S(x,x, z). Replacing x by z and puttingy = x, B = 1 in (19), we
get with the same value f;

¢, () < froWo(@) +hyy, ¢ €R.

Note that f := f;, = F(z,x, 1) > 0. Therefore the assumptions of Proposition 8
are satisfied for ¢ = ¢, ¥ = Yoz e = e = S(x,z,x) and g = hy, =
S(x,x,7), and also for ¢ = ¢, ¥ = ¥y, e = g, = S(x,z,z) and g = h,, =
S(z.z,x). Therefore there are C(x,z) > 0 and C(x,z) > 0 such that for any
a>0

F(x,z,a) = ¥ (o) = C(x, z)ozp(x) = é‘(x, z)aP(Z) .
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Obviously this implies that p := p(x) = p(z) is independent of x and z and that
Cx,2) = Cx,2),

F(x,z,a) = C(x, 7)o .

Also by Proposition 8

o—>00 —

lim Ve a_pa) =A(x)C(x,z) = A(z)C(x,7) ,

since the assumptions are satisfied for both pairs of functions ¢, . Therefore
also A(x) = A(z) =: A > 1 is independent of x, z € R. Moreover, we have

1
—AC(x, 7)o’ < F(x,z,—a) < min(—A C(x,z)a”, —AC(x, 7)o’ + min[S(x, z, x), S(x, Z, 2)])

and limg o0 % = limyooo 70" = AC(x,2).

Inserting F(x, z, ) = C(x, z)e into (19), we find for all o, 8 > 0
Cx,2)(@B)” = C(y.2)a"C(x,y)B" + S(x.2.y) .

For «, B — oo it follows that C(x, z) < C(y,z)C(x,y) for all x,y, z € R. On the
other hand, by (19) and part (b)

AC(x,z) = lim Vea(—ap) o Va0 Yo (B)

= AC C
ap—oo0 —(af)y Ta—oo —aP  p—soo PP 0, 29C(x,y) ,

ie. C(x,z) > C(y,z)C(x,y). We conclude that for all x,y,z € R, C(x,z) =
C(.7)C(x.y).

For x = z, ¢x(@) = Yux(a) = o”, « > 0. Hence C(x,x) = land 1 =
C(x,x) = C(0,x)C(x,0) for all x € R. Let H(x) := C(0,x). Then

H(z)

C(x,z) = C(0,27)C(x,0) = HG)

The function H is continuous since H(z) = C(0,z) = F(0,z,1) is continuous
in z € R as we have seen. We find forall x,z e R, > 0

F(x.z.a) = 58 o,
e ="y

provided that f'(x) > 0.
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(d) Forx,z € Rand a > 0, define

F(x,z,—a) . H(x)

Kxz=e)="iy T H

F(x,z,—a) <O0.

By (a), F and hence also K is continuous in the second and third variable. Then
for any f € C'(R) with f(x) = zand f'(x) < 0

H(f(x))

My KES@.0).

Tf(x) = F(x.f(x).f'(x) =

K(x,z,—a) __
—aP -

By part (b), limy— o
alla > 0,x,z€e R

A exists and is independent of x, z € R and for

1 H
—Ao? < K(x,z,—a) < min(—AaP, —Ad? + HEX; min[S(x, z, x), S(x, z,2)]) .
Z

This proves Theorem 6. a
Proof of Theorem 4 'We have by assumption (3)

(TF)(g(x) Tg(x) = S(x. (f 0 8)(x).8(x)) = T(f 0 g)(x)
= (TN () Tg(x) + S(x, (f 0 ) (%), g(x)) .

Proposition 5 and Theorem 6 thus implies the result of Theorem 4 for all f € C!(R),
x € Rwith f'(x) > 0. Proposition 5, Theorem 6 and its supermultiplicative analogue
yield for f € C!(R), x € R with f’(x) < 0 that for the same functions H and K as in
Theorem 6

_ H(f(x) ,
W ="p KE0. @),
where
l<A= tim K&2=P _p_y
B—>00 —,31’

i.e. A = B = 1. Therefore —Aa” < K(x,y,—a) < }‘aP yields K(x,y, —o) = —a?
forall x,y € R, @ > 0. Therefore, if f'(x) < 0,

CH(f()

ey Q.

Tf(x) =
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or generally for all f € C!(R), x € R

H(f(x))

Hey SE @ @P

Tf (x) =
This operator clearly satisfies

T(f o)) = (TH (g (Te) (%) ,
i.e. the function S a posteriori can be chosen to be § = 0. a

Acknowledgements Hermann Konig was supported in part by Minerva. Vitali Milman was
supported in part by the Alexander von Humboldt Foundation, by Minerva, by ISF grant 826/13
and by BSF grant 0361-4561.

References

1. J. Acz€l, Lectures on Functional Equations and Their Applications (Academic Press, New York,
1966)

2. S. Alesker, S. Artstein-Avidan, D. Faifman, V. Milman, A characterization of product preserving
maps with applications to a characterization of the Fourier transform. Ill. J. Math. 54, 1115-1132
(2010)

3. S. Artstein-Avidan, H. Konig, V. Milman, The chain rule as a functional equation. J. Funct. Anal.
259, 2999-3024 (2010)

4. H. Konig, V. Milman, Characterizing the derivative and the entropy function by the Leibniz rule,
with an appendix by D. Faifman. J. Funct. Anal. 261, 1325-1344 (2011)

5. H. Konig, V. Milman, Rigidity and stability of the Leibniz and the chain rule. Proc. Steklov Inst.
280, 191-207 (2013)

6. H. Konig, V. Milman, Submultiplicative functions and operator inequalities. Stud. Math. 223,
217-231 (2014)



Royen’s Proof of the Gaussian Correlation
Inequality

Rafal Latata and Dariusz Matlak

Abstract We present in detail Thomas Royen’s proof of the Gaussian correlation
inequality which states that u(K N L) > w(K)u(L) for any centered Gaussian
measure i on R and symmetric convex sets K, L in RY.

1 Introduction

The aim of this note is to present in a self contained way the beautiful proof of the
Gaussian correlation inequality, due to Thomas Royen [7]. Although the method is
rather simple and elementary, we found the original paper not too easy to follow.
One of the reasons behind it is that in [7] the correlation inequality was established
for more general class of probability measures. Moreover, the author assumed
that the reader is familiar with properties of certain distributions and may justify
some calculations by herself/himself. We decided to reorganize a bit Royen’s proof,
restrict it only to the Gaussian case and add some missing details. We hope that this
way a wider readership may appreciate the remarkable result of Royen.
The statement of the Gaussian correlation inequality is as follows.

Theorem 1 For any closed symmetric sets K, L in R? and any centered Gaussian
measure | on RY we have

w(K N L) > u(K)u(L). )

For d = 2 the result was proved by Pitt [5]. In the case when one of the sets
K, L is a symmetric strip (which corresponds to min{n;,n,} = 1 in Theorem 2
below) inequality (1) was established independently by Khatri [3] and Sidak [9].
Hargé [2] generalized the Khatri-Sidak result to the case when one of the sets is a
symmetric ellipsoid. Some other partial results may be found in papers of Borell [1]
and Schechtman et al. [8].
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Up to our best knowledge Thomas Royen was the first to present a complete proof
of the Gaussian correlation inequality. Some other recent attempts may be found
in [4] and [6], however both papers are very long and difficult to check. The first
version of [4], placed on the arxiv before Royen’s paper, contained a fundamental
mistake (Lemma 6.3 there was wrong).

Since any symmetric closed set is a countable intersection of symmetric strips, it
is enough to show (1) in the case when

K ={xeR" Vi<, |[(x.v;)| <1#;} and

L={xeR": Vo t1zizn +m [(x,01)| < 1},

where v; are vectors in R? and ¢, nonnegative numbers. If we set n = n; + ny,
X; := (v;, G), where G is the Gaussian random vector distributed according to u,
we obtain the following equivalent form of Theorem 1.

Theorem 2 Let n = ny + ny and X be an n-dimensional centered Gaussian vector.
Then forany ty,...,t, > 0,

P(|X1| =thhe.e., |Xn| =< tn)
Z IED(l)(l| E tlv--- ) |Xn1| E tnl)]P)(|Xn1+l| E tn1+lv"' ) |Xn| E tn)

Remark 3

(i) The standard approximation argument shows that the Gaussian correlation
inequality holds for centered Gaussian measures on separable Banach spaces.
(ii)) Theorem 1 has the following functional form:

/ fedu = / Jdu / gdp
Rd Rd Rd

for any centered Gaussian measure y on R and even functions f, g: R? —
[0, 00) such that sets {f > ¢} and {g > ¢} are convex for all # > 0.

(iii) Thomas Royen established Theorem 2 for a more general class of random
vectors X such that X?> = (X?,... ,Xﬁ) has an n-variate gamma distribution
with appropriately chosen parameters (see [7] for details).

Notation By A (0, C) we denote the centered Gaussian measure with the covari-
ance matrix C. We write M, x,, for a set of n x m matrices and |A| for the determinant
of a square matrix A. For a matrix A = (a;);j<, andJ C [n] := {1,...,n} by A; we
denote the square matrix (a;); je; and by |J| the cardinality of J.
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2 Proof of Theorem 2

Without loss of generality we may and will assume that the covariance matrix C of
X is nondegenerate (i.e. positive-definite). We may write C as

Cn Clz)
C= ;
(Czl Cn
where Cj; is the n; X n; matrix. Let

Cn Tclz)
C(7) := , 0<t<l.
) (fczl Cy

Set Zi(t) := 1Xi(1)%, 1 < i < n, where X(t) ~ N(0, C(1)).
We may restate the assertion as

P(Zi(1) < s51,....Zy(1) < 50) 2 P(Z1(0) < 51,...,Z4(0) = 50),
where §5; = ;tlz Therefore it is enough to show that the function
T P(Zi(t) <s1,...,7Z,(t) <s,)is nondecreasing on [0, 1].

Let f(x, T) denote the density of the random vector Z(z) and K = [0, s1] X -+ X
[0, s,]. We have

TR sz <50 = /K Fle D) = /K § (o

where the last equation follows by Lemma 6 applied to A; = ... = A, = 0.
Therefore it is enough to show that [, aarf (x,7) = 0.

To this end we will compute the Laplace transform of aar f(x, 7). By Lemma 6,
applied to K = [0, 00)", we have forany A; ..., 4, >0,

n a a n
/ o im1 Aii flx, 1)dx = / e Li=i i (x, T)dx.
[0,00)” af BT [0’00)11

However by Lemma 4 we have

0 1 <
/ e~ Li=1*4%if(x, T)dx = Eexp | — inx,?(r) = |+ AC(x)|7V/2,
[0,00)" 2 i=1

where A = diag(Aq,...,A4,).
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Formula (2) below yields

I+ ACOI=1+ Y [(AC@) =1+ Y [C] ]
G#ICn G#ICn jel
Fix @ # J C [n]. ThenJ = J; U Jy, where J; = [n] N J, J, := J\ [n1] and

C(r)y = (CJI “Cha, ) If J; = @ orJ, = @ then C(t); = Cy, otherwise by (3)
TCJZJI C12
we get

—1/2

—1/2 —
|C(T)./| = |CJ1||CJ2| Il]]‘ - TZCJI / C./]chjzlcjz./lcjl

11
= |C11 ||C12| l—[(l - TZMJl,Jz(i))v

i=1

where wy, 5, (i), 1 < i < |Ji| denote the eigenvalues of CJ_II/ZCJIJZCJ_ZICJZJI CJ_II/2
(by (4) they belong to [0, 1]). Thus for any @ # J C [n] and 7 € [0, 1] we have

d
a() = =, |C(@)| 20,
T
Therefore

ad _ 1 _ a
g T HACOI2 = — [T+ AC@I™? 30 o |l
P#£JC[n)

1
=2|I+AC(t)|_3/2 Z aJ(T)l_[Aj'

B#£JC[n) j&J

We have thus shown that

" 0 1
/ e Xt U feydx = Y a0+ AC@[T] [ A
[0.00)" ot 2

P#JC[n) jeJ

Let h; := h3 c(r) be the density function on (0, 00)” defined by (5). By Lemmas 8
and 7 (iii) we know that

n ‘J‘
I+ AC(7) —3/2 A= o~ Li=1Aiki 9 h,.
| J

ieJ (0,00)" an
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This shows that

3 1 V!

5 f0 D) = > ,@(0) athr(x).
B#JC[n)

Finally recall that a;(t) > 0 and observe that by Lemma 7 (ii),

Il

.0 .
x,-li>nol+ o, h.(x) =0 fori¢l C [n],

thus

oMl
/ he (x)dx = / he(sy,xye)dxge > 0,
K Oxy I,

[jesel0.5]

where J¢ = [n]\ Jand y = (sy,xc) if y; = s; fori € J and y; = x; fori € JC. O

3 Auxiliary Lemmas

Lemma 4 Let X be an n dimensional centered Gaussian vector with the covariance
matrix C. Then for any Ay, ..., A, > 0 we have

E exp (— > A,-X,?) = |I, + 2AC|7V2,
i=1
where A := diag(Ay, ..., Ap).

Proof Let A be a symmetric positive-definite matrix. Then A = UDU” for some
U € O(n) and D = diag(d;, d>, ... ,d,). Hence

/ exp(—(Ax, x))dx = / exp(—(Dx, x))dx = l_[ \/;T — ”h/2|D|—1/2 — ”n/2|A|—1/2.
n Rll k=1 k

Therefore for a canonical Gaussian vector Y ~ N(0,1,) and a symmetric matrix B
such that 2B < I, we have

Bexp((8Y. V) = @m) " [ exp (— <(;1n—3) % x>) ae=27"|!

= |I,—2B|7/%.

—-1/2
1,—B
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We may represent X ~ AN(0,C) as X ~ AY with Y ~ AN(0,1,) and C = AAT.
Thus

Eexp (— ZA,X?) = Eexp(—(AX, X))
i=1

= Eexp(—(AAY,AY)) = Eexp(—(ATAAY,Y))
= |I, + 2ATAA|7V? = |1, + 2AC| 712,

where to get the last equality we used the fact that |I, + A1A;| = |1, + AxA4| for
Al 7A2 € Mnxn~ O
Lemma 5

(i) For any matrix A € Myxp,

L+Al=1+ > A/l ©)
B#£JC[n)

(ii) Suppose thatn = n; +ny and A € M,,x,, is symmetric and positive-definite with

a block representation A = (ﬁ; ﬁ;), where Aj; € Mnanj. Then
Al = Iy — Ay PAnA A AT 3)
Moreover,
0 <A} PAAR ANAL? < T, )
Proof

(1) This formula may be verified in several ways—e.g. by induction on n or by
using the Leibniz formula for the determinant.
(ii)) We have

(A“Alz): A% 0 I, A PALAL T\ (A 0
Az A 0 AY* )\ Ay ?A472 I, 0 A’

and
I, A PARAL Y| I,,I—Alll/ZAuA AnA? 0
—1/2 —1/2 - 2
A3, PAnALY I, A5 A21A“/ I,
1/2

I, — A7 A 1A A21A_1/2) .
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To show the last part of the statement notice that Al_ll/ A 12A2_21A21A1_11/ 2 =

BTB > 0, where B := Az_zl/ 2A21A1_11/ 2 Since A is positive-definite, for any

t€R,x € R" and y € R™ we have 2 (A x,x) + 2t{Az1x,y) + (Azy,y) > 0.
This implies (Ay1x,y)?> < (A11x,x)(A2y, ). Replacing x by Al_ll/zx and y by
A2—21/2y we get (Bx,y)? < |x|?|y|>. Choosing y = Bx we get (B"Bx,x) < |x|?,
ie. BB <1,.

|

Lemma 6 Let f(x, t) be the density of the random vector Z(t) defined above. Then
for any Borel set K in [0, 00)" and any Ay, ..., A, >0,

n a a n
/ o™ Xt 1 f(x, T)dx = / e Zi=Nf (x, T)dx.
X ik ot Jk

Proof The matrix C is nondegenerate, therefore matrices Cj; and Cy, are nonde-
generate and C(7) is nondegenerate for any 7 € [0, 1]. Random vector X(7) ~
N (0, C(t)) has the density |C(t)|~"/2(27) ™% exp(— ) (C(7) "'x, x)). Standard cal-
culation shows that Z(7) has the density

- —n 1 —(C(v)™ X X
feey =lc@PEm™ T 3 T eI (),
VR
where for ¢ € {—1,1}" and x € (0, 00)" we set £/x := (&;./Xi)i.

The function 7 > |C(t)|~!/? is smooth on [0, 1], in particular

d
sup |C(D)|7V2 4+ sup . |C(0)|TV? =1 M < .
7€[0,1] 7€[0,1] ot

Since C(tr) = tC(1) + (1 — v)C(0) we have aar C(r) = C(1) — C(0) and

T < (O (O~ CONCLR) e i e )
T

The continuity of the function t — C(t) gives
(C(r) Ye/x, e4/x) = ale/x, e/x) = aZ |xi|
i=1
and

{C(@)™H(C(1) — CO0)C(1) ev/x.ev/x)| < blev/x.ev/x) =b Y |xi

i=1
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for some @ > 0, b < co. Hence for x € (0, 00)"

1 " n
< g(x) = Mj-[_n/Z (1 + bz |xi|) e_“Zz:l |x,-|'
\/_x cee Xy P

0
P

sup
7€[0,1]

Since g(x) € L((0,00)") and e~ Yi=i12% < | the statement easily follows by the

Lebesgue dominated convergence theorem. O
Let fora > 0,
el
ga(x,y) :=¢" _}ZF(k—}— o) K x>0,y>0.
For w,ay,...,o, > 0and arandom vector Y = (Y1, ..., Y,) such that P(Y; > 0) =
1 we set

nl Xi
hmwmﬂy@h”.ﬁg:=E[rlugm(MJ0}, Xiyeoo s Xy > 0,

i=1

Lemma 7 Let i > 0 and Y be a random n-dimensional vector with nonnegative
coordinates. For a = (ay, ..., a,) € (0,00)" set hy 1= ha,, a1y

(i) Foranyo € (0,00)", hy > Oandf(Ooo),,h (x)dx = 1.
(ii) If e € (0,00)" and a; > 1 then limy, 04 he(x) =0, h (x) exists and

am@=mw—m
0x, i

(iii) Ifa € (1,00)" thenforanyJ C [n], § oV ‘h (x) exists and belongs to L ((0, c0)").
Moreover for Ay,..., A, >0,

n V! n
— Y i AiXi ho (x)dx = A / — 2= Aixipy (x)d
e X)dx = | | e o (X)dx.
/(O,oo)” a ) )

jes  J0ooy

Proof
(i) Obviously iy € [0, 00]. We have for any y > 0 and o > 0,

o0 1 x o0
/ ga( ,y) dx:/ go(x,y)dx = 1.
0o M 128 0
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Hence by the Fubini theorem,

/<o,oo>nh (x)dx—IEl_[/ ( )dxl =1.

(ii) It is well known that I"(x) is decreasing on (0, xo] and increasing on [x, 00),
where 1 < x9p < 2 and I'(xg) > 1/2. Therefore for k = 1,... and @ > 0,
I'(k+a)> Tk = }(k—1)!and

o +a—1

< e l—x X —x
ga(ry) = ZF(k+oz)_2( * Z(k—l)v )

=2x*""(e™ + x).

This implies that fora > 0 and 0 < a < b < 00, gu(x,y) < C(a,a,b) < oo
for x € (a,b) and y > 0. Moreover,

2 n Xi ai—1 Xi
h“(x)‘(u) H(M) (1+M)'

In particular lim,, o4+ ho(x) = 0 if @; > 1. Observe that for @ > 1, aaxga =
8a—1 — 8« Standard application of the Lebesgue dominated convergence
theorem concludes the proof of part (ii).

(iii) By (ii) we get

VI
gjha =Y DV R s e € Li((0,00)").

