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Preface

Since the mid-1980s, the following volumes containing collections of papers
reflecting the activity of the Israel Seminar in Geometric Aspects of Functional
Analysis have appeared:

1983–1984 Published privately by Tel Aviv University
1985–1986 Springer Lecture Notes in Mathematics, vol. 1267
1986–1987 Springer Lecture Notes in Mathematics, vol. 1317
1987–1988 Springer Lecture Notes in Mathematics, vol. 1376
1989–1990 Springer Lecture Notes in Mathematics, vol. 1469
1992–1994 Operator Theory: Advances and Applications, vol. 77, Birkhäuser
1994–1996 MSRI Publications, vol. 34, Cambridge University Press
1996–2000 Springer Lecture Notes in Mathematics, vol. 1745
2001–2002 Springer Lecture Notes in Mathematics, vol. 1807
2002–2003 Springer Lecture Notes in Mathematics, vol. 1850
2004–2005 Springer Lecture Notes in Mathematics, vol. 1910
2006–2010 Springer Lecture Notes in Mathematics, vol. 2050
2011–2013 Springer Lecture Notes in Mathematics, vol. 2116

The first six were edited by Lindenstrauss and Milman; the seventh by Ball and
Milman; the subsequent four by Milman and Schechtman; the penultimate one by
Klartag, Mendelson, and Milman; and the last by the present editors.

As in the previous seminar notes, the current volume reflects general trends
in the study of geometric aspects of functional analysis, and many of the papers
deal with different aspects of asymptotic geometric analysis, understood in a broad
sense. A classical theme in the local theory of Banach spaces, which is well
represented in this volume, is the identification of lower-dimensional structures,
such as diameter bounds, Euclidean structure of sections, and super-Gaussian tail
decay of projections, in high-dimensional objects, such as subclasses of high-
dimensional convex bodies and other distributions. More recent applications of
high dimensionality are represented by contributions in random matrix theory,
establishing bounds on expectation of norms of matrices and their inverses, devi-

v



vi Preface

ations about the expectation, and the restricted invertibility property. Naturally, the
Gaussian measure plays a central role in many of these topics and is studied in
this volume—the recent breakthrough proof of the Gaussian correlation conjecture
is revisited, moment inequalities for log-concave random variables are obtained,
and a Poincaré-type inequality on the boundary of convex domains on Gaussian
space is derived. As expected, probabilistic tools play a significant role, and
concentration results for non-Lipschitz functions and empirical multiplier processes
are presented. The interplay of the theory with harmonic analysis is also well
apparent in several examples on large Lie groups and the discrete cube. The
classical relation to both the primal and dual Brunn–Minkowski theories is not
abscent, with contributions pertaining to the stability of Brunn–Minkowski type
inequalities and characterization of the radial sum. Related algebraic structures, such
as constructable functions of valuations, valuations on quasi-concave functions,
generalized valent functions on the complex plane, and rigidity of the chain rule,
are also discussed. Other classical topics such as the theory of type and cotype are
covered as well. All contributions are original research papers and were subject to
the usual refereeing standards.

We are grateful to Vitali Milman for his help and guidance in preparing and
editing this volume.

Tel Aviv, Israel Bo’az Klartag
Haifa, Israel Emanuel Milman
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On Repeated Sequential Closures
of Constructible Functions in Valuations

Semyon Alesker

Abstract The space of constructible functions form a dense subspace of the space
of generalized valuations. In this note we prove a somewhat stronger property that
the sequential closure, taken sufficiently many (in fact, infinitely many) times, of the
former space is equal to the latter one. This stronger property is necessary for some
applications in Alesker (Geom Funct Anal 20(5):1073–1143, 2010).

1 Main Results

The main results of this note are Theorem 1.1 and Corollaries 1.2, 1.3 below.
Corollary 1.2 says that the taken sufficiently (infinitely) many times sequential
closure of constructible functions inside the space of generalized valuations is equal
to the whole space. Corollary 1.3 says, in particular, that if a sequentially continuous
linear operator from generalized valuations on a manifold either with or without
compact support to a Hausdorff linear topological space vanishes on constructible
functions, then it vanishes. Recall that a map between two topological spaces is
called sequentially continuous if it maps convergent sequences to convergent ones.
Notice that for non-metrizable topological spaces sequential continuity of a map
does not imply topological continuity.

The reason to write this note is to correct a mistake made by the author in [7],
where it was wrongly claimed that several operations, such as pull-back, push-
forward, and product on generalized valuations with given wave front sets are
topologically continuous, while they satisfy, in fact, only a weaker property of
sequential continuity. This property comes from the fact that operations of pull-back,
push-forward, and product on generalized functions or distributions with given wave
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2 S. Alesker

front sets are only sequentially continuous in appropriate (so called Hörmander)
topology,1 but in general they are not topologically continuous, see Sect. 3.1 in [10].

Let X be either smooth manifold or real analytic manifold. It will always be
assumed to be countable at infinity, i.e. X can be presented as a countable union
of compact subsets. We will denote by V1

c .X/ and V1.X/ the space of smooth
valuations on X with and without compact support respectively. Also we denote
by V�1

c .X/ and V�1.X/ the spaces of generalized valuations with and without
compact support respectively. We refer to [7] for the definitions of all these spaces
and further details (see also [6]). For a compact subset Z � X we denote by V�1

Z .X/
the space of generalized valuations with support contained in Z; clearly it is a closed
subspace of V�1.X/. We equip V�1

Z .X/ with the weak topology induced from
V�1.X/. We denote by V�1

c .X/ the space of all generalized compactly supported
valuations. We equip it with the topology of (strict) inductive limit:

V�1
c .X/ D lim!

Z compact
V�1
Z .X/:

Since all our manifolds are countable at infinity, the limit can be made countable.
Let X be a smooth manifold (not necessarily real analytic). Let P � X be

a compact submanifold with corners. Then P defines a generalized valuation as
follows. By definition, generalized valuations are continuous linear functionals on
V1
c .X/. Then P defines a linear functional Œ� 7! �.P/�. We denote this generalized

valuation by „1.1P/. We denote by F.X/ the span over C of all generalized
valuations of the form „1.1P/ where P � X is a compact submanifold with
corners. Clearly F.X/ is a subspace of V�1

c .X/. Furthermore, for a closed subset
Z � X we denote by FZ.X/ the span over C of generalized valuations of the form
„1.1P/ where P � Z is a compact submanifold with corners.

Let now X be a real analytic manifold. We denote by Fan.X/ the space of so
called C-valued constructible functions. Let us remind the definition of this notion
following [5]. We refer to §8.2 in [12] for the definition and basic properties of
subanalytic sets (see also Sect. 1.2 in [5]). An integer valued function f WX ! Z on
a real analytic manifold is called constructible if it satisfies:

1. for every m 2 Z the set f�1.m/ is subanalytic;
2. the family of sets f f�1.m/gm2Z is locally finite.

Now a C-valued function f WX ! C is called constructible if f is a finite linear
combination with C-coefficients of integer valued constructible (in the above sense)
functions. Furthermore, for a closed subset Z � X we denote by Fan

Z .X/ the
subspace of Fan.X/ consisting of functions supported in Z.

For a real analytic manifoldX there is a canonical injective imbeddingFan.X/ !
V�1.X/; see Sect. 8.1 in [5].

1This fact was pointed out to the author by C. Brouder in September 2013. I am very grateful to
him for this remark.
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In order to formulate our main results, let us remind the notion of a sequential
closure of transfinite order of a set. This notion was already known to S. Banach,
see p. 213 in his classical book [9]. Let X be a topological space. Let A � X be a
subset. A sequential closure of A is defined by

scl.A/ D fx 2 X j 9 sequence faig � A s.t. ai ! xg:

It is clear thatA � scl.A/, and if X is a linear topological space and A � X is a linear
subspace then scl.A/ is a linear subspace. A subset A � X is called sequentially
closed if for any converging in X sequence fxig1

iD1 � A its limit belongs to A;
equivalently scl.A/ D A. Clearly any closed subset is sequentially closed, but the
converse is not true in general. If X is not metrizable, scl.A/ may not be closed or
even sequentially closed, i.e. scl.scl.A// ¤ scl.A/. We can repeat the procedure of
taking sequential closure any number of times, even any infinite number of times
corresponding to any ordinal. More precisely, for any ordinal � one can define by
transfinite induction the subset scl�.A/ as follows:

• if � D 0 then scl0.A/ D A;
• if � D � C 1 then scl�.A/ D scl.scl� .A//;
• if � is a limit ordinal then scl�.A/ D [�<�scl� .A/.

Furthermore there exists an ordinal � such that for any �0 > � one has scl�
0

.A/ D
scl�.A/. We will denote the latter subset by scl�.A/. It is also clear that scl�.A/ is
sequentially closed, i.e. scl.scl�.A// D scl�.A/. Clearly if X is a linear topological
space and A � X is a linear subspace then scl�.A/ is a linear subspace for any �.

Here is the main result of the note.

Theorem 1.1 Let X be a real analytic (resp. smooth) manifold countable at infinity.
Let Z1 � X be a compact subset. Let Z2 be a compact neighborhood of Z1. Then
in the above notation the subspace scl�.Fan

Z2
.X// � V�1

c .X/ (resp. scl�.FZ2 .X// �
V�1
c .X/) contains V�1

Z1
.X/.

Let us deduce two immediate corollaries.

Corollary 1.2 Let X be a real analytic (resp. smooth) manifold. Then in the above
notation scl�.Fan.X// D V�1.X/ (resp. scl�.F.X// D V�1.X/).

Proof of Corollary 1.2 By Theorem 1.1 scl�.Fan.X// (resp. scl�.F.X//) contains
V�1
c .X/. But V�1

c .X/ is sequentially dense in V�1.X/ since X is assumed to be
countable at infinity. Q.E.D.

Corollary 1.3 Let X be a real analytic (resp. smooth) manifold countable at infinity.
Let RWV�1.X/.or V�1

c .X// ! E be a linear operator into a Hausdorff topological
vector space E. Assume that R is sequentially continuous, i.e. R maps convergent
sequences in V�1.X/.or V�1

c .X// to convergent sequences in E. Let L � E be
a sequentially closed subset. Then if R.Fan.X// � L (resp. R.F.X// � L) then
the whole image of R is contained in L. In particular if R.Fan.X// D 0 (resp.
R.F.X// D 0) then R � 0.
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Proof By transfinite induction R.scl�.Fan.X/// � L (resp. R.scl�.F.X// � L/). In
all cases (smooth or real analytic X, compact or non-compact support) scl�.F.X//
is equal to the whole space. Q.E.D.

Remark 1.4 Corollary 1.3 is used in [7] in the proof of the inversion formula for the
Radon transform on valuations with respect to the Euler characteristic. Khovansky
and Pukhlikov [13] proved it for constructible functions, and then one extends it to
valuations using sequential continuity with the use of Corollary 1.3.

2 Proofs

The two cases of real analytic and smooth manifold X are almost identical and will
be treated simultaneously. Let us remind some notation.

For a finite dimensional real vector space W we denote by PC.W/ the so called
oriented projectivization of W, i.e. the manifold of oriented lines passing through
the origin. For a smooth manifold X we denote by PX the oriented projectivization
of the cotangent bundle T�X, i.e. the fiber of PX over X is equal to PC.T�

x X/.
For either smooth or real analytic manifold X and for sufficiently nice subsets

P � X (i.e. compact submanifolds with corners or compact subanalytic subsets) we
denote by N.P/ the normal cycle of P; in general it is a current on PX , see Sect. 1.5
in [7] for the easier case of compact submanifolds with corners and [11] for the case
of subanalytic sets.

For a finite dimensional real vector space V we denote by K.V/ the family
of all convex compact non-empty subsets of V , and by K1.V/ the subfamily of
compact convex sets with non-empty interior and infinitely smooth boundary with
everywhere positive Gauss curvature.

Lemma 2.1 Let � be an infinitely smooth measure on a vector space V. Let A 2
K1.V/. Then K 7! �.K C A/ is a smooth valuation.

Proof Consider the map

pWV � PC.V�/ � Œ0; 1� ! V

given by .x; n; t/ D x C trhA.n/, where hAWV� ! R is the supporting functional of
A. Since hA is 1-homogeneous, its gradient rhA is 0-homogeneous, and hence can
be considered as a map rhAWPC.V�/ ! V . Since A 2 K1.V/ the latter map is
infinitely smooth.

We may and will assume that 0 2 int.A/; the general case reduces to this one
by translation. In this case the restriction of p to N.K/ � Œ0; 1� is a homeomorphism
onto the closure of .K C A/nK. Hence

�.K C A/ D �.K/C
Z
N.K/�Œ0;1�

p��: (1)
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Let qWV � PC.V�/ � Œ0; 1� ! V � PC.V�/ is the obvious projection. Then by (1)
we have

�.K C A/ D �.K/C
Z
N.K/

q�p��:

Obviously q�p�� is a smooth .dimV � 1/-form on V � PC.V�/. This proves the
lemma. Q.E.D.

Lemma 2.2 Let Z1 � V be a compact set, A 2 K1.V/, and Z2 be a compact
neighborhood of Z1 � A. Let � be a smooth measure with supp.�/ � Z1. Then

(1) one has

�.� C A/ D
Z
V
1x�A � d�.x/ (2)

as generalized valuations;
(2) �.� C A/ belongs to V1

Z2
.V/ \ scl�.FZ2 .V//.

(3) If, in addition, A is subanalytic then �.�CA/ belongs to V1
Z2
.V/\scl�.Fan

Z2
.V//.

Proof First notice that �.� C A/ is a smooth valuation by Lemma 2.1.
To prove part (1) it suffices to apply both sides to an arbitrary smooth compactly

supported valuation and to prove that the result is the same. It suffices to apply
them to such valuations of the form � D !.� C B/ where ! is a smooth compactly
supported measure and B 2 K1.V/, since linear combinations of such valuations
are dense in V1.V/ (this easily follows from Corollary 3.1.7 in [3]).

Apply the left hand side of (2) to �:

< �.� C A/; � > D .� � !/.�.V/C .A � B//

FubiniD
Z

d�.x/!.x � A C B/;

where�WV ! V � V is the diagonal imbedding given by �.x/ D .x; x/.
Apply the right hand side of (2) to �:

<

Z
d�.x/1x�A; � > D

Z
d�.x/ � �.x � A/ D

Z
d�.x/ � !.x � A C B/

D < �.� C A/; � > :

Thus part (1) is proved.
Let us prove part (3); part (2) can be proven along exactly the same lines. It

remains to show that �.� C A/ 2 scl�.Fan
Z2
.V//. We use the equality (2) and replace

the integral in the right hand side by a Riemann sum corresponding to a subdivision
of V whose diameter will tend to 0. Let us show that these Riemann sums converge
to the integral in the weak topology on V�1.V/. Let fCN

i g1
ND1 be a sequence of
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subdivisions whose diameter tends to 0 as N ! 1. Choose a point xNi 2 CN
i . Apply

the corresponding Riemann sum to �:

<
X
i

�.CN
i /1xNi �A; � > D

X
i

�.CN
i /�.x

N
i � A/ !

N!1

Z
d�.x/�.x � A/

D <

Z
d�.x/1x�A; � >;

where we have used the fact that continuous scalar valued functions are Riemann
integrable, to the function Œx 7! �.x � A/�. It only remains to notice that the i-th
Riemann sum belongs to Fan

Z2
.V/ for i � 1.Q.E.D.

Lemma 2.3 Let Z1 � V be a compact set. Let A1;A2 2 K1.V/. Let Z2 be a
compact neighborhood of Z1 � A1. Let �1; �2 be smooth measures on V such that
supp.�1/ � Z1. Let �i WD �i.� C Ai/, i D 1; 2. Then

�1 � �2 2 V1
Z2 .V/ \ scl�.FZ2 .V//:

If, in addition, A1;A2 are subanalytic then �1 � �2 2 V1
Z2
.V/\ scl�.Fan

Z2
.V//:

Proof We consider the subanalytic case only since the two cases are essentially the
same. First let us show that in the space V�1.V/ (or, equivalently, in V�1

c .V/) one
has

�1 � �2 D
Z Z

d�1.x/d�2.y/1.x�A1/\.y�A2/; (3)

where the integral is understood in the sense the limit of Riemann sums converging
in the weak topology. Again we have to show that if we apply the two sides on the
same � 2 V1

c .V/ then we get the same result. It suffices to choose � of the form
� D !.�CC/, where C 2 K1.V/, and ! is a smooth compactly supported measure
on V . Applying the right hand side of (3) on such � we get

<

Z Z
d�1.x/d�2.y/1.x�A1/\.y�A2/; � > (4)

D
Z Z

d�1.x/d�2.y/�..x � A1/\ .y � A2// (5)

D
Z Z

d�1.x/d�2.y/! .Œ.x � A1/\ .y � A2/�C C/ : (6)

Now let us apply to � the left hand side of (3) (in the computation � is the
diagonal map V ! V � V � V given by x 7! .x; x; x/):

< �1 � �2; � >D .�1 � �2 � �/.V/ (7)
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D .�1 � �2 � !/.�.V/C .A1 � A2 � C// (8)

FubiniD
Z Z

d�1.x/d�2.y/!.Œ.x � A1/\ .y � A2/�C C/ D .6/: (9)

Thus equality (3) is proven. It remains to show that the right hand side of (3)
belongs to scl�.Fan

Z2
.V//. To do that, we will approximate the double integral by

Riemann sums belonging to Fan
Z2
.V/ which converge to the double integral in the

weak topology on V�1.V/.
Consider a sequence fCN

i g1
ND1 of subdivisions of V with diameter tending to 0 as

N ! 1. Choose a point xNi 2 CN
i . For the corresponding Riemann sum

<
X
i;j

�1.C
N
i /�2.C

N
j /1.xNi �A1/\.xNj �A2/

; � > (10)

D
X
i;j

�1.C
N
i /�2.C

N
j /�..x

N
i � A1/\ .xNj � A2//: (11)

Similarly for the double integral we have

<

Z Z
d�1.x/d�2.y/1.x�A1/\.y�A2/; � > (12)

D
Z Z

d�1.x/d�2.y/ � �..x � A1/ \ .y � A2//: (13)

We see that (11) is a Riemann sum for (13), and we have to show that the former
converges to the latter. In other words we have to show that the function V �V ! R

given by .x; y/ 7! �..x � A1/\ .y � A2// is Riemann integrable.
Notice that the above function does not have to be continuous. But obviously

this function is bounded. By the Lebesgue criterion of Riemann integrability (see
e.g. [15], Sect. 11.1) it suffices to show that the above function is continuous almost
everywhere. For that it suffices to prove that the function „WV � V ! K.V/ [ f;g
given by „.x; y/ D .x � A1/ \ .y � A2/ is continuous almost everywhere in the
Hausdorff metric on K.V/.

To prove the last statement let us consider a closed convex set M � V � V � V
defined by

M WD f.x; y; z/j x � z 2 A1; y � z 2 A2g:

Let qWV � V � V ! V � V be the projection onto the first two copies of V . Then
clearly

q�1.x; y/\ M D .x � A1/\ .y � A2/ D „.x; y/;
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and the restriction of q to M is proper. Applying Theorem 1.8.8 of [14],2 it follows
that „ is continuous outside of the boundary of the set

q.M/ D f.x; y/j.x � A1/\ .y � A2/ ¤ ;g D f.x; y/jx � y 2 A1 � A2g:

From this description it is clear that q.M/ is a closed convex set. Its boundary
always has Lebesgue measure zero. Finally let us notice that the N-th Riemann sum
belongs to Fan

Z2
.V/ for N � 1. Q.E.D.

In [4] we have defined a canonical filtration on V1.Xn/ by closed subspaces

V1.Xn/ D W1
0 .X

n/ 	 W1
1 .X

n/ 	 � � � 	 W1
n .X

n/:

Here for a closed subset Z � X we will also denote by W1
i;Z WD W1

i \ V1
Z .X/.

Lemma 2.4 Let V be an n-dimensional real vector space. Let Z1 � V be a compact
domain with infinitely smooth boundary, and Z2 be a compact neighborhood of Z1.
The image of W1

i;Z1
\ scl�.Fan

Z2
.V// (resp. W1

i;Z1
\ scl�.FZ2 .V//) in W

1
i;Z1
=W1

iC1;Z1 '
C1
Z1
.V;Val1i .V//3 is a dense linear subspace.

Proof Let us consider the real analytic case only; the smooth case is very similar.
Let us fix A 2 K1.V/. Let Q�".K/ WD vol.K C "A/. Define

�.K/ WD iŠ

nŠ

dn�i

d"n�i

ˇ̌
"D0 Q�".K/ D V.KŒi�;AŒn � i�/:

Clearly � 2 W1
i . Now let  D !.� � B/, where B 2 K1.V/ such that 0 2 B,

and ! is a smooth compactly supported measure on V such that supp.!/C B � Z1.
Thus supp. / � Z1. By Lemma 2.3 for small " > 0

 � Q�" 2 V1
Z1 .V/\ scl�.Fan

Z2 .V//:

Hence also  �� 2 V1
Z1
.V/\ scl�.Fan

Z2
.V//. But since � 2 W1

i and V1.V/ �W1
i �

W1
i , we deduce that

� �  2 W1
i;Z1 \ scl�.Fan

Z2 .V//: (14)

2This theorem says that if K; L 2 K.V/ cannot be separated by a hyperplane (i.e. there is no
hyperplane such that K and L are contained in different closed subspaces defined by the hyperplane)
and if convex compact sets Ki ! K and Li ! L in the Hausdorff metric as i ! 1, then
Ki \ Li ! K \ L.
3This canonical isomorphism was proved in Lemma 5.1.3(1) of [5]. C1

Z1 .V;Val
1

i .V// denotes the
space of smooth functions on V with support in Z1 and with valued in the Fréchet space Val1i .V/.
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Next let us compute the image of this valuation in C1
Z1
.V;Val1i .V//. We have

.� �  /.K/ D iŠ

nŠ

dn�i

d"n�i
j"D0.! � vol/.�.K/C .B � "A//:

For any valuation � 2 W1
i , K 2 K.V/; x 2 V one has

�.x C 	K/ D O.	i/ as 	 ! C0I

this was the definition of W1
i in [3], beginning of Sect. 3 (where it was denoted by

Wi).
For such a �, its image N� in W1

i =W
1
iC1 D C1.V;Val1i .V// is computed as

follows:

. N�.x//.K/ D lim
	!C0

1

	i
�.x C 	K/:

The limit necessarily exists and the map N� takes values in Val1i .V/.
For � D � �  as above we have

� �  .x/.K/ D 1

nŠ

@n

@	i@"n�i

ˇ̌
	D"D0.! � vol/.�.	K C x/C .B � "A// (15)

D 1

nŠ

@n

@	i@"n�i

ˇ̌
	D"D0.! � vol/.�.	K/C ..x C B/ � .x C "A///

(16)

D 1

nŠ

@n

@	i@"n�i

ˇ̌
	D"D0..T�x/�! � vol/.�.	K/C .B � "A//; (17)

where .T�x/� denotes the push-forward on measures under the shift by �x, namely
Œy 7! y � x�. We will need a lemma.

Lemma 2.5 Let � be a smooth measure on an n-dimensional vector space V. Let
A;B;K 2 K.V/. Define the function of .	; "/ 2 Œ0;1/2 by

F�.	; "/ WD .� � vol/.�.	K/C .B � "A//:

Then the following holds:

(1) F� 2 C1.Œ0;1/2/:

(2) For 0 
 i 
 n define

h�;i.	/ WD iŠ

nŠ

@n�i

@"n�i

ˇ̌
"D0F�.	; "/:

Then h�;i.	/ D O.	i/ as 	 ! C0.
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(3) lim
	!C0

h�;i.	/
	i

D �.B/ � V.KŒi�;AŒn � i�/.

Let us postpone the proof of Lemma 2.5 and finish the proof of Lemma 2.4. By
Lemma 2.5 and (17) we have

� �  .x/.K/ D ..T�x/�!/.B/ � V.KŒi�;AŒn � i�/:

To summarize, we have proven so far the following: any smooth Val1i .V/-valued
function on V of the form

x 7! !.x C B/ � V.�Œi�;AŒn � i�/

belongs to the image of W1
i;Z1

\scl�.Fan
Z2
.V// in W1

i;Z1
=W1

iC1;Z1 , where A;B 2 K1.V/
such that 0 2 B, and ! is a smooth measure on V such that supp.!/ C B � Z1.
Now let us show that the closure of such functions in the usual Fréchet topology on
C1
Z1
.V;Val1i .V// is equal to the whole space.

Let B be the unit Euclidean ball in V . For any l 2 N the function
!.xC 1

l B/

vol. 1l B/
�

V.�Œi�;AŒn � i�/ belongs to the image of W1
i \ scl�.Fan

Z2
.V//. However obviously

!.x C 1
l B/

vol. 1l B/
! !

vol
.x/ in C1

Z1 .V/ as l ! 1:

This implies that for any smooth function hWV ! C, any subanalyticA 2 K1.V/
with supp.h/ � int.Z1/ the function

Œx 7! h.x/ � V.�Œi�;AŒn � i�/� (18)

belongs to the closure of the image of W1
i;Z1

\ scl�.Fan
Z2
.V//. Since i-homogeneous

mixed volumes are dense in Val1i .V/ by Alesker [2] we deduce that for any h 2
C1
Z1
.V/ and any 
 2 Val1i .V/ the Val1i .V/-valued function h˝
 lies in the closure

of the image of W1
i;Z1

\ scl�.Fan
Z2
.V// (here it is the only place where we have used

that the boundary of Z1 is smooth). But linear combinations of such elements are
dense in C1

Z1
.V;Val1i .V//. Q.E.D.

Proof of Lemma 2.5

(1) This was proved in [1] in a more general form.
(2) We have

F�.	; "/ D
Z
y2	KC"A

�.Œ	K \ .y � "A/�C B/dvol.y/: (19)

Obviously there exists a constant C such that for any 	; " 2 Œ0; 1�

j�.Œ	K \ .y � "A/�C B/j 
 C:
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Hence for 	; " 2 Œ0; 1� one has

jF�.	; "/j 
 Cvol.	K C "A/ D
nX

jD0
Cj"

j	n�j;

where Cj are some constants. This implies that the Taylor expansion of F� at
.0; 0/ does not contain monomials "a	b with aC b < n. This implies part (2) of
the lemma.

(3) It was shown (in a more general form) in [1] that if a sequence f�Ng � C1
converges to � in C1 (i.e. uniformly on compact subsets of V with all
derivatives) then

F�N ! F� in C1.Œ0;1/2/ as N ! 1:

Hence to prove part (3) of the lemma it suffices to assume that � has a
polynomial density on V . We may and will assume that

� D P � dvol;

where P is a homogeneous polynomial of certain degree d. Define the function

ˆ.	; "; ı/ WD .� � vol/.�.	K/C .ıB � "A//; 	; " � 0:

By [13] (see also [1]) this function ˆ is a polynomial in 	; "; ı � 0. Obviously
it is homogeneous of degree d C 2n. Let us write it

ˆ.	; "; ı/ D
X
p;q;r

ˆpqr	
p"qır;

where p; q; r must satisfy

p C q C r D d C 2n: (20)

Furthermore F� .	; "/ D ˆ.	; "; 1/ is a polynomial, hence let us write it

F� .	; "/ D
X
p;q

Fpq	
p"q:

For the quantity we have to compute we clearly have

lim
	!C0

h�;i.	/

	i
D
 
n

i

!�1
Fi;n�i: (21)
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The identity F� .	; "/ D ˆ.	; "; 1/ immediately implies

Fi;n�i D ˆi;n�i;dCn: (22)

To compute the last expression, let us write

ˆ.	; "; ı/ D
Z
y2	KC"A

�.Œ	K \ .y � "A/�C ıB/dvol.y/

D
Z
y2	KC"A

�
ıdCn�.B/C . lower degree terms in ı/

�
dvol.y/

D �.B/ � vol.	K C "A/ � ıdCn C . lower degree terms in ı/:

This immediately implies that

ˆi;n�i;dCn D
 
n

i

!
�.B/V.KŒi�;AŒn � i�/: (23)

Lemma follows from (21)–(23). Q.E.D.

Lemma 2.6 Let X be a smooth manifold and Z � X be a compact subset. Let
Z0 � X be a compact neighborhood of Z. Then for any element  2 V�1

Z .X/
there exists a sequence of elements from V1

Z0 .X/ converging to  in the topology of
V�1
c .X/ (or equivalently in the weak topology on V�1.X/).