KCJ

Moreover limy, o+ ?,'x’j' hy(x) = 0 forj ¢ J. We finish the proof by induction
on |J| using integration by parts.
|
Let C be a positive-definite symmetric n x n matrix. Then there exists & > 0 such
that B := C— ,uI is positive-definite. Let X! := (Xl.(l) )i<n be independent Gaussian

vectors (0, .} B

k

vi=Y x"? 1<izn

=1

and

hici=hy &y ©)
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Lemma 8 ForanyAy,...,A, > 0 we have
/ " Z= My o(x) = |I + AC| 2,
(0,00)"

where A = diag(1q, ..., Ay).
Proof We have for any o, . > Oand A,y > 0

/oole_“g y dx—e}z / (“)XH dx
0o M A\’ k'F(k+a) plte

k

o0
_ y = M
= = (1 + ph) e 1#m?,

P S e

By the Fubini theorem we have

[ e e = £ [T e (B a
0oor e n

koo Ay
= I, + A2 Ee” =t v,

Therefore by Lemma 4 we have

[SE

n 1
/ e~ imidsipy (()dx = |I, + pA|72 T+ 2uAT + pA)™! 5, B
(0 OO)”

= I, + AC|">.
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A Simple Tool for Bounding the Deviation
of Random Matrices on Geometric Sets

Christopher Liaw, Abbas Mehrabian, Yaniv Plan, and Roman Vershynin

Abstract Let A be an isotropic, sub-gaussian m x n matrix. We prove that the
process Z, := ||Ax|, — «/m | x|/, has sub-gaussian increments, that is, || Z,—Z ||y, <
C||x — y||2 for any x,y € R". Using this, we show that for any bounded set T C R",
the deviation of ||Ax||; around its mean is uniformly bounded by the Gaussian
complexity of 7. We also prove a local version of this theorem, which allows
for unbounded sets. These theorems have various applications, some of which are
reviewed in this paper. In particular, we give a new result regarding model selection
in the constrained linear model.

1 Introduction

Recall that a random variable Z is sub-gaussian if its distribution is dominated by
a normal distribution. One of several equivalent ways to define this rigorously is to
require the Orlicz norm

I1Z]ly, == inf{K > 0: Ey»(|Z|/K) < 1}
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to be finite, for the Orlicz function ¥, (x) = exp(x?) — 1. Also recall that a random
vector X in R” is sub-gaussian if all of its one-dimensional marginals are sub-
gaussian random variables; this is quantified by the norm

Xlys = sup | (X.0) ],,-
fesn—1

For basic properties and examples of sub-gaussian random variables and vectors,
see e.g. [27].

In this paper we study isotropic, sub-gaussian random matrices A. This means
that we require the rows A; of A to be independent, isotropic, and sub-gaussian
random vectors:

EAA] =1, ||Ailly, < K. (1)

In Remark 1 below we show how to remove the isotropic assumption.

Suppose A is an m X n isotropic, sub-gaussian random matrix, and 7 C R”" is
a given set. We are wondering when A acts as an approximate isometry on 7, that
is, when ||Ax||» concentrates near the value (E[|Ax||3)"/? = /m||x||> uniformly over
vectors x € T.

Such a uniform deviation result must somehow depend on the “size” of the set
T. A simple way to quantify the size of T is through the Gaussian complexity

y(T) := Esup|(g,x)| whereg ~ N(0,1,). 2)

x€T
One can often find in the literature the following translation-invariant cousin of

Gaussian complexity, called the Gaussian width of T

1
w(T) :=Esup(g,x) = _E sup (g,x).
xeT 2 er-t

These two quantities are closely related. Indeed, a standard calculation shows that

1
3 [W(T) + IIyll2] < ¥(T) <2[w(T) + |lyl2] foreveryyeT. 3)

The reader is referred to [19, Sect. 2], [28, Sect. 3.5] for other basic properties of
Gaussian width. Our main result is that the deviation of ||Ax||; over T is uniformly
bounded by the Gaussian complexity of 7.

Theorem 1 (Deviation of Random Matrices on Sets) Let A be an isotropic, sub-
gaussian random matrix as in (1), and T be a bounded subset of R". Then

Esup [[Ax]> — +/mllx||2| < CK* - y(T).
x€T
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(Throughout, ¢ and C denote absolute constants that may change from line
to line). For Gaussian random matrices A, this theorem follows from a result of
Schechtman [23]. For sub-gaussian random matrices A, one can find related results
in [4, 10, 13]. Comparisons with these results can be found in Sect. 3.

The dependence of the right-hand-side of this theorem on 7T is essentially
optimal. This is not hard to see for m = 1 by a direct calculation. For general
m, optimality follows from several consequences of Theorem 1 that are known to be
sharp; see Sect. 2.5.

We do not know if the dependence on K in the theorem is optimal or if the
dependence can be improved to linear. However, none of the previous results have
shown a linear dependence on K even in partial cases.

Remark 1 (Removing Isotropic Condition) Theorem 1 and the results below may
also be restated without the assumption that A is isotropic using a simple linear
transformation. Indeed, suppose that instead of being isotropic, each row of A
satisfies EA;AT = X for some invertible covariance matrix ¥. Consider the

whitened version B; := +/X~1A;. Note that 1Billy, < ||V X1 - lAilly, =<

[|[~/Z=1||- K. Let B be the random matrix whose ith row is B;. Then

Esup |4x]l2 = v/m|| v/ Exll2| = Esup [[BvZxl> = Vil v/ Zxll|
x€T x€T
=E sup_ [[Bxl>— Vil
x€/ZT

<C|Z7 'K Y (VET).

The last line follows from Theorem 1. Note also that y(v/XT) < |V Z|y(T) =
\/ | 2|y (T), which follows from Sudakov-Fernique’s inequality. Summarizing, our
bounds can be extended to anisotropic distributions by including in them the
smallest and largest eigenvalues of the covariance matrix X'

Our proof of Theorem 1 given in Sect. 4.1 is particularly simple, and is inspired
by the approach of Schechtman [23]. He showed that for Gaussian matrices A,
the random process Z, := [Ax|> — (E|Ax|2)"/? indexed by points x € R”, has
sub-gaussian increments, that is

Z: — Zy|ly, < Cllx —y|» foreveryx,y e R". “)

Then Talagrand’s Majorizing Measure Theorem implies the desired conclusion that'
Esup,er 1Z:] < y(T).

However, it should be noted that G. Schechtman’s proof of (4) makes heavy use
of the rotation invariance property of the Gaussian distribution of A. When A is only
sub-gaussian, there is no rotation invariance to rely on, and it was unknown if one

'In this paper, we sometimes hide absolute constants in the inequalities marked <.
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can transfer G. Schechtman’s argument to this setting. This is precisely what we do
here: we show that, perhaps surprisingly, the sub-gaussian increment property (4)
holds for general sub-gaussian matrices A.

Theorem 2 (Sub-gaussian Process) Let A be an isotropic, sub-gaussian random
matrix as in (1). Then the random process

Z = ||Axll> — (E[|Ax[]5)'"* = [|Ax]l, — v/m|lxll>
has sub-gaussian increments:

Z: — Zy ||y, < CK*||x —y|, foreveryx,y e R". 5)
The proof of this theorem, given in Sect. 5, essentially consists of a couple of
non-trivial applications of Bernstein’s inequality; parts of the proof are inspired
by G. Schechtman’s argument. Applying Talagrand’s Majorizing Measure Theorem
(see Theorem 8 below), we immediately obtain Theorem 1.
We also prove a high-probability version of Theorem 1.

Theorem 3 (Deviation of Random Matrices on Sets: Tail Bounds) Under the

assumptions of Theorem 1, for any u > 0 the event

sup | |Ax[|2 — v/ml|x|l2| < CK*[w(T) + u - rad(T)]
x€T

holds with probability at least 1 — exp(—u?). Here rad(T) := sup,cy ||x|, denotes
the radius of T.

This result will be deduced in Sect.4.1 from a high-probability version of
Talagrand’s theorem.

In the light of the equivalence (3), notice that Theorem 3 implies the following
simpler but weaker bound

sup |1Ax]l2 = /mlix|l2| < CK?u-y(T) (6)
X€

if u > 1. Note that even in this simple bound, y(7) cannot be replaced with the
Gaussian width w(7'), e.g. the result would fail for a singleton 7. This explains why
the radius of T appears in Theorem 3.

Restricting the set T to the unit sphere, we obtain the following corollary.

Corollary 1 Under the assumptions of Theorem 1, for any u > 0 the event

sup ||| Ax]l2 — v/m| < CK* [w(T N S"") + u]

xeTns—1

holds with probability at least 1 — exp(—u?).
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In Theorems 1 and 3, we assumed that the set T is bounded. For unbounded sets,
we can still prove a ‘local version’ of Theorem 3. Let us state a simpler form of this
result here. In Sect. 6, we will prove a version of the following theorem with a better
probability bound.

Theorem 4 (Local Version) Let (Z,)ccrr be a random process with sub-gaussian
increments as in (5). Assume that the process is homogeneous, that is, Zy, = aZ,
forany a > 0. Let T be a star-shaped® subset of R", and let t > 1. With probability
at least 1 — exp(—t?), we have

|Z,| <t-CK*y (T N ||x|,B;) forallxeT. @)

Combining with Theorem 2, we immediately obtain the following result.

Theorem 5 (Local Version of Theorem 3) Let A be an isotropic, sub-gaussian
random matrix as in (1), and let T be a star-shaped subset of R", and let t > 1. With
probability at least 1 — exp(—t*), we have

lAx]l> — \/m||x||2} <t-CK’y (TN ||x||,B;) forallx € T. (8)

Remark 2 'We note that Theorems 4 and 5 can also apply when 7 is not a star-shaped
set, simply by considering the smallest star-shaped set that contains 7"

star(T) := U AT.

A€f0.1]

Then one only needs to replace T by star(7') in the right-hand side of Egs. (7) and (8).

Results of the type of Theorems 1, 3 and 5 have been useful in a variety of
applications. For completeness, we will review some of these applications in the
next section.

2 Applications

Random matrices have proven to be useful both for modeling data and transforming
data in a variety of fields. Thus, the theory of this paper has implications for several
applications. A number of classical theoretical discoveries as well as some new
results follow directly from our main theorems. In particular, the local version of our
theorem (Theorem 5), allows a new result in model selection under the constrained
linear model, with applications in compressed sensing. We give details below.

ZRecall that a set T is called star-shaped if t € T implies At € T for all A € [0, 1].
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2.1 Singular Values of Random Matrices

The singular values of a random matrix are an important topic of study in random
matrix theory. A small sample includes covariance estimation [26], stability in
numerical analysis [29], and quantum state tomography [8].

Corollary 1 may be specialized to bound the singular values of a sub-gaussian
matrix. Indeed, take T = $"~! and note that w(T) < /n. Then the corollary states
that, with high probability,

|lAx]l> = v/m| < CK*/n forallx € §"".

This recovers the well-known result that, with high probability, all of the singular
values of A reside in the interval [/m — CK?/n, /m + CK?\/n] (see [27]). When
nK* < m, all of the singular values concentrate around /m. In other words, a tall
random matrix is well conditioned with high probability.

2.2 Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss lemma [9] describes a simple and effective method of
dimension reduction. It shows that a (finite) set of data vectors X belonging to a very
high-dimensional space, R", can be mapped to a much lower dimensional space
while roughly preserving pairwise distances. This is useful from a computational
perspective since the storage space and the speed of computational tasks both
improve in the lower dimensional space. Further, the mapping can be done simply
by multiplying each vector by the random matrix A/ \/m.

The classic Johnson-Lindenstrauss lemma follows immediately from our results.
Indeed, take 7" = X'—X. To construct T, remove the 0 vector from 7"’ and project all
of the remaining vectors onto S"~! (by normalizing). Since T belongs to the sphere
and has fewer than |X'|? elements, it is not hard to show that y(T) < C \/ log |X|.
Then by Corollary 1, with high probability,

CKZ\/10g|X|
vmo

sup
x€T

1 [Ax]l> — 1] <
X
J Ax|l2 =

Equivalently, for all x,y € X

! CK?\/log |X
[A =2 <A +8)|x =y, 8= Viog]| |
N Jm

This is the classic Johnson-Lindenstrauss lemma. It shows that as long as m >
K*log |X|, the mapping x — Ax/./m nearly preserves pair-wise distances. In other

(I=8)lx—yll2 =
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words, X may be embedded into a space of dimension slightly larger than log | X'|
while preserving distances.

In contrast to the classic Johnson-Lindenstrauss lemma that applies only to finite
sets X, the argument above based on Corollary 1 allows X to be infinite. In this case,
the size of X is quantified using the notion of Gaussian width instead of cardinality.

To get even more precise control of the geometry of X in Johnson-Lindenstrauss
lemma, we may use the local version of our results. To this end, apply Theorem 5
combined with Remark 2 to the set T = X — X. This shows that with high
probability, for all x,y € &,

1 CK?y (star(X — X) N |lx — y|2B})
Jm Jm
One may recover the classic Johnson-Lindenstrauss lemma from the above bound
using the containment star(X — X)) C cone(X — X'). However, the above result also

applies to infinite sets, and further can benefit when X — X has different structure
at different scales, e.g., when X has clusters.

[AG=W)l2 = llx = yl2| < - €))

2.3 Gordon’s Escape Theorem

In [7], Gordon answered the following question: Let T be an arbitrary subset of
S"=1. What is the probability that a random subspace has nonempty intersection
with T? Gordon showed that this probability is small provided that the codimension
of the subspace exceeds w(T'). This result also follows from Corollary 1 for a general
model of random subspaces.

Indeed, let A be an isotropic, sub-gaussian m x n random matrix as in (1). Then
its kernel ker A is a random subspace in R" of dimension at least n — m. Corollary 1
implies that, with high probability,

kerANT =0 (10)

provided that m > CK*w(T)?. To see this, note that in this case Corollary 1 yields
that |[|Ax||2 — /m| < /m forall x € T, so ||Ax||» > O for all x € T, which in turn
is equivalent to (10).

We also note that there is an equivalent version of the above result when T is a
cone. Then, with high probability,

kerANT = {0} providedthat m > CK*y(T N S§" 12 (11)

The conical version follows from the spherical version by expanding the sphere
into a cone.
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2.4 Sections of Sets by Random Subspaces: The M* Theorem

The M* theorem [14, 15, 18] answers the following question: Let T be an arbitrary
subset of R". What is the diameter of the intersection of a random subspace with T?
We may bound the radius of this intersection (which of course bounds the diameter)
using our main results, and again for a general model of random subspaces.

Indeed, let us consider the kernel of an m x n random matrix A as in the previous
section. By Theorem 3 (see (6)), we have

sug\lleHz — mllx|l2| < CK*y(T) (12)
X€E

with high probability. On the event that the above inequality holds, we may further
restrict the supremum to ker A N 7', giving

sup  /mllx]2 < CK*y(T).
x€kerANT

The left-hand side is </m times the radius of T N ker A. Thus, with high probability,

CK*y(T)
Jm

This is a classical form of the so-called M* estimate. It is typically used for sets T
that contain the origin. In these cases, the Gaussian complexity y(T") can be replaced
by Gaussian width w(T). Indeed, (3) with y = 0 implies that these two quantities
are equivalent.

rad(kerANT) < (13)

2.5 The Size of Random Linear Images of Sets

Another question that can be addressed using our main results is how the size of a set
T in R" changes under the action of a random linear transformation A : R" — R™.
Applying (6) and the triangle inequality, we obtain

rad(AT) < /m-rad(T) + CK*y(T) (14)

with high probability. This result has been known for random projections, where
A = ,/nP and P is the orthogonal projection onto a random m-dimensional
subspace in R" drawn according to the Haar measure on the Grassmanian, see
[2, Proposition 5.7.1].

It is also known that the bound (14) is sharp (up to absolute constant factor) even
for random projections, see [2, Sect.5.7.1]. This in particular implies optimality of
the bound in our main result, Theorem 1.
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2.6 Signal Recovery from the Constrained Linear Model

The constrained linear model is the backbone of many statistical and signal
processing problems. It takes the form

y=Ax+z, xeT, (15)

where x € T C R”" is unknown, y € R™ is a vector of known observations, the
measurement matrix A € R™*" is known, and z € R™ is unknown noise which can
be either fixed or random and independent of A.

For example, in the statistical linear model, A is a matrix of explanatory variables,
and x is a coefficient vector. It is common to assume, or enforce, that only a small
percentage of the explanatory variables are significant. This is encoded by taking T
to be the set of vectors with less than s non-zero entries, for some s < n. In other
words, T encodes sparsity. In another example, y is a vector of MRI measurements
[12], in which case x is the image to be constructed. Natural images have quite a
bit of structure, which may be enforced by bounding the total variation, or requiring
sparsity in a certain dictionary, each of which gives a different constraint set 7.
There are a plethora of other applications, with various constraint sets 7', including
low-rank matrices, low-rank tensors, non-negative matrices, and structured sparsity.
In general, a goal of interest is to estimate x.

When T is a linear subspace, it is standard to estimate x via least squares
regression, and the performance of such an estimator is well known. However, when
T is non-linear, the problem can become quite complicated, both in designing a
tractable method to estimate x and also analyzing the performance. The field of
compressed sensing [5, 6] gives a comprehensive treatment of the case when T
encodes sparsity, showing that convex programming can be used to estimate x, and
that enforcing the sparse structure this way gives a substantial improvement over
least squares regression. A main idea espoused in compressed sensing is that random
matrices A give near optimal recovery guarantees.

Predating, but especially following, the works in compressed sensing, there have
also been several works which tackle the general case, giving results for arbitrary
T[1,3,11, 16,17, 20, 21, 25]. The deviation inequalities of this paper allow for a
general treatment as well. We will first show how to recover several known signal
recovery results, and then give a new result in Sect. 2.7.

Consider the constrained linear model (15). A simple and natural way to estimate
the unknown signal x is to solve the optimization problem

% := argmin ||Ax' — y|3 (16)
x'€T

We note that depending on 7, the constrained least squares problem (16) may be
computationally tractable or intractable. We do not focus on algorithmic issues here,
but just note that 7 may be replaced by a larger tractable set (e.g., convexified) to
aid computation.
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Our goal is to bound the Euclidean norm of the error
h:=Xx—x

Since % minimizes the squared error, we have [JAX — y|3 < ||Ax — y||3. Simplifying
this, we obtain

[AR|3 < 2(h,ATZ). (17)

We now proceed to control ||A]|, depending on the structure of 7.

2.6.1 Exact Recovery
In the noiseless case where z = 0, inequality (17) simplifies and we have
hekerAN (T —x). (18)

(The second constraint here follows since s =X —xandx € T.)

In many cases of interest, T — x is a cone, or is contained in a cone, which is
called the tangent cone or descent cone. Gordon-type inequality (11) then implies
that & = 0, and thus we have exact recovery X = x, provided that the number of
observations m significantly exceeds the Gaussian complexity of this cone: m >
CK*y((T —x) N S 12,

For example, if x is a sparse vector with s non-zero entries, and 7 is an
appropriately scaled £, ball, then T — x is contained in a tangent cone, D, satisfying
y(D)?> < Cslog(n/s). This implies that ¥ = x with high probability, provided
m > CK*slog(n/s).

2.6.2 Approximate Recovery

In the cases where T — x is not a cone or cannot be extended to a narrow cone
(for example, when x lies in the interior of T), we can use the M* Theorem for the
analysis of the error. Indeed, combining (18) with (13), we obtain

CK*w(T)

Jm

Here we also used that since 7 — T contains the origin, we have y(T — T) ~ w(T)
according to (3). In particular, this means that x can be estimated up to an additive
error of ¢ in the Euclidean norm provided that the number of observations satisfies
m > CK*w(T)?/g>.

For a more detailed description of the M* Theorem, Gordon’s Escape Theorem,
and their implications for the constrained linear model, see [28].

]2 <
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2.7 Model Selection for Constrained Linear Models

It is often unknown precisely what constraint set to use for the constrained linear
model, and practitioners often experiment with different constraint sets to see which
gives the best performance. This is a form of model selection. We focus on the case
when the form of the set is known, but the scaling is unknown. For example, in
compressed sensing, it is common to assume that x is compressible, i.e., that it can
be well approximated by setting most of its entries to 0. This can be enforced by
assuming that x belongs to a scaled £, ball for some p € (0, 1]. However, generally
it is not known what scaling to use for this £, ball.

Despite this need, previous theory concentrates on controlling the error for one
fixed choice of the scaling. Thus, a practitioner who tries many different scalings
cannot be sure that the error bounds will hold uniformly over all such scalings. In
this subsection, we remove this uncertainty by showing that the error in constrained
least squares can be controlled simultaneously for an infinite number of scalings of
the constraint set.

Assume x € T, but the precise scaling of 7 is unknown. Thus, x is estimated
using a scaled version of T

%) := arg min [JAx" — y||3, A> 1. (19)
X' erT

The following corollary controls the estimation error.

Corollary 2 Let T be a convex, symmetric set. Given A > 1, let X be the solution
to (19). Let hy := xp — x, let vy = hy/(1 + 1), and let 5§ = ||v;]|lo. Then with
probability at least 0.99, the following occurs. For every A > 1,

)

2 7 ) .
_ CRYTNS) | \/y(TﬂSB» <l 0)

Jm m(l+A)

The corollary is proven using Theorem 5. To our knowledge, this corollary is
new. It recovers previous results that only apply to a single, fixed A, as in [11, 20].
It is known to be nearly minimax optimal for many constraint sets of interest and
for stochastic noise term z, in which case ||z||2 would be replaced by its expected
value [21].

The rather complex bound of Eq.(20) seems necessary in order to allow
generality. To aid understanding, we specialize the result to a very simple set—
a linear subspace—for which the behaviour of constrained least squares is well
known, the scaling becomes irrelevant, and the result simplifies significantly. When
T is a d-dimensional subspace, we may bound the Gaussian complexity as y (7 N
§B,) < 8+/d. Plugging in the bound on y(T N dB%) into (20), substituting &, back
in, and massaging the equation gives

dllz|3
2

||h1||% < CK*- aslongas m> CK'd.
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If z is Gaussian noise with standard deviation o, then it’s norm concentrates around
«/ma, giving (with high probability)

d 2
A3 < CK*- ’ aslongas m > CK*d.
m

In other words, the performance of least squares is proportional to the noise
level multiplied by the dimension of the subspace, and divided by the number of
observations, m. This is well known.

In this corollary, for simplicity we assumed that 7 is convex and symmetric. Note
that this already allows constraint sets of interest, such as the £; ball. However, this
assumption can be weakened. All that is needed is for T — AT to be contained in a
scaled version of T, and to be star shaped. This also holds, albeit for more complex
scalings, for arbitrary £, balls with p > 0.

Proof (of Corollary 2) For simplicity of notation, we assume K < 10 (say), and
absorb K into other constants. The general case follows the same proof. First note
that hy € AT — T. Since T is convex and symmetric, we have AT — T C (1 + )T
and as vy = hy /(1 + A), we get

vy eT. 21
Moreover, (17) gives
(2, ATz)
Avy |3 < , eT. 22
lavalp < M0 w (22)

We will show that, with high probability, any vector v, satisfying (21) and (22) has a
small norm, thus completing the proof. We will do this by upper bounding {v;,A”z)
and lower bounding ||Av, |2 by ||va |2 minus a deviation term.

For the former goal, letw := A”z/||z||». Recall that the noise vector z is fixed (and
in case z random and independent of A, condition on z to make it fixed). Then w is
a sub-gaussian vector with independent entries whose sub-gaussian norm is upper-
bounded by a constant; see [27]. Thus, the random process Z, := (x,w) has the
sub-gaussian increments required in Theorem 4 (again, see [27]). By this theorem,
with probability > 0.995,

|Z,| < Cy(T N ||x]2B5) forallx € 7.

Let F be the ‘good’ event that the above equation holds.
To control ||Av, |2, consider the ‘good’ event G that

lAx]l2 = V/mlxll2 = Cy(T N |Ixll2B3) ~ forallx € T.

By Theorem 5, G holds with probability at least 0.995.
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Now, suppose that both G and F hold (which occurs with probability at least 0.99
by the union bound). We will show that for every A > 1, v, is controlled. The event
G gives

(v, ATz) < Cy(T N [lval2B5) - Izl
The event F gives
[Avill2 > V/mllvall2 = Cy(T N [|vx2B3).

Taking square roots of both sides of (22) and plugging in these two inequalities
gives (20). O

3 Comparison with Known Results

Several partial cases of our main results have been known. As we already mentioned,
the special case of Theorem 1 where the entries of A have standard normal
distribution follows from the main result of the paper by Schechtman [23].

Generalizing the result of [23], Klartag and Mendelson proved the following
theorem.

Theorem 6 (Theorem 4.1 in [10]) Let A be an isotropic, sub-gaussian random
matrix as in (1), and let T C S""'. Assume that w(T) > C'(K).> Then with
probability larger than 1/2,

sup |lAx]|, — ~/m| < C(K)w(T). (23)

Here C'(K) and C(K) may depend on K only.

A similar but slightly more informative statement follows from our main results.
Indeed, Corollary 1 gives the same conclusion, but with explicit dependence on
K (the sub-gaussian norms of the rows of A) as well as probability of success.
Moreover, our general results, Theorems 1 and 3, do not require the set T to lie
on the unit sphere.

Another related result was proved by S. Mendelson, A. Pajor, and N. Tomczak-
Jaegermann.

3This restriction is not explicitly mentioned in the statement of Theorem 4.1 in [10], but it is used in
the proof. Indeed, this result is derived from their Theorem 1.3, which explicitly requires that y (7
be large enough. Without such requirement, Theorem 4.1 in [10] fails e.g. when T is a singleton,
since in that case we have w(T) = 0.
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Theorem 7 (Theorem 2.3 in [13]) Let A be an isotropic, sub-gaussian random
matrix as in (1), and T be a star-shaped subset of R". Let 0 < 0 < 1. Then with
probability at least 1 — exp(—c0?m/K*) we have that all vectors x € T with

Ixll, > r* :=inf{p>0:p> CK*y (TN p-S"") /(0/m)}
satisfy

1-0) xf3 < |

2
M < (14 6y .
m

Applying our Theorem 3 to the bounded set 7 N r* - §"~! precisely implies
Theorem 7 with the same failure probability (up to the values of the absolute
constants ¢, C). Moreover, our Theorem 3 treats all x € T uniformly, whereas
Theorem 7 works only for x with large norm.

Yet another relevant result was proved by Dirksen [4, Theorem 5.5]. He showed
that the inequality

[IIAx]|3 — ml|x[3| S K*w(T)* + /mK? rad(T)w(T)
+ uy/mK* rad(T)* + u?*K* rad(T)* (24)

holds uniformly over x € T with probability at least 1 —exp(—u?). To compare with
our results, one can see that Theorem 3 implies that, with the same probability,

[1Ax]13 — mllxl5| < K*w(T)? + +/mK?||x||l2w(T)

+ u/mK? rad(T)|x||2 + uK* rad(T)w(T) + u?K* rad(T)?,

which is stronger than (24) when K = O(1) and m Z n, since then ||x||; < rad(T)
and w(T) < /mrad(T).

4 Preliminaries

4.1 Majorizing Measure Theorem, and Deduction
of Theorems 1 and 3

As we mentioned in the Introduction, Theorems 1 and 3 follow from Theorem 2 via
Talagrand’s Majorizing Measure Theorem (and its high-probability counterpart).
Let us state this theorem specializing to processes that are indexed by points in R”.
For T C R", let diam(7) := sup, ye7 [|x — ¥l
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Theorem 8 (Majorizing Measure Theorem) Consider a random process (Zy)xer
indexed by points x in a bounded set T C R". Assume that the process has sub-
gaussian increments, that is there exists M > 0 such that

Z: — Zy|ly, < M|lx—y|» foreveryx,yeT. (25)
Then

E sup |Z; — Z,| < CMEsup (g,x) ,

x,ye€T x€T

where g ~ N(0, 1,). Moreover, for any u > 0, the event

sup |Z — Z,| < CM[E sup (g, x) + u diam(T)]

x,y€T x€T

holds with probability at least 1 — exp(—u?).

The first part of this theorem can be found e.g. in [24, Theorems 2.1.1, 2.1.5].
The second part, a high-probability bound, is borrowed from [4, Theorem 3.2].

Let us show how to deduce Theorems 1 and 3. According to Theorem 2, the
random process Z, = [Ax|l, — /ml|x||, satisfies the hypothesis (25) of the
Majorizing Measure Theorem 8 with M = CK?. Fix an arbitrary y € T and use
the triangle inequality to obtain

Esup |Z| < Esup|Z, — Z,| + E|Z,|. (26)

x€T x€T

Majorizing Measure Theorem bounds the first term: E sup, 7 |Z; — Z,| < K*w(T).
(We suppress absolute constant factors in this inequality and below.) The second
term can be bounded more easily as follows: E|Z,| < [|1Z|ly, < K?|ly|l2, where we
again used Theorem 2 with x = 0. Using (3), we conclude that

Esup |Z| < K*(T) + |Iyll2) < K*y(D),
X€E

as claimed in Theorem 1.

We now prove Theorem 3. Since adding O to a set does not change its radius, we
may assume that 0 € T. Let Z, := ||Ax|, — «/m ||x]||,. Since Zy = 0, and since Z,
has sub-gaussian increments by Theorems 2, 8 gives that with probability at least
1 —exp(—u?),

sup |Z;| = sup |Z; — Zo| < K> [IE sup (g, x) + u - diam(T)]
x€T x€T x€T

< K*[Esup (g.x) + u-rad(T)]. O

x€T
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4.2 Sub-exponential Random Variables, and Bernstein’s
Inequality

Our argument will make an essential use of Bernstein’s inequality for sub-
exponential random variables. Let us briefly recall the relevant notions, which
can be found, e.g., in [27]. A random variable Z is sub-exponential if its distribution
is dominated by an exponential distribution. More formally, Z is sub-exponential if
the Orlicz norm

IZIly, := inf{K > 0: Ey1(|Z|/K) < 1}

is finite, for the Orlicz function v¥;(x) = exp(x) — 1. Every sub-gaussian random
variable is sub-exponential. Moreover, an application of Young’s inequality implies
the following relation for any two sub-gaussian random variables X and Y:

IXY Ty < 1XMya 1Y [ly, - @27

The classical Bernstein’s inequality states that a sum of independent sub-
exponential random variables is dominated by a mixture of sub-gaussian and
sub-exponential distributions.

Theorem 9 (Bernstein-Type Deviation Inequality, See e.g. [27]) Let Xi,..., Xy
be independent random variables, which satisfy EX; = 0 and || X;|ly, < L. Then

1 m
AL

i=1

2ot

> <2 [— ( , )] 1>0.
< 2exp| — cmmin I >

5 Proof of Theorem 2

Proposition 1 (Concentration of the Norm) Let X € R™ be a random vector with
independent coordinates X; that satisfy EX? = 1 and || X;||y, < K. Then

1x12 = | < cx?.
Y2

Remark 3 If EX; = 0, this proposition follows from [22, Theorem 2.1], whose
proof uses the Hanson-Wright inequality.

Proof Let us apply Bernstein’s deviation inequality (Theorem 9) for the sum of
independent random variables || X ||% —m = )" (X?—1). These random variables
have zero means and sub-exponential norms

IX? = Ty, < 21X lly, <2015, < 2K°.
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(Here we used a simple centering inequality which can be found e.g. in [27,
Remark 5.18] and the inequality (27).) Bernstein’s inequality implies that

) Pt
P {‘ X5 — m‘ > tm} <2exp [ — cmmin (K“’ KZ)] t>0. (28)
To deduce a concentration inequality for || X||, — </m from this, let us employ the
numeric bound |x> — m| > /m|x — /m| valid for all x > 0. Using this together
with (28) for 1 = s//m, we obtain
PA[IIX[l2 = v/m| > s} < P{[IX|I; —m| > s3/m}
< 2exp(—cs’/K*) fors < K*/m.
To handle large s, we proceed similarly but with a different numeric bound, namely
[x? —m| > (x — /m)?* which is valid for all x > 0. Using this together with (28) for
t = s2/m, we obtain
P{| X[l — /m| > s} < P{|IX]3 —m| > 5*}
<2exp(—cs’/K*) fors > K+/m.
Since K > 1, in both cases we bounded the probability in question by
2 exp(—cs?/K*). This completes the proof. O

Lemma 1 (Concentration of a Random Matrix on a Single Vector) Let A be an
isotropic, sub-gaussian random matrix as in (1). Then

< CK*> foreveryx e §" .
[

[14x]> = v/m

Proof The coordinates of the vector Ax € R™ are independent random variables
X; := (A;,x). The assumption that EA;AT = I implies that EX? = 1, and the
assumption that ||A;||y, < K implies that | X;||y, < K. The conclusion of the lemma
then follows from Proposition 1. O

Lemma 1 can be viewed as a partial case of the increment inequality of
Theorem 2 for x € $"~! and y = 0, namely

| Z:lly, < CK* foreveryx € §"\. 29)

Our next intermediate step is to extend this by allowing y to be an arbitrary unit
vector.

Lemma 2 (Sub-Gaussian Increments for Unit Vectors) Let A be an isotropic,
sub-gaussian random matrix as in (1). Then

H I1Ax]|» — ||Ay||2Hw < CK*|x—y|» foreveryx,ye S
2
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Proof Given s > 0, we will bound the tail probability

30
A GO

[1Ax2 = [|Ayll2| §
> Sp .

Case 1: s > 2./m. Using the triangle inequality we have |||Ax|, — [|Ay]2] <
|A(x — ¥)|l2. Denoting u := (x — y)/|lx — y||2, we find that

p <P{|Aul> > s} < P{||lAull» — v/m > 5/2} < exp(—Cs*/K").

Here the second bound holds since s > 2./m, and the last bound follows by
Lemma 1.

Case 2: s < 2./m. Multiplying both sides of the inequality defining p in (30) by
|Ax|l2 + ||Ay|l2, we can write p as

1Ax])3 — 1AyI3

= P{|Z| > s(||Ax||2 + ||Ay||2)} where Z:=
[l = yll2

In particular,

p=P{i2l > slasle) <P {1z > "]

m
A

We may bound p; using Lemma 1:

(\/CTIZV) - 23Xp<_ 4Cn;1<4) = ZeXp(_ 162221{4)‘ (D

Next, to bound py, it will be useful to write Z as

<20 (-

A(x—y),A —
= (Al =), Alx+)) = (Au,Av), where u:= Y , Vi=Xx4y.
f[lx =yl llx = yll2

Since the coordinates of Au and Av are (A;, u) and (A;, v) respectively, Z can be
represented as a sum of independent random variables:

Z= Z (Ai,u) (A, V) . (32)
=1

Note that each of these random variables (A;, u) (A;, v) has zero mean, since

E(Ai,x—y) (Anx +y) = E[ (A,x)> — (A,y)? ] = 1-1=0.
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(Here we used the assumptions that EA,AI = [ and ||x||z = ||y|]l2 = 1.) Moreover,
the assumption that ||A;[|y, < K implies that || (A;,u) ||y, < K|ul> = K and
| {Ai,v) Iy, < K]|lv[l2 < 2K. Recalling inequality (27), we see that (A;, u) (A;, v)

are sub-exponential random variables with || (A;, u) (A;, v) ||y, < CK?. Thus we can
apply Bernstein’s inequality (Theorem 9) to the sum of mean zero, sub-exponential
random variables in (32), and obtain

p=P % |Z| > s\;m} < 2exp(—cs’/K*), since s < 2K>/m.

Combining this with the bound on p, obtained in (31), we conclude that

p=p1+p2 =< 2€Xp(—cs2/K4).

This completes the proof. O

Finally, we are ready to prove the increment inequality in full generality, for all
x,y € R

Proof (of Theorem 2) Without loss of generality we may assume that || x|, = 1 and
llyll2 = 1. Consider the unit vector y := y/||y||> and apply the triangle inequality to
get

”Zx _Zy”lﬁz = ”Zx - Z}'HW + ”ZS) - Zy”lﬁz =!R| + R».
By Lemma 2, R; < CK?||x — ¥||,. Next, since y and y are collinear, we have R, =

15 = ll2 - 1Z5 ||y, Since y € $"~!, inequality (29) states that || Z;||y, < CK?, and we
conclude that R, < CK?||y — y||,. Combining the bounds on R; and R,, we obtain

1Ze = Z)ly, < CK*(Ix = 3]2 + 17 = y1l2)-

It is not difficult to check that since ||y|, > 1, we have ||x — y||> < ||x — y||> and
Iy = yll2 < |lx = y|l2. This completes the proof. O

6 Proof of Theorem 4

We will prove a slightly stronger statement. For > 0, define

E.:= sup |Z].
xe!TnBy

Set W = lim, pq7)_ ¥ ( i TN Bg) Since iT N B’ contains at least one point on
the boundary for every r < rad(7), it follows that W > \/ 2 /7. We will show that,
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with probability at least 1 — exp (—c’ I Wz), one has
2 1 n
E, <t-CK*y| TnNB,|forallre (0,00),
r

which, when combined with the assumption of homogeneity, will clearly imply the
theorem with a stronger probability.

Fix e > 0.Lete = ry < r; <... < ry be asequence of real numbers satisfying
the following conditions:

« y(irnBs) =2y (L TNBL)fori=0.1,....N~1,and

sy (ATnB) 2w

The quantities rq, ..., ry exist since the map r — y (iT N Bg) is decreasing and
continuous when 7' is star-shaped.
Applying the Majorizing Measure Theorem 8 to the set iT N B’ and noting that

Zy = 0, we obtain that
2 1 n
E.SK |y TNBy ) +u
r

with probability at least 1 —exp(—u?). Set ¢ := 10- \/:21 > 10/W and use the above
inequality for u = cry (LT N B). We get

1
E,st.sz(rTnt) (33)

holds with probability at least 1 — exp (—cztzy (iT N Bg)z). Thus for each i €
{0,1,...,N}, we have

1
E. <t-K% (r'TﬂBg) (34)

with probability at least
(1 2 .
1 —exp | =224y ( TN Bg) >1—exp (—czt24N_‘W2) .
N

By our choice of ¢ and the union bound, (34) holds for all i simultaneously with
probability at least

N
1- Z exp (—c2t24N_iW2) > 1—2-exp(—=1002W?) =: 1 — exp(—c'#W?).
i=0
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We now show that if (34) holds for all i, then (33) holds for all r € (g, 00). This
is done via an approximation argument. To this end, assume that (34) holds and let
r € (ri—1, r;) for some i € [N]. Since T is star-shaped, we have iTﬂBg C r-l,l TNBj,
SO

1 n 2 1 n
TNB | =2t-K*>( TNB

1
52;-1{2;/( Tnt).
r
Also, for rad(T) > r > ry we have
2 1 n 2 2 1 n
E <t-K( TnB)<2-K*W<2-Ky| TNB:).
N r

Let F, be the event that (33) holds for all r € (1/k, 00). We have just shown that
]P’{Fk} >1—exp (—c’tsz) forallk e NNAs F; D F, D ...and NF; =: Fo iS
the event that (33) holds for all » € (0, 00), it follows by continuity of measure that
P {F oo} >1—exp (—c’ tZWZ), thus completing the proof.

7 Further Thoughts

In the definition of Gaussian complexity y(7) = Esup,.;|(g.x) |, the absolute
value is essential to make Theorem 1 hold. In other words, the bound would fail if
we replace y(T') by the Gaussian width w(T') = E sup,y (g, x). This can be seen by
considering a set T that consists of a single point.

However, one-sided deviation inequalities do hold for Gaussian width. Thus a
one-sided version of Theorem 1 states that

Esup ([[4xll2 = Vmllall2) = CK - w(D), (35)
x€T

and the same bound holds for Esup,.; ( — [[Ax[l2 + +/m|x]|2). To prove (35),
one modifies the argument in Sect. 4.1 as follows. Fix a y € T. Since E|Ay|, <

(EllAy|2)"* = /mly|>, we have EZ, < 0, thus

EsupZ, < Esup(Z, — Z,) <Esup|Z, —Z,| < K>w(T)

x€T x€T x€T

where the last bound follows by Majorizing Measure Theorem 8. Thus in this
argument there is no need to separate the term [E|Z,| as was done before in Eq. (26).
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On Multiplier Processes Under Weak Moment
Assumptions

Shahar Mendelson

Abstract We show that if V' C R”" satisfies a certain symmetry condition that is
closely related to unconditionality, and if X is an isotropic random vector for which
I(X. )|, < L/p foreveryt e S ' andevery 1 < p < logn, then the suprema of
the corresponding empirical and multiplier processes indexed by V behave as if X
were L-subgaussian.