Proof

Step 1. Let us prove the statement for X D Rn. For this let us choose a sequence
f
ig of smooth non-negative compactly supported measures on the Lie group
Aff .Rn/ of affine transformations of Rn such that

R
Aff .Rn/ 
i D 1 and suppf
ig !

fidg in Hausdorff metric on Aff .Rn/. Define

 i WD
Z
g2Aff .Rn/

g�. / � d
i.g/:

In the proof of Lemma 8.2 in [8] it was shown that  i 2 V1.X/ for all i and
 i !  in V�1.X/. It is also clear that for i � 1 one has supp. i/ � Z0. This
implies the lemma for X D Rn.
Step 2. Assume now that X is a general smooth manifold. Let us choose a finite
open covering fV˛g˛ of Z and open subsets U˛ such that V˛ � U˛ � Z0, the
closures NU˛ are compact and are contained in the interior of Z0, and there exist
diffeomorphisms U˛ Q!Rn.
Let us choose a partition of unity in valuations subordinate to the covering
fV˛g˛ [ fXnZg; we denote it by f�˛g˛ [ f�g where supp.�˛/ � V˛; supp .�/ �
XnZ, and

P
˛ �˛ C � D �, where � is the Euler characteristic. Such partition of
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unity exists by Alesker [5], Proposition 6.2.1. Since supp. / � Z we have

 D
X
˛

 � �˛:

Since  � �˛ has compact support contained in V˛ � U˛ and U˛ ' Rn, Step 1
implies that there exists a sequence f ˛;igi � V1

NV˛ .X/ converging to  � �˛ in the
topology of V�1.X/ as i ! 1. Then the sequence

 i WD
X
˛

 ˛;i

satisfies the proposition. Q.E.D.

Proof of Theorem 1.1 We consider only the real analytic case; the smooth case is
almost the same. We have to show that V�1

Z1
.X/ � scl�.Fan

Z2
.X// for a real analytic

manifold X. Let us fix a compact neighborhood Z0
1 of Z1 with infinitely smooth

boundary contained in the interior of Z2. By Lemma 2.6 for every element of
V�1
Z1

.X/ there exists a sequence of elements of V1
Z0

1
.X/ converging to this element

in the weak topology on V�1.X/. Hence it suffices to show that

V1
Z0

1
.X/ � scl�.Fan

Z2
.X//: (24)

Notice that V1
Z0

1
.X/ \ scl�.Fan

Z2
.X// is a closed subspace of V1

Z0

1
.X/ since V1

Z0

1
.X/ is

metrizable.
First let us prove (24) for X being a vector space. If this is not true then there

exists a unique integer 0 
 i 
 n such that W1
iC1;Z0

1
\ scl�.Fan

Z2
.X// D W1

iC1;Z0

1

and W1
i;Z0

1
\ scl�.Fan

Z2
.X// ¤ W1

i;Z0

1
. In this case the image of W1

i;Z0

1
\ scl�.Fan

Z2
.X//

in W1
i;Z0

1
=W1

iC1;Z0

1
is a closed subspace. However by Lemma 2.4 this image is dense.

Hence W1
i;Z0

1
\scl�.Fan

Z2
.X// D W1

i;Z0

1
which is a contradiction. This proves (24) when

X is a vector space.
Let us prove (24) for a general manifold X. Let us fix a finite open covering

fU˛g of Z0
1 such that the closures NU˛ � int.Z2/ and each U˛ is real analytically

diffeomorphic to Rn. By Proposition 6.2.1 of [5] one can construct a partition of
unity in valuations subordinate to this covering, namely there exist valuations f�˛g
such that supp.�˛/ � U˛ and in a neighborhood of Z0

1 one has
P

˛ �˛ D � (here �
is the Euler characteristic). Any  2 V1

Z0

1
.X/ can be written  D P

˛ �˛ � . Let us

choose compact sets Z˛;2 � U˛ such that supp.�˛/ � int.Z˛;2/; hence Z˛;2 � Z2.
Since supp.�˛ � / � int.Z˛;2/, by what we have shown for a vector space, we have

�˛ �  2 scl�.Fan
Z˛;2
.U˛//:

But obviously the extension by zero gives the natural closed imbedding
scl�.Fan

Z˛;2
.U˛// � scl�.Fan

Z2
.X//. Hence  2 scl�.Fan

Z2
.X//. Q.E.D.
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Orbit Point of View on Some Results
of Asymptotic Theory; Orbit Type and Cotype

Limor Ben-Efraim, Vitali Milman, and Alexander Segal

Abstract We develop an orbit point of view on the notations of type and cotype
and extend Kwapien’s theorem to this setting. We show that such approach provides
an exact equality in the latter theorem. In addition, we discuss several well known
theorems and reformulate them using the orbit point of view.

1 Introduction

Let X D .Rn; jj � jj/ be an n-dimensional normed space. For a given integer k define
by ˛.k/; ˇ.k/ the smallest possible constants, satisfying

0
@E

�����
kX

iD1
�ixi

�����
2
1
A
1=2


 ˛.k/

 
kX

iD1
jjxijj2

!1=2

and

0
@E

�����
kX

iD1
�ixi

�����
2
1
A
1=2

� ˇ�1.k/
 

kX
iD1

jjxijj2
!1=2

for any fxigk1 � X and �i independent normalized Gaussian random variables. We
say that X has type 2 ˛ where ˛ D supk ˛.k/. Similarly we say that X has cotype 2
constant ˇ where ˇ D supk ˇ.k/. By a result of Tomczak-Jaegermann (see [11]), it
is known that ˛ 
 2˛.n/ and ˇ 
 2ˇ.n/. Thus, up to a universal constant we may
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always deal with n-tuples in the definition of type and cotype for n-dimensional
spaces. Both notions play an important role in the study of Banach spaces and local
theory.

Remark 1.1 In this note we consider only Gaussian type and cotype constants, and
we do not deal with Rademacher type and cotype (see [6, 7, 11]).

Before we discuss a few examples, recall that given two n dimensional normed
spaces X;Y, the Banach Mazur distance between X;Y is

d.X;Y/ D supfjjTjjjjT�1jj W T W X ! Y is an isomorphismg:

Whenever Y is a Euclidean space, we will denote d.X;Y/ by dX . The next theorem,
due to Kwapien, provides an upper bound for dX through type 2 and cotype 2
constants.

Theorem 1.2 (Kwapien [4]) Let X be a (finite or infinite) Banach space. Then, X
is isomorphic to a Hilbert space if and only if it has a finite type 2 and a finite cotype
2 constants. Moreover, in this case we have dX 
 ˛ˇ, where ˛ is the type 2 constant
and ˇ is the cotype 2 constant of X.

It can be shown that the bound in Theorem 1.2 is not optimal. That is, we can find a
space X such that ˛ˇ is of order n, which is clearly not optimal since dX is always
bounded by

p
n (John’s Theorem). In this note we present a new point of view

on the above result, which provides us an equality instead of an upper bound in
Theorem 1.2. To this end, we present the notion of orbits in normed spaces.

Definition 1.3 Let x D .x1; : : : xk/ � X. We say that a k-tuple y D .y1; : : : yk/
belongs to the orbit set of x if there exists U D .uij/ 2 O.k/ such that

yi D
kX

jD1
uijxj:

The set of all such k-tuples will be denoted by O.x/ D fUx W U 2 O.k/g and called
the orbit of x.

Using this notion, we may define the Gaussian type 2 and cotype 2 of an orbit x as
the smallest constants ˛.x/; ˇ.x/ such that

0
@E

�����
kX

iD1
�iyi

�����
2
1
A
1=2


 ˛.x/

 
kX

iD1
jjyijj2

!1=2

and
0
@E

�����
kX

iD1
�iyi

�����
2
1
A
1=2

� ˇ�1.x/
 

kX
iD1

jjyijj2
!1=2
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for all y 2 O.x/. Clearly, ˛.x/ D ˛.y/ and ˇ.x/ D ˇ.y/ for all y 2 O.x/, so the
constants are well defined. Denote

g.x; �/ D E

�����
kX

iD1
�ixi

�����
2

;

where � D f�igk1. Due to the rotation invariance of the standard Gaussian measure
we have that if y 2 O.x/ then g.x; �/ D g.y; � 0/, where � 0 D f� 0

i gk1 are independent
Gaussian variables, which are also independent of � (see e.g. [9, Chap. 2, p. 13]).
Hence,

˛.x/ˇ.x/ D inf

8<
:
 Pk

iD1 jjyijj2Pk
iD1 jjzijj2

!1=2
W y; z 2 O.x/

9=
; (1)

Using the notion of orbits it is possible to write the exact formula for dX in
Theorem 1.2:

Theorem 1.4 For any n dimensional normed space X we have

dX D supf˛.x/ˇ.x/jx D .x1; : : : xk/; k D 1; 2; : : :g:

Moreover,

dX 
 4 supf˛.x/ˇ.x/ W x D .x1; : : : xn/g:

Of course, the first formula is correct for infinite dimensional spaces as well.

Remark 1.5 The question of the exact formula for dX was also considered in the
Master Thesis of Limor Ben-Efraim, under the supervision of V. Milman (not
published).

Remark 1.6 It was noted by Pivovarov (private communication, 2016) that Theo-
rem 1.4 easily implies that dX 
 4

p
n.

In the spirit of Theorem 1.4, it is possible to reformulate several well known
theorems regarding embeddings of lk1 and lk1 in X, such as Alon-Milman’s theorem
(see [1]) and Elton’s theorem (see [2]). However, since those theorems involve
Rademacher averaging instead of Gaussian averaging, the results will not be precise,
as those averages are not equivalent in the general case.

However, the following two theorems may be reformulated in an exact way:

Theorem 1.7 (Figiel-Lindenstrauss-Milman [3]) Let X be an n dimensional
normed space with the unit ball K. Let x D .x1; x2; : : : xn/ be an orbit with cotype
2 constant ˇ.x/. If x is the orthogonal basis of the maximal volume ellipsoid of K
then X contains a subspace of dimension k D cnˇ.x/�2 that is 2-isomorphic to lk2,
for some universal constant c > 0.
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Theorem 1.8 ([6, Theorem 9.7]) Let X be an n-dimensional normed space and let
x D .x1; : : : ; xk/ � X be a k-tuple for some k 
 n. If O.x/ has a 2-type constant ˛,
then the space E D spanfxigk1 contains a space of dimension m D �

c˛2
�
which is

2-isomorphic to lm2 , for some absolute constant c > 0.

It may be an interesting question to analyze the Maurey-Pisier lemma for
equivalence of Rademacher and Gaussian averages (see [8, Proposition 3.2]) in this
context. However, one should consider a general orbit of cotype q which is not done
in this note.

2 Proof of the Extended Kwapien Theorem

Proof Before we proceed with the proof of Theorem 1.4, let us recall a few
definitions and facts.

Definition 2.1 An operator u W X ! Y factors through a Hilbert space if there is
a Hilbert space H and operators B W X ! H and A W H ! Y such that u D AB.
Denote by 2.X;Y/ the space of all such operators, equipped with the norm

�2.u/ D inffkAkkBkg

where the infimum is taken over all factorizations of u.

A well known theorem by Lindenstrauss and Pelczynski (see [5], [7, Theo-
rem 2.4], [11, Proposition 13.11]) provides a necessary and sufficient condition
when an operator u belongs to 2.X;Y/:

Theorem 2.2 u W X ! Y belongs to 2.X;Y/ if and only if there exists a constant
C such that for all n and all n � n orthogonal matrices .aij/ we have,

0
B@

nX
iD1

������
nX

jD1
aijuxj

������
2
1
CA
1=2


 C

 
nX

iD1
kxik2

!1=2

for all x;1 : : : xn 2 X. Moreover, �2.u/ coincides with the smallest possible constant
C satisfying the above inequality.

Let x D .xj/ be a k-tuple of elements of X and let .aij/ 2 O.k/. By the definition
of Gaussian orbit cotype of x we have

ˇ.x/�1

0
B@

kX
iD1

������
kX

jD1
aijxj

������
2
1
CA
1=2




0
B@E

������
kX

iD1
�i

kX
jD1

aijxj

������
2
1
CA
1=2

: (2)
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By the definition of Gaussian orbit type we have

g.x; �/1=2 
 ˛.x/

 
kX

iD1
kxik2

!1=2
: (3)

However, since g.x; �/ D g.y; �/ where

yi D
kX

jD1
aijxj;

we get that

0
B@

kX
iD1

������
kX

jD1
aijxj

������
2
1
CA
1=2


 ˛.x/ˇ.x/

 
kX

iD1
kxik2

!1=2
: (4)

Thus, the condition of Theorem 2.2 is satisfied with the constant

C D sup
x

f˛.x/ˇ.x/g:

Clearly, ˇ.x/ and ˛.x/ are the smallest possible numbers satisfying (2) and (3).
Therefore, supxf˛.x/ˇ.x/g is the smallest possible number satisfying (4) for each
positive k and each k-frame x. Thus,

�2.Id/ D supf˛.x/ˇ.x/g;

However, �2.Id/ D dX (by definition), so the first part of the proof of Theorem 1.4
is finished. ut
Remark 2.3 In the case where dimX D dimY D n, one may consider only n � n
orthogonal matrices and the best constant C in Theorem 2.2 is equivalent to �2.u/ up
to a factor of 4. This was noted independently by Tomczak-Jaegermann and Pisier
(private communication, 2000). Since the result was not published we will provide
a different argument which is due to Tomczak-Jaegermann.

To this end, we recall several facts regarding absolutely summing operators (see
[7, 11]).
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Definition 2.4 Let X and Y be Banach spaces. An operator u W X ! Y is called
2-summing operator if there exists a constant C such that for all finite sequences
fxig � X:

 
kX

iD1
kuxik2

!1=2

 C sup

�2X�;k�k�1

 
kX

iD1
j�.xi/j2

!1=2
:

The smallest possible C satisfying the above is denoted by �2.u/ and is called the
2-summing norm of u.

Now we will define a similar concept for an orbit and see how it relates to the
definition above. From now on, unless stated otherwise, it is assumed that X is an
n-dimensional normed space.

Definition 2.5 Given an operator u W lk2 ! X, denote

�
.k/
2 .u/ D sup

 
kX

iD1
kufik2

!1=2
;

ı
.k/
2 .u/ D inf

 
kX

iD1
kufik2

!1=2
;

where ffigk1 runs over all orthonormal bases of lk2.

Given an orbit x D fx1; : : : xkg � X we will denote �.k/2 .x/ D �
.k/
2 .u/, ı

.k/
2 .x/ D

ı.k/.u/ where u is defined by

uei D xi; 1 
 i 
 k:

Remark 2.6 The standard definition of �.k/2 .u/ slightly differs from definition
above. It is defined as the smallest possible constant satisfying

 
kX

iD1
kuxik2

!1=2

 C sup

�2X�;k�k�1

 
kX

iD1
j�.xi/j2

!1=2
;

for all x1; : : : xk 2 X.
By a theorem of Tomczak-Jaegermann [10] we have that for any operator u W

lk2 ! X of rank n:

�
.n/
2 .u/ 
 �2.u/ 
 2�

.n/
2 .u/: (5)
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Since the proof of (5) constructs an orthonormal basis .ej/ of ln2 that satisfies

 
nX

iD1
kueik2

!1=2
� 1

2
�2.u/;

we get that inequality (5) holds for our definition of �.n/2 .u/ as well.

An easy consequence of the above is the following lemma:

Lemma 2.7 For each k � n and x D .x1; : : : xk/ � X there exists y 2 O.x/ and a
subset y0 � y of cardinality n such that

�
.k/
2 .y/ 
 2�

.n/
2 .y0/:

Proof Let u W lk2 ! X be the operator defined by uei D xi, and denote E D ker.u/?.
Denote by P W lk2 ! E the orthogonal projection such that u D ujEP. Let f1 : : : fn 2 E
and fnC1 : : : fk 2 E? be another orthonormal basis of lk2 and denote by yi D ufi.
Clearly,

�
.k/
2 .x/ 
 �2.u/ D �2.ujE/ 
 2�

.n/
2 .y0/

where y0 D .y1; : : : yn/. ut
Since ı.k/2 is not necessarily convex, denote by Oı.k/2 the largest convex function

that is smaller than ı.k/2 . The norms �.k/2 and Oı.k/2 are dual norms on L.lk2;X/ and
L.lk2;X

�/. That is

�
.k/
2 .u/ D supfjtrace.uv/j W v� 2 L.lk2;X

�/; O
ı
.k/
2 .v

�/ 
 1g:

The proof of this fact is similar to the proof presented in [11, Proposition 9.9], for
the norms �2 and ı2.

By a standard duality argument we get the following corollary.

Corollary 2.8 Let u W lk2 ! X be an operator, where k � n. Let E D .ker u/? with
dimE D n, and let P be the orthogonal projection P W lk2 ! E. Define Qu W E ! X
such that u D QuP. Then we have

Oı.n/2 .Qu/ 
 2ı
.k/
2 .u/:

Now, we may prove the key lemma required for our goal.

Lemma 2.9 If C satisfies

8x D .x1; : : : xn/ � X; �
.n/
2 .x/ 
 C�.n/2 .x/; (6)
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then, for all k > n,

8x D .x1; : : : xk/ � X; �
.k/
2 .x/ 
 4C�.k/2 .x/; (7)

Proof Denote by Xm the space of all m-tuples of X. Take x 2 Xn and consider
u W ln2 ! X an operator defined by uei D xi. Clearly, by (6) and the convexity of Oın2
and �.n/2

�
.n/
2 .x/ 
 C Oı.n/2 .u/:

Given k � n take x D .x1; : : : xk/, y 2 O.x/ and define operator u as above. As
before, denote E D .ker u/? and by P W lk2 ! E the orthogonal projection. Define
Qu W E ! X such that u D QuP. Let f1 : : : fn 2 E and fnC1 : : : fk 2 E? be some
orthonormal basis of lk2. Denote yi D ufi and y D .y1; : : : yk/, y0 D .y1; : : : yn/. Then,

�
.k/
2 .x/ D �

.k/
2 .y/ 
 2�

.n/
2 .y0/

and

Oı.n/2 .Qu/ 
 2ı
.k/
2 .u/ D �

.k/
2 .y/ D 2�

.k/
2 .x/:

Thus,

�
.k/
2 .x/ 
 2�

.n/
2 .y0/ 
 2C Oı.n/2 .Qu/ 
 4C�.k/2 .x/:

ut
Now we may finish the second part of main theorem. Let x D .x1; : : : xk/. Notice
that by (1), for each k

˛.x/ˇ.x/ D �
.k/
2 .x/

�
.k/
2 .x/

:

Applying Lemma 2.9 we get

sup
x2Xk

˛.x/ˇ.x/ D sup
x2Xk

�
.k/
2 .x/

�
.k/
2 .x/


 4 sup
x2Xn

�
.n/
2 .x/

�
.n/
2 .x/

D 4 sup
x2Xn

f˛.x/ˇ.x/g

and the proof is complete.
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Concentration Properties of Restricted
Measures with Applications to Non-Lipschitz
Functions

Sergey G. Bobkov, Piotr Nayar, and Prasad Tetali

Abstract We show that, for any metric probability space .M; d; 
/ with a subgaus-
sian constant �2.
/ and any Borel measurable set A � M, we have �2.
A/ 

c log .e=
.A// �2.
/, where 
A is a normalized restriction of 
 to the set A and c
is a universal constant. As a consequence, we deduce concentration inequalities for
non-Lipschitz functions.

2010 Mathematics Subject Classification. Primary 60Gxx

1 Introduction

It is known that many high-dimensional probability distributions
 on the Euclidean
space Rn (and other metric spaces, including graphs) possess strong concentration
properties. In a functional language, this may informally be stated as the assertion
that any sufficiently smooth function f onRn, e.g., having a bounded Lipschitz semi-
norm, is almost a constant on almost all space. There are several ways to quantify
such a property. One natural approach proposed by Alon et al. [2] associates with a
given metric probability space .M; d; 
/ its spread constant,

s2.
/ D sup Var
. f / D sup
Z
. f � m/2 d
;
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where m D R
f d
, and the sup is taken over all functions f on M with k fkLip 
 1.

More information is contained in the so-called subgaussian constant �2 D �2.
/

which is defined as the infimum over all �2 such that
Z

etf d
 
 e�
2t2=2; for all t 2 R; (1)

in the class L0 of all f on M with m D 0 and k fkLip 
 1 (cf. [8]). Describing
the diameter of L0 in the Orlicz space L 2.
/ for the Young function  2.t/ D
et
2 � 1 (within universal factors), the quantity �2.
/ appears as a parameter in a

subgaussian concentration inequality for the class of all Borel subsets of M. As an
equivalent approach, it may also be introduced via the transport-entropy inequality
connecting the classical Kantorovich distance and the relative entropy from an
arbitrary probability measure on M to the measure 
 (cf. [7]).

While in general s2 
 �2, the latter characteristic allows one to control
subgaussian tails under the probability measure 
 uniformly in the entire class of
Lipschitz functions on M. More generally, when k fkLip 
 L, (1) yields


fj f � mj � tg 
 2e�t2=.2�2L2/; t > 0: (2)

Classical and well-known examples include the standard Gaussian measure on
M D Rn in which case s2 D �2 D 1, and the normalized Lebesgue measure on the
unit sphere M D Sn�1 with s2 D �2 D 1

n�1 . The last example was a starting point in
the study of the concentration of measure phenomena, a fruitful direction initiated
in the early 1970s by V.D. Milman.

Other examples come often after verification that
 satisfies certain Sobolev-type
inequalities such as Poincaré-type inequalities

	1Var
.u/ 

Z

jruj2 d
;

and logarithmic Sobolev inequalities

�Ent
.u2/ D �

� Z
u2 log u2 d
�

Z
u2 d
 log

Z
u2 d


�

 2

Z
jruj2 d
;

where u may be any locally Lipschitz function on M, and the constants 	1 > 0 and
� > 0 do not depend on u. Here the modulus of the gradient may be understood in
the generalized sense as the function

jru.x/j D lim sup
y!x

ju.x/� u.y/j
d.x; y/

; x 2 M

(this is the so-called “continuous setting”), while in the discrete spaces, e.g., graphs,
we deal with other naturally defined gradients. In both cases, one has respectively
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the well-known upper bounds

s2.
/ 
 1

	1
; �2.
/ 
 1

�
: (3)

For example, 	1 D � D n � 1 on the unit sphere (best possible values, [17]),
which can be used to make a corresponding statement about the spread and Gaussian
constants.

One of the purposes of this note is to give new examples by involving the family
of the normalized restricted measures


A.B/ D 
.A \ B/


.A/
; B � M .Borel/;

where a Borel measurable set A � M is fixed and has a positive measure. As an
example, returning to the standard Gaussian measure 
 on Rn, it is known that
�2.
A/ 
 1 for any convex body A � Rn. This remarkable property, discovered by
Bakry and Ledoux [3] in a sharper form of a Gaussian-type isoperimetric inequality,
has nowadays several proofs and generalizations, cf. [5, 6]. Of course, in general, the
set A may have a rather disordered structure, for instance, to be disconnected. And
then there is no hope for validity of a Poincaré-type inequality for the measure 
A.
Nevertheless, it turns out that the concentration property of 
A is inherited from 
,
unless the measure of A is too small. In particular, we have the following observation
about abstract metric probability spaces.

Theorem 1.1 For any measurable set A � M with 
.A/ > 0, the subgaussian
constant �2.
A/ of the normalized restricted measure satisfies

�2.
A/ 
 c log
	 e


.A/



�2.
/; (4)

where c is an absolute constant.

Although this assertion is technically simple, we will describe two approaches:
one is direct and refers to estimates on the  2-norms over the restricted measures,
and the other one uses a general comparison result due to Barthe and Milman on the
concentration functions [4].

One may further generalize Theorem 1.1 by defining the subgaussian constant
�2F .
/ within a given fixed subclass F of functions on M, by using the same
bound (1) on the Laplace transform. This is motivated by a possible different level
of concentration for different classes; indeed, in case of M D Rn, the concentration
property may considerably be strengthened for the class F of all convex Lipschitz
functions. In particular, one result of Talagrand [18, 19] provides a dimension-
free bound �2F .
/ 
 C for an arbitrary product probability measure 
 on the
n-dimensional cube Œ�1; 1�n. Hence, a more general version of Theorem 1.1 yields
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the bound

�2F .
A/ 
 c log
	 e


.A/




with some absolute constant c, which holds for any Borel subset A of Œ�1; 1�n (cf.
Sect. 6 below).

According to the very definition, the quantities �2.
/ and �2.
A/ might seem to
be responsible for deviations of only Lipschitz functions f on M and A, respectively.
However, the inequality (4) may also be used to control deviations of non-Lipschitz
f — on large parts of the space and under certain regularity hypotheses. Assume, for
example,

R jrf j d
 
 1 (which is kind of a normalization condition) and consider

A D fx 2 M W jrf .x/j 
 Lg: (5)

If L � 2, this set has the measure 
.A/ � 1 � 1
L � 1

2
, and hence, �2.
A/ 
 c�2.
/

with some absolute constant c. If we assume that f has a Lipschitz semi-norm 
 L
on A, then, according to (2),


Afx 2 A W j f � mj � tg 
 2e�t2=.c�2.
/L2/; t > 0; (6)

where m is the mean of f with respect to 
A. It is in this sense one may say that f is
almost a constant on the set A.

This also yields a corresponding deviation bound on the whole space,


fx 2 M W j f � mj � tg 
 2e�t2=c�2.
/L2 C 1

L
:

Stronger integrability conditions posed on jrf j can considerably sharpen the
conclusion. By a similar argument, Theorem 1.1 yields, for example, the following
exponential bound, known in the presence of a logarithmic Sobolev inequality for
the space .M; d; 
/, and with �2 replaced by 1=� (cf. [7]).

Corollary 1.2 Let f be a locally Lipschitz function on M with Lipschitz semi-norms

 L on the sets (5). If

R
ejrf j2 d
 
 2, then f is 
-integrable, and moreover,


fx 2 M W j f � mj � tg 
 2e�t=c�.
/; t > 0;

where m is the 
-mean of f and c is an absolute constant.

Equivalently (up to an absolute factor), we have a Sobolev-type inequality

k f � mk 1 
 c�.
/ krfk 2 ;

connecting the  1-norm of f � m with the  2-norm of the modulus of the gradient
of f . We prove a more general version of this corollary in Sect. 6 (cf. Theorem 6.1).



Concentration Properties of Restricted Measures with Applications . . . 29

As will be explained in the same section, similar assertions may also be made about
convex f and product measures 
 on M D Œ�1; 1�n, thus extending Talagrand’s
theorem to the class of non-Lipschitz functions.

In view of the right bound in (3) and (4), the spread and subgaussian constants for
restricted measures can be controlled in terms of the logarithmic Sobolev constant
� via

s2.
A/ 
 �2.
A/ 
 c log
	 e


.A/


 1
�
:

However, it may happen that � D 0 and �2.
/ D 1, while 	1 > 0 (e.g., for the
product exponential distribution on Rn). Then one may wonder whether one can
estimate the spread constant of a restricted measure in terms of the spectral gap. In
that case there is a bound similar to (4).

Theorem 1.3 Assume the metric probability space .M; d; 
/ satisfies a Poincaré-
type inequality with 	1 > 0. For any A � M with 
.A/ > 0, with some absolute
constant c

s2.
A/ 
 c log2
	 e


.A/


 1

	1
: (7)

It should be mentioned that the logarithmic terms in (4) and (7) may not be
removed and are actually asymptotically optimal as functions of 
.A/, as 
.A/ is
getting small, see Sect. 7.

Our contribution below is organized into sections as follows:

2. Bounds on  ˛-Norms for Restricted Measures.
3. Proof of Theorem 1.1. Transport-Entropy Formulation.
4. Proof of Theorem 1.3. Spectral Gap.
5. Examples.
6. Deviations for Non-Lipschitz Functions.
7. Optimality.
8. Appendix.

2 Bounds on  ˛-Norms for Restricted Measures

A measurable function f on the probability space .M; 
/ is said to have a finite
 ˛-norm, ˛ � 1, if for some r > 0,

Z
e.j f j=r/˛ d
 
 2:
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The infimum over all such r represents the  ˛-norm k fk ˛ or k fkL ˛ .
/, which is
just the Orlicz norm associated with the Young function  ˛.t/ D ejtj˛ � 1.

We are mostly interested in the particular cases ˛ D 1 and ˛ D 2. In this section
we recall well-known relations between the  1 and  2-norms and the usual Lp-
norms k fkp D k fkLp.
/ D .

R j f jp d
/1=p. For the readers’ convenience, we include
the proof in the Appendix.

Lemma 2.1 We have

sup
p�1

k fkpp
p


 k fkL 2 .
/ 
 4 sup
p�1

k fkpp
p
; (8)

sup
p�1

k fkp
p


 k fkL 1 .
/ 
 6 sup
p�1

k fkp
p
: (9)

Given a measurable subset A of M with 
.A/ > 0, we consider the normalized
restricted measure 
A on M, i.e.,


A.B/ D 
.A \ B/


.A/
; B � M:

Our basic tool leading to Theorem 1.1 will be the following assertion.