1 Introduction

The motivation for this work comes from various problems in Learning Theory, in
which one encounters the following family of random processes.

Let X = (x1,...,x,) be a random vector in R" (whose coordinates (x;)’_, need
not be independent) and let £ be a random variable that need not be independent
of X. Set (X;,&)Y_, to be N independent copies of (X, §), and for V. C R" the
supremum of the centred multiplier process is

1 N
e 2o (6t )= B, o)

i=1

sup
vevV

. (1)

Multiplier processes are often studied in a more general context, in which the
indexing set need not be a class of linear functionals on R”". Instead, one may
consider an arbitrary probability space (€2, i) and a class of real-valued functions
F defined on Q. If X, ..., Xy are independent, distributed according to u, then the
supremum of the multiplier process indexed by F is

. 2)

1 N
(&if (X;) — E&F (X))
VN ;

sup
feF
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Naturally, the simplest multiplier process is when § = 1 and (2) is just the
supremum of the standard empirical process.

Controlling a multiplier process is relatively straightforward when £ € L, for
some g > 2 and is independent of X. For example, one may show (see, e.g., [20],
Chap.2.9) that if (Si)f.vzl are independent copies of a mean-zero random variable
& € L, 1, and are independent of (Xi)f.vzl, then

1 N
E;g N ; (& f(X) — EEf (X)) ;

N
1
<C Esu &if(Xp)
€L, sup JN; (

here and throughout the article (g;)Y_, denote independent, symmetric {—1, 1}-
valued random variables that are independent of (X;, &)Y ,, and C is an absolute
constant.

This estimate and others of its kind show that multiplier processes are as
‘complex’ as their seemingly simpler empirical counterparts. However, the results
we are looking for are of a different nature: estimates on multiplier processes that
are based on some natural complexity parameter of the underlying class F' which
exhibits the class’ geometry.

It turns out that chaining methods lead to such estimates, and the structure of F
may be captured by a parameter that is a close relative of Talagrand’s y-functionals
(see [19] for a detailed study on generic chaining and the y functionals).

Definition 1.1 For a random variable Z and p > 1, set

(43
IZll(p) = sup ‘.
I<q<p /4

Given a class of functions F, # > 1 and sy > 0, put

Ay u(F) = inf;ulg > 220 f = 7o fll ez 3)
€

’ $250
where the infimum is taken with respect to all sequences (Fj)s>o of subsets of F,
and of cardinality |F,| < 2%. 7, f is the nearest point in F to f with respect to the
(4?2%) norm.
Let

Agyu(F) = Agyu(F) +2%/2 ;“}3 17250 Sl 2250 -
€

To put these definitions in some perspective, || Z||(,) measures the local-subgaussian
behaviour of Z, and the meaning of ‘local’ is that || ||(,) takes into account the growth
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of Z’s moments up to a fixed level p. In comparison,

1]z,

va

implying that for 2 < p < oo, ||Z||(p) < |1 Z||y,; hence, for every u > 1 and s > so,

IZly, ~ sup
q=2

Asou(F) S infsup 22 f — 7, fly,.

F 5>50

and AOM(F) =< C)/Z(Fv Wz)

Recall that the canonical gaussian process indexed by F is defined by assigning
to each f € F a centred gaussian random variables Gy, and the covariance structure
of the process is endowed by the inner product in L, (u). Let

Esup Gy = sup{Esup Gy : F' C F, F'is finite}
feF feF

and note that if the class F C L,(u) is L-subgaussian, that is, if for every f,h €
FU{0},

I1f = 2llya0 < LIS = Rl

then 1~\SO,M(F) may be bounded in terms of the process {Gy : f € F}. Indeed, by
Talagrand’s Majorizing Measures Theorem [18, 19], for every sy > O,

A‘YO,M(F) < L(E sup Gy + 2%0/2 sup ||f||L2(,L)).
feF feF

As an example, let V C R" and set F = {(v, ) : v € V} to be the class of linear
functionals endowed by V. If X is an isotropic, L-subgaussian vector, it follows that
for every r € R”,

10X 2)ly, < LIX )z, = Llltlley.

Therefore, if G = (g1,...,&,) is the standard gaussian vector in R”, £,(V) =
E sup,ey |(G v)| and d»>(V) = sup,¢y |[v] e, one has

27

lﬂ\SO,M(F) §L(E sup(G, v) + 2%/2 sup ||(X v)||L2)

vev vev

SL(L«(V) + 272dy (V).

As the following estimate from [11] shows, A can be used to control a multiplier
process in a relatively general situation.
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Theorem 1.2 For g > 2, there are constants cy, c1, ¢z, c3 and c4 that depend only
on q for which the following holds. Let § € L, (that need not be independent of
X) and set (X;, &)Y, to be independent copies of (X, &). Fix an integer sy > 0 and
w,u > co. Then, with probability at least

1 —cyw IN~(@WD7D 1604 N — 2 exp(—cou®2*),

Sup = CKWLt”g”Lq so.cau(F).

N
Z (&£ (X)) — BEf)

It follows from Theorem 1.2 that if X is an isotropic, L-subgaussian random
vector, V C R" and

e*(V))2
d>(V)

o) = (
then with probability at least
1 — cow IN~@W2D7D 169 N — 2 exp(—c3u’D(V)),

1

N Z S, v, X IEE(U,X))

i=1

sup
veEV

< Lwul[§llz, £+(V). “4)

There are other generic situations in which /N\XO,M(F ) may be controlled using the
geometry of F'; for example, when F is a class of linear functionals on R" and X is
an isotropic, unconditional, log-concave random vector [11, 13]. However, these are
rather special cases, and there is no satisfactory theory that describes /N\XO,M(F ) for
arbitrary F and u. Moreover, because the definition of Ay, ,(F) involves || ||(,) for
every p, class members must have arbitrarily high moments for A, ,(F) to even be
well defined.

In the context of classes of linear functionals on R", one expects an analogous
result to Theorem 1.2 to be true even if the functionals (X , t) do not have arbitrarily
high moments. A realistic conjecture is that if for each ¢ € §"~!

1X. )lle, < L/allX. 1)l for every2 < g <n

then a subgaussian-type estimate like (4) should still be true, because Euclidean
entropy numbers of bounded sets in R” decay very quickly once one uses more than
exp(cn) points in a cover.

In what follows we will not focus on such a general result that is likely to hold
for every V C R". Rather, we will focus our attention on situations in which linear
functionals only satisfy that

(X, 2)llz, < LV/ql(X.1)llz, for every2 < g < logn.



On Multiplier Processes Under Weak Moment Assumptions 305

The obvious example in which only ~ log n moments should suffice is for V = Bj
(or similar sets that have ~ n extreme points). Having said that, the applications
that motivated this work require that a broad spectrum of sets exhibit a subgaussian
behaviour as in (4).

Question 1.3 Let X = (xi,...,x,) be an isotropic random vector and assume that
[xill, < L/qforevery2 <g<pand1 <i<n.If§ € L, for some go > 2, how
small can p be and still ensure that

1
E su
vel\; \/N .

14

N
(&:(Xi, v) — EE(X, v))| < C(L, q0)[I§ ||,y €x(V)?

=1

We will show p ~ logn suffices for a positive answer to Question 1.3 if the norm

llzllve = sup,ey |(v z)| satisfies the following unconditionality property:

Definition 1.4 Given a vector x = (x;)’_,, let (x7)’_, be the non-increasing
rearrangement of (|x;|)’_,.

The normed space (R”,| ||) is K-unconditional with respect to the basis
{e1,...,e,} if for every x € R" and every permutation of {1,...,n}

n n
1Y xedll < K[ xegoeill.
i=1 i=1

andif y € R" and x] <y’ for 1 <i < nthen

n n
1 " xieill < K[ yieill-
i=1 i=1

Remark 1.5 This is not the standard definition of an unconditional basis, though
every unconditional basis (in the classical sense) of an infinite dimensional space
satisfies Definition 1.4 for some constant K (see, e.g., [1]).

There are many natural examples of K-unconditional spaces, most notably, all
the £, spaces. Moreover, the norm ||z|| = sup,cy Y ;—, v}z’ is 1-unconditional. In
fact, if V C R" is closed under permutations and reflections (sign-changes), then
|| - |lve is 1-unconditional.

We will show the following:

Theorem 1.6 There exists an absolute constant ¢y andfor K > 1, L > 1 and gy > 2

there exists a constant c, that depends only on K, L and qq for which the following
holds. Consider

e V C R” for which the norm | - |lve = sup,ey |(v,~)| is K-unconditional with
respect to the basis {ey, ..., ey}.
» £ e Ly, for some gy > 2.



306 S. Mendelson

e Anisotropic random vector X € R" that satisfies

max [[(X. ¢)ll(p <L forp = cilogn.

1<j<n

If (X;, &)Y, are independent copies of (X, £) then

E sup

veV

< 2§y, (V).

1 N
N > (6. v) — Eefx. v)

i=1

The proof of Theorem 1.6 is based on properties of a conditioned Bernoulli
process. Indeed, a standard symmetrization argument (see, e.g., [8, 20]) shows that
if (¢;), are independent, symmetric, {—1, 1}-valued random variables that are
independent of (X;, &)Y, then

N

IN Z ei&i(Xi. v)

i=1

N
Z E, X,, v ES(X, v))

i=1

E sup

veV

< CEsup

veEV

VN

for an absolute constant C; a similar bound hold with high probability, showing that
it suffices to study the supremum of the Bernoulli process

= (%)

sup
veEV

L
JN ;&&(Xi, v)

conditioned on (X;, &)Y_,.

Put x;(j) = (Xl,ej) and set Z; = = N2 Zl 1 €i&ixi(j), which is a sum of iid
random variables. Therefore, 1fZ (Z1,...,Z,) then

(*x) = sup |(Z v)\ .

veV

The proof of Theorem 1.6 follows by showing that for a well-chosen constant C =
C(L, g) the event

{ZJ?" < CEg; for every 1 <j < n}

is of high probability, and if the norm || - [[ye = sup,ey |-, v)| is K-unconditional
then

sup |(Z, v)| < Ci(K, L, q)]Esup|(G v)].

vevV
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Before presenting the proof of Theorem 1.6, let us turn to one of its outcomes—
estimates on the random Gelfand widths of a convex body. We will present another
application, motivated by a question in the rapidly developing area of Spare
Recovery in Sect. 3.

Let V C R” be a convex, centrally symmetric set. A well known question
in Asymptotic Geometric Analysis has to do with the diameter of a random m-
codimensional section of V (see, e.g., [2, 14—16]). In the past, the focus was on
obtaining such estimates for subspaces selected uniformly according to the Haar
measure, or alternatively, according to the measure endowed by the kernel of an mxn
gaussian matrix (see, e.g. [17]). More recently, there has been a growing interest in
other notions of randomness, in particular randomness generated by kernels of other
random matrix ensembles. For example, the following was established in [12]:

Theorem 1.7 Let Xi,...,X,, be distributed according to an isotropic, L-
subgaussian random vector on R", set T = Y1, (X;, )e; and put

r(V,y) = inf{r > 0 : £«(V N rB3) < yry/m}.
Then, with probability at least 1 — 2 exp(—c(L)m)

diam(ker(I') N V) < rg(V, ca2(L)),

for constants ¢y and c, that depends only on L.

A version of Theorem 1.7 was obtained under a much weaker assumption: the
random vector need not be L-subgaussian; rather, it suffices that it satisfies a weak
small-ball condition.

Definition 1.8 The isotropic random vector X satisfies a small-ball condition with
constants k > 0and 0 < ¢ < 1l if forevery ¢t € sl

Pr(|(X. 1)l = ) = &.

The analog of gaussian parameter ¢ for a general random vector X turns out to be

m

rx(V,y) = inf{r >0:E sup \\/Im Z(Xi’ vH < )/r\/m}.

3
vEVNrB; i=1

Clearly, if X is L-subgaussian then rx(V,y) < rg(V,cLy) for a suitable absolute
constant c.

Theorem 1.9 ([9, 10]) Let X be an isotropic random vector that satisfies the small-
ball condition with constants k and €. If X1, . . .X,, are independent copies of X and
r=>rnr, (X,-, -)e,-, then with probability at least 1 — 2 exp(—co(e)m)

diam(ker(I') N V) < rX(V, ci(k, 8))
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Therefore, if the norms sup,eyn,p; (v, ) are K-unconditional for every r > 0,

and if the growth of the moments of the coordinate linear functionals (X, ei) is
‘L-subgaussian’ up to the level p ~ logn, then the small-ball condition depends
only on L and rx(V,c1(L)) < rg(V,c2(L,K)). Hence, with probability at least
1 = 2exp(—co(Lym),

diam(ker(I') N V) < rg (V, (L, K)),

even when the choice of a subspace is made according to an ensemble that could be
very far from a subgaussian one.

We end this introduction with a word about notation. Throughout, absolute
constants are denoted by c,c;..., etc. Their value may change from line to line
or even within the same line. When a constant depends on a parameter « it will be
denoted by c(x). A < B means that A < ¢B for an absolute constant ¢, and the
analogous two-sided inequality is denoted by A ~ B. In a similar fashion, A <, B
implies that A < c¢(«)B, etc.

2 Proof of Theorem 1.6

There are two substantial difficulties in the proof of Theorem 1.6. First, Z;, ..., Z,
are not independent random variables, not only because of the Bernoulli random
variables (8;‘){»\’:1 that appear in all the Z;’s, but also because the coordinates of X =
(x1, ..., x,) need not be independent. Second, while there is some flexibility in the
moment assumptions on the coordinates of X, there is no flexibility in the moment
assumption on £, which is only ‘slightly better’ than square-integrable.

As a starting point, let us address the fact that the coordinates of Z need not be
independent.

Lemma 2.1 There exist absolute constants c¢i and c; for which the following holds.
Let B > 1 and set p = 2 log(en). If (W))i=, are random variables and satisfy that

|Will(p) < L, then for every t > e, with probability at least 1 — c1t2F,

W < catLy/Blog(en/j) for every 1 <j<n.

Proof Letay,...,a; € R and by the convexity of t — #4,
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Thus, given (a;)7_,, and taking the maximum over subsets of {1,...,n} of
cardinality k,

1 2 1
max (; 2a)’ fﬁ:ﬁmza <kZ

JE€J1 j=1

When applied to a; = W, it follows that point-wise,
1 1 &
2\4 2
(2 W) = D wr )
j=1 i=1

Since ||W;l|(p) < Litis evident that Eszq < L*(2q)? for 2q < p. Hence, taking the
expectation in (5),

- 1/q
(B( X w))) "= ()" = crql?
j=1

for ¢ = pBlog(en/k) (which does satisfy 2g < p). Therefore, by Chebyshev’s
inequality, for ¢ > 1,

Pr(lz(W*)z>(et)zch2 )< Lo (K . (6)
kj<k 7T = - ~\en 2B

Using (6) for k = 2/ and applying the union bound, it is evident that for ¢ > e, with
probability at least 1 — 26728 3" (2//n)* > 1 — ¢t forevery 1 <k <n,

WEY = SO0 5 LB log(en k)

J=<k

Recall that go > 2 and set n = (go — 2)/4. Let u > 2 and consider the event
={& < u||§||LqO(eN/i)l/‘1" for every 1 <i < N}.
A standard binomial estimate combined with Chebyshev’s inequality for |£]|%° shows

that A, is a nontrivial event. Indeed,

uiao’

Pr(&" = ull§lle,, (eN/i)''™) < (N)P (18] = ulgll,, (eN/i)'/*) <

and by the union bound for 1 <i <n, Pr(A,) < 2/u.
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The random variables we shall use in Lemma 2.1 are
W/j = Z] J‘L-Au ’
foru>2and1 <j<n.
The following lemma is the crucial step in the proof of Theorem 1.6.

Lemma 2.2 There exists an absolute constant c for which the following holds. Let
X be a random variable that satisfies | X| () < L for some p > 2 and setXi, ..., Xy
to be independent copies if X. If

N

1
W= ‘ IN Z ei&iXi

i=1

1a,.

then |W||(p) < cuL|§]|,,-

The proof of Lemma 2.2 requires two preliminary estimates on the ‘gaussian’
behaviour of the monotone rearrangement of N independent copies of a random
variable.

Lemma 2.3 There exists an absolute constant c¢ for which the following holds.
Assume that |X | @p) < L. If X1, ..., Xn are independent copies of X, then for every
I1<k<Nand2 <q=<p,

1" 1, < eL(v/klog(eN/K) + /a).

i<k

Proof The proof follows from a comparison argument, showing that up to the p-th
moment, the ‘worst case’ is when X is a gaussian variable.

Let Vi, .. .., V; be independent, nonnegative random variables and set V7, .. .., V,’(
to be independent and nonnegative as well. Observe that if [|V;||,, < L[|V]]|, for
everyl <g<pand1 <i <N, then

k k
1> Ville, < LI Vi, - @
i=1 i=1

Indeed, consider all the integer-valued vectors @ = (a1, ..., ), where o; > 0 and
Zle o; = p. There are constants c; for which

= o o

k k k k
1> Vil =E(D_ V)’ =EY e[ [V =D e[ BV,
i=1 1 i i=l i=1
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and an identical type of estimate holds for (V}). Equation (7) follows if
k k
[[EV <2 [TEW)™,
i=1

and the latter may be verified because ||V;||;, < L||V]|1, forevery 1 < g < p.
LetG = (g,-)f.‘=l be a vector whose coordinates are independent standard gaussian
random variables. If V; = X? and V! = ¢*L?g?, then by (7), forevery 1 < g < p,

k k
1/q
I Y X2, = 21 g, = 17 (BIGIE)
i=1 i=1 ?
It is standard to verify that

E|GI{ < (Vk+ Vo)™,
and therefore,
k
1> X2z, < L2 max{k. q}.
i=1
By a binomial estimate,

Pr(Y 0 =7) = (1,\:)” (K =7)

i<k i<k

N eN\*
< (§)r s, < () o etk gy

i<k

and if ¢ > klog(eN/k) and t = eul ,/q for u > 1 then

Pr(( z:(X;“)Z)l/2 > euL\/q) <u . (8)

i<k

Hence, setting g = klog(eN/k), tail integration implies that

1O (XHH 2, S Ly/klog(eN/k),

i<k
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and if ¢ > klog(eN/k), one has

1O XN, < Lia.

i<k
as claimed. |

The second preliminary result we require also follows from a straightforward
binomial estimate:

Lemma 2.4 Assume that | X|| () < LandletX;, ..., Xy be independent copies of X.
Considers > 1,1 < g <pand1 < k < N that satisfies that klog(eN/k) > q. Then

”(Z(X?)S)I/JHL(, < ¢(s)LN"*,

i>k
for a constant c(s) that depends only on s.

Proof Clearly, foreveryl <i <Nand2 <r <p,

N\ . N (IXI5 N\ (eN L2\
Pr(Xf‘zt)§<.)Pr‘(th)§(.)(” t”L’) S(E. : tr ) :
I I r I r

Hence, if t = L/r - eu for u > 4 and r = 3log(eN/i), then
Pr (Xl* > u-eLy/3 log(eN/i)) < y~3ilogleN/D) 9

Applying the union bound for every i > k, it follows that with probability at least
1— (u/z)—Sklog(eN/k)’

X* < u-eLv/3log(eN/i), for every k <i <N. (10)
On that event

() = clourn',

i>k

and since klog(eN/k) > g, tail integration shows that

”(Z(X?)S)I/S”Lq < ¢1(s)LN'/*.

i>k
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Proof of Lemma 2.2 Recall that go = 2 + 47, that £ € L,, and that

W= 1a,.