Proposition 2.2 For any measurable function f on M,

k fkL 2 .
A/

 4e log1=2

	 e


.A/



k fkL 2 .
/: (10)

Proof Assume that k fkL 2 .
/ D 1 and fix p � 1. By the left inequality in (8), for
any q � 1,

qq=2 �
Z

j f jq d
 � 
.A/
Z

j f jq d
A;

so

k fkLq.
A/p
q



�

1


.A/

�1=q
:

But by the right inequality in (8),

k fk 2 
 4 sup
q�1

k fkqp
q


 4
p
p sup

q�p

k fkqp
q
:
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Applying it on the space .M; 
A/, we then get

k fkL 2 .
A/

 4

p
p sup

q�p

k fkLq.
A/p
q


 4
p
p sup

q�p

�
1


.A/

�1=q
D 4

p
p

�
1


.A/

�1=p
:

The obtained inequality,

k fkL 2 .
A/

 4

p
p

�
1


.A/

�1=p
;

holds true for any p � 1 and therefore may be optimized over p. Choosing p D
log e


.A/ , we arrive at (10). ut
A possible weak point in the bound (10) is that the means of f are not involved.

For example, in applications, if f were defined only on A and had 
A-mean zero, we
might need to find an extension of f to the whole space M keeping the mean zero
with respect to 
. In fact, this should not create any difficulty, since one may work
with the symmetrization of f .

More precisely, we may apply Proposition 2.2 on the product space .M�M; 
˝

/ to the product sets A � A and functions of the form f .x/ � f .y/. Then we get

k f .x/ � f .y/kL 2 .
A˝
A/

 4e log1=2

�
e


.A/2

�
k f .x/ � f .y/kL 2 .
˝
/:

Since log
�

e

.A/2

� 
 2 log
�

e

.A/

�
; we arrive at:

Corollary 2.3 For any measurable function f on M,

k f .x/� f .y/kL 2 .
A˝
A/

 4e

p
2 log1=2

	 e


.A/



k f .x/ � f .y/kL 2 .
˝
/:

Let us now derive an analog of Proposition 2.2 for the  1-norm, using similar
arguments. Assume that k fkL 1 .
/ D 1 and fix p � 1. By the left inequality in (9),
for any q � 1,

qq �
Z

j f jq d
 � 
.A/
Z

j f jq d
A;

so

k fkLq.
A/

q


	 1


.A/


1=q
:
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But, by the inequality (9),

k fkL 1 
 6 sup
q�1

k fkq
q


 6p sup
q�p

k fkq
q
:

Applying it on the space .M; 
A/, we get

k fkL 1 .
A/

 6p sup

q�p

k fkLq.
A/

q


 6p sup
q�p

	 1


.A/


1=q D 6p
	 1


.A/


1=p
:

The obtained inequality,

k fkL 1 .
A/

 6p

	 1


.A/


1=p
;

holds true for any p � 1 and therefore may be optimized over p. Choosing p D
log e


.A/ , we arrive at:

Proposition 2.4 For any measurable function f on M, we have

k fkL 1 .
A/

 6e log

	 e


.A/



k fkL 1 .
/:

Similarly to Corollary 2.3 one may write down this relation on the product
probability space .M�M; 
˝
/ with the functions of the form Qf .x; y/ D f .x/�f .y/
and the product sets QA D A � A. Then we get

k f .x/ � f .y/kL 1 .
A˝
A/

 12 e log

	 e


.A/



k f .x/ � f .y/kL 1 .
˝
/: (11)

3 Proof of Theorem 1.1: Transport-Entropy Formulation

The finiteness of the subgaussian constant for a given metric probability space
.M; d; 
/ means that  2-norms of Lipschitz functions on M with mean zero are
uniformly bounded. Equivalently, for any (for all) x0 2 M, we have that, for some
	 > 0,

Z
ed.x;x0/

2=	2 d
.x/ < 1:
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The definition (1) of �2.
/ inspires to consider another norm-like quantity

�2f D sup
t¤0

�
1

t2=2
log

Z
etf d


�
:

Here is a well-known relation (with explicit numerical constants) which holds in the
setting of an abstract probability space .M; 
/. Once again, we include a proof in
the Appendix for completeness.

Lemma 3.1 If f has mean zero and finite  2-norm, then

1p
6

k fk2 2 
 �2f 
 4 k fk2 2 :

One can now relate the subgaussian constant of the restricted measure to the
subgaussian constant of the original measure. Let now .M; d; 
/ be a metric
probability space. First, Lemma 3.1 immediately yields an equivalent description
in terms of  2-norms, namely

1p
6

sup
f

k fk2 2 
 �2.
/ 
 4 sup
f

k fk2 2 ; (12)

where the supremum is running over all f W M ! R with 
-mean zero and k fkLip 

1. Here, one can get rid of the mean zero assumption by considering functions of the
form f .x/ � f .y/ on the product space .M � M; 
 ˝ 
; d1/, where d1 is the l1-type
metric given by d1..x1; y1/; .x2; y2// D d.x1; x2/ C d.y1; y2/. If f has mean zero,
then, by Jensen’s inequality,

Z Z
e. f .x/�f .y//2=r2 d
.x/ d
.y/ �

Z
ef .x/

2=r2 d
.x/;

which implies that

k f .x/ � f .y/kL 2 .
˝
/ � k fkL 2 .
/:

On the other hand, by the triangle inequality,

k f .x/ � f .y/kL 2 .
˝
/ 
 2 k fkL 2 .
/:

Hence, we arrive at another, more flexible relation, where the mean zero assumption
may be removed.
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Lemma 3.2 We have

1

4
p
6

sup
f

k f .x/ � f .y/k2L 2 .
˝
/ 
 �2.
/ 
 4 sup
f

k f .x/� f .y/k2L 2 .
˝
/;

where the supremum is running over all functions f on M with k fkLip 
 1.

Proof of Theorem 1.1 We are prepared to make last steps for the proof of the
inequality (4). We use the well-known Kirszbraun’s theorem: Any function f W A !
R with Lipschitz semi-norm k fkLip 
 1 on A admits a Lipschitz extension to the
whole space [10, 14]. Namely, one may put

Qf .x/ D inf
a2A

�
f .a/C d.a; x/

�
; x 2 M:

Applying first Corollary 2.3 and then the left inequality of Lemma 3.2 to Qf , we get

k f .x/ � f .y/k2L 2 .
A˝
A/
D ��Qf .x/� Qf .y/��2

L 2 .
A˝
A/


 �
4e

p
2
�2

log
	 e


.A/


 ��Qf .x/ � Qf .y/��2
L 2 .
˝
/


 �
4e

p
2
�2

log
	 e


.A/



� �4p6 �2 �2.
/:

Another application of Lemma 3.2 — in the space .A; d; 
A/ (now the right inequal-
ity) yields

�2.
A/ 
 4 � �4ep2 �2 log
	 e


.A/



� �4p6 �2 �2.
/:

This is exactly (4) with constant c D 4 � .4ep2 /2 .4p6 /2 D 3 � 212e2 D
90; 796:72 : : : ut
Remark 3.3 Let us also record the following natural generalization of Theorem 1.1,
which is obtained along the same arguments. Given a collection F of (integrable)
functions on the probability space .M; 
/, define �2F .
/ as the infimum over all �2

such that
Z

et. f�m/ d
 
 e�
2t2=2; for all t 2 R;

for any f 2 F , where m D R
f d
. Then with the same constant c as in Theorem 1.1,

for any measurable A � M, 
.A/ > 0, we have

�2FA
.
A/ 
 c log

	 e


.A/



�2F .
/;

where FA denotes the collection of restrictions of functions f from F to the set A.
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Let us now mention an interesting connection of the subgaussian constants with
the Kantorovich distances

W1.
; �/ D inf
ZZ

d.x; y/ �.x; y/

and the relative entropies

D.�jj
/ D
Z

log
d�

d

d�

(called also Kullback-Leibler’s distances or informational divergences). Here, �
is a probability measure on M, which is absolutely continuous with respect to 

(for short, � << 
), and the infimum in the definition of W1 is running over all
probability measures � on the product space M � M with marginal distributions 

and �, i.e., such that

�.B � M/ D 
.B/; �.M � B/ D �.B/ .Borel B � M/:

As was shown in [7], if .M; d/ is a Polish space (complete separable), the
subgaussian constant �2 D �2.
/ may be described as an optimal value in the
transport-entropy inequality

W1.
; �/ 

p
2�2D.�jj
/: (13)

Hence, we obtain from the inequality (4) a similar relation for measures � supported
on given subsets of M.

Corollary 3.4 Given a Borel probability measure 
 on a Polish space .M; d/ and a
closed set A in M such that
.A/ > 0, for any Borel probability measure � supported
on A,

W2
1 .
A; �/ 
 c�2.
/ log

	 e


.A/



D.�jj
A/;

where c is an absolute constant.

This assertion is actually equivalent to Theorem 1.1. Note that, for � supported
on A, there is an identity D.�jj
A/ D log
.A/CD.�jj
/. In particular,D.�jj
A/ 

D.�jj
/, so the relative entropies decrease when turning to restricted measures.

For another (almost equivalent) description of the subgaussian constant, intro-
duce the concentration function

K
.r/ D sup
�
1 � 
.Ar/

�
.r > 0/;
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where Ar D fx 2 M W d.x; a/ < r for some a 2 Ag denotes an open r-
neighbourhood of A for the metric d, and the sup is running over all Borel sets A �
M of measure 
.A/ � 1

2
. As is well-known, the transport-entropy inequality (13)

gives rise to a concentration inequality on .M; d; 
/ of a subgaussian type (K.
Marton’s argument), but this can also be seen by a direct application of (1). Indeed,
for any function f on M with k fkLip 
 1, it implies

ZZ
et. f .x/�f .y// d
.x/ d
.y/ 
 e�

2t2 ; t 2 R;

and, by Chebyshev’s inequality, we have a deviation bound

.
˝ 
/f.x; y/ 2 M � M W f .x/� f .y/ � rg 
 e�r2=4�2 ; r � 0:

In particular, one may apply it to the distance functions f .x/ D d.A; x/ D
infa2A d.a; x/. Assuming that 
.A/ � 1

2
, the measure on the left-hand side is greater

than or equal to 1
2
.1 � 
.Ar//, so that we obtain a concentration inequality

1 � 
.Ar/ 
 2e�r2=4�2 :

Therefore,

K
.r/ 
 min
n1
2
; 2e�r2=4�2

o

 e�r2=8�2 :

To argue in the opposite direction, suppose that the concentration function admits
a bound of the form K
.r/ 
 e�r2=b2 for all r > 0 with some constant b > 0. Given
a function f on M with k fkLip 
 1, let m be a median of f under 
. Then the set
A D f f 
 mg has measure 
.A/ � 1

2
, and by the Lipschitz property, Ar � f f <

m C rg for all r > 0. Hence, by the concentration hypothesis,


f f � m � rg 
 K
.r/ 
 e�r2=b2 :

A similar deviation bound also holds for the function �f with its median �m, so
that


fj f � mj � rg 
 2e�r2=b2 ; r > 0:

This is sufficient to properly estimate  2-norm of f �m on .M; 
/. Namely, for any
	 < 1=b2,

Z
e	j f�mj2 d
 D 1C 2	

Z 1

0

re	r
2


fj f � mj � rg dr


 1C 2	

Z 1

0

re	r
2

e�r2=b2 dr D 1C 	
1
b2

� 	
D 2;
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where in the last equality the value 	 D 1
2b2

is chosen. Thus,
R
ej f�mj2=.2b2/ d
 
 2,

which means that k f � mk 2 
 p
2 b. The latter gives k f .x/ � f .y/kL 2 .
˝
/ 


2
p
2 b. Taking the supremum over f , it remains to apply Lemma 3.2, and then we

get �2.
/ 
 32 b2.
Let us summarize.

Proposition 3.5 Let b D b.
/ be an optimal value such that the concentration
function of the space .M; d; 
/ satisfies a subgaussian bound K
.r/ 
 e�r2=b2 .r >
0/. Then

1

8
b2.
/ 
 �2.
/ 
 32 b2.
/:

Once this description of the subgaussian constant is recognized, one may give
another proof of Theorem 1.1, by relating the concentration function K
A to K
. In
this connection, let us state below as a lemma one general observation due to Barthe
and Milman (cf. [4], Lemma 2.1, p. 585).

Lemma 3.6 Let a Borel probability measure � on M be absolutely continuous with
respect to 
 and have density p. Suppose that, for some right-continuous, non-
increasing function R W .0; 1=4� ! .0;1/, such that ˇ."/ D "=R."/ is increasing,
we have

�fx 2 M W p.x/ > R."/g 
 "
	
0 < " 
 1

4



:

Then

K�.r/ 
 2ˇ�1�K
.r=2/�; for all r � 2K�1

 .ˇ.1=4//:

Here ˇ�1 denotes the inverse function, and K�1

 ."/ D inffr > 0 W K
.r/ < "g.

The 2nd Proof of Theorem 1.1 The normalized restricted measure � D 
A has
density p D 1


.A/ 1A (thus taking only one non-zero value), and an optimal choice of

R is the constant function R."/ D 1

.A/ . Hence, Lemma 3.6 yields the relation

K
A.r/ 
 2


.A/
K
.r=2/; for r � 2K�1


 .
.A/=4/:

In particular, if K
.r/ 
 e�r2=b2 , then

K
A.r/ 
 2


.A/
e�r2=.4b2/; for r � 2b

p
log.4=
.A//:

Necessarily K
A.r/ 
 1
2
, so the last relation may be extended to the whole positive

half-axis. Moreover, at the expense of a factor in the exponent, one can remove the
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factor 2

.A/ ; more precisely, we get K
A.r/ 
 e�r2=Qb2 with Qb2 D 4b2

log 2 log 4

.A/ , that is,

b2.
A/ 
 4

log 2
log

4


.A/
b2.
/:

It remains to apply the two-sided bound of Proposition 3.5. ut

4 Proof of Theorem 1.3: Spectral Gap

Theorem 1.1 insures, in particular, that, for any function f on the metric probability
space .M; d; 
/ with Lipschitz semi-norm k fkLip 
 1,

Var
A. f / 
 c log

�
e


.A/

�
�2.
/

up to some absolute constant c. In fact, in order to reach a similar concentration
property of the restricted measures, it is enough to start with a Poincaré-type
inequality on M,

	1Var
. f / 

Z

jrf j2 d
:

Under this hypothesis, a well-known theorem due to Gromov-Milman and
Borovkov-Utev asserts that mean zero Lipschitz functions f have bounded  1-
norm. One may use a variant of this theorem proposed by Aida and Strook [1], who
showed that

Z
e

p
	1 f d
 
 K0 D 1:720102 : : : .k fkLip 
 1/:

Hence
Z

e
p
	1 j f j d
 
 2K0 and

Z
e
1
2

p
	1 j f j d
 


p
2K0 < 2;

thus implying that k fk 1 
 2p
	1

. In addition,

“
e

p
	1 . f .x/�f .y// d
.x/d
.y/ 
 K20 and

“
e

p
	1 j f .x/�f .y/j d
.x/d
.y/ 
 2K20 < 6:
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From this,

Z
e
1
3

p
	1 j f .x/�f .y/j d
.x/d
.y/ < 61=3 < 2;

which means that k f .x/� f .y/k 1 
 3p
	1

with respect to the product measure 
˝

on the product space M � M. This inequality is translation invariant, so the mean
zero assumption may be removed. Thus, we arrive at:

Lemma 4.1 Under the Poincaré-type inequality with spectral gap 	1 > 0, for any
mean zero function f on .M; d; 
/ with k fkLip 
 1,

k fk 1 
 2p
	1
:

Moreover, for any f with k fkLip 
 1,

k f .x/ � f .y/kL 1 .
˝
/ 
 3p
	1
: (14)

This is a version of the concentration of measure phenomenon (with exponential
integrability) in presence of a Poincaré-type inequality. Our goal is therefore to
extend this property to the normalized restricted measures 
A. This can be achieved
by virtue of the inequality (11) which when combined with (14) yields an upper
bound

k f .x/ � f .y/kL 1 .
A˝
A/

 36 e log

�
e


.A/

�
1p
	1
:

Moreover, if f has 
A-mean zero, the left norm dominates k fkL 1 .
A/
(by Jensen’s

inequality). We can summarize, taking into account once again Kirszbraun’s
theorem, as we did in the proof of Theorem 1.1.

Proposition 4.2 Assume the metric probability space .M; d; 
/ satisfies a
Poincaré-type inequality with constant 	1 > 0. Given a measurable set A � M
with 
.A/ > 0, for any function f W A ! R with 
A-mean zero and such that
k fkLip 
 1 on A,

k fkL 1 .
A/

 36 e log

	 e


.A/


 1p
	1
:

Theorem 1.3 is now easily obtained with constant c D 2 .36e/2 by noting that
L2-norms are dominated by L 1-norms. More precisely, since ejtj � 1 � 1

2
t2, one

has k fk2 1 � 1
2

k fk22.
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Remark 4.3 Related stability results are known for various classes of probability
distributions on the Euclidean spaces M D Rn (and even in a more general situation,
where 
A is replaced by an absolutely continuous measure with respect to 
). See,
in particular, the works by Milman [15, 16] on convex bodies and log-concave
measures.

5 Examples

Theorems 1.1 and 1.3 involve a lot of interesting examples. Here are a few obvious
cases.

1. The standard Gaussian measure 
 D � on Rn satisfies a logarithmic Sobolev
inequality on M D Rn with a dimension-free constant � D 1. Hence, from
Theorem 1.1 we get:

Corollary 5.1 For any measurable set A � Rn with �.A/ > 0, the subgaussian
constant �2.�A/ of the normalized restricted measure �A satisfies

�2.�A/ 
 c log
	 e

�.A/



;

where c is an absolute constant.

As it was already mentioned, if A is convex, there is a sharper bound �2.�A/ 
 1.
However, it may not hold without convexity assumption. Nevertheless, if �.A/ is
bounded away from zero, we obtain a more universal principle.

Clearly, Corollary 5.1 extends to all product measures 
 D �n on Rn such that
� satisfies a logarithmic Sobolev inequality on the real line, and with constants c
depending on �, only. A characterization of the property � > 0 in terms of the
distribution function of the measure � and the density of its absolutely continuous
component may be found in [7].

2. Consider a uniform distribution � on the shell

A" D ˚
x 2 R

n W 1 � " 
 jxj 
 1

; 0 
 " 
 1 .n � 2/:

Corollary 5.2 The subgaussian constant of � satisfies �2.�/ 
 c
n , up to some

absolute constant c.

In other words, mean zero Lipschitz functions f on A" are such that
p
n f are

subgaussian with universal constant factor. This property is well-known in the
extreme cases—on the unit Euclidean ball A D Bn." D 1/ and on the unit sphere
A D Sn�1." D 0/.
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Let 
 denote the normalized Lebesgue measure on Bn. In the case " � 1
n , the

shell A" represents the part of Bn of measure


.A"/ D 1 �
	
1 � 1

n


n � 1 � 1

e
:

Since the logarithmic Sobolev constant of the unit ball is of order 1
n , and therefore

�2.
/ 
 c
n , the assertion of Corollary 5.2 immediately follows from Theorem 1.1.

In case " 
 1
n , the assertion follows from a similar concentration property of the

uniform distribution �n�1 on the unit sphere. Indeed, with every Lipschitz function f
on A" one may associate its restriction to Sn�1, which is also Lipschitz (with respect
to the Euclidean distance). We have j f .r�/ � f .�/j 
 jr � 1j 
 " 
 1

n , for any
r 2 Œ1 � "; 1� and � 2 Sn�1. Hence,

j f .r0� 0/ � f .r�/j 
 j f .� 0/ � f .�/j C j f .r0�/ � f .� 0/j C j f .r�/� f .�/j


 j f .� 0/ � f .�/j C 2

n
;

whenever r; r0 2 Œ1 � "; 1� and �; � 0 2 Sn�1, which implies

j f .r0� 0/� f .r�/j2 
 2 j f .� 0/� f .�/j2 C 8

n2
:

But the map .r; �/ ! � pushes forward � onto �n�1, so, we obtain that, for any
c > 0,

ZZ
expfcn j f .r0� 0/� f .r�/j2g d�.r0; � 0/ d�.r; �/


 e8=n
ZZ

expf2cn j f .� 0/ � f .�/j2g d�n�1.� 0/ d�n�1.�/:

Here, for a certain numerical constant c > 0, the right-hand side is bounded by a
universal constant. This constant can be replaced with 2 using Jensen’s inequality.
The assertion follows from Lemma 3.2.

3. The two-sided product exponential measure 
 on Rn with density 2�n

e�.jx1jC���Cjxnj/ satisfies a Poincaré-type inequality on M D Rn with a dimension-
free constant 	1 D 1=4. Hence, from Proposition 4.2 we get:

Corollary 5.3 For any measurable set A � Rn with 
.A/ > 0, and for any function
f W A ! R with 
A-mean zero and k fkLip 
 1, we have

k fkL 1 .
A/

 c log

	 e


.A/



;
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where c is an absolute constant. In particular,

s2.
A/ 
 c log2
	 e


.A/



:

Clearly, Corollary 5.3 extends to all product measures 
 D �n on Rn such that �
satisfies a Poincaré-type inequality on the real line, and with constants c depending
on 	1, only. A characterization of the property 	1 > 0 may also be given in terms of
the distribution function of � and the density of its absolutely continuous component
(cf. [7]).

4a. Let us take the metric probability space .f0; 1gn; dn; 
/, where dn is the
Hamming distance, that is, dn.x; y/ D ]fi W xi ¤ yig, equipped with the
uniform measure
. For this particular space, Marton established the transport-
entropy inequality (13) with an optimal constant �2 D n

4
, cf. [12]. Using the

relation (13) as an equivalent definition of the subgaussian constant, we obtain
from Theorem 1.1:

Corollary 5.4 For any non-empty set A � f0; 1gn, the subgaussian constant
�2.
A/ of the normalized restricted measure 
A satisfies, up to an absolute
constant c,

�2.
A/ 
 cn log
	 e


.A/



: (15)

4b. Let us now assume that A is monotone, i.e., A satisfies the condition

.x1; : : : ; xn/ 2 A H) .y1; : : : ; yn/ 2 A; whenever yi � xi; i D 1; : : : ; n:

Recall that the discrete cube can be equipped with a natural graph structure: there is
an edge between x and y whenever they are of Hamming distance dn.x; y/ D 1. For
monotone sets A, the graph metric dA on the subgraph of A is equal to the restriction
of dn to A � A. Indeed, we have:

dn.x; y/ 
 dA.x; y/ 
 dA.x; x^y/CdA.y; x^y/ D dn.x; x^y/Cdn.y; x^y/ D dn.x; y/;

where x ^ y D .x1 ^ y1; : : : ; xn ^ yn/. Thus,

s2.
A; dA/ 
 �2.
A; dA/ 
 cn log

�
e


.A/

�
:

This can be compared with what follows from a recent result of Ding and
Mossel (see [9]). The authors proved that the conductance (Cheeger constant) of
.A; 
A/ satisfies �.A/ � 
.A/

16n . However, this type of isoperimetric results may not
imply sharp concentration bounds. Indeed, by using Cheeger inequality, the above
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inequality leads to 	1 � c
.A/2=n2 and s2.
A; dA/ 
 1=	1 
 cn2=
.A/2, which is
even worse than the trivial estimate s2.
A; dA/ 
 1

2
diam.A/2 
 n2=2.

5. Let .M; d; 
/ be a (separable) metric probability space with finite subgaussian
constant �2.
/. The previous example can be naturally generalized to the product
space .Mn; 
n/, when it is equipped with the `1-type metric

dn.x; y/ D
nX

iD1
d.xi; yi/; x D .x1; : : : ; xn/; y D .y1; : : : ; yn/ 2 Mn:

This can be done with the help of the following elementary observation.

Proposition 5.5 The subgaussian constant of the space .Mn; dn; 
n/ is related to
the subgaussian constant of .M; d; 
/ by the equality �2.
n/ D n�2.
/:

Indeed, one may argue by induction on n. Let f be a function on Mn. The
Lipschitz property k fkLip 
 1 with respect to dn is equivalent to the assertion that
f is coordinatewise Lipschitz, that is, any function of the form xi ! f .x/ has a
Lipschitz semi-norm 
 1 on M for all fixed coordinates xj 2 M (j ¤ i). Hence, in
this case, for all t 2 R,

Z
M
etf .x/ d
.xn/ 
 exp

n
t
Z
M
f .x/ d
.xn/C �2t2

2

o
;

where �2 D �2.
/. Here the function .x1; : : : ; xn�1/ ! R
M f .x/ d
.xn/ is

also coordinatewise Lipschitz. Integrating the above inequality with respect to
d
n�1.x1; : : : ; xn�1/ and applying the induction hypothesis, we thus get

Z
Mn

etf .x/ d
n.x/ 
 exp
n
t
Z
Mn

f .x/ d
n.x/C n
�2t2

2

o
:

But this means that �2.
n/ 
 n�2.
/.
For an opposite bound, it is sufficient to test (1) for .Mn; dn; 
n/ in the class of

all coordinatewise Lipschitz functions of the form f .x/ D u.x1/C � � � C u.xn/ with

-mean zero functions u on M such that kukLip 
 1.

Corollary 5.6 For any Borel set A � Mn such that 
n.A/ > 0, the subgaussian
constant of the normalized restricted measure 
n

A with respect to the `1-type metric
dn satisfies

�2.
n
A/ 
 cn�2.
/ log

	 e


n.A/



;

where c is an absolute constant.
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For example, if 
 is a probability measure on M D R such thatR1
�1 ex

2=	2 d
.x/ 
 2 (	 > 0), then for the restricted product measures we have

�2.
n
A/ 
 cn	2 log

	 e


n.A/



(16)

with respect to the `1-norm kxk1 D jx1j C � � � C jxnj on Rn.
Indeed, by the integral hypothesis on 
, for any f on R with k fkLip 
 1,

Z 1

�1

Z 1

�1
e. f .x/�f .y//2=2	2 d
.x/d
.y/ 


Z 1

�1

Z 1

�1
e.x�y/2=2	2 d
.x/d
.y/



Z 1

�1

Z 1

�1
e.x

2Cy2/=	2 d
.x/d
.y/ 
 4:

Hence, if f has 
-mean zero, by Jensen’s inequality,

Z 1

�1
ef .x/

2=4	2 d
.x/ 

Z 1

�1

Z 1

�1
e. f .x/�f .y//2=4	2 d
.x/d
.y/ 
 2;

meaning that k fkL 2 .
/ 
 2	. By Lemma 3.1, cf. (12), it follows that �2.
/ 
 16	2,
so, (16) holds true by an application of Corollary 5.6.

6 Deviations for Non-Lipschitz Functions

Let us now turn to the interesting question on the relationship between the
distribution of a locally Lipschitz function and the distribution of its modulus of
the gradient. We still keep the setting of a metric probability space .M; d; 
/ and
assume it has a finite subgaussian constant �2 D �2.
/.� � 0/.

Let us say that a continuous function f on M is locally Lipschitz, if jrf .x/j is
finite for all x 2 M. Recall that we consider the sets

A D fx 2 M W jrf .x/j 
 Lg; L > 0: (17)

First we state a more general version of Corollary 1.2.

Theorem 6.1 Assume that a locally Lipschitz function f on M has Lipschitz semi-
norms 
 L on the sets of the form (17). If 
fjrf j � L0g 
 1

2
, then for all t > 0,

.
˝ 
/
˚j f .x/� f .y/j � t

 
 2 inf
L�L0

h
e�t2=c�2L2 C 


˚jrf j > L
i
; (18)

where c is an absolute constant.
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Proof Although the argument is already mentioned in Sect. 1, let us replace (6) with
a slightly different bound. First note that the Lipschitz semi-norm of f with respect
to the metric d in M is the same as its Lipschitz semi-norm with respect to the
metric on the set A induced from M (which is true for any non-empty subset of M).
Hence, we are in position to apply Theorem 1.1, and then the definition (1) for the
normalized restriction 
A yields a subgaussian bound

ZZ
et. f .x/�f .y// d
A.x/d
A.y/ 
 ec�

2L2 t2=2; for all t 2 R;

where A is defined in (17) with L � L0, and where c is universal constant. From this,
for any t > 0,

.
A ˝ 
A/ f.x; y/ 2 A � A W j f .x/� f .y/j � tg 
 2e�t2=.2c�2L2/;

and therefore

.
˝ 
/ f.x; y/ 2 A � A W j f .x/� f .y/j � tg 
 2e�t2=.2c�2L2/:

The product measure of the complement of A�A does not exceed 2
fjrf .x/j > Lg,
and we obtain (18). ut

If
R
ejrf j2 d
 
 2, we have, by Chebyshev’s inequality, 
fjrf j � Lg 
 2e�L2 ,

so one may take L0 D p
log 4. Theorem 6.1 then gives that, for any L2 � log 4,

.
˝ 
/
˚j f .x/� f .y/j � t

 
 2 e�t2=c�2L2 C 4e�L2 :

For t � 2� one may choose here L2 D t
�

, leading to

.
˝ 
/
˚j f .x/� f .y/j � t

 
 6 e�t=c� ;

for some absolute constant c > 1. In case 0 
 t 
 2� , this inequality is fulfilled
automatically, so it holds for all t � 0. As a result, with some absolute constant C,

k f .x/ � f .y/k 1 
 C�;

which is an equivalent way to state the inequality of Corollary 1.2.
As we have already mentioned, with the same arguments inequalities like (18)

can be derived on the basis of subgaussian constants defined for different classes of
functions. For example, one may consider the subgaussian constant �2F .
/ for the
class F of all convex Lipschitz functions f on the Euclidean space M D Rn (which
we equip with the Euclidean distance). Note that jrf .x/j is everywhere finite in
the n-space, when f is convex. Keeping in mind Remark 3.3, what we need is the
following analog of Kirszbraun’s theorem:
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Lemma 6.2 Let f be a convex function on Rn. For any L > 0, there exists a convex
function g on Rn such that f D g on the set A D fx W jrf .x/j 
 Lg and jrgj 
 L
on Rn.

Accepting for a moment this lemma without proof, we get:

Theorem 6.3 Assume that a convex function f on R
n satisfies 
fjrf j � L0g 
 1

2
.

Then for all t > 0,

.
˝ 
/
˚j f .x/ � f .y/j � t

 
 2 inf
L�L0

h
e�t2=c�2L2 C 


˚jrf j > L
i
;

where �2 D �2F .
/ and c is an absolute constant.

For illustration, let
 D 
1˝� � �˝
n be an arbitrary product probability measure
on the cube Œ�1; 1�n. If f is convex and Lipschitz on Rn, thus with jrf j 
 1, then

.
˝ 
/
˚j f .x/ � f .y/j � t

 
 2e�t2=c: (19)

This is one of the forms of Talagrand’s concentration phenomenon for the family
of convex sets/functions (cf. [11, 13, 18, 19]). That is, the subgaussian constants
�2F .
/ are bounded for the class F of convex Lipschitz f and product measures 

on the cube. Hence, using Theorem 6.3, Talagrand’s deviation inequality (19) admits
a natural extension to the class of non-Lipschitz convex functions:

Corollary 6.4 Let 
 be a product probability measure on the cube, and let f be a
convex function on Rn. If 
fjrf j � L0g 
 1

2
, then for all t > 0,

.
˝ 
/
˚j f .x/ � f .y/j � t

 
 2 inf
L�L0

h
e�t2=cL2 C 


˚jrf j > L
i
;

where c is an absolute constant.

In particular, we have a statement similar to Corollary 1.2 — for this family of
functions, namely

k f � mkL 1 .
/ 
 c krfkL 2 .
/;

where m is the 
-mean of f .

Proof of Lemma 6.2 An affine function la;v.x/ D a C hx; vi (v 2 Rn, a 2 R) may
be called to be a tangent function to f , if f � l on Rn and f .x/ D la;v.x/ for at least
one point x. It is well-known that

f .x/ D supfla;v.x/ W la;v 2 Lg;
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where L denotes the collection of all tangent functions la;v . Put,

g.x/ D supfla;v.x/ W la;v 2 L; jvj 
 Lg:

By the construction, g 
 f on Rn and, moreover,

kgkLip 
 supfkla;vkLip W la;v 2 L; jvj 
 Lg
D supfjvj W la;v 2 L; jvj 
 Lg 
 L:

It remains to show that g D f on the set A D fjrf j 
 Lg. Let x 2 A and let la;v be
tangent to f and such that la;v.x/ D f .x/. This implies that f .y/ � f .x/ � hy � x; vi
for all y 2 Rn and hence

jrf .x/j D lim sup
y!x

j f .y/� f .x/j
jy � xj � lim sup

y!x

hy � x; vi
jy � xj D v:

Thus, jvj 
 L, so that g.x/ � la;v.x/ D f .x/. ut

7 Optimality

Here we show that the logarithmic dependence in 
.A/ in Theorems 1.1 and 1.3 is
optimal, up to the universal constant c. We provide several examples.

Example 1 Let us return to Example 4, Sect. 5, of the discrete hypercube M D
f0; 1gn, which we equip with the Hamming distance dn and the uniform measure 
.
Let us test the inequality (15) of Corollary 5.4 on the set A � f�1; 1gn consisting of
n C 1 points

.0; 0; 0; : : : ; 0/; .1; 0; 0; : : : ; 0/; .1; 1; 0; : : : ; 0/; : : : ; .1; 1; 1; : : : ; 1/:

We have 
.A/ D .n C 1/=2n � 1=2n. The function f W A ! R, defined by

f .x/ D ]fi W xi D 1g � n

2
;

has a Lipschitz semi-norm k fkLip 
 1 with respect to d and the 
A-mean zero.
Moreover,

R
f 2 d
A D n.nC2/

12
. Expanding the inequality

R
etf d
A 
 e�

2.
A/ t2=2 at
the origin yields

R
f 2 d
A 
 �2.
A/. Hence, recalling that �2.
/ 
 n

4
, we get

�2.
A/ �
Z

f 2 d
A � n2

12

� n

3
�2.
/ � 1

3 log 2
�2.
/ log

	 1


.A/



:
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This example shows the optimality of (15) in the regime 
.A/ ! 0.

Example 2 Let �n be the standard Gaussian measure on Rn of dimension n � 2. We
have �2.�n/ D 1. Consider the normalized measure �AR on the set

AR D ˚
.x1; x2; : : : ; xn/ 2 R

n W x21 C x22 � R2

; R � 0:

Using the property that the function 1
2
.x21 C x22/ has a standard exponential

distribution under the measure �n, we find that �n.AR/ D e�R2=2. Moreover,

s2.�AR/ � Var�AR .x1/ D
Z

x21 d�AR.x/ D 1

2

Z
.x21 C x22/ d�AR.x/

D 1

e�R2=2

Z 1

R2=2
re�r dr D R2

2
C 1 D log

	 e

�n.AR/



:

Therefore,

�2.�AR/ � s2.�AR/ � log
	 e

�n.AR/



;

showing that the inequality (4) of Theorem 1.1 is optimal, up to the universal
constant, for any value of �n.A/ 2 Œ0; 1�.
Example 3 A similar conclusion can be made about the uniform probability
measure 
 on the Euclidean ball B.0;

p
n/ of radius

p
n, centred at the origin

(asymptotically for growing dimension n). To see this, it is sufficient to consider
the cylinders

A" D ˚
.x1; y/ 2 R � R

n�1 W jx1j 

p
n � "2 and jyj 
 "


; 0 < " 
 p

n;

and the function f .x/ D x1. We leave to the readers corresponding computations.

Example 4 Let
 be the two-sided exponential measure on R with density 1
2
e�jxj. In

this case �2.
/ D 1, but, as easy to see, 2 
 s2.
/ 
 4 (recall that 	1.
/ D 1
4
). We

are going to test optimality of the inequality (7) on the sets AR D fx 2 R W jxj � Rg
(R � 0). Clearly, 
.AR/ D e�R, and we find that

s2.
AR/ � Var
AR
.x/ D

Z 1

�1
x2 d
AR.x/ D 1

e�R

Z 1

R
r2e�r dr

D R2 C 2R C 2 � .R C 1/2 D log2
	 e


.AR/



:

Therefore,

s2.
AR/ � log2
	 e


.AR/



;
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showing that the inequality (7) is optimal, up to the universal constant, for any value
of 
.A/ 2 .0; 1�.
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Appendix

Proof of Lemma 2.1 Using the homogeneity, in order to derive the right-hand side
inequality in (8), we may assume that supp�1

k fkpp
p 
 1. Then

R j f jp d
 
 pp=2 for

all p � 1, and by Chebyshev’s inequality,

1 � F.t/ � 
fj f j � tg 

	p

p

t


p
; for all t > 0:

If t � 2, choose here p D 1
4
t2, in which case 1�F.t/ 
 2� 1

4 t
2
. Integrating by parts,

we have, for any 0 < " < log 2
4

,

Z
e"f

2

d
 D �
Z 1

0

e"t
2

d.1 � F.t//

D 1C 2"

Z 2

0

te"t
2

.1 � F.t// dt C 2"

Z 1

2

te"t
2

.1 � F.t// dt


 1C 2"

Z 2

0

te"t
2

dt C 2"

Z 1

2

te"t
2

e� log 2
4 t2 dt

D e4" C "
log 2
4

� "
e�.log 2�4"/ D e4"

�
1C "

2.
log 2
4

� "/

�
:

If " 
 log 2
8

, the latter expression does not exceed 3
2
e4" which does not exceed 2

for " 
 log.4=3/
4

. Both inequalities are fulfilled for " D log 2
10

, and with this valueR
e"f

2
d
 
 2. Hence

k fkL 2 .
/ 
 1p
"

D
s

10

log 2
< 4;
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which yields the right inequality in (8). Conversely, if k fkL 2 .
/ D 1, thenR
e
3
4 f
2
d
 
 2. Since u.t/ D tp e� 3

4 t
2

is maximized in t > 0 at t0 D
q

2p
3

, we
get

k fkpp D
Z

u.j f j/ef 2 d
 
 u.t0/ � 2 D 2

 r
2p

3e

!p

:

Hence, k fkpp
p 
 21=p

q
2
3e < 1, which yields the left inequality.

Now, let us turn to (9) and assume that supp�1
k fkp
p D 1. Then

R j f jp d
 
 pp for
all p � 1, and by Chebyshev’s inequality, for all t > 0,

1 � F.t/ � 
fj f j � tg 

	p
t


p
:

If t � 2, we may choose here p D 1
2
t in which case 1 � F.t/ 
 2� 1

2 t, while for
1 
 t < 2 we choose p D 1, so that 1 � F.t/ 
 1

t . Arguing as before, we have, for

any 0 < " < log 2
2

,

Z
e"j f j d
 D 1C "

Z 1

0
e"t .1 � F.t// dt C "

Z 2

1
e"t .1 � F.t// dt C "

Z 1

2
e"t .1 � F.t// dt


 1C "

Z 1

0
e"t dt C "

Z 2

1

e"t

t
dt C "

Z 1

2
e"t e� log 2

2 t dt:

The pre-last integral can be bounded by
R 2
1

e2"

t dt D e2" log 2, so

Z
e"j f j d
 
 e" C "e2" log 2C "

log 2
2

� " e�2. log 2
2 �"/:

For " D 1
6
, the latter expression is equal to 1:98903902 : : :, and thus

R
e"j f j d
 < 2.

Hence

k fkL 1 .
/ 
 1

"
D 6:

Conversely, if k fkL 1 .
/ D 1, then
R
e
3
4 j f j d
 D 2. Since u.t/ D tp e� 3

4 t is
maximized at t0 D p, we get

k fkpp D
Z

u.j f j/e 34 j f j d
 
 u.t0/ � 2 D 2

�
4p

3e

�p

:

Hence, k fkp
p 
 21=p 4

3e < 1, which yields the left inequality. ut
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Proof of Lemma 3.1 First assume that k fk 2 D 1, in particular
R
e
7
8 f
2
d
 
 2. The

function

u.t/ D log
Z

etf d


is smooth, convex, with u.0/ D 0 and

u0.t/ D
R
fetf d
R
etf d


:

In particular, u0.0/ D 0. Note that, by Jensen’s inequality,
R
etf d
 � 1, so u.t/ � 0.

Further differentiation gives

u00.t/ D
R
f 2etf d
 � � R

fetf d

�2

� R
etf d


�2 

Z

f 2etf d
:

Using tf 
 t2Cf 2

2
and the elementary inequality x e� 3

8 x 
 8
3
e�1, we get, for jtj 
 1,

Z
f 2 etf d
 


Z
f 2 e

t2Cf 2

2 d


D et
2=2

Z
f 2 e� 3

8 f
2

e
7
8 f
2

d
 
 e1=2
8

3
e�1

Z
e
7
8 f
2

d
 
 4:

Thus, u00.t/ 
 4, and by Taylor’s formula, u.t/ 
 2t2.
On the hand, for jtj � 1, by Cauchy’s inequality,

Z
etf d
 


Z
e

t2Cf 2

2 d
 D et
2=2

Z
ef
2=2 d



 et
2=2

�Z
e
7
8 f
2

d


�4=7
D 24=7 et

2=2 
 e.
1
2C 4

7 log 2/ t2 
 et
2

:

Hence, in this case u.t/ 
 t2. Thus,

�2f D sup
t¤0

u.t/

t2=2

 4;

proving the right inequality of Lemma 3.1.
For the left inequality, let �2f D 1. Then

R
etf d
 
 et

2=2 for all t 2 R, which
implies

1 � F.t/ � 
fj f j � tg 
 2e�t2=2; t � 0:
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From this, integrating by parts, we have, for any 0 < " < 1
2
,

Z
e"f

2

d
 D
Z 1

0

e"t
2

dF.t/ D �
Z 1

0

e"t
2

d.1� F.t//

D 1C 2"

Z 1

0

te"t
2

.1 � F.t// dt


 1C 4"

Z 1

0

te"t
2

e�t2=2 dt D 1C 2"
1
2

� " :

The last expression is equal to 2 for " D 1
6
, which means that k fk 2 
 p

6. ut
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On Random Walks in Large Compact Lie
Groups

Jean Bourgain

Abstract Let G be the group SO.d/ or SU.d/ with d large. How long does it take
for a random walk on G to approximate uniform measure? It is shown that in certain
natural examples an "-approximation is achieved in time

�
d log 1

"

�C
.

1 Introduction

In order to put the problem considered in this Note in perspective, we first recall
some other relatively recent results around spectral gaps and generation in Lie
groups.

It was shown in [5] (resp. [6]) that if ƒ is a symmetric finite subset of SU.2/�
resp. SU.d/

�
consisting of algebraic elements, such that the countable group  D

hƒi generated by ƒ is dense, then the corresponding averaging operators

Tf D 1

jƒj
X
g2ƒ

f ı g (1)

acting on L2.G/, has a uniform spectral gap (only depending onƒ). This result was
generalized in [2] to simple compact Lie groups.

It is not known if the assumption for ƒ to be algebraic is needed, and one
may conjecture that it is not. Short of providing uniform spectral gaps, Varju [12]
established the following property which is the most relevant statement for what
follows.

Proposition 1 Let G be a compact Lie group with semisimple connected compo-
nent. Let 
 be a probability measure on G such that supp . Q
 � 
/, Q
 defined byR
f .x/d Q
.x/ D R

f .x�1/d
.x/, generates a dense subgroup of G. Then there is a
constant c > 0 depending only on 
 such that the following holds.
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Let ' 2 Lip .G/; k'k2 D 1 and
R
G ' D 0. Then

���
Z
'.h�1g/d
.h/

���
2
< 1 � c log�A.1C k'kLip/ (2)

with A depending on G.

Using (2) and decomposition of the regular representation of G in irreducibles
(though this may be avoided), one deduces easily from (2) that it takes time at
most O.logA 1

"
/ as " ! 0 for the random walk governed by 
 to produce an "-

approximation of uniform measure on G. Note that for G D SU.d/, this statement
corresponds to the Solovay-Kitaev estimates on generation, cf. [7], which in fact
turns out to be equivalent.

Let us focus on G D SO.d/ or SU.d/. While the exponent A in (2) is a constant,
the prefactor c depends on
, hence on G, and seems to have received little attention.
Basically our aim is to prove a lower bound on c which is powerlike in 1

d and without
the need for uniform spectral gaps (which may not be always available). We focus
on the following model problem brought to the author’s attention by T. Spencer
(who was motivated by issues in random matrix theory that will not be pursued
here). The general setting is as follows (we consider the SU.d/-version). Fix some
probability measure � on SU.2/ such that its support generates a dense group, i.e.
hsupp �i D SU.2/. This measure �may be Haar but could be taken discrete as well.
Identify f0; 1; : : : ; d � 1g with the cyclic group Z=dZ and denote �ij the measure �
on SU.2/ acting on the space Œei; ej�. Consider the random walk on SU.d/ given by

Tf .x/ D 1

d

d�1X
iD0

Z
f .gx/�i;iC1.dg/: (3)

How long does it take for this random walk to become an "-approximation of
uniform measure on G, with special emphasis on large d? Thus this is a particular
instance of the more general issue formulated in the title. While we are unable
to address the broader problem, specific cases such as (3) may be analyzed in a
satisfactory way (based partly on arguments that are also relevant to the general
setting).

We prove

Proposition 2 In the above setting, "-approximation of the uniform measure is
achieved in time C.d log 1

"
/C, with C a constant independent of d.

Comment

If � is taken to be a uniform measure on SU.2/, better results are available,
exploiting Hurwitz’ construction of Haar measure (see [8], Sect. 2). In this situation,
the operator T displays in fact a uniform spectral gap and the power of log 1

"
can be

taken to be one (cf. [8], Theorem 1). Our interest in this presentation is a more robust
approach however.
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Basically, one could expect a more general phenomenon (though some additional
assumptions are clearly needed). In some sense, it would give a continuous version
of the conjecture of Babai and Seress [1] predicting poly-logarithmic diameter for
the family of non-Abelian finite simple groups (independently of the choice of
generators). Important progress in this direction for the symmetric group appears
in [10].

Independently of Spencer’s question, related spectral gap and mixing time issues
for specific random walks in large (not necessarily compact) linear groups appear in
the theory of Anderson localization for ‘quasi-one-dimensional’ methods in Math
Phys.

Consider the strip Z � Z=dZ and a random Schrödinger operator � C 	V with
� the usual lattice Laplacian on Z � Z=dZ, V a random potential and 	 > 0 the
disorder. This model is well known to exhibit pure point spectrum with so-called
Anderson localization for the eigenfunctions. The issue here is how the localization
length (or equivalently, the Lyapounov exponents in the transfer matrix approach)
depend on d when d ! 1.

The classical approach based on Furstenberg’s random matrix product theory
(acting on exterior powers of Rd), cf. [3], is not quantitative and sheds no light on
the role of d. In fact, the first explicit lower bound on Lyapounov exponents seems
to appear in [4] (using different techniques based on Green’s function analysis),
with, roughly speaking exponential dependence on d (while the ‘true’ behaviour is
believed to be rather of the form d�C). Clearly understanding the mixing time for
the random walk in the symplectic group Sp.2d/ associated to the transfer matrix is
crucial. Note that this group is non-compact, which is an added difficulty (for very
small 	, depending on d, [11] provides the precise asymptotic of the exponents,
based on a multi-dimensional extension of the Figotin-Pastur approach).

2 Some Preliminary Comments

The proof of Proposition 1 in [12] exploits the close relation between ‘generation’
and ‘restricted spectral gaps’. This point of view is also the key idea here in
establishing

Proposition 10 Let T be defined by (3). Then there is the following estimate

kTfk2 < 1 � .Cd/�C
�

log.1C k fkLip/
�A
�

(4)

for f 2 Lip.G/. k fk2 D 1;
R
G f D 0.

Here C and A are constants (denoted differently, because of their different
appearance in the argument).

Unlike in [12], we tried to avoid the use of representation theory. The reason for
this is the following. If one relies on decomposition of the regular representation
of G in irreducibles and the Peter-Weyl theorem, one is faced in the absence of a
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uniform spectral gap with convergence issues of the generalized Fourier expansion
of functions on G of given regularity. Conversely, we also need to understand the
regularity of matrix coefficients of the representations of increasing dimension.
While these are classical issues, understanding the role of the dimension d does
not seem to have been addressed explicitly.

3 Proof of Proposition 10

For simplicity, we take � to be a uniform measure on SU.2/ and indicate the required
modifications for the general case in Sect. 5.

According to (3), denote

� D 1

d

d�1X
iD0

�i;iC1 (5)

Thus � D Q� and T is the corresponding averaging operator.
Let f 2 Lip.G/; k fk2 D 1 and

R
G f D 0. Assuming

���
Z
�gf�.dg/

���2
2

D kTfk22 > 1 � " (6)

(denoting �gf .x/ D f .gx/
�

our aim is to obtain a lower bound on ".
Clearly (6) implies that

D
f ;
Z
�gf .� � �/.dg/

E
> 1 � "

and
Z

k f � �gfk22.� � �/.dg/ < 2": (7)

Fix "1 > 0 to be specified later and denote B"1 an "1-neighborhood (for the
operator norm) of Id in SU.d/. It is clear from (5) that �.B"1/ & "31 and hence (7)
implies

Z
k f � �g0gfk22 �.dg/ . "�3

1 " (8)

for some g0 2 B"1 . Next, partitioning SU.2/ in "1-cells �˛ and denoting

�˛;i D fg 2 SU.d/I g.ej/ D ej for j 62 fi; i C 1g and gjŒei;eiC1� 2 �˛g
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observe that �.�˛;i/ � 1
d"
3
1 so that by (8)

�
Z

�˛;i

k f � �g0gfk22 �.dg/ . d"�6
1 "  1: (9)

Exploiting (9), it is clear that we may introduce a collection G � SU.d/ with the
following properties

k f � �gfk2 .
p
d "�3

1

p
" for g 2 G: (10)

and
Given an element � 2 SU.2/ and 1 
 i < j 
 d, denote �ij in SU.d/ the element

defined by

(
�ij.ek/ D ek for k 62 fi; jg
�ij
ˇ̌
Œei;ej�

D �:
(11)

Then, for each � 2 SU.2/ and 1 
 i 
 d, there is g 2 G s.t.

kg � �i;iC1k2 < "1: (12)

At this point, we will invoke generation. Since
R
G f D 0,

Z
SU.d/

k f � �gfk22dg D 2

and we take some h0 2 SU.d/ s.t.

k f � �h0 fk2 � p
2:

If kh0 � h1k < ı � 1
k fkLip

, then

k�h0 f � �h1 fk2 
 .k fkLipı/
1
2 <

1

2

and consequently

k f � �h1 fk2 > 1 if kh0 � h1k < ı: (13)

In order to get a contradiction, we need to produce a word h1 D
g1 � � � g`I g1; : : : ; g` 2 G such that

kh0 � g1 � � � g`k < ı (14)
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and

` <
"31p
"
p
d
: (15)

Indeed, (10) implies then that

k f � �h1 fk2 
 k f � �g1 fk2 C � � � C k f � �g` fk2 < 1:

For 1 
 i < d, let �i;iC1 2 Sym.d/ be the transposition of i and i C 1.
Denote Q�i;iC1 the corresponding unitary operator. Since

f�i;iC1I i D 1; : : : ; d � 1g

is a generating set for Sym.d/ consisting of cycles of bounded length, it follows from
a result in [9] that the corresponding Cayley graph on Sym.d/ has diameter at most
Cd2. In particular, given i; j 62 Z=dZ; i 6D j; Q�i;j may be realized as a composition of
a string of elements Q�i;iC1 of length at most Cd2. In view of (11), this implies that if
� 2 SU.2/ and 1 
 i < j 
 d, then

k�ij � gk < cd2"1 (16)

for some g 2 G`1 ; `1 < cd2 (G` = words of size ` written in g).
Let � > 0,

�2 > cd2"1: (17)

Adopting the Lie-algebra point of view, the preceding implies that given s 2 R,
jsj < 1 and z 2 C, jzj < 1, then

dist
�
Id C �

�
is.ei ˝ ei/ � is.ej ˝ ej/C z.ei ˝ ej/� Nz.ej ˝ ei/

�
;G`1

�
< �2 (18)

and therefore

dist .I C �A;Gd2`1 / < d2�2 (19)

for skew-symmetric A, kAk 
 2� .
Let h 2 SU.d/; h D eA with A as above. Taking � D 1

r , we have

eA D .e
1
r A/r D

	
1C 1

r
A

r C O

	1
r




and therefore, by (19)

dist .h0;Grd2`1/ 
 rd2�2 D d2

r
: (20)
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Taking � D 1
r D d�C and "1 D d�2C�2, (20) ensure that

dist .h;Gdc1/ < d�C for all h 2 SU.d/: (21)

Next, we rely on the Solovay-Kitaev commutator technique to produce approxi-
mations at smaller scale. This procedure is in fact dimensional free (see the comment
in [7] following Lemma 2 in order to eliminate a polynomial prefactor in d—which
actually would be harmless if we start from scales "0 D d�C). The conclusion is that

dist .h;G`/ < � for all h 2 SU.d/

may be achieved with

` < dC1
	

log
1

�


A
:

Returning to (14), (15), we obtain the condition

dC0 logA.1C k fkLip/ <
"31p
"
p
d

D d�C2"� 1
2 (22)

and Proposition 10 follows.

4 Proof of Proposition 2

The disadvantage of our approach is that T is not restricted to finite dimensional
invariant subspaces of L2.G/ so that strictly speaking, one can not rely on a spectral
gap argument to control the norm of iterates of T.

But Proposition 10 nevertheless permit to derive easily the following

Proposition 3 Assume f 2 Lip.G/, k fk2 D 1,
R
G f D 0. Let 0 < � < 1

2
. Then

kT`fk2 < � (23)

provided

` > CdC: logA.1C k fkLip/:
	

log
1

�


AC1
: (24)

Proof Let B D k fkLip. Clearly kT`fkLip 
 B also.

Fix some ` and let f1 D T`f
kT`fk2 . Hence k f1kLip 
 B

kT`fk2 .
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Applying Proposition 10, it follows that

kT`C1fk2 
 kT`fk2.1 � "`/

with

"` D cd�C
	

log
	
1C B

kT`fk2


�A

> cd�C
�

log.1CB/
��A

	
log

	
1C 1

kT`fk2


�A

:

Hence, assuming kT`fk2 > �, we obtain

� < .1 � cd�C
�

log.1C B/
��A

	
log

1

�


�A
`

implying (24). ut
Proof of Proposition 2 Apply Proposition 3 with logB � log 1

"
and log 1

�
�

d2 log 1
"
.

5 Variants

The previous argument is clearly very flexible and may be applied in other
situations.

Returning to Sect. 3, assume more generally � a probability measure on SU.2/
satisfying hsupp �i D SU.2/. Note that by Proposition 1, �.`/ with ` � .log 1

"1
/c �

.log d/c provides an "1-approximation of Haar measure on SU.2/. It follows
from (3), (7) that

Z
k f � �gfk22.�i;iC1 � �i;iC1/.dg/ < 2d2"

and hence
Z

k f � �gfk22�.`/i;iC1.dg/ < `d
2"

�
Z

�a;i

k f � �gfk22 �.`/i;iC1.dg/ . `d2"�3
1 ":

The collection G may then be introduced similarly. Proposition 2 remains valid.
Let us point out that it is unknown if in general the density assumption

hsupp �i D SU.2/ implies a uniform spectral gap (see the discussion on Sect. 1).
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Instead of (3), one may introduce at time k D ZC the discrete average Tk D
1
2
.�g C �g�1/ � � � where we first pick some i 2 Z=dZ and then choose a random

element g 2 SU.2/ acting on Œei; eiC1� according to �. In this situation, one obtains
random walks on SU.d/ indexed by an additional probability space ˝�Z=dZ ˝
SU.2/

�

T! D � � �TkTk�1 � � �T1 (25)

and may ask for the typical mixing time of a realization.
Rather straightforward adjustments of the arguments appearing in the proof of

Proposition 10 combined with some Markovian considerations permit us to establish
the analogue of Proposition 2 for T! . Thus

Proposition 4 Let T! be defined by (25). Then, with large probability in !, "-
approximation of uniform measure on SU.d/ may be achieved in time C.d log 1

"
/C.
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On a Problem of Farrell and Vershynin
in Random Matrix Theory

Jean Bourgain

Abstract We settle a question of Farrell and Vershynin on the inverse of the
perturbation of a given arbitrary symmetric matrix by a GOE element.

1 Introduction

In [1], the authors consider the invertibility of d�d-matrices of the form DCR, with
D an arbitrary symmetric deterministic matrix and R a symmetric random matrix
whose independent entries have continuous distributions with bounded densities. In
this setting, a uniform estimate

k.D C R/�1k D O.d2/ (1)

is shown to hold with high probability. The authors conjecture that (1) may be
improved to O.

p
d/. The purpose of this short Note is to prove this in the case

R is Gaussian. Thus we have (stated in the `2d-normalized setting).

Proposition Let T be an arbitrary matrix in Sym.d/. Then, for A (normalized) in
GOE, there is a uniform estimate

k.A C T/�1k D O.d/ (2)

with large probability.
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2 Proof of the Proposition

By invariance of GOE under orthogonal transformations, we may assume T
diagonal. Let K be a suitable constant and partition

f1; : : : ; dg D �1 [�2

with

�1 D f j D 1; : : : ; dI jTjjj > Kg:

Denote T.i/ D ��iT��i .i D 1; 2/ and A.i;j/ D ��iA��j.i; j D 1; 2/. Since

.A.1;1/ C T.1//�1 D �
I C .T.1//�1A.1;1//.T.1//�1

and

k.T.1//�1A.1;1/k 
 1

K
kA.1;1/k < 1

2

with large probability, we ensure that

k.A.1;1/ C T.1//�1k < 1: (3)

Next, write by the Schur complement formula

.A C T/�1

D
0
@.A.1;1/ C T.1//�1 C .A.1;1/ C T.1//�1A.1;2/S�1A.2;1/.A.1;1/ C T.1//�1 �.A.1;1/ C T.1//�1A.1;2/S�1

�S�1A.2;1/.A.1;1/ C T.1//�1 S�1

1
A

(4)

defining

S D A.2;2/ C T.2/ � A.2;1/.A.1;1/ C T.1//�1A.1;2/: (5)

Hence by (4)

k.A C T/�1k 
 C.1C k.A.1;1/ C T.1//�1k2/.1C kAk2/kS�1k

 C1kS�1k:

(6)
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Note that A.2;2/ and A.2;1/.A.1;1/CT.1//�1A.1;2/ are independent in the A randomness.
Thus S may be written in the form

S D A.2;2/ C S0 (7)

with S0 2 Sym.d/; kS0k < O.1/ (by construction, kT.2/k 
 K) and A.2;2/ and S0
independent.