L
JN ; gi€iX;

Note that for every (a;)_, € RY and any integer 0 < k < N,

N
1Y siaill, sy a + Ja( Y @) (11)
i=1

i<k i>k

where the two extreme cases of k = 0 and k = N mean that one of the terms in (11)
is 0.

Set r = 1 + nand put 6 = 1/go. Since (¢;))_, are independent of (X;, §)_, and
using the definition of the event .4,

N¢1/2EW£1 =Nq/2E(1AuEEWq) < CquA,, (( Z gg.i*X;k)CI_'_qq/Z( Z(gi*)z(xf)z)CIﬂ)

i<k i>k

<ctut i, - Bx (D00 X) + g2 (0 x))7).

i<k ik
By the Cauchy-Schwarz inequality,
(- n’xr) < (- w/n®) - (@)™,
i<k i<k i<k
and

Z(N/i)ze — Z(N/l-)l/l+2n < 11/ (20 20/ (142 < ¢y
" n

i<k i<k

Therefore,

E(Y W/i)'XF)! <~ PNPE(Y (D)7 = ().

i<k i<k

Also, by Holder’s inequality for r = 1 + 5 and its conjugate index r/,

(Z(N/i)zg(Xf)z)q/z < (Z(N/i)zer)q/h ) (Z(Xi*)zr')q/zr/

i>k i>k i>k

and

SN/ = Yo/ < Sy,

i>k i>k n
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Hence,

E(Z(N/Z)ZG(XL*)Z)‘I/Z < n—q/Zqu/ZrE(Z(Xi*)Zr')‘l/z”/ — (**)

i>k i>k

Let k € {1,...,N} be the smallest that satisfies klog(eN/k) > ¢ (and without loss
of generality we will assume that such a k exists; if it does not, the modifications to
the proof are straightforward and are omitted).

Applying Lemma 2.3 for that choice of k,

(%) < I 2NY? . L9 (\Jklog(eN/k) + /q)7 < cIn~ 12 LINY? 492,

Turning to (¥*), set s = 2r’ ~ max{n~', 2} and one has to control

B( Y0y

i>k
for the choice of k as above. By Lemma 2.4,

E(Y (X)) < cts)LINT* = (LN,

i>k
Therefore,
(k%) < c1(n)LINY? . N> = 4(n)LIN/?.
Combining the two estimates,
NI 2EW4 < Nq/ZM”E”LqO _Cq(,])quq/Z’

implying that W,/ /g < c(muL|§]|L,,- u

Proof of Theorem 1.6 By Lemma 2.2, for every 1 <j < n, [|W|[(,) < c(nL|&,,>
and thus, by Lemma 2.1, with probability at least 1 — ¢; 2,

W < cOILIIE |, v/Blog(en/j) for every 1 <j<n.

Moreover, Pr(A,) > 1—2/uf; therefore, with probability at least 1 —c;f —24~%,
forevery 1 <j <n,

Z' < c(uL||r,, /B log(eN/j).

Hence, on that event and because the norm sup,¢y, |(v )| is K unconditional,

sup (Z. v)| < Ke(n) v/ BtuL ||, sup (Zo, v},

veV
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for a fixed vector Z; whose coordinates are (\/log(en/j))j’.;l, Observe that
|(Zo, ej)l < Eg7, and thus

n
sug |(ZO, v)| < Ksup| Z viEgr|.
vE

veV i=1
Therefore, by Jensen’s inequality, with probability at least 1 — r=2# — 2y,
sup |(Z, )| < c(n, K)v/BruL £z, Esup (G, v)|.
veV veV

And, fixing 8 and integrating the tails,

Esup |(Z, v)| < e(K. 0, D|§ ]z, (V).

veV

as claimed. |

3 Applications in Sparse Recovery

Spare recovery is a central topic in modern Statistics and Signal Processing, though
our outline of the sparse recovery problem is far from its most general form. Because
a detailed description of the subtleties of sparse recovery would be unreasonably
lengthy, some statements may appear a little vague; for more information on the
topic we refer the reader to the books [3-5].

The question in sparse recovery is to identify, or at least approximate, an
unknown vector vy € R”, and to do so using relatively few linear measurements.
The measurements one is given are ‘noisy’, of the form

Y; = (vo. X;) — & forl <i <N;

Xi,...,Xy are independent copies of a random, isotropic vector X € R”" and
&1, ..., &y are independent copies of a random variable £ that belongs to L, for some
q>2.

The reason for the name “sparse recovery” is the underlying assumption that v
is sparse: it is supported on at most s coordinates, though the identity of the support
itself is not known. Thus, one would like to use the given random data (X;, Y,-)f.\’=l
and select ¥ in a wise way, leading to a high probability estimate on the error rate
[0 — volley as a function of the number of measurements N and of the ‘degree of
sparsity’ s.
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In the simplest recovery problem, £ = 0 and the data is noise-free. Alternatively,
one may assume that the £;’s are independent of X1, ..., Xy, or, in a more general
formulation, very little is assumed on the &;’s.

The standard method of producing 0 in a noise-free problem and when vy is
assumed to be sparse is the basis pursuit algorithm. The algorithm produces © which
is the point in R” with the smallest 6'1‘ norm that satisfies (Xi, vo) = (Xi, v) for every
1 <i<N.

It is well known [12] that if X is isotropic and L-subgaussian, vy is supported on
at most s coordinates, and one is given

en
N = c(L)slog s) (12)
random measurements ((X,-, vo))f.\’:l, then with high probability, the basis pursuit
algorithm has a unique solution, and that solution is vy.
Recently, it has been observed in [6] that the subgaussian assumption can be

relaxed: the same number of measurements as in (12) suffices for vy to be the unique
solution of Basis Pursuit if

lnﬁllafxn ||(X ej)||(1,) <L for p ~ logn.

Moreover, the estimate of p ~ logn happens to be almost optimal: there is an
example of an isotropic vector X with iid coordinates for which

max [|[(X, ¢)llp) < L for p ~ (logn)/(loglogn) (13)

lsj=

but still, with probability 1/2, Basis Pursuit does not recover even a 1-sparse vector
when given the same number of random measurements as in (12).

Since ‘real world’ data is not noise-free, some effort has been invested in
producing analogs of the basis pursuit algorithm in a ‘noisy’ setup. The most well
known among these procedures is the LASSO (see, e.g. the books [3, 5] for more
details) in which ¥ is selected to be the minimizer in R" of the functional

1 N
v N;((v,x,-)— Y2 + Al (14)

for a well-chosen of A.

Following the introduction of the LASSO, there have been many variations on
the same theme—by changing the penalty || ||z and replacing it with other norms.
Until very recently, the behaviour of most of these procedures has been studied
under rather strong assumptions on X and §—usually, that X and ¢ are independent
and gaussian, or at best, subgaussian.
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One may show that Theorem 1.6 can be used to extend the estimates on |5 —vol|¢
beyond the gaussian case thanks to two significant facts:

* The norms used in the LASSO and in many of its modifications happen to be
well behaved under permutations and sign changes: for example, among these
norms are weighted £ norms and mixtures of the £ and the £ norms.

* Asnotedin [7], if ¥ is a norm, By is its unit ball and ¥ is the minimizer in R" of
the functional

|
v ;((U,X,-) —Y)? + A¥(v), (15)

then the key to controlling || — v||¢; is the behaviour of

N
sup \/IN ;gi(Xi,v)—IEg(X, v) , (16)

71
vEByNrB;

which is precisely the type of question that Theorem 1.6 deals with.

It follows from Theorem 1.6 that if § € L, for some ¢ > 2, and linear
forms have ~ logn subgaussian moments, then the expectation of (16) is, up to a
multiplicative constant, the same as if £ and X were independent and gaussian. Thus,
under those conditions, one can expect the ‘gaussian’ error estimate in procedures
like (15). Moreover, because of (13), the condition that linear forms exhibit a
subgaussian growth of moments up to p ~ logn is necessary, making the outcome
of Theorem 1.6 optimal in this context.

The following is a simplified version of an application of Theorem 1.6. We refer
the reader to [7] for its general formulation, as well as for other examples of a similar
nature.

Let X be an isotropic measure on R” that satisfies max;<j<, [|(X. ¢;)ll(») < L for
p < cologn. Set § € L, for g > 2 that is mean-zero and independent of X and put
Y = (X, v)— &.

Given an independent sample (X;, ;)Y selected according to (X, Y), let 0 be the
minimizer of the functional (14).

Theorem 3.1 Assume that vy is supported on at most s coordinates and let 0 < § <
LIfA = ci(L, 9L, \/log(en)/N, then with probability at least 1 — 8, for every
l=p=2

log(ed)

19 = voll, < ea(Ls 5)||§||qul/”\/ N

The proof of Theorem 3.1 follows by combining Theorem 3.2 from [7] with
Theorem 1.6.
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Characterizing the Radial Sum for Star Bodies

Vitali Milman and Liran Rotem

Abstract In this paper we prove two theorems characterizing the radial sum of
star bodies. By doing so we demonstrate an interesting phenomenon: essentially the
same conditions, on two different spaces, can uniquely characterize very different
operations. In our first theorem we characterize the radial sum by its induced
homothety, and our list of assumptions is identical to the assumptions of the
corresponding theorem which characterizes the Minkowski sum for convex bodies.
In our second theorem give a different characterization from a short list of natural
properties, without assuming the homothety has any specific form. For this theorem
one has to add an assumption to the corresponding theorem for convex bodies, as
we demonstrate by a simple example.

1 Introduction

The main goal of this paper is to characterize addition operations on star-shaped
sets. Before doing so, however, we will quickly discuss addition of convex sets. To
fix some notation, let Kfj denote the class of closed convex sets containing the origin.

Definition 1 An addition operation on convex sets is a map @ : Kfj x K — K
such that:

1. @ is associative: Forevery A,B,C € Kjonehas A®B) S C=Ad (B ().
2. @ has an identity element: There exists K € Kj suchthat AG K =KPA=A
for all A € K.

We will now describe two natural families of addition operations. Remember that
for A € K the support function of A is the convex function /iy : R" — [0, 00]
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320 V. Milman and L. Rotem

defined by ha(y) = sup,e4 (x,y). Fixing a parameter p € [1, 00), the p-addition
A +, B of A and B is implicitly defined by the relation

Hyy,50) = H3 () + H(»)

for all y € R". For p = 1, the 1-addition A +; B is just the closure of the classical
Minkowski addition,

A+B={a+b:acA, beB}

(the closure is superfluous if A or B are compact, but may be necessary otherwise).
For p > 1, p-additions were originally defined by Firey [2], and were first
systematically studied by Lutwak [5, 6]. For p = oo we set A+, B = conv (A U B),
where conv denotes the convex hull. Notice that ss4 . g(y) = max {hs(y), hp(y)}.
It is easy to check that all p-additions are addition operations in the sense of
Definition 1, with {0} as an identity element.

Using p-additions, we may construct a second family of addition operations. For
A € K, the polar body A° is defined by

A® ={y eR": ha(y) = 1}.

For p € [1, 00] we may now define the p-polar addition by A +_, B = (A° +, B°)°.
All p-polar additions are addition operations in the sense of Definition 1, with R" as
an identity element. Notice that A +_o B =A N B.

Given an addition operation @, we define the induced homothety © : N x Kj —
K by

m@AZéGBAEB”-GBA.

m times

For p € [—00, —1] U [1, oc], The induced homothety of +, is easily seen to be
m-, A= m’A = {ml/"a lae A} .

This formula is one of the reasons for the notation +_, for the p-polar addition.
Let us list a few properties we expect an addition to have. The p-additions and
p-polar additions all satisfy these properties:

Definition 2 We say that an addition @ : Kj x Kf — K is:

1. Monotone if Ay € By and A, C B, implies A; & A, € B; & B».

2. Strongly monotone if it is monotone, and in addition m ©® A € m © B implies
A CB.

3. Divisible if for every A € Kfj and m € N there exists B € K such thatmOB =

4. Subspace preserving if for every linear subspace V € R" we have A,B C
impliesA @B C V.

A.
Vv
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In the paper [7], we proved several characterization theorems for the p-addition.
The first theorem shows that under mild hypotheses, @ is uniquely determined by
its homothety operation ©:

Theorem 1 Let @ : Kj x Kij — K} be a monotone addition operation. Assume
that there exists a functionf : N — (0, 00) such thatm © A = f(m)A for all A € Kj
andm € N.

1. Iff is not the constant function 1, then there exists p # 0 such that A®B = A+,B
foreveryA,B € Kj. If n > 2 then 1 < |p| < oo.

2. Iff = 1 and the identity element of @ is {0}, then A @ B = A +oo B for every
A, B € K. Similarly, if the identity element is R" then A® B = A +_o B.

We also proved the following theorem, characterizing the p-addition without
assuming the homothety has any specific form:

Theorem 2 Assume n >2. Let @ : Kjj x K — K be an addition operation with
{0} as identity element. Assume that @ is strongly monotone, divisible and subspace
preserving. Then there exists ap > 1 suchthat A ® B = A +, B for all A, B € K.

The main observation of this note is that essentially the same conditions as in
Theorems 1 and 2, but on a different domain, can be used to characterize an entirely
different operation. Let us denote by Sj the class of closed star bodies in R". By a
star-shaped set, or a star body, we mean any nonempty set A such that x € A implies
that Ax € A for all 0 < A < 1. Every star body A is uniquely characterized by its
radial function

ra(x) =supfd >0: Ax € A}.

The definition of an addition operation & on Sj is the obvious analogue of
Definition 1. We also define the induced homothety, and the various properties @
may satisfy (monotonicity, divisibility, etc.) in the obvious way.

Given any p # 0, the p-radial sum A+,B is defined by the relation

APCETACEAS

for all x € R". For p = oo we set A+ooB = A U B, and for p = —oc0 we set
A¥_B=ANB.

In [3], Gardner, Hug and Weil proved a characterization theorem for p-radial
sums of star-shaped bodies, as well as characterization theorems for p-sums of
convex bodies. However, in their work a different set of properties was needed in
each case. For convex bodies, the main property assumed was projection covariance,
ie.

Projy (A & B) = Projy(A) & Projy(B)
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for all subspaces V. This property holds for p-additions of convex sets, but not for
p-polar additions or for p-radial additions of star shaped sets. Hence for p-radial
additions a different property was needed, which is section covariance:

ABV)NE=ANV)®BNV)

for all subspaces V.
In our case, we have the following perfect analogue of Theorem 1:

Theorem 3 Let @ : S§ x S§ — Sjj be a monotone addition operation. Assume that
there exists a function f : N — (0, 00) such thatm © A = f(m)A for all A € S} and
m e N.

1. Iff is not the constant function 1, then there exists p # 0 such that A@B = A+,B
foreveryA,B € S.

2. Iff = 1 and the identity element of ® is {0}, then A & B = A+ B for every
A, B € S}.. Similarly, if the identity element is R" then A & B = A+ _oB.

For Theorem 2, the situation is slightly more complicated, as the conditions in this
theorem do not suffice to characterize the p-radial sum. Intuitively, the reason for
this is that there is no condition “relating the different directions”. Hence we may
fix our favorite function p : §"~! — (0, 00), where §"~! denotes the unit sphere in
R", and define an addition @ : §§ x S§ — S by the relation

raon () = (14 (0" + ry(6y @)™

for all & € S"~! (this example appears already in [3]). It is easy to check that @
satisfies all properties of Theorem 2, without being a p-radial sum.

Therefore, in order to relate the different directions, we add the following
assumption: For every convex set A € Kj € &, and for every m € N, the set
m © A is also convex. We therefore have

Theorem 4 Assume n > 2. Let ® : 5] x S — §j be an addition operation with
{0} as identity element. Assume that @ is strongly monotone, divisible, subspace
preserving, and that m © A is convex for every convex A and every m € N. Then
there exists ap > 0 such that A ® B = A+,B for all A,B € 8.

In fact, we will see in the proof that it is enough to assume that m © H is convex for
any half-spaces H, and not for arbitrary convex bodies.

In the next section we will prove a main lemma, crucial for the proof of both
theorems. In Sect. 3 we will prove both Theorems 3 and 4 using the lemma. Finally,
in Sect. 4 we will briefly discuss polynomiality of volume with respect our additions.
The proofs of the main theorems are similar, and in some sense “dual”, to the
proofs of [7]. For the reader’s convenience we give self-contained proofs for all
new theorems.
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2 The Main Lemma

In this section we prove a main lemma that will be used in the proof of both
Theorems 3 and 4. For 6 € $" ! and ¢ € [0, o], let us denote by Ry, € S the
set with radial function

c n=2=0
TRy, (77) = .
oo otherwise.

Notice that Ry is just a complement of a ray, and that Ry .o = R". We will also
write Ry = Rp .
Our main lemma then reads:

Lemmal Let & : S x S} — 8§ be a monotone addition operation with identity
element {0}. Assume that there exists a function f : N — (0, 00) such that m ©
Ro.c = R fmyc forall 6 € S§"1 ¢ € (0,00) and m € N. Then @ = -T—,, for some
0<p<oo.

We will now prove the main lemma, by a sequence of claims.

Claim There exists 0 < g < oo such that f(m) = m9.

Proof First, we prove that f is monotone increasing. Write S = Ry ; for some fixed
6 € $"~!. Notice that for any m we have

fm+1DS=m+1)OS=mOS)®SD2MOS)®{0} =moS =f(m)s.

By comparing radial functions in the direction 8 it follows that indeed f(m + 1) >

fm).

Next, we prove that f is multiplicative: For all integers m and k we have
fmk)S = (mk) ©S =m0 (kO S) =m0 (f(k)S) = f(m)f (k)S,

so again by comparing radial functions f(mk) = f(m)f (k).

However, it is known that every increasing and multiplicative function must be
of the form f(m) = m, so we are done. See [4] for a simple proof of this fact (in
fact, a much more general theorem is true and is due to Erd6s—see [1]).

From now on we will write p = ‘11, and prove that & = +,. For brevity we write

M,(a.b) = (a” + b")»

forevery0 <p <ooand0 < a,b < co.

Claim Forevery 0 € §"~!and every0 < c,d <oowehave Ry, ®Ryp 4 = Rom,(c.d)
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Proof First assume that ¢ = " and d” = 7 are positive rationals, then

m4 s?
Roc ®Roq = (k‘i Ro1) & thG,l)

= |:(mf) ©) (k:thG,l):| ® |:(Sk) © (kqlthG,l):|

1 mt + sk\?
= (mt k R = R
(m +S)®(k%q 9,1) ( » ) 9.1
m S\ 4 1
= <k + t) Rgy = (" +d”)? Ro.1 = Romyc.a.

Since the rationals are dense in [0, oo], all the remaining cases can be proven by
approximation, using the monotonicity of &.

Claim For every A € S we have A @ Ry = Rg @ A = Ro r,(6).
Proof We will only prove that A @ Ry = Ry, ), as the second equality is
completely analogous.

For one inclusion, notice that A@ Ry 2 AP {0} = A, and similarly AG Ry 2 Ry.
Hence

A® Ry 2AURy = Ryy0).
For the opposite inclusion we obviously have A C Ry ,, (9), S0 by monotonicity
A @ Ry C Rony0) ® Roo = Rom,(r46).0) = Ro.r4(9)

Claim We have & = +,,.
Proof Fix A,B € S} and 6 € S"~'. Our goal is to prove that

raes (0) = M), (ra(0),rp(0)) . (D
On the one hand, using the previous claim, we know that
(A® B) ® Ry = Ro.ryg(6)-
On the other hand, we have

APB)ORy=(APB) PRy DRy) =AD(BDRy) DRy
=A®Rs®B) PRy =(ADRy) ® (BB Ro) = Rory6) ® Ro.rp0)

= Ro.M,(4(6).r5(0)).

Comparing both expressions we obtain (1), so the proof of claim, and main lemma,
is complete.
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3 Proving the Main Theorems

Proof (Proof of Theorem 3) First assume that f(2) > 1. We claim that {0} is the
identity element with respect to &.

Indeed, denote the identity element by S. If S # {0} there exists 0 # a € S, and
then by the star property [0, a] € S. But then we get from monotonicity that

[0.a] = [0,a] & 5 2[0,a] ® [0,a] =£(2)[0.a] = [0.f(2) -a].

Since f(2) > 1, this is obviously a contradiction. It follows that & satisfies all the
assumptions of Lemma 1, so & = ¥, for some p > 0.

Next, assume that f(2) < 1. For a star-shaped set A € Sj}, define its “star polar”
A* € 8} by the relation 4+ (0) = r4(0)~! for every direction 6 € S"~!. Define a
new addition B : §§ x S — & by

AEB=(A*®B*)".

Notice that H is indeed an addition operation in the sense of Definition 1—if K is
the identity element of @ then K™* is the identity element of H. It is easy to check
that B is monotone. Finally, for every A € S and m € N we have

*

1
mEOA=ABAB..-BA=|A"®A"® - @A :(f(m)A*)*zf( A
N _—— - ~— —_— - m

m times m times

so B satisfy the homothety property with homothety function g(m) = In

1
T sy
particular g(2) = f(lz) > 1, so by the previous case we have B = +, for some
p > 0. But then forevery A, B € &g we have

A @B — (A* HHB*)* — (A*-T-I;B*)* =A-T—_I,B,
so the theorem is proved in this case as well.
Finally, assume f(2) = 1, so f = 1. If the identity element of & is {0}, then we

have

A®BDAG{0}=A
A®BD{0}®B =B,

SOA®BDAUB=A+.B.Butthe opposite inclusion is also true, since

A®BC (AtooB) ® (A+ooB) = A+oB,
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so we indeed have ® = + . If the identity element of @ is R”, an almost identical
argument proves that @ = +_q. This finished the proof of the theorem.

Next, we want to prove Theorem 4. We assume the conditions of the theorem
holds, and prove several claims reducing the theorem to the situation of Lemma 1.

Claim Forevery A, B € § and every integer m we have m© (AN B) = (m© A) N
(m © B).

Proof One inclusion is immediate from monotonicity: A N B C A implies m ©
(ANB) Cm@A. Similarly m © (AN B) € m ©® B, so we see that indeed

mOMANB) S (mMOA)N(mMOB).
For the second inclusion, by divisibility there exists C € S such that
mO@C=mOA)N(mOB).

Since m © C € m © A, the strong monotonicity implies that C C A. Similarly
CCB,andthen C CANBso

mMOA)NmMOB) =mOC<mO (ANB).

This completes the proof.

For 6 € §"~! and ¢ € [0, oc], let us write
Hyp. ={xeR": (x,0) <c} eS§j.
Claim For every m € N there exists a number f(m) > 1 such that
mQ® Hy. = f(m)Hg . = Hpgomc

forall § € §"~! and ¢ € (0, ).

Proof Note that by monotonicity we have
mQ© H@,c 2 [(m - 1) O] {0}] @ H@,c = H9,Cs

and since m © Hp, is assumed to be convex it follows that m © Hyp,. = Hg . for
some A > 1. Our goal is to prove that A is independent of 6 and c.

So, assume that m © Hy, = Hy ;. and m © Hyq = H, ;4. Our goal is to prove
that A = u, and we may assume that 8 # 1. This means that we can find a point
xo € R” such that (xp, 8) = c and (x¢, ) = d. If we define A = (—00, x| to be the
ray emanating from xo and passing through the origin, then

A =Hy, NRxy = H,q N Rxp.
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Now we apply the previous claim to Hp . and Rxy and see that
mOA = mO (Hg, NRxg) = (m O Hy)N(m O Rxg) = Hy . NRxp = (—00, Axo].

Notice that we used that fact that @ preserves subspaces to deduce that m © Rxy =
Rxo.
But exactly the same reasoning shows us that

mQOA = m@(Hn,d N ]RX()) = (m © Hn,d)ﬂ(m © R.X()) = H,HMHRXO = (—OO, pLXO]

This shows that A = p as we wanted.

Claim For every m € N we have
mQ© R9,c :f(m)ROL = R9,f(m)ca

where f(m) is the same constant from Claim 3.

Proof Since m © Ry 2 Ry, we must have m © Rg. = Ry, for some d > c. All
we need to show is that d = f(m)c.
On the one hand Hy . C Ry, SO by monotonicity

Rog=m0O RO,C 2>m @HO,C = H@f(m)c‘

Comparing radial functions in direction 6, we see that d > f(m)c.
On the other hand, for every ¢ > 0 we know that Hp .. € Ry, and so by strong
monotonicity

H fmy(c+e) =M O Hype £ m O Ry = Rogq.

This means that for some direction 7 € $"~! we must have THy jonese) () > TR, 4 (1)
But rg, (1) = oo for all n # 6, so we must have n = 6 and

f(m) - (C + 8) = rH@_f(,n)(E+5) (9) > TRy 4 (9) =d.

Sending ¢ — 0 we see that d < f(m)c, which completes the proof.

Proof (Proof of Theorem 4) All assumptions of Lemma 1 holds, as the only
assumption of the lemma that wasn’t assumed in the theorem is exactly Claim 3.
Hence & = ¥, for some p > 0 like we wanted.

4 Polynomiality of Volume

Remember the Minkowski addition has remarkable property, not shared by other
p-additions when p > 1. For A € &) (and in particular A € Kf) let us denote by
|A| € [0, co] the Lebesgue volume of A. Minkowski’s theorem then states that for
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every convex bodies K, K, ..., K, € K the function f : (0, 00)" — R defined by
FAL A A = MK+ LK+ 4 4K

is an homogeneous polynomial of degree n, with non-negative coefficients. This
theorem allows the introduction of mixed volumes, a fundamental notion in
convexity which will not be needed here.

Inspired by Minkowski’s theorem, we define:

Definition 3 An additional @ on Kfj (resp. &) is polynomial if for every A, B € K
(resp. A, B € &), the function

f(m k) =|(mOA) @ (kO B)|

is a polynomial on N2,

Notice that the polynomiality property is weaker then Minkowski’s theorem, as
there are only two bodies and the polynomial is not assumed to be homogeneous.
Still, it is not difficult to check that the p-addition is not polynomial for any
1 < p < 00, and so the following corollary of Theorem 2 was proved in [7]:

Corollary 1 Let @ be a polynomial addition on K satisfying all properties of
Theorem 2. Then ® = +; or ® = +oo.

Notice that the case p = oo is somewhat degenerate: we have m .o o A = A for all
A € Kj and m € N, so the function |(m © A) @ (k © B)| is a constant function,
which is a polynomial.

For star bodies, however, the situation is different. By integration in polar
coordinates, we have the formula

Al = @, - /S”_l ra(6)"do(8).,

where w, is the volume of the unit Euclidean ball, and o is the Haar probability
measure on S" 1. Tt follows that for every A,B € Sj, every m,k € N and every
p > 0 one has

05,4) T (658)| = - [ a6 + ka0 o9,

and this expression is a polynomial in m and k whenever [”7 is an integer. In fact, in
this case the polynomial is an homogeneous polynomial of degree ”.

By taking A to be the unit ball and B = {0} we see that the condition that ;
is an integer is also a necessary condition for polynomiality. We summarize the
discussion in the following corollary:
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Corollary 2 Assume & : Sy xS — Sy is polynomial, and satisfy all the conditions
of Theorem 4. Then there exists k € N such that @ is the ', -radial sum, and for every
A, B € S the function

f(m k) =|mOA)® (kO B)|
is an homogeneous polynomial of degree k with non-negative coefficients.
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On Mimicking Rademacher Sums in Tail Spaces

Krzysztof Oleszkiewicz

Abstract We establish upper and lower bounds for the L' distance from a
Rademacher sum to the mth tail space on the discrete cube. The bounds are tight, up
to the value of multiplicative constants.

2010 Mathematics Subject Classification. Primary: 60E15, 42C10

1 Introduction

Throughout the paper, n > m > 2 will be integers, and we will use the
standard notation [n] := {1,2,...,n}. We will equip the discrete cube {—1,1}"
with the normalized counting (equivalently, uniform probability) measure u, =
(éS_l + éS 1)®". Let [E denote the expectation with respect to this measure, and let
ri, 2, ..., rp be the standard Rademacher functions on the discrete cube, i.e. the
coordinate projections rj(x) = x; for x € {—1,1}" and j € [n]. Furthermore, for
A C [n], we define the Walsh functions by wy = Hie A T, Withwg = 1.

The Walsh functions (wa)acpy form a complete orthonormal system in
L? ({~1,1}", ;). Thus, every f : {—1,1}" — R admits a unique Walsh-
Fourier expansion f = ZAg[n]f(A)wA, with coefficients given by f(A) =
(fiwa) = E[f - wa]. For m > 2, we will denote by 77" = T{>—Wi,1}" the
linear span of (Wa)ac[u:|a|>m> Which is called the mth tail space on the discrete
cube. For f : {—1,1}* — R we consider its L' distance to the mth tail space,

diStLl (f, T{>_”i l}”) = inngT>m Elf — gl. By T<m — T{S_Wll 1y we will denote the
space of Walsh-Fourier chaoses of order not exceeding m, i.e. the linear span of
(WA)Ag[n]:IA\sm'
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2 Main Result

The following theorem provides an answer to a question of Robert Bogucki, Piotr
Nayar, and Michat Wojciechowski (2013, personal communication).

Theorem 2.1 Fora; > a; > ... > a, > ay41 = 0, let S : {—1,1}" — R be

defined by S = a\r1 + axry + ... + ayr,. Furthermore, let @ = o ((aj)j’.’=1,m) be

given by o := miney ((Z;‘:l ajz)l/2 + mak_H). Then

1 . - 8
37 co < disty1 (S, T{_Ll},,) < . -,

In particular, dist;; (Z};l "/’T{>—Wi,1}ﬂ) ~ min(m, «/n), which is the case
Bogucki, Nayar, and Wojciechowski were originally interested in.
We will need the following discrete cube dual counterpart to the classical

Bernstein inequality.

Lemma 2.2 For any integers n > m > 2 and any real numbers a,, a, ..., ap,
there is a functionf : {—1,1}" — R with

8m
Elf] < - max |a;|
T jEln]

and such thatf‘({j}) = aj forj € [n], andf(A) =O0forall A C {1,2,...,n} of
cardinality 0,2,3,4,...,m.

Proof By the homogeneity, we assume that max;e, |a;| = 1. For m = 2 it suffices
to consider f =, [T/=;(1 + @) — 3 [T/=,(1 — @;). Indeed, by the triangle
inequality, E|f| < 1 < 16/7. Note that E[1 + ajrj| = E[1 + a;rj] = 1.

For general m > 2, let us consider a Fejér type function

m m—1
Ym(x) =Y ksinkx + Y (m—k)sin ((m + k)x) .
k=1 k=1

or, equivalently,

2m—1 eikx _ e—ikx m—1 /2 2 eimx _ e—imx
m(X) = min(k, 2m — k ) = e'™ )
Yn() = Y mink,2m—k)" > .
k=1 I=—m+1
2

eimx/Z _ e—imx/Z
= ( ) sinmx = sin mx - sin’(mx/2)/ sin®(x/2).

elt/2 _ g—ix/2
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Since, clearly, [, (x)] < >/ k+ ka;ll (m—k) = m?,

b4 2/m b4 dx

/ |1//m(x)|dx§/ m2dx+2/ ., = 4m + 4cot(1/m) < 8m.
- —2/m 2/m SIn~(x/2)

Using the orthogonality in L?([—, 7], dx), we have [* ¢, (x)sinxdx = 7,

T Ym()dx = 0, and 7 ¥, (x)sin*xdx = 0 for 2 < k < m. For even ks

the last equality is trivial since v, is an odd function, and for odd k’s, by the

el¥ _e—ix

k
o ) can be expressed as a linear combination
Brasinx + Brzsin3x + ... + PBr sinkx. Thus,

binomial formula, sinf x = (

' Y () sin* xdx = Bit + 3Bia + ... + kB
d . . . dsin® x
Py (Brisinx + Brssin3x + ... + Brssinkx) 0 dr b=
Choosing f defined by
I -
f= - Y (X) 1_[(1 + ajrjsinx) dx

j=1

_ njeA aj 4 . |A] dx - >m
= Z Y (x) sin! xdx - wy € Zajrj + T e
AC[n] - j=1

we finish the proof. Indeed, E|f| < }rffn [ (x)|dx < 8m/m — recall that
max; |a;j| < 1, so that, for every x € [—m, 7], the independent random variables

(1 + ajrjsinx);_, are nonnegative and have mean 1. |

Proof of Theorem 2.1 The upper bound easily follows from Lemma 2.2. Indeed, for
k < n, by the lemma, applied to the cube {—1, 1% instead of {—1,1}", we may
find a Walsh-Fourier polynomial f in rx41, rx+2, ..., y such that f — Z;:k Li1ajr; €

Ty and E[f] < " maxit1<j<n || = ¥ - magy. Thus

n k
dist; (S, Tf_’ﬁ,l}n) <E|S—- Z ari—f || =E Zaﬂj +f

Jj=k+1 Jj=1

k k
8
<E|Y am| +EIf| < |D ap + Mkt
j=1

Jj=1 12
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For k = n, we simply note that

1/2

disty) (S, 775 1) < EIS=0] < ISl = | Y. a?
j=1

Taking the minimum over k € [n], we deduce the upper bound.

To prove the lower bound, we introduce the following auxiliary functions:

15 0o
_ 2 (_1)1t21+l _ (_l)lt21+l
W) = ; @1y R = 2 QI+ 1)

I=Lm<2HJ
Obviously, W,,(t) + R, (t) = sint and for ¢t € [-m/6,m/6] we have
o0
Ra0l < 3 (/6 <27,
l:Lnrzi*lJ

since k! > (k/e)*. Hence |W,,(1)| < 2 fort € [-m/6,m/6)].
Letf = S — g for some g € T{>_”i 1y If a; > ma», then
1
E|fl = Elfn] = a1 = 5 (@)'? + maz) > a/2.

If a; < ma,, then let k denote the largest k € [n—1] for which Z,l'(=1 aj2 < m?al 1
(note that Zf:l a? —m*ag, | increases in k), so that i
kK < m?, and

2 2,2
a; < m-a,,, and thus

k+1

2 2 2
doa = mia,. (1)
=1

12 12
Note that Y /_, a; < V/k (2};1 ajz) <m (2};1 ajz) .Forl € [k], let b, =

~1/2
P (Z}(:l ajz) , o that }Z}(:l bjrj‘ < Y1 bj <m/6.Also, 37_ b} = 1/36,50
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that, for all j € [«], we have b; € [0, 1/6], and thus cos b; > e_b-fz, and, for all / € [«],

K
Erysin [ Y by | = ImEre'2=157 = Im | E[ne”]- [] Ele""]
/ JelkN\

=sinb; - l—[ cosb; = tanb; - l_[ cosb; > b; e_zleb/'z
JEND JEIK]
= 1/3%. b;.

Now we are in a position to finish the proof of the lower bound. We have

K K
2| f| = Bf W | D_bjry | = B(S—)Wau | Dby

=E (z’c:aﬂ’l) Wm z’c:b,}’, = ZK:CZZ . EV]Wm ZK:b,V]
=1 j=1 I=1 j=1

The second equality follows from the fact that both g and > 77_ ., ajr; are
orthogonal to W, (Z}C:l bjrj) in L? ({—1,1}", ). Indeed, degW,, < m, so that

W, (Z;C:l bjrj) is a Walsh-Fourier chaos of order not exceeding m in variables
ri, ra,..., re.Since

ErnWn (Y biry) = Erysin()_ br) — ErRu()_ bjry) = /3, — 27",
j=1 Jj=1 j=1

we arrive at

12
K K 1/36 K K
2E|f| > 6_1/36 Z ab;—27" Z a = (Z al) -2 Z a)
=1 =1 =1

e—1/36 K 172
z( 6 —m'z—’") doai| .
=1

-1/ _ 1/2
We have © ,~ —20-2720 > 2/13, so that, for m > 20, E|f] > | (X2, a7) .

1/2
Finally, recall that ¢ < ( ;«+11 alz) + ma,4, and, by (1), the last expression

1/2
can be bounded from above by 2 (Z}H'll alz) <2(2Y, alz)l/z, so that E| f| >

13%/2 > «/37, form > 20.



336 K. Oleszkiewicz

The remaining case, 2 < m < 20, is much easier:
a<a;+may < (m+ )a, = (m+ )E[fr1] <20E|f| <37E|f|. O

Certainly, with some additional effort, the numerical constants can be improved,
at the cost of clarity.

Unfortunately, the outlined method does not seem to extend to a more general
situation. Even for a chaos f of order 2, it does not seem to yield bounds for

disty) (f. 777 1y0)-

3 Gaussian Counterpart

Motivated by a question of the referee, we will briefly discuss a Gaussian counter-
part of the main result. Let y, denote the standard Gaussian probability measure
on R, ie. dy,(x) = (2m)™/2e~*/2dx. On the real line, the Hermite polyno-
mials (H.)%, form a natural orthogonal basis of the Hilbert space L*(R,y;).
In L*(R",y,), the same role is played by their tensor products (He)eefo,12,..35
where He(x) = [[_, H;(x;), for x = (x1,x2,...,x,) € R". For a multi-index
¢ = (c1,¢2,...,¢p), let |¢] = Z;'l=1 ¢j. For a positive integer m, it is natural to
express L*(R", y,) as T&{f’yn) & T&'Z” ) where T%’L’, ’ is a finite-dimensional (thus
closed) linear span of (He)|¢|<m, identical with {P € R[x1,x,...,x,] : degP < m},
and T&{J%) is the L*(R", y,,)-closure of the linear span of (Hc)jc|>,. This decom-
position is closely related to the one we discussed on the discrete cube (see
section “Introduction”). In fact, it may be obtained from it by a CLT-type limit
transition. Also, for every nonnegative integer k, the linear span of (Hc)¢|— is the
eigenspace associated with the eigenvalue k for the standard (Ornstein-Uhlenbeck)
heat semigroup generator on L*(R",y,), just as the linear span of (wa)j=x is
the eigenspace associated with the eigenvalue k for the standard heat semigroup
generator on the discrete cube. Therefore, it seems interesting that, in contrast to

Theorem 2.1, we have the following proposition.

Proposition 3.1 For all positive integers n and m, and every f € L*(R", y,) with
f]R” fdy, = 0, for every € > 0, there is a polynomial Q belonging to the linear span

Of (He) efom stich that [, [f(x) — Q)| dya(x) < &. Thus, disty g, (f, T&rg%)) _
0, in particular for f(x) = Z;l:l ajxj, where ay,as, ..., a, are arbitrary real
numbers.

Proof Assume that the main assertion is not true, i.e., for some positive integers
m and n, there exist ¢ > 0 and a square-integrable mean-zero f such that U :=
{g € *(R", y,) : Jgo If — gl dyn < €} is disjoint with the linear span of (He)|c/>m-
One easily checks that U is an open convex subset of L*(R",y,), so that, by
the geometric Hahn-Banach (Mazur’s) theorem and by the Riesz representation
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theorem, there exists a function P € L*>(R", y,) such that S P)He(x) dy,(x) = 0,
for every ¢ with |¢| > m, and [, P(x)g(x) dy,(x) > 0 for every g € U. Since P is

orthogonal to the span of (Hc)|c|>m, it is also orthogonal to its L?-closure, T&’,’,‘ )’

and thus belongs to its orthogonal complement, T(%Q’Z‘l,y”)' We have proved that P
is a polynomial of degree not exceeding m. Since f € U and fR,, fdy, = 0, we
know that P cannot be a constant polynomial and thus is unbounded on R". For
M > 0,let Ay = {x € R" : |P(x)| > M}. Let hy(x) = 2yanM) sgn(P(x))14,, (x),
so that gy = f — hy belongs to U. Therefore, f]R” P(x)gu(x) dy,(x) is positive, and
Jrn POf(x) dyu(x) > [on P(X)ar(x) dy,(x) = €M /2. By letting M tend to infinity,
we obtain a contradiction.

Remark 3.2 In Proposition 3.1, the assumption f € L?>(R",y,) can be easily
weakened to f € L'(R",y,). It suffices to note that every mean-zero function is
an L'-limit of mean-zero square-integrable functions.

Acknowledgements I would like to thank the anonymous referee for a stimulating question about
the Gaussian case. Research supported by NCN grant DEC-2012/05/B/ST1/00412.