Fixing S0, we may again exploit the invariance to put S0 in diagonal form,
obtaining

A.2;2/ C S0
0 with S0

0 diagonal : (8)

Hence, we reduced the original problem to the case T is diagonal and kTk <

K C 1.
Note however that (8) is a .d1 � d1/-matrix and since d1 may be significantly

smaller than d, A.2;2/ is not necessarily normalized anymore. Thus after renormal-
ization of A.2;2/, setting

A1 D
	 d

d1


 1
2
A.2;2/ (9)

and denoting

T1 D
	 d

d1


 1
2
S0
0 (10)

we have

kT1k <
	 d

d1


 1
2
.K C 1/ (11)

while the condition [cf. (6)]

k.A.2;2/ C S0
0/

�1k D O.d/ (12)

becomes

k.A1 C T1/
�1k D O.

p
dd1/: (13)

At this point, we invoke Theorem 1.2 from [2]. As Vershynin kindly pointed out
to the author, the argument in [2] simplifies considerably in the Gaussian case.
Examination of the proof shows that in fact the statement from [2], Theorem 1.2
can be improved in this case as follows.
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Claim Let A be a d � d normalized GOE matrix and T a deterministic, diagonal
.d � d/-matrix. Then

PŒk.A C T/�1k > 	d� 
 C.1C kTk/	� 1
9 : (14)

We distinguish two cases. If d1 � 1
C2
d;C2 > C31, immediately apply the above

claim with d replaced by d1, A by A1 and T by T1. Thus by (11)

PŒk.A1CT1/
�1k > 	

p
dd1� 
 C.1CkT1k/

	d1
d


� 1
18
	� 1

9 < C
�
1C

p
C2.KC1/�	� 1

9

(15)

and (12) follows. If d1 < 1
C2
d, repeat the preceding replacing A by A1, T by T1. In

the definition of�1, replace K by K1 D 2K, so that (3) will hold with probability at
least

1 � e�cK21 D 1 � e�4cK2 (16)

the point being of making the measure bounds e�c4sK2 , s D 0; 1; 2; : : : obtained in
an iteration, sum up to e�c1K2 D o.1/.

Note that in (13), we only seek for an estimate

k.A1 C T1/
�1k < O

	p
C2
C1

d1



(17)

hence, cf. (12)

k.A.2;2/1 C S0
1;0/

�1k < O
	p

d2
C1

d1



(18)

where A.2;2/1 and S0
1;0 are defined as before, considering now A1 and T1. Hence (13)

gets replaced by

k.A2 C T2/
�1k D O

	p
C2
C1

p
d1d2



(19)

where A2;T2 are .d2 � d2/-matrices,

kT2k <
	d1
d2


 1
2
.2K C 1/: (20)
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Assuming d2 � 1
C2
d1, we obtain instead of (15)

PŒk.A2 C T2/
�1k > 	

p
C2
C1

p
d1d2� 
 C

�
1C

p
C2.K1 C 1/

�	p
C2
C1

	

� 1

9

< C
�
1C

p
C2.K C 1/

�
.2C

1
9

1 C
� 1
18

2 /	� 1
9

(21)

and we take C2 to ensure that 2C
1
9

1 C
� 1
18

2 < 1
2
.

The continuation of the process is now clear and terminates in at most 2 log d
steps. At step s, we obtain if dsC1 � 1

C2
ds

P

h
k.AsC1 C TsC1/�1k > 	

	p
C2
C1


sp
dsdsC1

i
< C

�
1C

p
C2.K C 1/

�
2�s	� 1

9 :

(22)

Summation over s gives a measure estimate O.	� 1
9 / D o.1/.

This concludes the proof of the Proposition. From quantitative point of view,
previous argument shows

Proposition’ Let T and A be as in the Proposition. Then

PŒk.A C T/�1k > 	d� < O.	� 1
10 /: (23)
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Valuations on the Space of Quasi-Concave
Functions

Andrea Colesanti and Nico Lombardi

Abstract We characterize the valuations on the space of quasi-concave functions
on R

N , that are rigid motion invariant and continuous with respect to a suitable
topology. Among them we also provide a specific description of those which are
additionally monotone.

1 Introduction

A valuation on a space of functions X is an application 
 W X ! R such that


. f _ g/C 
. f ^ g/ D 
. f /C 
.g/ (1)

for every f ; g 2 X s.t. f _ g; f ^ g 2 X; here “_” and “^” denote the point-wise
maximum and minimum, respectively. The condition (1) can be interpreted as a
finite additivity property (typically verified by integrals).

The study of valuations on spaces of functions stems principally from the theory
of valuations on classes of sets, in which the main current concerns convex bodies.
We recall that a convex body is simply a compact convex subset of RN , and the
family of convex bodies is usually denoted by KN . An application � W KN ! R is
called a valuation if

�.K [ L/C �.K \ L/ D �.K/C �.L/ (2)

for every K;L 2 KN such that K [ L 2 KN (note that the intersection of
convex bodies is a convex body). Hence, in passing from (2) to (1) union and
intersection are replaced by maximum and minimum respectively. A motivation is
that the characteristic function of the union (resp. the intersection) of two sets is the
maximum (resp. the minimum) of their characteristic functions.

The theory of valuations is an important branch of modern convex geometry
(the theory of convex bodies). The reader is referred to the monograph [16]

A. Colesanti (�) • N. Lombardi
Dipartimento di Matematica e Informatica “U. Dini”, Viale Morgagni 67/A, 50134 Firenze, Italy
e-mail: andrea.colesanti@unifi.it; colesant@math.unifi.it; nico.lombardi@unifi.it

© Springer International Publishing AG 2017
B. Klartag, E. Milman (eds.), Geometric Aspects of Functional Analysis,
Lecture Notes in Mathematics 2169, DOI 10.1007/978-3-319-45282-1_6

71

mailto:andrea.colesanti@unifi.it; colesant@math.unifi.it
mailto:nico.lombardi@unifi.it


72 A. Colesanti and N. Lombardi

for an exhaustive description of the state of the art in this area, and for the
corresponding bibliography. The valuations on KN , continuous with respect to
the Hausdorff metric and rigid motion invariant, i.e. invariant with respect to
composition with translations and proper rotations (elements of O.N/), have been
completely classified in a celebrated result by Hadwiger (see [5–7]). Hadwiger’s
theorem asserts that any valuation � with these properties can be written in the form

�.K/ D
NX
iD0

ci Vi.K/ 8K 2 KN ; (3)

where c1; : : : ; cN are constants and V1; : : : ;VN denote the intrinsic volumes (see
Sect. 2, for the definition). This fact will be of great importance for the results
presented here.

Let us give a brief account of the main known results in the area of valuations on
function spaces. Wright, in his PhD thesis [21] and subsequently in collaboration
with Baryshnikov and Ghrist [2], characterized rigid motion invariant and continu-
ous valuations on the class of definable functions (we refer to the quoted papers for
the definition). Their result is very similar to Hadwiger’s theorem; roughly speaking
it asserts that every valuation is the linear combination of integrals of intrinsic
volumes of level sets. This type of valuations will be crucial in our results as well.

Rigid motion invariant and continuous valuations on Lp.RN/ and on Lp.Sn�1/
(1 
 p < 1) have been studied and classified by Tsang in [17]. Basically, Tsang
proved that every valuation 
 with these properties is of the type


. f / D
Z
�. f /dx (4)

(here the integral is performed on RN or Sn�1) for some function � defined on R

verifying suitable growth conditions. Subsequently, the results of Tsang have been
extended to Orlicz spaces by Kone in [8]. Also, the special case p D 1 was studied
by Cavallina in [3].

Valuations on the space of functions of bounded variations and on Sobolev spaces
have been recently studied by Wang and Ma respectively, in [14, 19, 20] and [13].

In [4] the authors consider rigid motion invariant and continuous valuations (with
respect to a certain topology that will be recalled later on) on the space of convex
functions, and found some partial characterization results under the assumption of
monotonicity and homogeneity.

Note that the results that we have mentioned so far concern real-valued valu-
ations, but there are also studies regarding other types of valuations (e.g. matrix-
valued valuations, or Minkowski and Blaschke valuations, etc.) that are interlaced
with the results mentioned previously. A strong impulse to these studies have been
given by Ludwig in the works [9–12]; the reader is referred also to [18] and [15].

Here we consider the space CN of quasi-concave functions of N real variables. A
function f W RN ! R is quasi-concave if it is non-negative and for every t > 0 the
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level set

Lt. f / D fx 2 R
N W f .x/ � tg

is (either empty or) a compact convex set. CN includes log-concave functions and
characteristic functions of convex bodies as significant examples.

We consider valuations 
 W CN ! R which are rigid motion invariant (with the
same notion as before for rigid motion transformations), i.e.


. f / D 
. f ı T/

for every f 2 CN and for every rigid motion T of RN . We also impose a continuity
condition on 
: if fi, i 2 N, is a monotone (either increasing or decreasing) sequence
in CN , converging to f 2 CN point-wise in R

N , then we must have

lim
i!1
. fi/ D 
. f /:

In Sect. 4.1 we provide some motivation for this definition, comparing this notion
of continuity with other possible choices.

There is a simple way to construct valuations on CN . To start with, note that if
f ; g 2 CN and t > 0

Lt. f _ g/ D Lt. f / [ Lt.g/; Lt. f ^ g/ D Lt. f /\ Lt.g/: (5)

Let  be a function defined on .0;1/ and fix t0 > 0. Define, for every f 2 CN ,


0. f / D VN.Lt0 . f // .t0/:

Using (5) and the additivity of volume we easily deduce that 
0 is a rigid motion
invariant valuation. More generally, we can overlap valuations of this type at various
levels t, and we can further replace VN by any intrinsic volume Vk:


. f / D
Z
.0;1/

Vk.Lt. f // .t/ dt D
Z
.0;1/

Vk.Lt. f // d�.t/; f 2 CN ; (6)

where � is the measure with density  . This is now a rather ample class of
valuations; as we will see, basically every monotone valuation on CN can be written
in this form. To proceed, we observe that the function

t ! Vk.Lt. f //

is decreasing. In particular it admits a distributional derivative which is a non-
positive measure. For ease of notation we write this measure in the form �Sk. f I �/
where now Sk. f I �/ is a (non-negative) Radon measure on .0;1/. Then, integrating
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by parts in (6) (boundary terms can be neglected, as it will be clear in the sequel)
we obtain:


. f / D
Z
.0;1/

�.t/ dSk. f I t/ (7)

where � is a primitive of  . Our first result is the fact that functionals of this type
exhaust, by linear combinations, all possible rigid motion invariant and continuous
valuations on CN .

Theorem 1.1 A map 
 W CN ! R is an invariant and continuous valuation on CN

if and only if there exist .N C 1/ continuous functions �k, k D 0; : : : ;N defined on
Œ0;1/, and ı > 0 such that: �k � 0 in Œ0; ı� for every k D 1; : : : ;N, and


. f / D
NX

kD0

Z
Œ0;1/

�k.t/dSk. f I t/ 8 f 2 CN :

The condition that each �k, except for �0, vanishes in a right neighborhood of the
origin guarantees that the integral in (7) is finite for every f 2 CN (in fact, it is
equivalent to this fact). As in the case of Hadwiger theorem, the proof of this result
is based on a preliminary step in which valuations that are additionally simple are
classified. A valuation 
 on CN is called simple if

f D 0 a.e. in R
N ) 
. f / D 0:

Note that for f 2 CN , being zero a.e. is equivalent to say that the dimension of the
support of f (which is a convex set) is strictly smaller than N. The following result
is in a sense analogous to the so-called volume theorem for convex bodies.

Theorem 1.2 A map 
 W CN ! R is an invariant, continuous and simple valuation
on CN if and only if there exists a continuous function � defined on Œ0;1/, with
� � 0 in Œ0; ı� for some ı > 0, such that


. f / D
Z
Rn
�. f .x//dx 8 f 2 CN ;

or, equivalently,


. f / D
Z
Œ0;1/

�.t/dSN. f I t/:

Here the equivalence of the two formulas follows from the layer cake principle.
The representation formula of Theorem 1.1 becomes more legible in the case of
monotone valuations. Here, each term of the sum is clearly a weighted mean of the
intrinsic volumes of the level sets of f .
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Theorem 1.3 A map 
 is an invariant, continuous and monotone increasing
valuation on CN if and only if there exists .N C 1/ Radon measures on Œ0;1/,
�k, k D 0; : : : ;N, such that each �k is non-negative, non-atomic and, for k � 1, the
support of �k is contained in Œı;1/ for a suitable ı > 0, and


. f / D
NX

kD0

Z
Œ0;1/

Vk.Lt. f // d�k.t/; 8 f 2 CN :

We remark that the non-negativity of �k depends on the monotone increasing
property of 
, as we will see in Sect. 8.

As we already mentioned, and it will be explained in details in Sect. 5.3, the
passage

Z
Œ0;1/

�k.t/dSk. f I t/ �!
Z
Œ0;1/

Vk.Lt. f // d�k.t/

is provided merely by an integration by parts, when this is permitted by the
regularity of the function �k.

The paper is organized as follows. In the next section we provide some notions
from convex geometry. Section 3 is devoted to the basic properties quasi-convex
functions, while in Sect. 4 we define various types of valuations on the space
CN . In Sect. 5 we introduce the integral valuations, which occur in Theorems 1.1
and 1.3. Theorem 1.2 is proved in Sect. 6, while Sects. 6 and 7 contain the proof of
Theorems 1.1 and 1.3, respectively.

2 Notations and Preliminaries

We work in the N-dimensional Euclidean space RN , N � 1, endowed with the usual
scalar product .�; �/ and norm k � k. Given a subset A of RN , int.A/, cl.A/ and @A
denote the interior, the closure and the topological boundary of A, respectively. For
every x 2 RN and r � 0, Br.x/ is the closed ball of radius r centered at x; in
particular, for simplicity we will write Br instead of Br.0/. We recall that a rigid
motion of RN will be the composition of a translation and a rotation of RN (i.e. an
isometry). The Lebesgue measure in RN will be denoted by VN .

2.1 Convex Bodies

We recall some notions and results from convex geometry that will be used in the
sequel. Our main reference on this subject is the monograph by Schneider [16]. As
stated in the introduction the class of convex bodies is denoted by KN . For K;L 2
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KN , we define the Hausdorff distance of K and L as

ı.K;H/ D maxfsup
x2K

dist.x;H/; sup
y2H

dist.K; y/g:

Accordingly, a sequence of convex bodies fKngn2N � KN is said to converge to
K 2 KN if

ı.Kn;K/ ! 0; as n ! C1:

Remark 2.1 KN with respect to Hausdorff distance is a complete metric space.

Remark 2.2 For every convex subset C of RN , and consequently for convex bodies,
its dimension dim .C/ can be defined as follows: dim.C/ is the smallest integer such
that there exists an affine sub-space of RN containing C.

We are ready, now, to introduce some functionals operating on KN , the intrinsic
volumes, which will be of fundamental importance in this paper. Among the various
ways to define intrinsic volumes, we choose the one based on the Steiner formula.
Given a convex body K and � > 0, the parallel set of K is

K� D fx 2 R
N j dist.x;K/ 
 �g:

The following result asserts that the volume of the parallel body is a polynomial in
�, and contains the definition of intrinsic volumes.

Theorem 2.3 (Steiner Formula) There exist N functions V0; : : : ;VN�1 W KN !
RC such that, for all K 2 KN and for all � � 0, we have

VN.K�/ D
NX
iD0

Vi.K/!N�i�
N�i;

where !j denotes the volume of the unit ball in the space Rj. V0.K/; : : : ;VN.K/ are
called the intrinsic volumes of K.

Hence one of the intrinsic volumes is the Lebesgue measure. Moreover V0 is
the Euler characteristic, so that for every K we have V0.K/ D 1. The name
intrinsic volumes comes from the following fact: assume that K has dimension
j 2 f0; : : : ;Ng, i.e. there exists a j-dimensional affine subspace of RN containing
K, and j is the lowest number with this property (we will write dim.K/ D j). Then
K can be seen as a subset ofRj and Vj.K/ is the Lebesgue measure of K as a subset of
Rj. Intrinsic volumes have many other properties, listed in the following proposition.

Proposition 2.4 (Properties of Intrinsic Volumes) For every k 2 f0; : : : ;Ng the
function Vk is:

• rigid motion invariant;



Valuations on the Space of Quasi-Concave Functions 77

• continuous with respect to the Hausdorff metric;
• monotone increasing: K � L implies Vk.K/ 
 Vk.L/;
• a valuation:

Vk.K [ L/C Vk.K \ L/ D Vk.K/C Vk.L/ 8K;L 2 KN s.t. K [ L 2 KN :

We also set conventionally

Vk.¿/ D 0; 8 k D 0; : : : ;N:

The previous properties essentially characterizes intrinsic volumes as stated by
the following result proved by Hadwiger, already mentioned in the introduction.

Theorem 2.5 (Hadwiger) If � is a continuous and rigid motion invariant valua-
tion, then there exist .N C 1/ real coefficients c0; : : : ; cN such that

�.K/ D
NX
iD0

ciVi.K/;

for all K 2 KN [ f¿g.
The previous theorem claims that fV0; : : : ;VNg spans the vector space of all

continuous and invariant valuations on KN [ f¿g. It can be also proved that
V0; : : : ;VN are linearly independent, so they form a basis of this vector space.
In Hadwiger’s Theorem continuity can be replaced by monotonicity hypothesis,
obtaining the following result.

Theorem 2.6 If � is a monotone increasing (resp. decreasing) rigid motion
invariant valuation, then there exist .N C 1/ coefficients c0; : : : ; cN such that ci � 0

(resp. ci 
 0) for every i and

�.K/ D
NX
iD0

ciVi.K/;

for all K 2 KN [ f¿g.
A special case of the preceding results concerns simple valuations. A valuation


 is said to be simple if


.K/ D 0 8K 2 KN s.t. dim.K/ < N:

Corollary 2.7 (Volume Theorem) Let � W KN [ f¿g ! R be a rigid motion
invariant, simple and continuous valuation. Then there exists a constant c such that


 D cVN :
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Remark 2.8 In the previous theorem continuity can be replaced by the following
weaker assumption: for every decreasing sequence Ki, i 2 N, in KN , converging to
K 2 KN ,

lim
i!1 �.Ki/ D �.K/:

This follows, for instance, from the proof of the volume theorem given in [6].

3 Quasi-Concave Functions

3.1 The Space CN

Definition 3.1 A function f W RN ! R is said to be quasi-concave if

• f .x/ � 0 for every x 2 RN ,
• for every t > 0, the set

Lt. f / D fx 2 R
N W f .x/ � tg

is either a convex body or is empty.

We will denote with CN the set of all quasi-concave functions.

Typical examples of quasi-convex functions are (positive multiples of) charac-
teristic functions of convex bodies. For A � R

N we denote by IA its characteristic
function

IA W RN ! R; IA.x/ D
(
1 if x 2 A;

0 if … A:

Then we have that s IK 2 CN for every s > 0 and K 2 KN . We can also describe the
sets Lt.sIK/, indeed

Lt.s IK/ D
(

¿ if t > s;

K if 0 < t 
 s:

The following proposition gathers some of the basic properties of quasi-concave
functions.

Proposition 3.2 If f 2 CN then

• lim
jjxjj!C1

f .x/ D 0,

• f is upper semi-continuous,
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• f admits a maximum in Rn, in particular

sup
RN

f < C1:

Proof To prove the first property, let � > 0; as L�. f / is compact, there exists R > 0
such that L�. f / � BR. This is equivalent to say that

f .x/ 
 � 8 x s.t. kxk � R:

Upper semi-continuity follows immediately from compactness of super-level sets.
Let M D sup

RN f and assume that M > 0. Let xn, n 2 N, be a maximizing sequence:

lim
n!1 f .xn/ D M:

As f decays to zero at infinity, the sequence xn is compact; then we may assume that
it converges to Nx 2 RN . Then, by upper semi-continuity

f .Nx/ � lim
n!1 f .xn/ D M:

ut
For simplicity, given f 2 CN , we will denote by M. f / the maximum of f in RN .

Remark 3.3 Let f 2 CN , we denote with supp. f / the support of f , that is

supp. f / D cl.fx 2 R
N W f .x/ > 0g/:

This is a convex set; indeed

supp. f / D cl.
1[
kD1

fx 2 R
N W f .x/ � 1=kg/:

The sets

fx 2 R
N W f .x/ � 1=kg k 2 N;

forms an increasing sequence of convex bodies and their union is convex.

Remark 3.4 A special sub-class of quasi-concave functions is that formed by log-
concave functions. Let u be a function defined on all RN , with values in R[ fC1g,
convex and such that limjjxjj!C1 f .x/ D C1. Then the function f D e�u is quasi-
concave (here we adopt the convention e�1 D 0). If f is of this form is said to be a
log-concave function.
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3.2 Operations with Quasi-Concave Functions

Let f ; g W RN ! R; we define the point-wise maximum and minimum function
between f and g as

f _ g.x/ D maxf f .x/; g.x/g; f ^ g.x/ D minff .x/; g.x/g;

for all x 2 RN . These operations, applied on CN , will replace the union and
intersection in the definition of valuations on KN [ f¿g. The proof of the following
equalities is straightforward.

Lemma 3.5 If f and g belong to CN and t > 0:

Lt. f ^ g/ D Lt. f / \ Lt.g/; Lt. f _ g/ D Lt. f /[ Lt.g/:

As the intersection of two convex bodies is still a convex body, we have the
following consequence.

Corollary 3.6 For all f ; g 2 CN, f ^ g 2 CN.

On the other hand, in general f ; g 2 CN does not imply that f _g does, as it is shown
by the example in which f and g are characteristic functions of two convex bodies
with empty intersection.

The following lemma follows from the definition of quasi-concave function and
the fact that if T is a rigid motion of RN and K 2 KN , then T.K/ 2 KN .

Lemma 3.7 Let f 2 CN be a quasi concave function and T W RN ! RN a rigid
motion, then f ı T 2 CN.

3.3 Three Technical Lemmas

We are going to prove some lemmas which will be useful for the study of continuity
of valuations.

Lemma 3.8 Let f 2 CN. For all t > 0, except for at most countably many values,
we have

Lt. f / D cl.fx 2 R
N W f .x/ > tg/:

Proof We fix t > 0 and we define

�t. f / D fx 2 R
N W f .x/ > tg; Ht. f / D cl.�t. f //:
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�t. f / is a convex set for all t > 0, indeed

�t D
[
k2N

LtC1=k. f /:

Consequently Ht is a convex body and Ht � Lt. f /. We define Dt D Lt. f / n Ht;
our aim is now to prove that the set of all t > 0 such that Dt ¤ ¿ is at most
countable. We first note that if K and L are convex bodies with K � L, int.L/ ¤ ¿
and L n K ¤ ¿ then int.L n K/ ¤ ¿, therefore

Dt ¤ ¿ , VN.Dt/ > 0: (8)

It follows from

Dt D Lt. f / n Ht � Lt. f / n�t. f / D fx 2 R
N W f .x/ D tg;

that

t1 ¤ t2 ) Dt1 . f /\ Dt2 . f / D ¿: (9)

For the rest of the proof we proceed by induction on N. For N D 1, we observe
that if f is identically zero, then the lemma is trivially true. If supp. f / D fx0g and
f .x0/ D t0 > 0, then we have

Lt. f / D fx0g D cl.�t. f // 8 t > 0; t ¤ t0;

and in particular the lemma is true. We suppose next that int.supp. f // ¤ ¿; let
t0 > 0 be a number such that dim.Lt. f // D 1, for all t 2 .0; t0/ and dim.Lt. f // D 0,
for all t > t0. Moreover, let t1 D maxR f � t0. We observe that

Lt. f / D cl.�t. f // D ¿ 8 t > t1 and Lt. f / D cl.�t. f // 8 t 2 .t0; t1/:
Next we deal with values of t 2 .0; t0/. Let us fix � > 0 and let K be a compact set
in R such that K � Lt. f / for every t � �. We define, for i 2 N,

T�i D
�
t 2 Œ�; t0/ W V1.Dt/ � 1

i

�
:

As Dt � K for all t � � and taking (9) into account we obtain that T�i is finite . So

T� D
[
i2N

T�i

is countable for every � > 0. By (8)

ft � � W Dt ¤ ¿g is countable
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for every � > 0, so that

ft > 0 W Dt ¤ ¿g

is also countable. The proof for N D 1 is complete.
Assume now that the claim of the lemma is true up to dimension .N � 1/, and

let us prove in dimension N. If the dimension of supp. f / is strictly smaller than N,
then (as supp. f / is convex) there exists an affine subspace H of RN , of dimension
.N � 1/, containing supp. f /. In this case the assert of the lemma follows applying
the induction assumption to the restriction of f to H. Next, we suppose that there
exists t0 > 0 such that

dim.Lt. f // D N; 8 t 2 .0; t0/

and

dim.Lt. f // < N; 8 t > t0:

By the same argument used in the one-dimensional case we can prove that

ft 2 .0; t0/ W Dt ¤ ¿g

is countable. For t > t0, there exists a .N � 1/-dimensional affine sub-space of RN

containing Lt. f / for every t > t0. To conclude the proof we apply the inductive
hypothesis to the restriction of f to this hyperplane. ut
Lemma 3.9 Let ffigi2N � CN and f 2 CN. Assume that fi % f point-wise in RN as
i ! C1. Then, for all t > 0, except at most for countably many values,

lim
i!1Lt. fi/ D Lt. f /:

Proof For every t > 0, the sequence of convex bodies Lt. fi/, i 2 N, is increasing
and Lt. fi/ � Lt. f / for every i. In particular this sequence admits a limit Lt � Lt. f /.
We choose t > 0 such that

Lt. f / D cl.fx 2 R
N W f .x/ > tg/:

By the previous lemma we know that this condition holds for every t except at most
countably many values. It is clear that for every x s.t. f .x/ > t we have x 2 Lt,
hence Lt 	 fx 2 R

N W f .x/ > tg; on the other hand, as Lt is closed, we have that
Lt 	 Lt. f /. Hence Lt D Lt. f / and the proof is complete. ut
Lemma 3.10 Let ffigi2N � CN and f 2 CN. Assume that fi & f point-wise in RN as
i ! C1. Then for all t > 0

lim
i!1Lt. fi/ D Lt. f /:
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Proof The sequence Lt. fi/ is decreasing and its limit, denoted by Lt, contains Lt. f /.
On the other hand, as now

Lt D
\
k2N

Lt. fk/

(see Lemma 1:8:1 of [16]), if x 2 Lt then fi.x/ � t for every i, so that f .x/ � t i.e.
x 2 Lt. f /. ut

4 Valuations

Definition 4.1 A functional 
 W CN ! R is said to be a valuation if

• 
.0/ D 0, where 0 2 CN is the function identically equal to zero;
• for all f and g 2 CN such that f _ g 2 CN , we have


. f /C 
.g/ D 
. f _ g/C 
. f ^ g/:

A valuation
 is said to be rigid motion invariant, or simply invariant, if for every
rigid motion T W RN ! RN and for every f 2 CN , we have


. f / D 
. f ı T/:

In this paper we will always consider invariant valuations. We will also need a notion
of continuity which is expressed by the following definition.

Definition 4.2 A valuation 
 is said to be continuous if for every sequence
ffigi2N � CN and f 2 CN such that fi converges point-wise to f in RN , and fi is
either monotone increasing or decreasing w.r.t. i, we have


. fi/ ! 
. f /; for i ! C1:

To conclude the list of properties that a valuation may have and that are relevant
to our scope, we say that a valuation 
 is monotone increasing (resp. decreasing) if,
given f ; g 2 CN ,

f 
 g point-wise in R
N implies 
. f / 
 
.g/ .resp. 
. f / � 
.g//:

4.1 A Brief Discussion on the Choice of the Topology in CN

A natural choice of a topology in CN would be the one induced by point-wise
convergence. Let us see that this choice would too restrictive, with respect to the
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theory of continuous and rigid motion invariant (but translations would be enough)
valuations. Indeed, any translation invariant valuation 
 on CN such that

lim
i!1
. fi/ D 
. f /

for every sequence fi, i 2 N, in CN , converging to some f 2 CN point-wise, must be
the valuation constantly equal to 0. To prove this claim, let f 2 CN have compact
support, let e1 be the first vector of the canonical basis of RN and set

fi.x/ D f .x � i e1/ 8 x 2 R
N ; 8 i 2 N:

The sequence fi converges point-wise to the function f0 � 0 in RN , so that, by
translation invariance, and as 
. f0/ D 0, we have 
. f / D 0. Hence 
 vanishes
on each function f with compact support. On the other hand every element of CN is
the point-wise limit of a sequence of functions in CN with compact support. Hence

 � 0.

A different choice could be based on the following consideration: we have seen
that CN � L1.RN/, hence it inherits the topology of this space. In [3], Cavallina
studied translation invariant and continuous valuations on L1.RN/. In particular he
proved that there exists non-trivial translation invariant and continuous valuations
on this space, which vanishes on functions with compact support. In particular they
cannot be written in integral form as those found in the present paper. Noting that in
dimension N D 1 translation and rigid motion invariance provide basically the same
condition, this suggest that the choice of the topology on L1.RN/ on CN would lead
us to a completely different type of valuations.

5 Integral Valuations

A class of examples of invariant valuations which will be crucial for our characteri-
zation results is that of integral valuations.

5.1 Continuous Integral Valuations

Let k 2 f0; : : : ;Ng. For f 2 CN , consider the function

t ! u.t/ D Vk.Lt. f // t > 0:

This is a decreasing function, which vanishes for t > M. f / D maxRN f . In particular
u has bounded variation in Œı;M. f /� for every ı > 0, hence there exists a Radon



Valuations on the Space of Quasi-Concave Functions 85

measure defined in .0;1/, that we will denote by Sk. f I �/, such that

�Sk. f I �/ is the distributional derivative of u

(see, for instance, [1]). Note that, as u is decreasing, we have put a minus sign in
this definition to have a non-negative measure. The support of Sk. f I �/ is contained
in Œ0;M. f /�.

Let � be a continuous function defined on Œ0;1/, such that �.0/ D 0. We
consider the functional on CN defined by


. f / D
Z
.0;1/

�.t/dSk. f I t/ f 2 CN : (10)

The aim of this section is to prove that this is a continuous and invariant valuation
on CN . As a first step, we need to find some condition on the function � which
guarantee that the above integral is well defined for every f .

Assume that

9 ı > 0 s.t. �.t/ D 0 for every t 2 Œ0; ı�: (11)

Then
Z
.0;1/

�C.t/dSk. f I t/ D
Z
Œı;M. f /�

�C.t/ dSk. f ; t/


 M .Vk.Lı. f // � Vk.M. f /// < 1;

where M. f / D maxRN f , M D maxŒı;max
RN f � �C and �C is the positive part of �.

Analogously we can prove that the integral of the negative part of �, denoted by ��,
is finite, so that 
 is well defined.

We will prove that, for k � 1, condition (11) is necessary as well. Clearly, if 
. f /
is well defined (i.e. is a real number) for every f 2 CN , then

Z
.0;1/

�C.t/dSk. f I t/ < 1 and
Z
.0;1/

��.t/dSk. f I t/ < 1 8 f 2 CN :

Assume that �C does not vanish identically in any right neighborhood of the origin.
Then we have

 .t/ WD
Z t

0

�C.�/ d� > 0 8 t > 0:

The function

t ! h.t/ D
Z 1

t

1

 .s/
ds; t 2 .0; 1�;
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is strictly decreasing. As k � 1, we can construct a function f 2 CN such that

Vk.Lt. f // D h.t/ for every t > 0: (12)

Indeed, consider a function of the form

f .x/ D w.kxk/; x 2 R
N ;

where w 2 C1.Œ0;C1// is positive and strictly decreasing. Then f 2 CN and
Lt. f / D Br.t/, where

r.t/ D w�1.t/

for every t 2 .0; f .0/� (note that f .0/ D M. f /). Hence

Vk.Lt. f // D c .w�1.t//k

where c is a positive constant depending on k and N. Hence if we choose

w D
"�

1

c
h

�1=k#�1
;

(12) is verified. Hence

dSk. f I t/ D 1

 .t/
dt;

and
Z
.0;1/

�C.t/dSk. f I t/ D
Z
.0;M. f //

 0.t/
 .t/

dt D 1:

In the same way we can prove that �� must vanish in a right neighborhood of the
origin. We have proved the following result.

Lemma 5.1 Let � 2 C.Œ0;1// and k 2 f1; : : : ;Ng. Then � has finite integral with
respect to the measure Sk. f I �/ for every f 2 CN if and only if � verifies (11).

In the special case k D 0, as the intrinsic volume V0 is the Euler characteristic,

u.t/ D
�
1 if 0 < t 
 M. f /;
0 if t > M. f /:

That is, S0 is the Dirac point mass measure concentrated at M. f / and 
 can be
written as


. f / D �.M. f // 8f 2 CN :
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Next we show that (10) defines a continuous and invariant valuation.

Proposition 5.2 Let k 2 f0; : : : ;Ng and � 2 C.Œ0;1// be such that �.0/ D 0. If
k � 1 assume that (11) is verified. Then (10) defines an invariant and continuous
valuation on CN.

Proof For every f 2 CN we define the function uf W Œ0;M. f /� ! R as

uf .t/ D Vk.Lt. f //:

As already remarked, this is a decreasing function. In particular it has bounded
variation in Œı;M. f /�. Let �i, i 2 N, be a sequence of functions in C1.Œ0;1//,
with compact support, converging uniformly to � on compact sets. As � � 0 in
Œ0; ı�, we may assume that the same holds for every �i. Then we have


. f / D lim
i!1
i. f /;

where


i. f / D
Z
Œ0;1/

�i.t/dSk. f I t/ 8 f 2 CN :

By the definition of distributional derivative of a measure, we have, for every f and
for every i:

Z
Œ0;1/

�i.t/dSk. f I t/ D
Z
Œ0;1/

uf .t/�
0
i .t/dt D

Z
Œ0;M. f /�

Vk.Lt. f //�
0
i .t/dt:

On the other hand, if f ; g 2 CN are such that f _ g 2 CN , for every t > 0

Lt. f _ g/ D Lt. f /[ Lt.g/; Lt. f ^ g/ D Lt. f /\ Lt.g/: (13)

As intrinsic volumes are valuations

Vk.Lt. f _ g//C Vk.Lt. f ^ g// D Vk.Lt. f //C Vk.Lt.g//:

Multiplying both sides times �0
i .t/ and integrating on Œ0;1/ we obtain


i. f _ g/C 
i. f ^ g/ D 
i. f /C 
i.g/:

Letting i ! 1 we deduce the valuation property for 
.
In order to prove the continuity of 
, we first consider the case k � 1. Let

fi; f 2 CN , i 2 N, and assume that the sequence fi is either increasing or decreasing
with respect to i, and it converges point-wise to f in RN . Note that in each case
there exists a constant M > 0 such that M. fi/;M. f / 
 M for every i. Consider
now the sequence of functions ufi . By the monotonicity of the sequence fi, and that
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of intrinsic volumes, this is a monotone sequence of decreasing functions, and it
converges a.e. to uf in .0;1/, by Lemmas 3.9 and 3.10. In particular the sequence
ufi has uniformly bounded total variation in Œı;M�. Consequently, the sequence of
measures Sk. fiI �/, i 2 N, converges weakly to the measure Sk. f I �/ as i ! 1.
Hence, as � is continuous

lim
i!1
. fi/ D lim

i!1

Z
Œı;M�

�.t/ dSk. fiI t/ D
Z
Œ0;M�

�.t/ dSk. f I t/ D 
. f /:

If k D 0 then we have seen that


. f / D �.M. f // 8 f 2 CN :

Hence in this case continuity follows from the following fact: if fi, i 2 N, is a
monotone sequence in CN converging point-wise to f , then

lim
i!1M. fi/ D M. f /:

This is a simple exercise that we leave to the reader.
Finally, the invariance of 
 follows directly from the invariance of intrinsic

volumes with respect to rigid motions. ut

5.2 Monotone (and Continuous) Integral Valuations

In this section we introduce a slightly different type of integral valuations, which
will be needed to characterize all possible continuous and monotone valuations on
CN . Note that, as it will be clear in the sequel, when the involved functions are
smooth enough, the two types can be reduced one to another by an integration by
parts.

Let k 2 f0; : : : ;Ng and let � be a Radon measure on .0;C1/; assume that

Z C1

0

Vk.Lt. f //d�.t/ < C1; 8f 2 CN : (14)

We will return later on explicit condition on � such that (14) holds. Then define the
functional 
 W CN ! R by


. f / D
Z C1

0

Vk.Lt. f //d�.t/ 8 f 2 CN : (15)

Proposition 5.3 Let � be a Radon measure on .0;1/ which verifies (14); then
the functional defined by (15) is a rigid motion invariant and monotone increasing
valuation.
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Proof The proof that 
 is a valuation follows from (13) and the valuation property
for intrinsic volumes, as in the proof of Proposition 5.2. The same can be done for
invariance. As for monotonicity, note that if f ; g 2 CN and f 
 g, then

Lt. f / � Lt.g/ 8 t > 0:

Therefore, as intrinsic volumes are monotone, Vk.Lt. f // 
 VK.Lt.g// for every
t > 0. ut

If we do not impose any further assumption the valuation 
 needs not to be
continuous. Indeed, for example, if we fix t D t0 > 0 and let � D ıt0 be the delta
Dirac measure at t0; then the valuation


. f / D VN.Lt0 . f //; 8f 2 CN ;

is not continuous. To see it, let f D t0IB1 (recall that B1 is the unit ball of RN) and
let

fi D t0

�
1 � 1

i

�
IB1 8 i 2 N:

Then fi is a monotone sequence of elements of CN converging point wise to f in RN .
On the other hand


. fi/ D 0 8 i 2 N;

while 
. f / D VN.B1/ > 0. The next results asserts that the presence of atoms is
the only possible cause of discontinuity for 
. We recall that a measure � defined
on Œ0;1/ is said non-atomic if �.ftg/ D 0 for every t � 0.

Proposition 5.4 Let � be a Radon measure on .0;C1/ such that (14) holds and
let 
 be the valuation defined by (14). Then the two following conditions are
equivalent:

i) � is non-atomic,
ii) 
 is continuous.

Proof Suppose that i) does not hold, than there exists t0 such that �.ft0g/ D ˛ > 0.
Define ' W RC ! R by

'.t/ D
Z
.0;t�

d�.s/:

' is an increasing function with a jump discontinuity at t0 of amplitude ˛. Now let
f D t0IB1 and fi D t0.1 � 1

i /IB1 , for i 2 N. Then fi is an increasing sequence in CN ,
converging point-wise to f in RN . On the other hand


. f / D
Z t0

0

Vk.B/d�.s/ D Vk.B/�..0; t0�/ D Vk.B1/ '.t0/
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and similarly


. fi/ D Vk.B1/ '

�
t0 � 1

i

�
:

Consequently

lim
i!C1
. fi/ < 
. f /:

Vice versa, suppose that i) holds. We observe that, as � is non-atomic, every
countable subset has measure zero with respect to �. Let fi 2 CN , i 2 N, be a
sequence such that either fi % f or fi . f as i ! C1, point-wise in RN , for some
f 2 CN . Set

ui.t/ D Vk.Lt. fi//; u.t/ D Vk.Lt. f // 8 t � 0; 8 k 2 N:

The sequence ui is monotone and, by Lemmas 3.9 and 3.10, converges to u �-
a.e. Hence, by the continuity of intrinsic volumes and the monotone convergence
theorem, we obtain

lim
i!1
. fi/ D lim

i!1

Z
.0;1/

ui.t/ d� D
Z
.0;1/

u.t/ d�.t/ D 
. f /:

ut
Now we are going to find a more explicit form of condition (14). We need the

following lemma.

Lemma 5.5 Let � W Œ0;C1/ ! R be an increasing, non negative and continuous
function with �.0/ D 0 and �.t/ > 0, for all t > 0. Let � be a Radon measure such
that �.t/ D �.Œ0; t�/, for all t � 0. Then

Z 1

0

1

�k.t/
d�.t/ D C1; 8k � 1:

Proof Fix ˛ 2 Œ0; 1�. The function  W Œ˛; 1� ! R defined by

 .t/ D

8̂
<̂
ˆ̂:

1

k � 1
�1�k.t/ if k > 1;

ln.�.t// if k D 1;

is continuous and with bounded variation in Œ˛; 1�. Its distributional derivative is

1

�k.t/
�:
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Hence, for k > 1,

1

k � 1
Œ�1�k.˛/ � �1�k.1/� D  .1/ �  .˛/ D

Z
Œ˛;1�

d�

�k.t/
:

The claim of the lemma follows letting ˛ ! 0C. A similar argument can be applied
to the case k D 1. ut
Proposition 5.6 Let � be a non-atomic Radon measure on Œ0;C1/ and let k 2
f1; : : : ;Ng. Then (14) holds if and only if:

9ı > 0 such that �.Œ0; ı�/ D 0: (16)

Proof We suppose that there exists ı > 0 such that Œ0; ı� \ supp.�/ D ¿. Then we
have, for every f 2 CN ,


. f / D
Z M. f /

ı

Vi.Lt. f //d�.t/ 
 Vi.Lı. f //
Z M. f /

ı

d�.t/ (17)

D Vi.Lı. f //.�.Œ0;M. f /�/ � �.Œ0; ı�// < C1: (18)

with M. f / D maxRN f .
Vice versa, assume that (14) holds. By contradiction, we suppose that for all

ı > 0, we have �.Œ0; ı�/ > 0. We define

�.t/ D �.Œ0; t�/; t 2 Œ0; 1�
then � is continuous (as � is non-atomic) and increasing; moreover �.0/ D 0 and
�.t/ > 0, for all t > 0. The function

 .t/ D 1

t�.t/
; t 2 .0; 1�;

is continuous and strictly decreasing. Its inverse  �1 is defined in Œ .1/;1/; we
extend it to Œ0;  .1// setting

 �1.r/ D 1 8 r 2 Œ0;  .1//:
Then

V1.fr 2 Œ0;C1/ W  �1.r/ � tg/ D
8<
:
 .t/; 8 t 2 .0; 1�

0 8 t > 1:

We define now the function f W RN ! R as

f .x/ D  �1.jjxjj/; 8 x 2 R
N :
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Then

Lt. f / D fx 2 R
N W  .jjxjj/ � tg D B 1

t�.t/
.0/;

and

Vk.Lt. f // D c
1

tk�k.t/
8 t 2 .0; 1�;

where c > 0 depends on N and k. Hence, by Lemma 5.5

Z C1

0

Vk.Lt. f //d�.t/ D
Z 1

0

Vk.Lt. f //d�.t/ � c
Z C1

0

d�.t/

�k.t/
D C1:

ut
The following proposition summarizes some of the results we have found so far.

Proposition 5.7 Let k 2 f0; : : : ;Ng and let � be a Radon measure on Œ0;1/ which
is non-atomic and, if k � 1, verifies condition (16). Then the map 
 W CN ! R

defined by (15) is an invariant, continuous and increasing valuations.

5.3 The Connection Between the Two Types of Integral
Valuations

When the regularity of the involved functions permits, the two types of integral
valuations that we have seen can be obtained one from each other by a simple
integration by parts.

Let k 2 f0; : : : ;Ng and � 2 C1.Œ0;1// be such that �.0/ D 0. For simplicity,
we may assume also that � has compact support. Let f 2 CN . By the definition of
distributional derivative of an increasing function we have:

Z
Œ0;1/

�.t/ dSk. f I t/ D
Z
Œ0;1/

�0.t/Vk.Lt. f //dt:

If we further decompose ��0 as the difference of two non-negative functions, and
we denote by �1 and �2 the Radon measures having those functions as densities, we
get

Z
Œ0;1/

�.t/ dSk. f I t/ D
Z
Œ0;1/

Vk.Lt. f //d�1.t/ �
Z
Œ0;1/

Vk.Lt. f //d�2.t/:

The assumption that � has compact support can be removed by a standard
approximation argument. In his way we have seen that each valuation of the
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form (10), if � is regular, is the difference of two monotone integral valuations
of type (15).

Vice versa, let � be a Radon measure (with support contained in Œı;1/, for
some ı > 0), and assume that it has a smooth density with respect to the Lebesgue
measure:

d�.t/ D �0.t/dt

where � 2 C1.Œ0;1//, and it has compact support. Then

Z
Œ0;1/

Vk.Lt. f // d�.t/ D
Z
Œ0;1/

�.t/ dSk. f I t/:

Also in this case the assumption that the support of � is compact can be removed.
In other words each integral monotone valuation, with sufficiently smooth density,
can be written in the form (10).

5.4 The Case k D N

If 
 is a valuation of the form (10) and k D N, the Layer Cake principle provides
and alternative simple representation.

Proposition 5.8 Let � be a continuous function on Œ0;1/ verifying (16). Then for
every f 2 CN we have

Z
Œ0;1/

�.t/ dSN. f I t/ D
Z
RN
�. f .x//dx: (19)

Proof As � can be written as the difference of two non-negative continuous
function, and (19) is linear with respect to �, there is no restriction if we assume
that � � 0. In addition we suppose initially that � 2 C1.Œ0;1// and it has compact
support. Fix f 2 CN ; by the definition of distributional derivative, we have

Z
Œ0;1/

�.t/ dSN. f I t/ D
Z
Œ0;1/

VN.Lt. f //�
0.t/dt:

There exists �1; �2 2 C1.Œ0;1//, strictly increasing, such that � D �1 � �2. Now:

Z
Œ0;1/

VN.Lt. f //�
0
1.t/dtD

Z
Œ0;1/

VN.fx 2 R
N W �1.f .x// � sg/dsD

Z
RN
�1. f .x//dx;

where in the last equality we have used the Layer Cake principle. Applying the
same argument to �2 we obtain (19) when � is smooth and compactly supported.
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For the general case, we apply the result obtained in the previous part of the proof
to a sequence �i, i 2 N, of functions in C1.Œ0;1//, with compact support, which
converges uniformly to � on compact subsets of .0;1/. The conclusion follows
from a direct application of the dominated convergence theorem. ut

6 Simple Valuations

Throughout this section 
 will be an invariant and continuous valuation on CN . We
will also assume that 
 is simple.

Definition 6.1 A valuation 
 on CN is said to be simple if, for every f 2 CN with
dim.supp. f // < N, we have 
. f / D 0.

Note that dim.supp. f // < N implies that f D 0 a.e. in RN , hence each valuation
of the form (19) is simple. We are going to prove that in fact the converse of this
statement is true.

Fix t � 0 and define a real-valued function �t on KN [ f¿g as

�t.K/ D 
.tIK/ 8K 2 KN ; �t.¿/ D 0:

Let K;L 2 KN be such that K [ L 2 KN . As, trivially,

tIK _ tIL D tIK[L and tIK ^ tIL D tIK\L;

using the valuation property of 
 we infer

�t.K [ L/C �t.K \ L/ D �t.K/C �t.L/;

i.e. �t is a valuation on KN . It also inherits directly two properties of 
: it is invariant
and simple. Then, by the continuity of 
, Corollary 2.7 and the subsequent remark,
there exists a constant c such that

�t.K/ D cVN.K/ (20)

for every K 2 KN . The constant c will in general depend on t, i.e. it is a real-valued
function defined in Œ0;1/. We denote this function by �N . Note that, as 
. f / D 0

for f � 0, �N.0/ D 0. Moreover, the continuity of 
 implies that for every t0 � 0

and for every monotone sequence ti, i 2 N, converging to t0, we have

�N.t0/ D lim
i!1�N.ti/:

From this it follows that �N is continuous in Œ0;1/.
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Proposition 6.2 Let 
 be an invariant, continuous and simple valuation on CN.
Then there exists a continuous function �N on Œ0;1/, such that


.tIK/ D �N.t/VN.K/

for every t � 0 and for every K 2 KN.

6.1 Simple Functions

Definition 6.3 A function f W R
N ! R is called simple if it can be written in the

form

f D t1IK1 _ � � � _ tmIKm (21)

where 0 < t1 < � � � < tm and K1; : : : ;Km are convex bodies such that

K1 	 K2 	 � � � 	 Km:

The proof of the following fact is straightforward.

Proposition 6.4 Let f be a simple function of the form (21) and let t > 0. Then

Lt. f / D fx 2 R
N W f .x/ � tg D

8<
:
Ki if t 2 .ti�1; ti� for some i D 1; : : :m;

¿ if t > tm;
(22)

where we have set t0 D 0.

In particular simple functions are quasi-concave. Let k 2 f0; : : : ;Ng, and let f be
of the form (21). Consider the function

t ! u.t/ WD Vk.Lt. f //; t > 0:

By Proposition 6.4, this is a decreasing function that is constant on each interval of
the form .ti�1; ti�, on which it has the valueVk.Ki/. Hence its distributional derivative
is �Sk. f I �/, where

Sk. f I �/ D
m�1X
iD1
.Vk.Ki/� Vk.KiC1// ıti.�/C Vk.Km/ıtm.�/: (23)
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6.2 Characterization of Simple Valuations

In this section we are going to prove Theorem 1.2. We will first prove it for simple
functions and then pass to the general case by approximation.

Lemma 6.5 Let 
 be an invariant, continuous and simple valuation on CN, and let
� D �N be the function whose existence is established in Proposition 6.2. Then, for
every simple function f 2 CN we have


. f / D
Z
Œ0;1/

�.t/ dSN. f I t/:

Proof Let f be of the form (21). We prove the following formula


. f / D
m�1X
iD1

�.ti/.VN.Ki/ � VN.KiC1//C �.tm/VN.Km/I (24)

by (23), this is equivalent to the statement of the lemma. Equality (24) will be proved
by induction on m. For m D 1 its validity follows from Proposition 6.2. Assume that
it has been proved up to .m � 1/. Set

g D t1IK1 _ � � � _ tm�1IKm�1 ; h D tmIKm :

We have that g; h 2 CN and

g _ h D f 2 CN ; g ^ h D tm�1IKm :

Using the valuation property of 
 and Proposition 6.2 we get


. f / D 
.g _ h/ D 
.g/C 
.h/� 
.g ^ h/

D 
.g/C �.tm/VN.Km/ � �.tm�1/VN.Km/:

On the other hand, by induction


.g/ D
m�2X
iD1

�.ti/.VN.Ki/� VN.KiC1//C �.tm�1/VN.Km�1/:

The last two equalities complete the proof. ut
Proof of Theorem 1.2 As before, � D �N is the function coming from Proposi-
tion 6.2. We want to prove that


. f / D
Z
Œ0;1/

�.t/ dSN. f I t/ (25)
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for every f 2 CN . This, together with Proposition 5.8, provides the proof.

Step 1. Our first step is to establish the validity of this formula when the support
of f bounded, i.e. there exists some convex body K such that

Lt. f / � K 8 t > 0: (26)

Given f 2 CN with this property, we build a monotone sequence of simple
functions, fi, i 2 N, converging point-wise to f in R

N . Let M D M. f / be the
maximum of f on R

N . Fix i 2 N. We consider the dyadic partition Pi of Œ0;M�:

Pi D
�
tj D j

M

2i
W j D 0; : : : ; 2i

�
:

Set

Kj D Ltj. f /; fi D
2i_
jD1

tjIKj :

fi is a simple function; as tjIKj 
 f for every j we have that fi 
 f in RN . The
sequence of function fi is increasing, since Pi � PiC1. The inequality fi 
 f
implies that

lim
i!1 fi.x/ 
 f .x/ 8 x 2 R

N

(in particular the support of fi is contained in K, for every i 2 N). We want to
establish the reverse inequality. Let x 2 RN ; if f .x/ D 0 then trivially

fi.x/ D 0 8 i hence lim
i!1 fi.x/ D f .x/:

Assume that f .x/ > 0 and fix � > 0. Let i0 2 N be such that 2�i0M < �. Let
j 2 f1; : : : ; 2i0 � 1g be such that

f .x/ 2
�
j
M

2i0
; . j C 1/

M

2i0

�
:

Then

f .x/ 
 j
M

2i0
C M

2i0

 fi0 .x/C � 
 lim

i!1 fi.x/C �:

Hence the sequence fi converges point-wise to f in RN . In particular, by the
continuity of 
 we have that


. f / D lim
i!1
. fi/ D lim

i!1

Z
Œ0;1/

�.t/ dSN. fiI t/:
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By Lemma 3.9, a further consequence is that

lim
i!1 ui.t/ D u.t/ for a.e. t 2 .0;1/;

where

ui.t/ D VN.Lt. fi//; i 2 N; u.t/ D VN.Lt. f //

for t > 0. We consider now the sequence of measures SN. fiI �/, i 2 N; the total
variation of these measures in .0;1/ is uniformly bounded by VN.K/, moreover
they are all supported in .0;M/. As they are the distributional derivatives of
the functions ui, which converges a.e. to u, we have that (see for instance
[1, Proposition 3.13]) the sequence SN. fiI �/ converges weakly in the sense of
measures to SN. f I �/. This implies that

lim
i!1

Z
.0;1/

N�.t/ dSN. fiI t/ D
Z
.0;1/

N�.t/ dSN. f I t/ (27)

for every function N� continuous in .0;1/, such that N�.0/ D 0 and N�.t/ is
identically zero for t sufficiently large. In particular (recalling that �.0/ D 0), we
can take N� such that it equals � in Œ0;M�. Hence, as the support of the measures
SN. fiI �/ is contained in this interval, we have that (27) holds for � as well. This
proves the validity of (25) for functions with bounded support.

Step 2. This is the most technical part of the proof. The main scope here is to
prove that � is identically zero in some right neighborhood of the origin. Let
f 2 CN . For i 2 N, let

fi D f ^ .M. f /IBi/

where Bi is the closed ball centered at the origin, with radius i. The function fi
coincides with f in Bi and vanishes in RNnBi; in particular it has bounded support.
Moreover, the sequence fi, i 2 N, is increasing and converges point-wise to f in
RN . Hence


. f / D lim
i!1
. fi/ D lim

i!1

Z
.0;1/

�.t/ dSN. fiI t/:

Let �C and �� be the positive and negative parts of �, respectively. We have that

lim
i!1

�Z
.0;1/

�C.t/ dSN. fiI t/C
Z
.0;1/

��.t/ dSN. fiI t/
�

exists and it is finite. We want to prove that this implies that �C and �� vanishes
identically in Œ0; ı� for some ı > 0.



Valuations on the Space of Quasi-Concave Functions 99

By contradiction, assume that this is not true for �C. Then there exists three
sequences ti, ri and �i, i 2 N, with the following properties: ti tends decreasing to
zero; ri > 0 is such that the intervals Ci D Œti � ri; ti C ri� are contained in .0; 1�
and pairwise disjoint; �C.t/ � �i > 0 for t 2 Ci. Let

C D
[
i2N

Ci ; � D .0; 1� n C:

Next we define a function � W .0; 1� ! Œ0;1/ as follows. �.t/ D 0 for every
t 2 � while, for every i 2 N, � is continuous in Ci and

�.ti ˙ ri/ D 0;

Z
Ci

�.t/dt D 1

�i
:

Note in particular that � vanishes on the support of �� intersected with .0; 1�.
We also set

g.t/ D �.t/C 1 8 t > 0:

Observe that
Z 1

0

��.t/g.t/dt D
Z 1

0

��.t/dt < 1:

On the other hand

Z 1

0

�C.t/g.t/dt �
Z 1

0

�.t/�.t/dt D
1X
iD1

Z
Ci

�C.t/�.t/dt

�
1X
iD1

�i

Z
Ci

�.t/dt D C1:

Let

G.t/ D
Z 1

t
g.s/ds and �.t/ D ŒG.t/�1=N ; 0 < t 
 1:

As � is non-negative, g is strictly positive, and continuous in .0; 1/. Hence G is
strictly decreasing and continuous, and the same holds for �. Let

S D sup
.0;1�

� D lim
t!0C

�.t/;

and let ��1 W Œ0; S/ ! R be the inverse function of �. If S < 1, we extend ��1
to be zero in ŒS;1/. In this way, ��1 is continuous in Œ0;1/, and C1.Œ0; S//. Let

f .x/ D ��1.kxk/; 8 x 2 R
N :
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For t > 0 we have

Lt. f / D
� fx 2 R

N W kxk 
 �.t/g if t 
 1;

¿ if t > 1:

In particular f 2 CN . Consequently,

VN.Lt. f // D c �N.t/ D cG.t/ 8 t 2 .0; 1�;
where c > 0 is a dimensional constant, and then

dSN. f I t/ D c g.t/dt:

By the previous considerations
Z
Œ0;1/

�C.t/dSN. f ; t/D c
Z
Œ0;1/

�C.t/g.t/dtD 1;

Z
Œ0;1/

�C.t/dSN. f ; t/ < 1:

Clearly we also have that
Z
Œ0;1/

�C.t/dSN. f ; t/ D lim
i!1

Z
Œ0;1/

�C.t/dSN. fi; t/;

and the same holds for ��; here fi is the sequence approximating f defined before.
We reached a contradiction.