Stability for Borell-Brascamp-Lieb Inequalities

Andrea Rossi and Paolo Salani

Abstract We study stability issues for the so-called Borell-Brascamp-Lieb inequal-
ities, proving that when near equality is realized, the involved functions must be
L'-close to be p-concave and to coincide up to homotheties of their graphs.

1 Introduction

The aim of this paper is to study the stability of the so-called Borell-Brascamp-Lieb
inequality (BBL inequality below), which we recall hereafter.

Proposition 1.1 (BBL Inequality) Ler0 < A < 1, —rll SKp<+4o0,0<f,ghe
L'(R") and assume the following holds

h((1 = 2)x + Ay) = M, (f(x), 8(v); 1) (1)

for every x, y € R". Then

/hdeanil (/ fdx,/ gdx;)k). 2)

Here the number p/(np + 1) has to be interpreted in the obvious way in the extremal
cases (i.e. it is equal to —oo when p = —1/n and to 1/n when p = +4o00) and
the quantity M, (a, b; A) represents the (A-weighted) g-mean of two nonnegative
numbers a and b, that is M, (a,b; 1) = 0 if ab = 0 for every ¢ € R U {00} and

max{a, b} q = +o0,
1
My(a,b; L) = [(11_; /})aq +AbYe 0FgeR, o 0o 3)
a'=*b g=20,
min{a, b} q=—00,
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The BBL inequality was first proved (in a slightly different form) for p > 0 by
Henstock and Macbeath (with n = 1) in [22] and by Dinghas in [11]. Then it was
generalized by Brascamp and Lieb in [6] and by Borell in [4]. The case p = 0
is usually known as Prékopa-Leindler inequality, as it was previously proved by
Prékopa [25] and Leindler [24] (later rediscovered by Brascamp and Lieb in [5]).

In this paper we deal only with the case p > 0 and are particularly interested in
the equality conditions of BBL, that are discussed in [13] (see Theoreme 12 therein).
To avoid triviality, if not otherwise explicitly declared, we will assume throughout
the paper that f, g € L'(R") are nonnegative compactly supported functions [with
supports supp (f) and supp (g)] such that

F=| fdx>0 and G:/gdx>0.
RFI n

Let us restate a version of the BBL inequality including its equality condition in
the case

p= >0,
s
adopting a slightly different notation.

Proposition 1.2 Let s > 0 and f, g be as said above. Let A € (0,1) and h be a
nonnegative function belonging to L' (R") such that

h((1 = M)x + Ay) = (1= DF @) + 2g()'*) 4)
for every x € supp (f), y € supp (g)-
Then
/ hdeMnJl”(F,G;A). (®)]

Moreover equality holds in (5) if and only if there exists a nonnegative concave
function ¢ such that

0x)’ = a1 f(bix—Xx1) = ap g(box —x2) = azh(bsx —x3) a.e.x € R", (6)

for some X1, X2, x3 € R" and suitable a;,b; > 0 fori =1,2,3.

Notice that, given f and g, the smallest function satisfying (4) (hence the smallest
function to which Proposition 1.2 possibly applies to) is their p-Minkowksi sum (or
(p, A)-supremal convolution), defined as follows (for p = i)

ha@ = sup {(1=1F0) +260) s 2= A =Dx+ 2} D

for z € (1 — A)supp (f) + Asupp(g) and hsy(z) = 0if z ¢ (1 — A)supp (f) +
A supp (g).



Stability for BBL Inequalities 341

When dealing with a rigid inequality, a natural question arises about the stability
of the equality case; here the question at hand is the following: if we are close to
equality in (5), must the functions f, g and & be close (in some suitable sense) to
satisfy (6)?

The investigation of stability issues in the case p = 0 was started by Ball and
Boroczky in [2, 3] and new related results are in [7]. The general case p > 0 has
been very recently faced in [19]. But the results of [19], as well as the quoted results
for p = 0, hold only in the restricted class of p-concave functions, hence answering
only a half of the question. Let us recall here the definition of p-concave function: a
nonnegative function u is p-concave for some p € R U {£o0} if

u((I = 2A)x+ Ay) = Mp(u(x), u(y); A) foreveryx,y € R" andevery A € (0,1).

Roughly speaking, u is p-concave if it has convex support 2 and: (1) & is concave
in 2 for p > 0; (2) log u is concave in 2 for p = 0; (3) u” is convex in 2 for p < 0;
(4) u is quasi-concave, i.e. all its superlevel sets are convex, for p = —oo; (S) uis a
positive constant in €2, for p = +o0.

Here we want to remove this restriction, proving that near equality in (5) is
possible if and only if the involved functions are close to coincide up to homotheties
of their graphs and they are also nearly p-concave, in a suitable sense. But before
stating our main result in detail, we need to introduce some notation: for s > 0, we
say that two functions v, 0 : R" — [0, 4-00) are s-equivalent if there exist p, > 0
and x € R” such that

D(x) = uy v (x’u x) ae. x € R". (8)

v

Now we are ready to state our main result, which regards the case s = 1/p € N.
Later (see Sect.4) we will extend the result to the case 0 < s € Q in Corollary 4.3
and finally (see Corollary 5.1 in Sect. 5) we will give a slightly weaker version, valid
for every s > 0.

Theorem 1.3 Let f, g, h as in Proposition 1.2 with
0<seN.

Assume that
/hde./\/lJlr (F,G;A) + ¢ )

for some & > 0 small enough.
Then there exist a i-concave Sfunction u : R" — [0, +00) and two functions f
and g, s-equivalent to f and g in the sense of (8) [with suitable |1y and |1, given
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in (46)] such that the following hold:
uzf =3, (10)

<u—f)dx+/ -3 dx < W( (N

M, (FG)L))

where C,+5(n) is an infinitesimal function for n —> 0 [whose explicit expression is
given later, see (15)].

Notice that the function u is bounded, hence as a byproduct of the proof we obtain
that the functions f and g have to be bounded as well (see Remark 3.1).

The proof of the above theorem is based on a proof of the BBL inequality
due to Klartag [23], which directly connects the BBL inequality to the Brunn-
Minkowski inequality, and the consequent application of a recent stability result
for the Brunn-Minkowski inequality by Figalli and Jerison [15], which does not
require any convexity assumption of the involved sets. Indeed [15] is the first
paper, at our knowledge, investigating on stability issues for the Brunn-Minkowski
inequality outside the realm of convex bodies. Noticeably, Figalli and Jerison ask
therein for a functional counterpart of their result, pointing out that “at the moment
some stability estimates are known for the Prékopa-Leindler inequality only in one
dimension or for some special class of functions [2, 3], and a general stability result
would be an important direction of future investigations.” Since BBL inequality is
the functional counterpart of the Brunn-Minkowksi inequality (for any p > 0 as
much as for p = 0), this paper can be considered a first answer to the question by
Figalli and Jerison.

The paper is organized as follows. The Brunn-Minkowski inequality and the
stability result of [15] are recalled in Sect. 2, where we also discuss the equivalence
between the Brunn-Minkowski and the BBL inequality. In Sect.3 we prove
Theorem 1.3. Finally Sect.4 contains the already mentioned generalization to the
case of rational s, namely Corollary 4.3, while Sect.5 is devoted to Corollary 5.1,
where we prove a stability for every s > 0 under a suitable normalization for [ f
and | g. The paper ends with an Appendix where we give the proofs of some easy
technical lemmas for the reader’s convenience.

2 Preliminaries

2.1 Notation

Throughout the paper the symbol | - | is used to denote different things and we hope
this is not going to cause confusion. In particular: for a real number a we denote by
|a| its absolute value, as usual; for a vector x = (xy, ..., X,) € R” we denote by |x|
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its euclidean norm, that is |x| = \/xll + -+ x2;foraset A C R™ we denote by |A|
its (m-dimensional) Lebesgue measure or, sometimes, its outer measure if A is not
measurable.

The support set of a nonnegative function f : R” — [0, +00) is denoted by
supp (f), that is supp (f) = {x € R™ : f(x) > 0}.

Let A € (0,1), the Minkowski convex combination (of coefficient 1) of two
nonempty sets A, B C R” is given by

(1—2)A+AB={(1-ANa+Ab: acA, beB}.

2.2 About the Brunn-Minkowski Inequality

The classical form of the Brunn-Minkowski inequality (BM in the following)
regards only convex bodies and it is at the core of the related theory (see [26]).
Its validity has been extended later to the class of measurable sets and we refer to
the beautiful paper by Gardner [18] for a throughout presentation of BM inequality,
its history and its intriguing relationships with many other important geometric and
analytic inequalities. Let us now recall it (in its general form).

Proposition 2.1 (Brunn-Minkowski Inequality) Given A € (0,1), let A,B C R”
be nonempty measurable sets. Then

|(1—A)A + AB|'" = (1 — 1) |A]Y" + 1 |B|'" (12)

(where | - | possibly means outer measure if (1 — A)A + AB is not measurable).
In addition, if |A|, |B| > 0, then equality in (12) holds if and only if there exist a
convex set K C R", v1,v, € R" and A1, A, > 0 such that

MA+v CK, AB+v; CK, |K\(/\1A+U1)|: |K\(A,2B+U2)|:O
(13)

We remark that equality holds in (12) if and only if the involved sets are convex (up
to a null measure set) and homothetic.

The stability of BM inequality was first investigated only in the class of convex
sets, see for instance [12, 14, 16, 17, 20, 27]. Very recently Christ [9, 10] started the
investigation without convexity assumptions, and its qualitative results have been
made quantitative and sharpened by Figalli and Jerison in [15]; here is their result,
forn = 2.

Proposition 2.2 Letn = 2, and A, B C R" be measurable sets with |A| = |B| = 1.
Let A € (0,1), sett =min{A,1 —A}and S = (1 —A)A+ AB. If

IS| < 146 (14)
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for some § < e ™MD then there exists a convex K C R" such that, up to a
translation,

A, BCK and IK\A|+ |K\B| < 7 Nngon(®)
The constant N,, can be explicitly computed and we can take
3”

23n+2

¥ Nog | T
M, (z) = n” |logt|

3 ’ on(®) = 233 log o

Remark 2.3 As already said, the proof of our main result is based on Proposition 2.2
and now we can give the explicit expression of the infinitesimal function C,4 of
Theorem 1.3:

naner(T)

Cn+s(77) = (15)

Wy TNis |’

where w; denotes the measure of the unit ball in R,

Next, for further use, we rewrite Proposition 2.2 without the normalization
constraint about the measures of the involved sets A and B.

Corollary 2.4 Let n = 2 and A,B C R" be measurable sets with |A|,|B| €
(0,400). Let A € (0, 1), set T = min{A,1 —A}and S = (1 —A)A + AB. If

Is1= [ = la"" + 151"
s (16)
[ =ny 1Al + 218" ]

for some § < e () then there exist a convex K C R" and two homothetic copies

A and B of A and B such that
A,BCK and |K\Ai+ |K\1~9i < ¢ Nngon(@,

Proof The proof is standard and we give it just for the sake of completeness. First
we set

i A B B
|A|l/n’ |B|1/n
so that |[A| = |B| = 1. Then we define
(1=2) A"

S:=puA+(1—-pwB with pu= ,
(1=2)|A|Y" + 1 |B|V"
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and observe that |S| > 1 by the Brunn-Minkowski inequality. It is easily seen that

S

5= .
(1 =2) |JAI"" + 1 |B|V"

Now we see that the hypothesis (14) holds for ;\, E, S , indeed

i S1= [ =2y 141" + 218"
IS|—1= <6,

[ =214+ 218"

by (16). Finally Proposition 2.2 applied to A, B and S implies the result and this
concludes the proof. O

2.3 The Equivalence Between BBL and BM Inequalities

The equivalence between the two inequalities is well known and it becomes
apparent as soon as one notices that the (p, A)-supremal convolution defined in (7)
corresponds to the Minkowski linear combinations of the graphs of f7 and g”. In
particular, for p = 1, (2) coincides with (12) where A = {(x,7) e R"™ : 0 <r <
f()}rand B = {(x,f) e R"™! : 0 <t < g(x)}.

To be precise, that Proposition 1.1 implies (12) is easily seen by applying (2) to
the case f = ya, g = xB, h = X(1—1)a+1B, p = +00. The opposite implication can
be proved in several ways; hereafter we present a proof due to Klartag [23], which
is particularly useful for our goals.

To begin, given two integers n,s > 0, let f : R* — [0, 4-00) be an integrable
function with nonempty support (to avoid the trivial case in which f is identically
zero). Following Klartag’s notations and ideas [23] (see also [1]), we associate with
f the nonempty measurable set

Ky = {(x.y) e R"™ =R"xR*: x e supp (f). |yl <f®)'*}, (17

where obviously x € R" and y € R®. In other words, Ky, is the subset of R"**
obtained as union of the s-dimensional closed balls of center (x,0) and radius
f(x)'/5, for x belonging to the support of £, or, if you prefer, the set in R"** obtained
by rotating with respect to y = 0 the (n + 1)-dimensional set {(x,y) € R"" : 0 <
YSF@YVS, yy = =y, =0}

We observe that Ky, is convex if and only if f is (1/s)-concave [that is for us a
function f having compact convex support such that f1/5 is concave on supp (f)]. If
supp (f) is compact, then K ; is bounded if and only if f is bounded.
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Moreover, thanks to Fubini’s Theorem, it holds
K= [ o (0" ai=o [ swa ()
supp (f) R"

In this way, the integral of f coincides, up to the constant wy, with the volume of Ky ;.
Now we will use this simple identity to prove Proposition 1.2 as a direct application
of the BM inequality.

Although of course the set K ; depends heavily on s, for simplicity from now on
we will remove the subindex s and just write Ky for Ky ;.

Let us start with the simplest case, when p = 1/s with s positive integer.

Proposition 2.5 (BBL, Case 1/p = s € N) Let n, s be positive integers, A € (0, 1)
andf,g.h : R" —> [0, 4+00) be integrable functions, with [ > 0 and [ g > 0.
Assume that for any xy € supp(f), x| € supp(g)

B((1 = M)xo + Axy) = [(1 = A)f (o) + Age) V] (19)

”‘li'f ﬂ‘lh njrs
(/ hdx) Z(l—k)(/ fdx) +X(/ gdx) . (20)
n Rﬂ RV!

Proof Since the integrals of f and g are positive, the sets Kr and K, have positive
measure. Let 2, be the Minkowski convex combination (with coefficient A) of
Qo = supp(f) and 2; = supp(g). Now consider the function k) as defined
by (7); to simplify the notation, we will denote ;) by &) from now on. First notice
that the support of £, is €2;. Then it is easily seen that

Then

K, = (1=K + AK, . 21
Moreover, since i = h) by assumption (19), we have
K, 2 Ky, . 22)
By applying Proposition 2.1 to K, , Ky, K, we get
1 1 1 1
|Kil 7 = K [ = (1= A) |Kp| " + 3| K|+ (23)

where | K}, | possibly means the outer measure of the set Kj, .
Finally (18) yields

|Kh|=wx/ h dx, |Kf|=wX/fdx, |Kg|=a)s/ g dx,
R R~ R~

1

thus dividing (23) by w,'** we get (20). O
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Next we show how it is possible to generalize Proposition 2.5 to a positive
rational index s. The idea is to apply again the Brunn-Minkowski inequality to sets
that generalize those of the type (17). What follows is a slight variant of the proof
of Theorem 2.1 in [23].

The case of a positive rational index s requires the following definition. Given
f : R" — [0, +00) integrable and a positive integer ¢ (it will be the denominator
of the rational s) we consider the auxiliary function f : R™ —> [0, +00) defined as

q
Jo =F@.....x) = []re. (24)
j=1
where x = (x1,...,xy) € (R™)9. We observe that, by construction,

q
fdx= (/ fdx) : (25)
R n

moreover suppf = (supp f) X ... X (supp f) = (supp f)?.
As just done, from now on we write A? to indicate the Cartesian product of q

copies of a set A.

Remark 2.6 Let A, B be nonempty sets, g > 0 be an integer, y a real. Clearly
(A+ B)? = A? + BY, (nA)? = pAl.

To compare products of real numbers of the type (24) the following lemma is
useful. It’s a consequence of Holder’s inequality (see [21], Theorem 10) for families
of real numbers (in our case for two sets of q positive numbers).

Lemma 2.7 Given an integer g > 0, let {al, o ,aq} , {bl, o ,bq} be two sets of
q real numbers. Then

1/q

q q q
q 0|
]—[aj + ]_[b, ]—[ |aj|* + [b;]")
j=1 j=1 j=1
From this lemma we deduce the following.
Corollary 2.8 Let A € (0,1), s = ‘Z with integers p,q > 0.
Givenf,g : R" — [0, 400), x1,..., x5, X}, ... ,x; € R", it holds

q
(1-2) ]_[f(x,)”" +A ﬂg(x )P < H (1= 0f () + Ag(x'/+]

Jj=1 Jj=1
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Proof Observing that
q q q q
A= [[re" + AT Jse)P =TT =MYran'? + [ AYag()'?.
j=1 j=1 j=1 j=1

the result follows directly from Lemma 2.7 applied to {al, ... ,aq} , {bl, ... ,bq}
with

aj = (1=DPfC)P by =200 =1

Let

with integers p, g > 0 that we can assume are coprime.
Given an integrable function f : R” — [0, +00) not identically zero, we define
the nonempty measurable subset of R"+7

Wrs = Kp, = {(x.y) € R)? xR”: x € supp (f), |y <f(x)'""} (26)

q
= {(xl,...,xq,y) eE®IxR: xjesupp(f)Vji=1,....q9. [y < l_[f(xj)l/”}.

=1

We notice that this definition naturally generalizes (17), since in the case of an
integer s > 0 it holds s = p, ¢ = 1, so in this casef = fand Wy, = K;.

As for Ky, for simplicity we will remove systematically the subindex s and write
W; in place of W if there is no possibility of confusion. Clearly

- . q
Wy = /Supp(f) wy - (F)'P) dx = w, /anf(x) dx = w, (/Rnf(x) dx) (27)

where the last equality is given by (25). 5
Moreover we see that Wy is convex if and only if f is Il)-concave (that is, if and
only if f is 1-c0ncave, see Lemma 4.1 later on). Next we set

W=(0-2)Wr+AW,. (28)
Finally, we notice that, by (21), we have

W = Kﬁp.lsp ’
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where fzp,l is the (1/p, A)-supremal convolution of f and g as defined in (7). In
other words, W is the set made by the elements (z,y) € (R")? x R? such that z €

(1 — ) supp (f) + A supp () and

] < sup {(1 = W77 + Ag() /- 29
z=(1—=A)x+ Ax/,x € supp (f),x € supp (g)}.
Lemma 2.9 With the notations introduced above, it holds

W W, CW,,

where h;_is the (1/s, A)-supremal convolution of f,g, and h is as in Proposition 1.2.

Proof The second inclusion is obvious, since & = h, by assumption (4). Regarding
the other inclusion, first we notice that (26) and Remark 2.6 yield

Wi, = {(z.y) € R xR : z € supp (i) |y| < ()7}
= {(@y) € ®) xR : 2 ((1—A)supp () + Asupp (&))", [yl < 7. (2)"/7)
= {(z.y) € ®)" xR : z€ (1—=2)supp (F) + Asupp (@), |yl <M ()"},
where }a is the function associated to s, by (24). To conclude it is sufficient to

compare this with the condition given by (29).
For every z € (1 — A1) supp (f) + A supp (g) consider

q q
sup {(1 = MF ()" +22() 7} = sup S (1 = V) [ [P + 2] [ 7 ¢
j=1 j=1

where the supremum is made with respect to x € supp (f), X’ € supp (g) such that
z= (1 — A)x + Ax'. Corollary 2.8 then implies

q
sup {(1 = MF "7 + 256N} < sup [ [(1 = Are)' + ()]

j=1

<

=

{S“P [(1=)f ) + Ag(xj{)l/x]l/q}

Jj=1

[T {m (= 2+ 2) ")

j=

= iy (1= 2)x+ Ax)" = I (2)'77,

—_
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having used the definition (24) in the penultimate equality. Therefore if
I < sup {(1 = A)FW)'7 + 2g()' 7}
that is if (z,y) € W by (29), then
M < ma@).

i.e. (z,y) € Wy, . This concludes the proof. O

We are ready to prove the following version of the Borell-Brascamp-Lieb
inequality, which holds for any positive real index s (and in fact also for s = 0).