Step 3. The conclusion of the proof proceeds as follows. Let N
 W CN ! R be
defined by

N
. f / D
Z
.0;1/

�.t/ dSN. f I t/:

By the previous step, and by the results of Sect. 5.1, this is well defined, and is
an invariant and continuous valuation. Hence the same properties are shared by

 � N
; on the other hand, by Step 1 and the definition of N
, this vanishes on
functions with bounded support. As for any element f of CN there is a monotone
sequence of functions in CN , with bounded support and converging point-wise to
f in RN , and as 
 � N
 is continuous, it must be identically zero on CN .

ut

7 Proof of Theorem 1.1

We proceed by induction on N. For the first step of induction, let 
 be an invariant
and continuous valuation on C1. For t > 0 let

�0.t/ D 
.tIf0g/:
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This is a continuous function in R, with �0.0/ D 0. We consider the application

0 W C1 ! R:


0. f / D �0.M. f //

where as usual M. f / D maxR f . By what we have seen in Sect. 5.1, this is an
invariant and continuous valuation. Note that it can be written in the form


0. f / D
Z
.0;1/

�0.t/ dS0. f I t/:

Next we set N
 D 
 � 
0; this is still an invariant and continuous valuation, and it
is also simple. Indeed, if f 2 C1 is such that dim.supp. f // D 0, this is equivalent to
say that

f D tIfx0g

for some t � 0 and x0 2 R. Hence


. f / D 
.tIf0g/ D �0.t/ D 
0. f /:

Therefore we may apply Theorem 1.2 to 
1 and deduce that there exists a function
�1 2 C.Œ0;1//, which vanishes identically in Œ0; ı� for some ı > 0, and such that

N
. f / D
Z
.0;1/

�1.t/ dS1. f I t/ 8 f 2 C1:

The proof in the one-dimensional case is complete.
We suppose that the Theorem holds up to dimension .N � 1/. Let H be an

hyperplane of RN and define CN
H D ff 2 CN W supp. f / � Hg. CN

H can be
identified with CN�1; moreover 
 restricted to CN

H is trivially still an invariant and
continuous valuation. By the induction assumption, there exists �k 2 C.Œ0;1//,
k D 0; : : : ;N � 1, such that


. f / D
N�1X
kD0

Z
.0;1/

�k.t/ dSk. f I t/ 8 f 2 CN
H :

In addition, there exists ı > 0 such that �1; : : : ; �N�1 vanish in Œ0; ı�. Let N
 W CN !
R as

N
. f / D
N�1X
kD0

Z
.0;1/

�k.t/ dSk. f I t/:
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This is well defined for f 2 CN and it is an invariant and continuous valuation. The
difference 
 � N
 is simple; applying Theorem 1.2 to it, as in the one-dimensional
case, we complete the proof. �

8 Monotone Valuations

In this section we will prove Theorem 1.3; in particular we will assume that 
 is
an invariant, continuous and increasing valuation on CN throughout. Note that, as

. f0/ D 0, where f0 is the function identically zero in RN , we have that 
. f / � 0

for every f 2 CN .
The proof is divided into three parts.

8.1 Identification of the Measures �k, k D 0; : : : ;N

We proceed as in the proof of Proposition 6.2. Fix t > 0 and consider the application
�t W KN ! R:

�t.K/ D 
.tIK/; K 2 KN :

This is a rigid motion invariant valuation on KN and, as 
 is increasing, �t has the
same property. Hence there exists .N C 1/ coefficients, depending on t, that we
denote by  k.t/, k D 0; : : : ;N, such that

�t.K/ D
NX

kD0
 k.t/Vk.K/ 8K 2 KN : (28)

We prove that each  k is continuous and monotone in .0;1/. Let us fix the index
k 2 f0; : : : ;Ng, and let �k be a closed k-dimensional ball in RN , of radius 1. We
have

Vj.�k/ D 0 8 j D k C 1; : : : ;N;

and

Vk.�k/ DW c.k/ > 0:

Fix r � 0; for every j, Vj is positively homogeneous of order j, hence, for t > 0,


.tIr�k/ D
kX

jD0
rjVj.�k/ j.t/:
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Consequently

 k.t/ D Vk.�k/ � lim
r!1


.tIr�k/

rk
:

By the properties of 
, the function t ! 
.tIr�k/ is non-negative, increasing and
vanishes for t D 0, for every r � 0; these properties are inherited by  k.

As for continuity, we proceed in a similar way. To prove that  0 is continuous
we observe that the function

t ! 
.t�0/ D  0.t/

is continuous, by the continuity of
. Assume that we have proved that 0; : : : ;  k�1
are continuous. Then by the equality


.tI�k/ D
kX

jD1
Vj.�k/ j.t/;

it follows that  k is continuous.

Proposition 8.1 Let 
 be an invariant, continuous and increasing valuation on CN.
Then there exists .N C 1/ functions  0; : : : ;  N defined in Œ0;1/, such that (28)
holds for every t � 0 and for every K. In particular each  k is continuous,
increasing, and vanishes at t D 0.

For every k 2 f0; : : : ;Ng we denote by �k the distributional derivative of  k. In
particular as  k is continuous, �k is non-atomic and

 k.t/ D �k.Œ0; t//; 8 t � 0:

Since  k are non-negative functions, by Theorem 2.6, then �k are non-negative
measures.

8.2 The Case of Simple Functions

Let f be a simple function:

f D t1IK1 _ � � � _ tmIKm

with 0 < t1 < � � � < tm, K1 	 � � � 	 Km and Ki 2 KN for every i. The following
formula can be proved with the same method used for (24)


. f / D
NX

kD0

mX
iD1
. k.ti/�  k.ti�1//Vk.Lti . f //; (29)
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where we have set t0 D 0. As

 k.ti/ �  k.ti�1/ D �k..ti�1; ti�/

and Lt. f / D Ki for every t 2 .ti�1; ti�, we have


. f / D
NX

kD0

Z
Œ0;1/

Vk.Lt. f // d�k.t/: (30)

In other words, we have proved the theorem for simple functions.

8.3 Proof of Theorem 1.3

Let f 2 CN and let fi, i 2 N, be the sequence of functions built in the proof of
Theorem 1.2, Step 2. We have seen that fi is increasing and converges point-wise to
f in RN . In particular, for every k D 0; : : : ;N, the sequence of functions Vk.Lt. fi//,
t � 0, i 2 N, is monotone increasing and it converges a.e. to Vk.Lt. f // in Œ0;1/.
By the B. Levi theorem, we have that

lim
i!1

Z
Œ0;1/

Vk.Lt. fi// d�k.t/ D
Z
Œ0;1/

Vk.Lt. f // d�k.t/

for every k. Using (30) and the continuity of 
 we have that the representation
formula (30) can be extended to every f 2 CN .

Note that in (21) each term of the sum in the right hand-side is non-negative,
hence we have that

Z
Œ0;1/

Vk.Lt. f // d�k.t/ < 1 8 f 2 CN :

Applying Proposition 5.6 we obtain that, if k � 1, there exists ı > 0 such that the
support of �k is contained in Œı;1/. The proof is complete. �
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An Inequality for Moments of Log-Concave
Functions on Gaussian Random Vectors

Nikos Dafnis and Grigoris Paouris

Abstract We prove sharp moment inequalities for log-concave and log-convex
functions, on Gaussian random vectors. As an application we take a reverse form
of the classical logarithmic Sobolev inequality, in the case where the function is
log-concave.

1 Introduction and Main Results

A function f W Rk ! Œ0;C1/ is called log-concave (on its support), if and only if

f
�
.1 � 	/x C 	y

� � f .x/.1�	/f . y/	;

for every 	 2 Œ0; 1� and x; y 2 supp. f /. Respectively, f is called log-convex (on its
support), if and only if

f
�
.1 � 	/x C 	y

� 
 f .x/.1�	/f . y/	;

for every 	 2 Œ0; 1� and x; y 2 supp. f /. The aim of this note is to present a sharp
inequality for Gaussian moments of log-concave and log-convex functions, stated
below as Theorem 1.1.

We work on Rk, equipped with the standard scalar product h�; �i. We denote by j � j
the corresponding Euclidean norm and the absolute value of a real number. We use
the notation X � N.�;T/, if X is a Gaussian random vector in Rk, with expectation
� 2 Rk and covariance the k � k positive semi-definite matrix T. We say that X is
a standard Gaussian random vector if it is centered (i.e. EX D 0) with covariance
matrix the identity in Rk, where in that case �k stands for its distribution law. Finally,
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Lp;s.�k/ stand for the class of all functions f 2 Lp.�k/ whose partial derivatives up
to order s, are also in Lp.�k/.

Theorem 1.1 Let k 2 N and X be a Gaussian random vector in Rk. Let f W Rk !
Œ0;C1/ be a log-concave and g W Rk ! Œ0;C1/ be a log-convex function. Then,

(i) for every r 2 Œ0; 1�

Ef
�p

rX
� � .Ef .X/r/

1
r and Eg

�p
rX
� 
 .Eg.X/r/

1
r ; (1)

(ii) for every q 2 Œ1;C1/

Ef
�p

qX
� 
 .Ef .X/q/

1
q and Eg

�p
qX
� � .Eg.X/q/

1
q : (2)

In any case, equality holds if r D 1 D q or if f .x/ D g.x/ D e�ha;xiCc, where a 2 Rk

and c 2 R.

We prove Theorem 1.1 in Sect. 2, where we combine techniques from [7] along
with Barthe’s inequality [2].

The entropy of a function f W Rk ! R, with respect to a random vector X in Rk,
is defined to be

EntX. f / WD Ej f .X/j log j f .X/j � Ej f .X/j logEj f .X/j;
provided all the expectations exist. Note that ( for f � 0)

EntX. f / D d

dq

��
Ef .X/q

� 1
q

�
qD1

and so, Theorem 1.1 implies the following entropy inequality:

Corollary 1.2 Let f W Rk ! Œ0;C1/ and X be a Gaussian random vector in Rk.

(i) If f is log-concave, then

EntX. f / � 1

2
EhX;rf .X/i: (3)

(ii) If f is log-convex, then

EntX. f / 
 1

2
EhX;rf .X/i: (4)

In any case, equality holds if f .x/ D exp
�ha; xi C c

�
, a 2 Rk, c 2 R.

Proof Let m.q/ WD �
Ef .X/q

� 1
q and h.q/ WD Ef .

p
qX/. Then we have

m.1/ D Ef .X/ D h.1/; m0.1/ D EntX. f / and h0.1/ D 1

2
EhX;rf .X/i;
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and Theorem 1.1 implies the desired result. ut
The logarithmic Sobolev inequality, proved by Gross in [10], states that if X �

N.0; Ik/, then

EntX. f 2/ 
 2Ejrf .X/j2; (5)

for every function f 2 L2.�k/. Moreover, Carlen showed in [6], that equality holds
if and only if f is an exponential function. For more details about the logarithmic
Sobolev inequality we refer the reader to [4, 14, 19, 20] and to the references therein.

In Sect. 3, we show that Corollary 1.2, after an application of the Gaussian
integration by parts formula (see Lemma 3.1), leads to the following reverse form
of Gross’ inequality, when the function is log concave:

Theorem 1.3 Let X be a standard Gaussian random vector in Rk and f D e�v 2
L2;1.�k/, be a positive log-concave function (on its support). Then

2Ejrf .X/j2 � Ef .X/2�v.X/ 
 EntX. f
2/: (6)

Theorem 1.3, ensures that if a log-concave function f D e�v is close to be an
exponential, in the sense that Ef .X/2�v.X/ is small, then the logarithmic Sobolev
inequality for f is close to be sharp.

For more properties and stability results on the logarithmic-Sobolev inequalities
we refer to the papers [8, 9, 11] and the references therein.

2 Proof of the Main Result

The first ingredient of the proof of Theorem 1.1, is the following inequality for
Gaussian random vectors, proved in [7]. We recall that for two square matrices A
and B, we say that A 
 B if and only if B � A is positive semi-definite.

Theorem 2.1 Let m; n1; : : : ; nm 2 N and set N D Pm
iD1 ni. For every i D 1; : : : ;m,

let Xi be a Gaussian random vector in R
ni , such that X WD .X1; : : : ;Xm/ is a

Gaussian random vector in R
N with covariance the N � N matrix T D .Tij/1�i;j�m,

where Tij is the covariance ni � nj matrix between Xi and Xj, 1 
 i; j 

m. Let p1; : : : ; pm 2 R and consider the N � N block diagonal matrix P D
diag.p1T11; : : : ; pmTmm/. Then, for any set of nonnegative measurable functions fi
on Rni , i D 1; : : : ;m,

.i/ if T 
 P, then

E

mY
iD1

fi.Xi/ 

mY
iD1

	
Efi.Xi/

pi

 1

pi
; (7)
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.ii/ if T � P, then

E

mY
iD1

fi.Xi/ �
mY
iD1

	
Efi.Xi/

pi

 1

pi
: (8)

Theorem 2.1 generalizes many fundamental results in analysis, such as Hölder
inequality and its reverse, Young inequality with the best constant and its reverse
[3] and [5], and Nelson’s Gaussian Hypercontractivity and its reverse [17] and [15].
Actually, the first part of Theorem 2.1 is another formulation of the Brascamp-Lieb
inequality [5, 13], while the second part provides a reverse form.

Moreover, (8) implies (see [7]) F. Barthe’s reverse Brascamp-Lieb inequality [2],
which the second main tool in our the proof of Theorem 1.1. For more extensions
of Brascamp-Lieb inequality and similar results see [12] and [16].

For our purposes, we need the so-called geometric form (see [1]) of Barthe’s
theorem.

Theorem 2.2 Let n;m; n1; : : : ; nm 2 N with ni 
 n for every i D 1; : : : ;m. Let Ui

be a ni � n matrix with UiU�
i D Ini for i D 1; : : : ;m and c1; : : : ; cm be positive real

numbers such that

mX
iD1

ci U
�
i Ui D In:

Let h W Rn ! Œ0;C1/ and fi W Rni ! Œ0;C1/, i D 1; : : : ;m, be measurable
functions such that

h

 
NX
iD1

ciU
�
i �i

!
�

mY
iD1

fi.�i/
ci 8 �i 2 R

ni ; (9)

i D 1; : : : ;m. Then

Z
Rn

h.x/ d�n.x/ �
mY
iD1

�Z
Rni

fi.x/ d�ni.x/

�ci

: (10)

2.1 Decomposing the Identity

We will apply Theorem 2.1 in the special case where the covariance is the kn �
kn matrix T D �

ŒTij�
�
i;j�n

, with Tii D Ik and Tij D tIk if i ¤ j, for some t 2
Œ� 1

n�1 ; 1�. Equivalently, in that case X WD .X1; : : : ;Xn/ � N.0;T/, whereX1; � � � ;Xn
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are standard Gaussian random vectors in Rk, such that

E.XiX
�
j / D

�
Ik ; i D j
tIk ; i ¤ j

: (11)

For any t 2 Œ0; 1�, a natural way to construct such random vectors is to consider
n independent copies Z1; : : : ;Zn, of a Z � N.0; Ik/ and set

Xi WD p
t Z C p

1 � t Zi ; i D 1; : : : ; n:

However, we are going to use a more geometric approach. First we will deal with
the 1-dimensional case and then, by using a tensorization argument, we will pass to
the general k-dimensional case, for any k 2 N. We begin with the definition of the
SR-simplex.

Definition 2.3 We say that S D convfv1; : : : ; vng � Rn�1 is the spherico-regular
simplex (in short SR-simplex) in Rn�1, if v1; : : : ; vn are unit vectors in Rn�1 with
the following two properties:

(SR1) hvi; vji D � 1
n�1 , for any i ¤ j,

(SR2)
Pn

iD1 vi D 0.

Using the vertices of the SR-simplex in Rn�1, we create n vectors in Rn with the
same angle between them. This is done in the next lemma.

Lemma 2.4 Let n � 2 and v1; : : : ; vn be the vertices of any RS-Simplex in Rn�1.
For every t 2 Œ� 1

n�1 ; 1�, let u1; : : : ; un be the unit vectors in R
n with

ui D ui.t/ D
r

t.n � 1/C 1

n
en C

r
n � 1
n

.1 � t/ vi ; (12)

i D 1; : : : ; n. Then we have that

hui; uji D t ; 8 i ¤ j: (13)

Moreover,

(i) if t 2 Œ0; 1�, then

1

t.n � 1/C 1

nX
iD1

uiu
�
i C nt

t.n � 1/C 1

n�1X
jD1

eje
�
j D In; (14)

(ii) if t 2 Œ� 1
n�1 ; 0�, then

1

1 � t

nX
iD1

uiu
�
i C �nt

1 � t
ene

�
n D In: (15)
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Proof A direct computation, using the properties .SR1/, .SR2/ and the fact that

n � 1

n

nX
iD1

viv�
i D In�1;

shows that (13)–(15) holds true. ut
Remark 2.5 If Z � N.0; In/, then Xi WD hui;Zi, i D 1; : : : ; n, are standard Gaussian
random variables, satisfying the condition (11) in the 1-dimensional case.

For the general case we first recall the definition of the tensor product of two
matrices:

Definition 2.6 For any matrices A 2 Rm�n and B 2 Rk�`, their tensor product is
defined to be the km � `n matrix

A ˝ B D

0
B@
a11B � � � a1nB
:::

: : :
:::

am1B � � � amnB

1
CA :

Every vector a 2 Rn is considered to be a n � 1 column matrix and with this
notation, we state some basic properties for the tensor product, that we will use.

Lemma 2.7 1. Let a D .a1; : : : ; am/� 2 Rm and b D .b1; : : : ; bn/� 2 Rn. Then

a ˝ b� D ab� D

0
B@
a1b1 � � � a1bn
:::

: : :
:::

amb1 � � � ambn

1
CA 2 R

m�n;

and as a linear transformation, a ˝ b� D ab� W Rn ! R
m with

.a ˝ b�/.x/ D .ab�/.x/ D hx; bi a; x 2 R
n:

2. Let Ai 2 Rm�n and B 2 Rk�`. Then
�P

i Ai
�˝ B D P

i Ai ˝ B:
3. Let A1 2 Rm�n, B1 2 Rk�`, and A2 2 Rn�r, B2 2 R`�s. Then

.A1 ˝ B1/ .A2 ˝ B2/ D .A1A2/˝ .B1B2/ 2 R
km�rs:

4. For any matrices A and B,

.A ˝ B/� D A� ˝ B�:



An Inequality for Moments of Log-Concave Functions on Gaussian Random Vectors 113

For our k-dimensional construction, we consider the k � kn matrices

Ui WD u�
i ˝ Ik D

	 �
ui1Ik

� � � � �uinIk�


; (16)

Ej WD e�
j ˝ Ik D

	 �
ej1Ik

� � � � �ejnIk�


; (17)

for i D 1 : : : ; n. Note that

U�
i Ui D .u�

i ˝ Ik/
�.u�

i ˝ Ik/ D uiu
�
i ˝ Ik

and

E�
j Ej D .e�

j ˝ Ik/
�.e�

j ˝ Ik/ D eje
�
j ˝ Ik;

for every i; j D 1; : : : ; n. Thus by taking the tensor product with Ik, in both sides
of (14), we get that

1

p

nX
iD1

U�
i Ui C nt

p

n�1X
jD1

E�
j Ej D Ikn; (18)

for every t 2 Œ0; 1�, where p WD .n � 1/t C 1. Moreover, we can now construct the
general case describing in (11). We summarize in the next lemma.

Lemma 2.8 Suppose that Z1; : : : ;Zn are iid standard Gaussian random vectors in
R

k and set Z WD .Z1; : : : ;Zn/ � N.0; Ikn/. Consider the random vectors

Xi WD UiZ D
nX

aD1
uiaZa; i D 1; : : : ; n; (19)

where Ui, i D 1; : : : ; n, are the matrices defined in (16). Then Xi is a standard
Gaussian random vector in Rk, for every i D 1; : : : ; n and

E
�
Xi ˝ X�

j

� D
	
EŒXirXj`�



r;`�k

D
	
tır`



r;`�k

D tIk; (20)

for every i ¤ j.

Proof Clearly, EXi D 0, for every i; j D 1; : : : ; n, and since

E
�
Za ˝ Z�

b

� D
	
EŒZarZb`�



r;`�k

D ı˛ˇIk
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we have that

E
�
XirXj`

� D E

" 
nX

aD1
uiaZar

! 
nX

bD1
ujbZb`

!#

D
nX

aD1

nX
bD1

uiaujb E ŒZarZb`�

D
nX

aD1
uiauja E ŒZarZa`�

D
nX

aD1
uiauja ır`

D hui; uji ır`:

The proof is complete, since juij D 1 for all i’s and by (13) hui; uji D t for all i ¤ j.
ut

2.2 Proof of Theorem 1.1

The next proposition is the main ingredient for the proof of Theorem 1.1.

Proposition 2.9 Let t 2 Œ0; 1�, k; n 2 N, p D t.n�1/C1, X be a standard Gaussian
random vector in Rk and X1; � � � ;Xn be copies of X such that

E
�
Xi ˝ X�

j

� D
	
EŒXirXj`�



r;`�k

D tIk; 8 i ¤ j:

Then, for any log-concave (on its support) function f W Rk ! Œ0;C1/, we have that

E

 
nY

iD1
f .Xi/

! 1
n



�
Ef .X/

p
n

� n
p


 Ef

 
1

n

nX
iD1

Xi

!
(21)

Note that, the log-concavity of f implies that

 
nY

iD1
f .Xi/

! 1
n


 f

 
1

n

nX
iD1

Xi

!
;

where equality is achieved for the exponential function f .x/ D eha;xiCc, a 2 Rk and
c 2 R.
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Proof of Proposition 2.9 In order to prove the left-hand side inequality in (21), we
will apply Theorem 2.1. Note that the assumption of log-concavity will not be used.
The left-hand side inequality in (21) holds true for any non-negative measurable
function f .

To be more precise, let X1; : : : ;Xn be standard Gaussian random vectors in Rk

satisfying condition (20) and t 2 Œ� 1
n�1 ; 1�. Then, X WD .X1; : : : ;Xn/, is a centered

Gaussian vector in Rkn with covariance the kn� kn matrix T D .Tij/i;j�n, with block
entries the k � k matrices Tii D Ik and Tij D tIk, for i ¤ j. Setting

p WD .n � 1/t C 1 and q WD 1 � t;

it’s not hard to check that, for any t 2 Œ0:1�, p is the biggest and q is the smallest
singular value of T, while for any t 2 Œ� 1

n�1 ; 0�, q is the biggest and p is the smallest
singular value of T. Thus,

(i) if t � 0, then

qIkn 
 T 
 pIkn;

(ii) if t 
 0, then

pIkn 
 T 
 qIkn

In the above situation, Theorem 2.1 reads as follows:

Theorem 2.10 Let k; n 2 N, t 2 Œ� 1
n�1 ; 1� and let X1; : : : ;Xn be standard Gaussian

random vectors inRk, with E
�
Xi˝X�

j

� D tIk, for all i ¤ j. Set p WD .n�1/tC1, q WD
1 � t, and then for every measurable functions fi W Rk ! Œ0;C1/, i D 1; : : : ; n,

(i) if t 2 Œ0; 1�, then
nY

iD1

	
Efi.Xi/

q

1=q 
 E

nY
iD1

fi.Xi/ 

nY

iD1

	
Efi.Xi/

p

1=p

; (22)

(ii) if t 2 Œ� 1
n�1 ; 0�, then

nY
iD1

	
Efi.Xi/

p

1=p 
 E

nY
iD1

fi.Xi/ 

nY

iD1

	
Efi.Xi/

q

1=q

: (23)

Now, the left-hand side inequality of (21) follows immediately from (22), by
taking fi D f 1=n for every i D 1; : : : ; n.

In order to prove the right-hand side inequality of (21) we apply Barthe’s
theorem, using the decomposition of the identity in (18). In the following lemma
we gather some technical facts.
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Lemma 2.11 Let Ui and Ei, i D 1; : : : ; n the matrices defined in (16) and (17), and
set p D .n � 1/t C 1, q D 1 � t. Then

U�
i D

r
p

n
en ˝ Ik C

r
n � 1

n
q vi ˝ Ik 2 R

kn�k:

UiU
�
j D hui; ujiIk

UiE
�
j D

r
n � 1
n

q hvi; ejiIk

for every i 
 n and j 
 n � 1.
Proof The first and the second assertion can be verified, just by using the definitions.
For the third one, we have

UiE
�
j D .u�

i ˝ Ik/.e
�
j ˝ Ik/

�

D
 r

p

n
e�
n ˝ Ik C

r
n � 1

n
q v�

i ˝ Ik

!
.ej ˝ Ik/

D
r

p

n
.e�

n ˝ Ik/.ej ˝ Ik/C
r

n � 1
n

q .v�
i ˝ Ik/.ej ˝ Ik/

D
r

p

n
e�
n ej ˝ Ik C

r
n � 1

n
q v�

i ej ˝ Ik

D
r

p

n
hen; ejiIk C

r
n � 1

n
q hvi; ejiIk

D O C
r

n � 1
n

q hvi; ejiIk:

ut
To finish the proof of Proposition 2.9, we apply Barthe’s Theorem 2.2, using the

decomposition of the identity appearing in (18). We choose the parameters: n $ kn,
m WD 2n � 1, ni WD k for all i D 1; : : : ; 2n � 1, and

ci WD
(

1
p ; i D 1; : : : ; n
nt
p ; i D n C 1; : : : ; 2n � 1 :

Then, we apply Theorem 2.2 to the functions

Qfi.x/ WD
�
f .x/

p
n ; i D 1; : : : ; n

1 ; i D n C 1; : : : ; 2n � 1 ; x 2 R
k
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and

h.x/ WD f

 
1

n

nX
iD1

Uix

!
; x 2 R

kn:

For any �1; : : : ; �n 2 Rk, by Lemma 2.11, we get that

h

0
@ nX

jD1

1

p
U�

j �j C
n�1X
aD1

nt

p
E�
a �nCa

1
A

D f

0
@1
n

nX
iD1

nX
jD1

1

p
UiU

�
j �j C 1

n

nX
iD1

n�1X
aD1

nt

p
UiE

�
a �nCa

1
A

D f

0
@1
n

nX
iD1

nX
jD1

1

p
UiU

�
j �j C 1

n

nX
iD1

n�1X
aD1

nt

p

r
n � 1

n
qhvi; eai�nCa

1
A

D f

0
@1
n

nX
iD1

nX
jD1

1

p
UiU

�
j �j

1
A 	

since
X

vi D 0



D f

0
@1
n

nX
iD1

nX
jD1

1

p
hui; uji�j

1
A

D f

0
@1
n

nX
iD1

	1
p
�i C

X
j¤i

t

p
�j


1A

D f

 
1

n

nX
iD1

	1
p

C .n � 1/ t
p



�i

!

D f

 
1

n

nX
iD1

�i

!

�
nY

iD1
f .�i/

1
n D

nY
iD1

	
f .�i/

p
n


 1
p D

nY
iD1

Qf .�i/ci :

Thus, Theorem 2.2 implies

Ef

 
1

n

nX
iD1

Xi

!
D Ef

 
1

n

nX
iD1

UiZ

!
�

nY
iD1

	
Ef .Xi/

p
n


 1
p D

	
Ef .X/

p
n


 n
p

and the proof is complete. ut
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We close this section with the proof of our primary result.

Proof of Theorem 1.1 Suppose first that X � N.0; Ik/. Then, under the notation of
Lemma 2.8 we have that

1

n

nX
iD1

UiZ D 1

n

nX
iD1

r
p

n
.e�

n ˝ Ik/Z C 1

n

nX
iD1

r
n � 1
n

q .v�
i ˝ Ik/Z

D
r

p

n
.e�

n ˝ Ik/Z C 1

n

r
n � 1
n

q

 
nX

iD1
v�
i

!
˝ Ik Z

D
r

p

n
EnZ C 1

n

r
n � 1

n
q

 
nX

iD1
vi

!�
˝ Ik Z

D
r

p

n
Zn:

Thus, the right hand side of (21) can be written as

Ef

�r
p

n
X

�
�
	
f .X/

p
n


 n
p
: (24)

where p D .n � 1/t C 1, n 2 N, and t 2 Œ0; 1�.
Consequently, if f W Rk ! Œ0;C1/ is a log-concave function and r 2 .0; 1�, then

there exist t 2 Œ0; 1� and n 2 N, such that r D p
n D .n�1/tC1

n and so by (24) we get
that

Ef
�p

rX
� � .Ef .X/r/

1
r (25)

for every r 2 .0; 1�. We consider now the case where r D 0. Since f is log-concave,
there exists a convex function v W Rk ! R such that f D e�v . Then, for r D 0,
inequality (1) is equivalent to Jensen’s inequality

v.0/ D v.EX/ 
 Ev.X/; (26)

and the proof of (1) is complete.
For every q � 1 consider r D 1

q 2 .0; 1�. Let F.x/ D f .x=
p
r/1=r which is also

log-concave and so (25) for F and r implies

Ef .X/q � �
Ef .

p
qX/

�q
; (27)

and (2) follows.
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Assume now that g W Rn ! Œ0;C1/ is log-convex and r 2 .0; 1�. By the log-
convexity of g and Theorem 2.10(i), we have that

Eg

 
1

n

nX
iD1

Xi

!