Proposition 2.10 (BBL for p > 0) Lets > 0, A € (0,1), let n > 0 be integer.
Given f,g,h : R" —> [0, +00) integrable such that [ f > 0 and [ g > 0, assume
that for any xo € supp(f), x| € supp(g)

B((1 = A)xo + Axy) = [(1 = A)f (o) + Age) V] (30)

Then

n-lﬁ-.r n-l‘rs n-}rs
(/ hdx) 2(1—/\)(/ fdx) +l(/ gdx) . 3D
n ]Rn n

Proof Assume first that s > 0 is rational and let s = Z with p, g coprime positive
integers. Thanks to (28) we can apply Proposition 2.1 to Wy, W, (that are nonempty
measurable subsets of R"17), so

1
nq+p ,

1
(Wlwbe = (1= 2) |[Wy|otr + 4 |W,

where |W| possibly means the outer measure of the set W. On the other hand
Lemma 2.9 implies |W;,| = |W]|, thus

1 1
|Wh|"ql“1’ >(1-21 |Wf natp Q) ‘Wg ngtp

Finally the latter inequality with the identity (27) is equivalent to

"qlh’ nqip . li- nq?hv nqip
wp / h dx w7 (1-24) / fdx + A / gdx .
n R® R~
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1
nq+p

Dividing by w,”"™" we get (31), since

q q 1

ng+p n qgin+s) =n+s

is exactly the required index. The case of a real s > 0 (and also s = 0) follows by a
standard approximation argument. O

3 The Proof of Theorem 1.3

The idea is to apply the result of Figalli-Jerison, more precisely Corollary 2.4, to the
sets Ky, , Kr, K, and then translate the result in terms of the involved functions. We
remember that with s, we denote the function A, ) given by (7).

We also recall that we set F = [fand G = [ g.

Thanks to (18), assumption (9) is equivalent to

1 1 n+s
o7 Ky < o] [(1 — ) K|+ 2|, n+s] te.
which, by (22), implies
1 1 qnts
K| < [ =2 K|+ 2[R ]+ e (32)

If ¢ is small enough, by virtue of (21) we can apply Corollary 2.4 to the sets
Ky, , Ky, Kg and from (32) we obtain that they satisfy assumption (16) with

Ewy &

5 = _ . (33)
M 1 (K| |K[ ) T My (F.Gia

’

Then, if § < e Mn+s(D_there exist a convex K C RS and two homothetic copies
K and K, of K; and K, such that |K;| = |K,| = 1 and

(Rruk,) ck (34)
and
e Un-‘rs(T)
KK‘ ‘K I?‘S_”J” . 35
KR+ [R\K <o (ML(F,G;A)) )
Remark 3.1 Since |12f| = |12g| = 1, (35) implies that the convex set K has

finite positive measure. Then it is bounded (since convex), whence (34) yields the
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boundedness of Ky and K, which in turn implies the boundedness of the functions f
and g. For simplicity, we can assume the convex K is compact (possibly substituting
it with its closure).

In what follows, we indicate vxiith (x, X) € R" x R* an element of R"T*. When
we say [see just before (34)] that Ky and K, are homothetic copies of Kr and K, we
mean that there exist zo = (xo, o) € R"™ and z; = (x1,y;) € R"™* such that

Ry = K| (Kp—20) and Ry = [K| s (Ky —21) - (36)

Clearly, without loss of generality we can take zp = 0.

To conclude the proof, we want now to show that, up to a suitable symmetriza-
tion, we can take y; = 0 (i.e. the translation of the homothetic copy K ¢ of K¢ is
horizontal) and that the convex set K given by Figalli and Jerison can be taken of
the type K, for some ;-concave function u.

For this, let us introduce the following Steiner type symmetrization in R"** with
respect to the n-dimensional hyperspace y = 0 (see for instance [8]). Let C be a
bounded measurable set in R**9, for every x € R" we set

C)={yelk : (x.y)eC}
and
re@® = (o' 1c@) " . (37)
Then we define the S-symmetrand of C as follows
SO ={E@y) eR™: CN{x=3} #0. |yl <rc(®@} . (38)

i.e. S(C) is obtained as union of the s-dimensional closed balls of center (x, 0) and
radius r¢(x), for x € R” such that C N {x = x} is nonempty. Thus, fixed X, the
(s-dimensional) measure of the corresponding section of S(C) is

H(S(O) N{x = X}) = wre(®)’ = [CR)| . (39)

We describe the main properties of S-symmetrization, for bounded measurable
subsets of R"*:

(i) if C; C G, then S(Cy) < S(C,) (obvious by definition);
(i) |C| = |S(C)| (consequence of (39) and Fubini’s Theorem) so the S-
symmetrization is measure preserving;
(iii) if C is convex then S(C) is convex (the proof is based on the BM inequality in
R* and, for the sake of completeness, is given in the Appendix).
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Now we symmetrize K, 1& £ K ¢ land then replace them with S(K), S(Kf), S(I% )l
Clearly

S(Ky) = K. (40)

S(Re) = 8 (1Kol ™ (Ky = (x1.31)) = KT (K = (01,00 (41)
Moreover, (iii) implies that S(K) is convex and by (i) and (34) we have

(S(Ky) U S(Ky)) < S(K) . (42)

The latter, (35) and Fubini’s theorem imply

Uu+.r(r)
SO\ SR + [\ SRy)| < 7 ( MG A)) SNCE)
’1+3 ki 9

Finally we notice that S(K) is a compact convex set of the desired form.

Remark 3.2 Consider the set K, associated to a function u : R" — [0, +00) by (17)
andletx € R,z = (%,0) € R"™, 1 > 0and

Hzﬂ(Ku_Z) .
Then
H =K,

[the set associated to v by (17)] where
v(x) = 1'u (x—x) . (44)
7

From the previous remarks, we see that the sets S(Kf) and 5(1% ¢) are in fact
associated via (17) to two functions f and g, such that

S(Kyp) = K;.

S(Ky) = K;., (45)
and f and g are s-equivalent to f and g respectively, in the sense of (8) with

1 —1
py = (wgF)rs e = (0sG)rts . (46)
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We notice that the support sets ¢ and €2; of f and g are given by
Qo={xeR":(x,0)€S(Kp}, Q1 ={xeR": (x,0)eSK,)}
and that they are in fact homothetic copies of the support sets of the original
functions f and g.

Now we want to find a i -concave function u such that S(K) is associated to u
via (17). We define u : R* — [0, +00) as follows

rg(x)* if (x,0) € S(K),

ulx) = 0 otherwise ,
and prove that
K, =SK). 47
First notice that
supp (u) = {x e R": (x,0) € S(K)}. (48)

Indeed we have {zeR": u(z) >0} < {xeR": (x,0) € S(K)}, whence
supp(u) = {z€R": u(z) >0} € {xeR": (x,0) € S(K)}, since the latter is
closed. Vice versa let x such that (x, 0) € S(K).

If rg(x) > 0 [see (37)] then x € supp (u) obviously. Otherwise suppose rx(x) =
0, then, by the convexity of S(K) and the fact that S(K) is not contained in {y = 0},
evidently

[(UN{x) N{z € R": rg(2) > 0}] # 0

for every neighborhood U of x, i.e. x € supp ().
By the definition of u# and (17), using (48), we get

K, = {(x.y) e R" xR*: x € supp (). [y| <u(x)"}
={(x,y) eR"xR*: (x,0) € S(K), |y < u(x)""*}
={(x.y) e R" xR’ : (x,0) € S(K), |y| < rx(x)} = S(K).
Therefore we have shown (47) and from the convexity of K follows that u is a ;-

concave function. Being K, 2 (K]: U Kg), clearly

supp () 2 (U Q).  u>=finQo  u>ginQ.
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The final estimate can be deduced from (43). Indeed, thanks to (18), we get

KM\K];‘ = K| —

K;

= ws/ (M _f‘) dx7
Rﬂ

and the same equality holds for |Ku \ K; ‘ So (43) becomes

e UII+S(T)
~-fd —8) dx <o 't :
T+ /,,(" 8 dr s o, (ML(F,G;/\))

that is the desired result.

4 A Generalization to the Case s Positive Rational

We explain how Theorem 1.3 can be generalized to a positive rational index s. Given
f + R" — [0, +00) and an integer ¢ > 0, we consider the auxiliary function
f:R"M — [0, 400) given by (24), i.e.

q
@ =F@r,....x) = [£),

j=1
withx = (x1,...,x,) € (R")?. Clearly f is bounded if and only if £ is bounded. We
study further properties of functions of type (24).

Lemma 4.1 Given an integer g > 0, and a real t > 0 let u : R" — [0, +00) be a
function of the type (24). Then u is t-concave if and only if the function u : R" —
[0, +00) is (gt)-concave.

Proof Suppose first that it’ is concave. Fixed A € (0, 1), x,x’ € R", we consider the
element of R™ which has all the ¢ components identical to (1 — A)x + Ax’. From
hypothesis it holds
171’((1 - Mx+ A, ..., —A)x+kx’) = 1-Mi'(x,...,x) +lﬁt(x/,...,x/),
i.e. [thanks to (24)]

u? (1= )x + Ax') = (1 — Du? (x) + Au? ().

Thus u?" is concave.
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Vice versa assume that »? is concave, and fix A € (0, 1), x = (x1,...,X,), X =
(... ,x;) € (R")?. We have

q q
i (1= A)x 4+ 2x) = [T (1= A+ ax) = [ [ ((1 = Ay + 2x)]
j=1 =1

q
=TT~ Du ) + Au' ()] >]‘[(1 0V (x;)

j=1 j=1

q il d
+[A ) = =D [u'e) + AT [w' )

J=1 J=1 J=1

= (1= (x) + Ai' (),

where the first inequality holds by concavity of u?, while in the second one we have
used Lemma 2.7 with a; = (1— 1)/’ (x), b = A"/ (x)). Hence u' is concave.O

Lemma 4.2 Let g > 0 integerandu = f = 0 in R". Then
i—f = u—f.

Proof The proof is by induction on the integer ¢ = 1. The case ¢ = 1 is trivial,
because in such case u# = u, f f, u—f = u—f. For the 1nduct1ve step assume

that the result is true until the index ¢, and denote with i i f u f the respective
functions of index g + 1. By the definition (24)

(5 —ff) Wt Xgg) = 0 X uCig1) — F (LX) (1),
WS xge) = U= o1 3g) - (= ) ().
These two equalities imply
(ﬁ —f:) (1 Xgt1)
U=t ) — UG g) - [ug) — f )]

i, X)) = @ X ()

_—

i) — (1) G5 i) S50
Fit(xr . xu(xgr) =@ xg) (1)
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ol f Gt oxg1) A Cgn) [ k) — T xg)]
+J~C(x1a s Xg) ["‘(xq+1) _f(xq+l)]

2 M_f(-xls---s-xq+l)s

having used the inductive hypothesis and the assumption u = f = 0. O

Corollary 4.3 Given an integern > 0, A € (0,1),s = ‘Z with p, q positive integers,
letf, g € L'(R") be nonnegative compactly supported functions such that

F:/fdx>0 and G=/gdx>0.

Let h : R" — [0, +00) satisfy assumption (19) and suppose there exists ¢ > 0
small enough such that

g q
( / hdx) < [M,,ix (F,G;A)] te (49)

Then there exist a [l) -concave function u' : R"™ —> [0, +00) and two functions

f, g :R™ — [0, +00), p-equivalent to f and g [given by (24)] in the sense of (8)
with

—1
—1
/“Lf = a)[;'q+pFn+s , Mg = a)pq+pGn+s ,

such that the following hold:

and

’ > i A &
an(” _f)dx + /;an (u - g) d-x < qu+p (M 1+ (Fq, Gq,k)) . (50)
ng+p

Proof We can assume h = h,. Since f and g are nonnegative compactly sup-
ported functions belonging to L' (R"), thus by (24) f g are nonnegative compactly
supported functions belonging to LI(R’“’) The assumption (49) is equivalent,
considering the corresponding functions f g, h:RY —s [0, 4+00) and using (25),
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to

ng—+gqs

~ ~ anqux anqux
/ hdx < (1—)&)(/ fdx) +A(/ gdx) +e
Rnq Rnq Rmq

ie. / hdx <M o (FLGT) te. (51)
Rna

We notice that the index gs = p is integer, while ng is exactly the dimension of
the space in which f, 3, h are defined. To apply Theorem 1.3, we have to verify
that f, , h satisfy the corresponding inequality (19) of index gs. Given x, . .. Xg €
supp(f), xj,...,x; € supp(g), letx = (x1,...,x,), X' = (¥},...,x;) € (R")?. By
hypothesis, we know that f, g, & satisfy (19), in particular foreveryj = 1,...,¢q

B (1= A+ 2x) = [(1 = Af )" + 25T

This implies

q [ 4 '

[Tr(0=2x+ Ax) = | TTIA = 2F )" + Agd)'"]

j=1 | /=1

1/gs 1/gs7] %
q

q
A= [Jre ] +A[]Tex :

J=1 J=1

\V

(52)

where the last inequalit}j is due to Corollary 2.8. By definition of (24), (52) means
that for every x € supp(f), X' € supp(g) we have

R ((1 =2+ Ax') = [(1 = D)2+ Ag() "

i.e. the functions f,3,h : R™M —> [0, +00) satisfy the hypothesis (19) with the

required index gs. Therefore we can apply Theorem 1.3 and conclude that there exist

1 : /. TRng : 75 :
a  -concave function u’ : R" — [0, +00) and two functions f, g, p-equivalent to

£ and g, with the required properties. The estimate (11), applied to (51), implies

Rna

~ &
'—?)d '—3) dx < C, .
W —f)dx + /R,,q(“ 8) dx a+p (M L (FQ,Gq;/\))
ng+p

|

Remark 4.4 Assume F = G and, for simplicity, suppose that f f g=2 in
Corollary 4.3 (as it is true up to a p-equivalence). Moreover assume that the -

concave function ' : R™ — [0, +00), given by Corollary 4.3, is of the type (24)
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i.e. ' = i where u : R" — [0, +00) has to be 1-concave by Lemma 4.1. In this
case Corollary 4.3 assumes a simpler statement, which naturally extends the result
of Theorem 1.3. Indeed (50), thanks to Lemma 4.2, becomes

— — &
—-fd —gdx < Cyyyyp ,
Jumras+ [ = < G (M X (F‘AG‘!;A)) .
nq+p

q q e
|: - w—f) dx} + [ g u—2g) dx} < Cugtp (anir,, (F‘I,Gq;/\))‘

(53)
Unfortunately the function ' constructed in Theorem 1.3 is not necessarily of the
desired form, that is in general we can not find a function u : R" — [0, 4+00) such
that ' = & (a counterexample can be explicitly given). Then our proof can not be
easily extended to the general case s € QQ to get (53).

5 A Stability for s > 0

To complete the paper, we give a (weaker) version of our main stability result
Theorem 1.3 which works for an arbitrary real index s > 0. For this, let us denote
by [s] the integer part of s, i.e. the largest integer not greater than s. Obviously
[s] + 1 > s = [s], whereby (by the monotonicity of p-means with respect to p, i.e.
Mp(a,b; 1) < My(a,b; 1) if p < g) foreverya,b =0, A € (0,1)

. L8 1 1 s+l
[(1 —Nas + Abs] > [(1 — M)abitt + Mﬂ”*‘] : (54)
' | qnts 1 1 n+[s]+1
[(1 — Marts + Abnﬁ] > [(1 — AN)artii+ 4 M,n+[x1+1] . (5%)

We arrive to the following corollary for every index s > 0.

Corollary 5.1 Givens > 0, A € (0,1), let f,g : R"* — [0, +00) be integrable
functions such that

fdx:/gdx:l. (56)
RV! RV!

Assume h : R" — [0, +00) satisfies assumption (30) and there exists ¢ > 0 small
enough such that

/ hdx <1 +e. (57)
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Then there exist a -concave function u : R" — [0, +00) and two functions

1
R [s]+1
f and g, ([s] + 1)-equivalent to f and g in the sense of (44) (with iy = g, =

—1
(w[s]+1) nH+) such that

and
A (u—f)dx + i (u—8) dx < Cuypg+1(9).

Proof We notice that the assumption (30) (i.e. the hypothesis of BBL of index 1),
through (54), implies that for every xy € supp(f), x; € supp(g)

)

1 1 qlsl+1
B((L= A0+ Axp) = (1= Do) + Aglan) o+ |

i.e. the corresponding hypothesis of BBL for the index [x]l+1' Therefore, thanks to
the assumptions (56) and (57), itholds [h < 1+& = M i (ff.[&gA)+e so
we can apply directly Theorem 1.3 using the integer [s] 4+ 1 as index. This concludes

the proof. O

Remark 5.2 1If we don’t use the normalization (56) and want to write a result for
generic unrelated F = [ f and G = [ g, we can notice that assumption (57) should
be replaced by

n+[s]+1

/hdx$./\/l 1 (F,G;A) +e.

On the other hand, thanks to assumption (30), we can apply Proposition 2.10 and
obtain

/ hdx > M i (F,G; 7).

Then we would have

M i (F,G;A) <M L (F,G;A) +¢.

[s]+1

The latter inequality is possible only if F and G are close to each others, thanks to
the stability of the monotonicity property of p-means, which states

Mn+[sl]+l (F.G:A) <M s (F.G: ).
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with equality if and only if F = G. In this sense the normalization (56) cannot be
completely avoided and the result obtained in Corollary 5.1 is weaker than what
desired. Indeed notice in particular that it does not coincide with Theorem 1.3 even
in the case when s is integer, since [s] + 1 > s in that case as well.
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of a GNAMPA project, and by MIUR in the framework of a PRIN 2013 project and a FIR 2013
project.

Appendix

Here we show that the S-symmetrization, introduced in Remark 3.1, preserves the
convexity of the involved set (that is the property (iii) therein).

We use the notations of Remark 3.1, in particular we refer to (37) and (38),
and remember that C is a bounded measurable set in R". We need the following
preliminary result, based on the Brunn-Minkowski inequality in R®.

Lemma 5.3 If C is a bounded convex set in R"S, then for every t € (0,1) and
every xo,x1 € R" such that C(xo) and C(x,) are nonempty, it holds

(1 —=0relxo) + tre(xy) < re((1 —Hxp + txy). (58)
Proof By definition of (37)
re(xo) = o, |1C0)[Y, re(x) = o7 IC)| Y,
thus
(1= 0)re(xo) + tre(@) = o7 V/* [(1=D[Cx) [V + ] C|'*]. (59)

Since C is convex, we notice that C(xg), C(x;) are (nonempty) convex sets in R*
such that

(1 =16)C(xg) + tC(x;) € C((1 —1)xp + tx1). (60)

Applying BM inequality (i.e. Proposition 2.1) to the sets C(xy), C(x;) C R?, (59)
implies

(1 = Dre(xo) + tre(x) < w; ' |(1 = 1)Clxg) + tC(xy)[/*
< o701 = xo 4 )| = re((1 = x4 1),

where in the last inequality we use (60). O
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Proposition 5.4 [f C is convex then S(C) is convex.

Proof Lett € (0,1), and let P = (x0,y0),Q = (x1,y1) be two distinct points
belonging to S(C), i.e. C(xy), C(x;) are nonempty sets and

ol S rc(xo), Il S rela). (61)
We prove that
(I =P +1Q = ((1 —t)xo + tx1, (1 = )yo + ty1) € S(O).

By assumptions and (60) the set C((1 —f)xy + £x;) is nonempty. Furthermore by the
triangle inequality, (61) and Lemma 5.3 we obtain

(1= 0)yo + ty1] < (1=1) [yl +1 ] < (1 =0)re(xo) +tre(n) < re((=t)xo+1x1).

Then (1 — )P 4 tQ € S(C), i.e. S(C) is convex. O
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