 E

nY
iD1

g.Xi/
1
n 


	
Eg.X/

p
n


 n
p
: (28)

As we have seen at the beginning of the proof 1
n

Pn
iD1 Xi

dD
q

p
n X. So, using (28)

for t 2 Œ0; 1� and n 2 N such that p
n D .n�1/tC1

n D r, we derive that

Eg
�p

rX
� 
 .Eg.X/r/

1
r ;

for every r 2 .0; 1�. The rest of the proof for a log-convex function g is identical to
the log-concave case.

For the equality case, a straightforward computation shows that for f .x/ D
eha;xiCc, we have that

Ef .
p
qX/ D C exp

	q
2

jaj2



D �
Ef .X/q

� 1
q :

for every q � 0.
Finally, suppose that X is a general Gaussian random vector in Rk with

expectation � 2 Rk and covariance matrix T D UU� where U 2 Rk�k. Note,
that if f is log-concave (or log-convex) and positive function on Rk, then so is

F.x/ WD f .Ux � �/. Moreover, if Z � N.0; Ik/ then UZ � �
dD X � N.0;T/.

The general case follows then, by applying the previous case on function F. ut

3 Reverse Logarithmic Sobolev Inequality

In the next lemma, we state the Gaussian Integration by Parts formula (see [18,
Appendix 4] for a simple proof).

Lemma 3.1 Let X;Y1; : : : ;Yn be centered jointly Gaussian random variables, and
F be a real valued function on Rn, that satisfy the growth condition

lim
jxj!1

jF.x/j exp
��ajxj2� D 0 8 a > 0: (29)

Then

E
�
XF.Y1; : : : ;Yn/

� D
nX

iD1
E
�
XYi

�
E
�
@iF.Y1; : : : ;Yn/

�
: (30)
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Involving this formula, we can further elaborate Corollary 1.2.
Let Gk, be the class of all positive functions in Rk, such that their first derivatives

satisfy the growth condition (29). Then for any f 2 Gk, by Lemma 3.1, we get that

E
�hX;rf .X/i� D

kX
iD1

E
�
Xi@if .X/

�

D
kX

iD1

kX
jD1

E
�
XiXj

�
E
�
@ijf .X/

� D E
�
tr
�
T Hf .X/

��
;

where T is the covariance matrix of X and Hf .x/ stands for the Hessian matrix of f at
x 2 Rk. In the special case where X � N.0; Ik/, Corollary 1.2 implies the following:

Corollary 3.2 Let k 2 N, and X be a standard Gaussian vector in Rk. Then

(i) for every log-concave function f 2 Gk, we have

EntX. f / � 1

2
E�f .X/; (31)

(ii) for every log-convex function f 2 Gk, we have

EntX. f / 
 1

2
E�f .X/: (32)

Proof of Theorem 1.3 Let f 2 L2;1.�k/. Without loss of generality we may also
assume that Ef 2.X/ D 1. Suppose first that f has a bounded support. Then f 2 2 Gk

and Corollary 3.2, after an application of the chain rule 1
2
�f 2 D jrf j2 C f�f , gives

that

Ejrf .X/j2 C Ef .X/�f .X/ 
 EntX. f 2/ 
 2Ejrf .X/j2: (33)

Let f D e�v , where v W supp. f / ! R is a convex function. Again by the chain rule
we have f�f D jrf j2 � f 2�v, and so

Ef .X/�f .X/ D Ejrf .X/j2 � Ef .X/2�v.X/: (34)

Equations (33) and (34), prove Theorem 1.3 in this case.
To drop the assumption of the bounded support, we consider the functions fn WD

f 1nBk
2
, where 1nBk

2
is the indicator function of the Euclidean Ball in Rk with radius

n 2 N. Every fn has bounded support and so by the previous case,

2Ejrfn.X/j2 � Efn.X/
2�vn.X/ 
 EntX. f 2n /: (35)
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In order to avoid any possible problem of infiniteness of the derivatives of fn,
n 2 N, we define the functions

Fn D jrf j2 � 1nBk
2
; Hn D f 2�v � 1nBk

2
:

Notice that Fn D jrfnj2 and Hn D f 2n�vn almost everywhere, since they could only
differ on the zero-measure set fx 2 Rk W jxj D ng. Thus,

0 
 fn % f ; 0 
 Fn % jrf j2; 0 
 Hn % f 2�v;

and by the monotone convergence theorem

Ejrfn.X/j2 D EFn.X/ �! Ejrf .X/j2 (36)

and

Efn.X/
2�vn.X/ D EHn.X/ �! Ef .X/2�v.X/: (37)

Moreover, f 2n log f 2n ! f 2 log f 2 and j f 2n log f 2n j 
 j f 2 log f 2j, for every n 2 N

(where we have taken that 0 log 0 D 0). Since, by Gross’ inequality, f 2 log f 2 2
L1.�k/, the Lebesgue’s dominated convergence theorem implies that

EntX. f
2
n / �! EntX. f

2/: (38)

Under the light of (36)–(38), the desired result follows by taking the limit in (35),
as n ! 1. ut
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.s; p/-Valent Functions

Omer Friedland and Yosef Yomdin

Abstract We introduce the notion of .F ; p/-valent functions. We concentrate in
our investigation on the case, where F is the class of polynomials of degree at
most s. These functions, which we call .s; p/-valent functions, provide a natural
generalization of p-valent functions (see Hayman, Multivalent Functions, 2nd ed,
Cambridge Tracts in Mathematics, vol 110, 1994). We provide a rather accurate
characterizing of .s; p/-valent functions in terms of their Taylor coefficients, through
“Taylor domination”, and through linear non-stationary recurrences with uniformly
bounded coefficients. We prove a “distortion theorem” for such functions, com-
paring them with polynomials sharing their zeroes, and obtain an essentially sharp
Remez-type inequality in the spirit of Yomdin (Isr J Math 186:45–60, 2011) for
complex polynomials of one variable. Finally, based on these results, we present a
Remez-type inequality for .s; p/-valent functions.

1 Introduction

Let us introduce the notion of “.F ; p/-valent functions”. Let F be a class of
functions to be specified later. A function f regular in a domain � � C is called
.F ; p/-valent in � if for any g 2 F the number of solutions of the equation
f .z/ D g.z/ in � does not exceed p.

For example, the classic p-valent functions are obtained for F being the class
of constants, these are functions f for which the equation f D c has at most p
solutions in � for any c. There are many other natural classes F of interest, like
rational functions, exponential polynomials, quasi-polynomials, etc. In particular,
for the class Rs consisting of rational functions R.z/ of a fixed degree s, the number
of zeroes of f .z/ � R.z/ can be explicitly bounded for f solving linear ODEs with
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polynomial coefficients (see, e.g. [4]). Presumably, the collection of .Rs; p/-valent
functions with explicit bounds on p (as a function of s) is much wider, including,
in particular, “monogenic” functions (or “Wolff-Denjoy series”) of the form f .z/ DP1

jD1
�j

z�zj
(see, e.g. [13, 16] and references therein).

However, in this note we shall concentrate on another class of functions, for
which F is the class of polynomials of degree at most s. We denote it in short as
.s; p/-valent functions. For an .s; p/-valent function f the equation f D P has at
most p solutions in � for any polynomial P of degree s. We shall always assume
that p � s C 1, as subtracting from f its Taylor polynomial of degree s we get zero
of order at least sC1. Note that this is indeed a generalization of p-valent functions,
simply take s D 0, and every .0; p/-valent function is p-valent.

As we shall see this class of .s; p/-valent functions is indeed rich and appears
naturally in many examples: algebraic functions, solutions of algebraic differential
equations, monogenic functions, etc. In fact, it is fairly wide (see Sect. 2). It pos-
sesses many important properties: Distortion theorem, Bernstein-Markov-Remez
type inequalities, etc. Moreover, this notion is applicable to any analytic function,
under an appropriate choice of the domain� and the parameters s and p. In addition,
it may provide a useful information in very general situations.

The following example shows that an .s; p/-valent function may not be .sC1; p/-
valent:

Example 1.1 Let f .z/ D zp C zN for N � 10p C 1. Then, for s D 0; : : : ; p � 1, the
function f is .s; p/-valent in the disk D1=3, but only .p;N/-valent there.

Indeed, taking P.z/ D zp C c we see that the equation f .z/ D P.z/ takes the
form zN D c. So for c small enough, it has exactly N solutions in the D1=3. Now, for
s D 0; : : : ; p � 1, take a polynomial P.z/ of degree s 
 p � 1. Then, the equation
f .z/ D P.z/ takes the form zp � P.z/C zN D 0. Applying Chebyshev theorem (for
more details see for example [17, Lemma 3.3]) to the polynomial Q.z/ D zp � P.z/
of degree p (with leading coefficient 1) we find a circle S� D fjzj D �g with 1=3 

� 
 1=2 such that jQ.z/j � .1=2/10p on S�. On the other hand zN 
 .1=2/10pC1 <
.1=2/10p on S�. Therefore, by the Rouché principle the number of zeroes of Q.z/CzN

in the disk D� is the same as for Q.z/, which is at most p. Thus, f is .s; p/-valent in
the disk D1=3, for s D 0; : : : ; p � 1.

This paper is organized as follows: in Sect. 2 we characterize .s; p/-valent
functions in terms of their Taylor domination and linear recurrences for their
coefficients. In Sect. 3 we prove a Distortion theorem for .s; p/-valent functions.
In Sect. 4 we make a detour and investigate Remez-type inequalities for complex
polynomials, which is interesting in its own right. Finally, in Sect. 5, we extend the
Remez-type inequality to .s; p/-valent functions, via the Distortion theorem.
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2 Taylor Domination, Bounded Recurrences

In this section we provide a rather accurate characterization of .s; p/-valent functions
in a disk DR in terms of their Taylor coefficients. “Taylor domination” for an analytic
function f .z/ D P1

kD0 akzk is an explicit bound of all its Taylor coefficients ak
through the first few of them. This property was classically studied, in particular, in
relation with the Bieberbach conjecture: for univalent f we always have jakj 
 kja1j
(see [2, 3, 12] and references therein). To give an accurate definition, let us assume
that the radius of convergence of the Taylor series for f is OR, for 0 < OR 
 C1.

Definition 2.1 (Taylor Domination) Let 0 < R < OR, N 2 N, and S.k/ be a
positive sequence of a subexponential growth. The function f is said to possess an
.N;R; S.k//-Taylor domination property if

jakjRk 
 S.k/ max
iD0;:::;N jaijRi ; k � N C 1:

The following theorem shows that f is an .s; p/-valent function in DR, essentially,
if and only if its lower s-truncated Taylor series possesses a .p � s;R; S.k//-Taylor
domination.

Theorem 2.2 Let f .z/ D P1
kD0 akzk be an .s; p/-valent function in DR, and let

Of .z/ D P1
kD1 asCkzk be the lower s-truncation of f . Put m D p�s. Then, Of possesses

an .m;R; S.k//-Taylor domination, with S.k/ D �Amk
m

�2m
, and Am being a constant

depending only on m.
Conversely, if Of possesses an .m;R; S.k//-Taylor domination, for a certain

sequence S.k/ of a subexponential growth, then for R0 < R the function f is .s; p/-
valent in DR0 , where p D p.sC m; S.k/;R0=R/ depends only on mC s, the sequence
S.k/, and the ratio R0=R. Moreover, p tends to 1 for R0=R ! 1, and it is equal to
m C s for R0=R sufficiently small.

Proof First observe that if f is .s; p/-valent in DR, then Of is m-valent there, with
m D p�s. Indeed, put P.z/ D Ps

kD0 akzkCczs, with any c 2 C. Then, f .z/�P.z/ D
zs.Of .z/ � c/ may have at most p zeroes. Consequently, Of .z/ � c may have at most
m zeroes in DR, and thus Of is m-valent there. Now we apply the following classic
theorem:

Theorem 2.3 (Biernacki [3]) If f is m-valent in the disk DR of radius R centered
at 0 2 C then

jakjRk 

�
Amk

m

�2m
max

iD1;:::;m jaijRi ; k � m C 1;

where Am is a constant depending only on m.



126 O. Friedland and Y. Yomdin

In our situation, Theorem 2.3 claims that the function Of which is m-valent in DR,

possesses an .m;R;
�Amk

m

�2m
/-Taylor domination property. This completes the proof

in one direction.
In the opposite direction, for polynomial P.z/ of degree s the function f � P has

the same Taylor coefficients as Of , starting with the index k D sC1. Consequently, if Of
possesses an .m;R; S.k//-Taylor domination, then f�P possesses an .sCm;R; S.k//-
Taylor domination. An explicit bound for the number of zeroes of a function
possessing Taylor domination can be obtained by using the following result [15,
Proposition 2.2.2] (which is announced here as appears in [1]):

Theorem 2.4 ([1, Theorem 2.3]) Let the function f possess an .N;R; S.k//-Taylor
domination property. Then for each R0 < R, f has at most M D M.N; R

0

R ; S.k//

zeros in DR0 , where M depends only on N, R0

R and on the sequence S.k/, satisfying

lim R0

R !1
M D 1 and M D N for R0

R sufficiently small.

Now a straightforward application of the above theorem provides the required
bound on the number of zeroes of f � P in the disk DR. ut

A typical situation for natural classes of .s; p/-valent functions is that they are
.s; p/-valent for any s with a certain p D p.s/ which depends on s. However, it is
important to notice that essentially any analytic function possesses this property,
with some p.s/.

Proposition 2.5 Let f .z/ be an analytic function in an open neighbourhoodU of the
closed disk DR. Assume that f is not a polynomial. Then, the function f is .s; p.s//-
valent for any s with a certain sequence p.s/.

Proof Let f be given by its Taylor series f .z/ D P1
kD0 akzk. By assumptions, the

radius of convergence OR of this series satisfies OR > R. Since f is not a polynomial,
for any given s there is the index k.s/ > s such that ak.s/ ¤ 0. Now, we need the
following result of [1]:

Proposition 2.6 ([1, Proposition 1.1]) If 0 < OR 6 C1 is the radius of
convergence of f .z/ D P1

kD0 akzk, with f 66� 0, then for each finite and positive
0 < R 6 OR; f satisfies the .N;R; S .k//-Taylor domination property with N being
the index of its first nonzero Taylor coefficient, and S .k/ D Rkjakj.jaNjRN/�1; for
k > N.

Applying the above proposition to the lower truncated series Of .z/ DP1
kD1 asCkzk. Thus, we obtain, an .m; OR; S.k//-Taylor domination for Of , for certain

m and S.k/. Now, the second part of Theorem 2.2 provides the required .s; p.s//-
valency for f in the smaller disk DR, with p.s/ D p.s C m; S.k/;R= OR/. ut

More accurate estimates of p.s/ can be provided via the lacunary structure of
the Taylor coefficients of f . Consequently, .s; p/-valency becomes really interesting
only for those classes of analytic functions f where we can specify the parameters
in an explicit and uniform way. The following theorem provides still very general,
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but important such class. We remark that the second part is known, see [15,
Lemma 2.2.3] and [1, Theorem 4.1].

Theorem 2.7 Let f .z/ D P1
kD0 akzk be .s; s C m/-valent in DR for any s. Then, the

Taylor coefficients ak of f satisfy a linear homogeneous non-stationary recurrence
relation

ak D
mX
jD1

cj.k/ak�j (1)

with uniformly bounded (in k) coefficients cj.k/ satisfying jcj.k/j 
 C�j, with C D
e2A2mm ; � D R�1, where Am is the constant in the Biernacki’s Theorem 2.3.

Conversely, if the Taylor coefficients ak of f satisfy recurrence relation (1), with
the coefficients cj.k/, bounded for certain K; � > 0 and for any k as jcj.k/j 

K�j, j D 1; : : : ;m, then for any s, f is .s; s C m/-valent in a disk DR, with R D

1

23mC1.2KC2/� .

Proof We need to prove only the first part. Let us fix s � 0. As in the proof of
Theorem 2.2, we notice that if f is .s; sCm/-valent in DR, then its lower s-truncated
series Of is m-valent there. By Biernacki’s Theorem 2.3 we conclude that

jasCmC1jRmC1 

�
Am.m C 1/

m

�2m
max

iD1;:::;m jasCijRi 
 C max
iD1;:::;m jasCijRi;

with C D e2A2mm . Putting k D s C m C 1, and � D R�1 we can rewrite this as

jakj 
 C max
jD1;:::;m jak�jj�j:

Hence we can chose the coefficients cj.k/, k D s C m C 1, in such a way that
ak D Pm

jD1 cj.k/ak�j, and jcj.k/j 
 C�j, which completes the proof. ut
Notice that the bound on the recursion coefficients is sharp, e.g. take f .z/ D

Œ1 � . zR /
m��1, in this case, as well as for other lacunary series with the gap m, the

coefficients cj.k/ are defined uniquely.

3 Distortion Theorem

In this section we prove a distortion-type theorem for .s; p/-valent functions which
shows that the behavior of these functions is controlled by the behavior of a
polynomial with the same zeroes.

First, let us recall the following theorem for p-valent functions, which is our main
tool in proof.
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Theorem 3.1 ([12, Theorem 5.1]) Let g.z/ D a0 C a1z C : : : be a regular non-
vanishing p-valent function in D1. Then, for any z 2 D1

�
1 � jzj
1C jzj

�2p

 jg.z/=a0j 


�
1C jzj
1 � jzj

�2p
:

Now, we are ready to formulate a distortion-type theorem for .s; p/-valent
functions.

Theorem 3.2 (Distortion Theorem) Let f be an .s; p/-valent function in D1 having
there exactly s zeroes z1; : : : ; zs (always assumed to be counted according to
multiplicity). Define a polynomial

P.z/ D A
sY

jD1
.z � zj/;

where the coefficient A is chosen such that the constant term in the Taylor series for
f .z/=P.z/ is equal to 1. Then, for any x 2 D1

�
1 � jzj
1C jzj

�2p

 jf .z/=P.z/j 


�
1C jzj
1 � jzj

�2p
:

Proof The function g.z/ D f .z/=P.z/ is regular in D1 and does not vanish there.
Moreover, g is p-valent in D1. Indeed, the equation g.z/ D c is equivalent to f .z/ D
cP.z/ so it has at most p solutions by the definition of .s; p/-valent functions. Now,
apply Theorem 3.1 to the function g. ut

It is not clear whether the requirement for f to be .s; p/-valent is really necessary
in this theorem. The ratio g.z/ D f .z/

P.z/ certainly may not be p-valent for f being

just p-valent, but not .s; p/-valent. Indeed, take f .z/ D zp C zN as in Example 1.1.
By this example f is p-valent in D1=3 and it has a root of multiplicity p at zero. So
g.z/ D f .z/=zp D 1C zN�p and the equation g.z/ D c has N � p solutions in D1=3
for c sufficiently close to 1. So g is not p-valent there.

4 Complex Polynomials

The distortion Theorem 3.2, proved in the previous section, allows us easily
to extend deep properties from polynomials to .s; p/-valent functions, just by
comparing them with polynomials having the same zeros. In this section we make
a detour and investigate one specific problem for complex polynomials, which
is interesting in its own right: a Remez-type inequality for complex polynomial
(compare [14, 18]). Denote by

V�.g/ D fz W jg.z/j 
 �g
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the � sub-level set of a function g. For polynomials in one complex variable a
result similar to the Remez inequality is provided by the classic Cartan (or Cartan-
Boutroux) lemma (see, for example, [11] and references therein):

Lemma 4.1 (Cartan’s Lemma [7], as Appears in [11]) Let ˛; " > 0, and let P.z/
be a monic polynomial of degree d. Then

V"d.P/ � [p
jD1Drj ;

where p 
 d, and Dr1 ; : : : ;Drp are balls with radii rj > 0 satisfying
Pp

jD1 r˛j 

e.2"/˛.

In [5, 6, 19, 20] some generalizations of the Cartan-Boutroux lemma to plurisub-
harmonic functions have been obtained, which lead, in particular, to the bounds on
the size of sub-level sets. In [5] some bounds for the covering number of sublevel
sets of complex analytic functions have been obtained, similar to the results of [18]
in the real case. Now, we shall derive from the Cartan lemma both the definition of
the invariant cd;˛ and the corresponding Remez inequality.

Definition 4.2 Let Z � D1. The .d; ˛/-Cartan measure of Z is defined as

cd;˛.Z/ D min

0
@ pX

jD1
r˛j

1
A
1=˛

where the minimum is taken over all covers of Z by p 
 d balls with radii rj > 0.

Clearly, the invariant cd;˛.Z/ satisfies the following basic properties. It is
monotone in Z, that is, for Z1 � Z2 we have cd;˛.Z1/ 
 cd;˛.Z2/. And, also monotone
in d, that is, for d1 
 d we have cd;˛.Z/ 
 cd1;˛.Z/. Finally, for any Z � D1 we have
cd;˛.Z/ 
 1. Note also that the ˛-dimensional Hausdorff content of Z is defined in
a similar way

H˛.Z/ D inf

8<
:
X
j

r˛j W there is a cover of Z by balls with radii rj > 0

9=
; :

Thus, by the above definitions, we have H
1
˛
˛ .Z/ 
 cd;˛.Z/.

For ˛ D 1 the .d; 1/-Cartan measure cd;˛.Z/ was introduced and used, under
the name “d-th diameter”, in [8, 9]. In particular, Lemma 3.3 of [8] is, essentially,
equivalent to the case ˛ D 1 of our Theorem 4.3. In Sect. 4.1 below we provide
some initial geometric properties of cd;˛.Z/ and show that a proper choice of ˛ may
improve the geometric sensitivity of this invariant.

Now we can state and proof our generalized Remez inequality for complex
polynomials:
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Theorem 4.3 Let P.z/ be a polynomial of degree d. Let Z � D1. Then, for any
˛ > 0

max
D1

jP.z/j 

�
6e1=˛

cd;˛.Z/

�d

max
Z

jP.z/j 

�

6e

H˛.Z/

� d
˛

max
Z

jP.z/j:

Proof Assume that jP.z/j 
 1 on Z. First, we prove that the absolute value A of the
leading coefficient of P satisfies

A 

�
2e1=˛

cd;˛.Z/

�d

:

Indeed, we have Z � V1.P/. By the definition of cd;˛.Z/ for every covering of
V1.P/ by p disks Dr1 ; : : : ;Drp of the radii r1; : : : ; rd (which is also a covering of Z)

we have
Pd

iD1 r˛i � cd;˛.Z/˛ . Denoting, as above, the absolute value of the leading
coefficient of P.z/ by A we have by the Cartan lemma that for a certain covering as
above

cd;˛.Z/
˛ 


dX
iD1

r˛i 
 e

�
2

A1=d

�˛
:

Now, we write P.z/ D A
Qd

jD1.z � zj/, and consider separately two cases:

(1) All jzjj 
 2. Thus, maxD1 jP.z/j 
 A3d 

	
2e1=˛

cd;˛.Z/


d
3d, as required.

(2) For j D 1; : : : ; d1 < d, jzjj 
 2, while jzjj > 2 for j D d1 C 1; : : : ; d. Denote

P1.z/ D A
d1Y
jD1
.z � zj/ ; P2.z/ D

dY
jDd1C1

.z � zj/;

and notice that for any two points v1; v2 2 D1 we have jP2.v1/=P2.v2/j < 3d�d1 .
Consequently we get

maxD1 jP.z/j
maxZ jP.z/j < 3

d�d1
maxD1 jP1.z/j
maxZ jP1.z/j :

All the roots of P1 are bounded in absolute value by 2, so by first part we have

maxD1 jP1.z/j
maxZ jP1.z/j 


�
2e1=˛

cd1;˛.Z/

�d1

3d1 

�
2e1=˛

cd;˛.Z/

�d

3d1

where the last inequality follows from the basic properties of the invariant cd;˛.Z/
described after Definition 4.2. Finally, application of the inequality H˛.Z/ 

cd;˛.Z/˛ completes the proof. ut
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Let us stress a possibility to chose an optimal ˛ in the bound of Theorem 4.3. Let

Kd.Z/ D inf
˛>0

�
6e1=˛

cd;˛.Z/

�d

; KH
d .Z/ D inf

˛>0

�
6e

H˛.Z/

� d
˛

:

Corollary 4.4 Let P.z/ be a polynomial of degree d. Let Z � D1. Then,

max
D1

jP.z/j 
 Kd.Z/max
Z

jP.z/j 
 KH
d .Z/max

Z
jP.z/j:

4.1 Geometric and Analytic Properties of the Invariant cd;˛

In addition to the basic properties of cd;˛ we also have

Proposition 4.5 Let ˛ > 0. Then, cd;˛.Z/ > 0 if and only if Z contains more than d
points. In the latter case, cd;˛.Z/ is greater than or equal to one half of the minimal
distance between the points of Z.

Proof Any d points can be covered by d disks with arbitrarily small radii. But, the
radius of at least one disk among d disks covering more than dC1 different points is
greater than or equal to the one half of a minimal distance between these points. ut

The lower bound of Proposition 4.5 does not depend on ˛. However, in general,
this dependence is quite prominent.

Example 4.6 Let Z D Œa; b�. Then, for ˛ � 1 we have cd;˛.Z/ D .b � a/=2, while
for ˛ 
 1 we have cd;˛.Z/ D d

1
˛�1.b � a/=2.

Indeed, in the first case the minimum is achieved for r1 D .b � a/=2; r2 D � � � D
rd D 0, while in the second case for r1 D r2 D � � � D rd D .b � a/=2d.

Proposition 4.7 Let ˛ > ˇ > 0. Then, for any Z

cd;˛.Z/ 
 cd;ˇ.Z/ 
 d.
1
ˇ� 1

˛ /cd;˛.Z/: (2)

Proof Let r D .r1; : : : ; rd/ and � > 0. Consider jjrjj� D .
Pd

jD1 r
�
j /

1
� . Then, by the

definition, cd;� .Z/ is the minimum of jjrjj� over all r D .r1; : : : ; rd/ being the radii
of d balls covering Z. Now we use the standard comparison of the norms jjrjj� , that
is, for any x D .z1; : : : ; zd/ and for ˛ > ˇ > 0,

jjzjj˛ 
 jjzjjˇ 
 d.
1
ˇ� 1

˛ /jjzjj˛:

Take r D .r1; : : : ; rd/ for which the minimum of jjrjjˇ is achieved, and we get

cd;˛.Z/ 
 jjrjj˛ 
 jjrjjˇ D cd;ˇ.Z/:
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Now taking r for which the minimum of jjrjj˛ is achieved, exactly in the same
way we get the second inequality. ut

Now, we compare cd;˛.Z/ with some other metric invariants which may be
sometimes easier to compute. In each case we do it for the most convenient value of
˛. Then, using the comparison inequalities of Proposition 4.7, we get corresponding
bounds on cd;˛.Z/ for any ˛ > 0. In particular, we can easily produce a simple lower
bound for cd;2.Z/ through the measure of Z:

Proposition 4.8 For any measurable Z � D1 we have

cd;2.Z/ � .
2.Z/=�/
1=2:

Proof For any covering of Z by d disks D1; : : : ;Dd of the radii r1; : : : ; rd we have
�.
Pd

iD1 r2i / � 
2.Z/. ut
However, in order to deal with discrete or finite subsets Z � D1 we have to

compare cd;˛.Z/ with the covering number M.";Z/ (which is, by definition, the
minimal number of "-disks covering Z).

Definition 4.9 Let Z � D1. Define

!cd.Z/ D sup
"

".M.";Z/� d/1=2;

if jZj � d, and !cd.Z/ D 0 otherwise. Put �d.Z/ D d"0; where "0 is the minimal "
for which there is a covering of Z with d "-disks. Note that, writing y D M.";Z/ D
‰."/, and taking the inverse " D ‰�1.y/, we have "0 D ‰�1.d/.

As it was mentioned above, a very similar invariant

!d.Z/ D sup
"

".M.";Z/ � d/;

if jZj � d, and !cd.Z/ D 0 otherwise, was introduced and used in [18] in the real
case. We compare !cd and !d below.

Proposition 4.10 Let Z � D1. Then, !cd.Z/=2 
 cd;2.Z/ 
 cd;1.Z/ 
 �d.Z/.

Proof To prove the upper bound for cd;1.Z/ we notice that it is the infimum of the
sum of the radii in all the coverings of Z with d disks, while �d.Z/ is such a sum for
one specific covering.

To prove the lower bound, let us fix a covering of Z by d disks Di of the radii
ri with cd;2.Z/ D .

Pd
iD1 r2i /1=2. Let " > 0. Now, for any disk Dj with rj � "

we need at most 4r2j ="
2 "-disks to cover it. For any disk Dj with rj 
 " we need

exactly one "-disk to cover it, and the number of such Dj does not exceed d. So,
we conclude that M.";Z/ is at most d C .4="2/

Pd
iD1 r2i . Thus, we get cd;2.Z/ D

.
Pd

iD1 r2i /1=2 � "=2.M.";Z/ � d/1=2. Taking supremum with respect to " > 0 we
get cd;2.Z/ � !cd.Z/=2. ut
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Since M.";Z/ is always an integer, we have

!d.Z/ � !cd.Z/:

For Z � D1 of positive plane measure, !d.Z/ D 1 while !cd.Z/ remains
bounded (in particular, by �d.Z/).

Some examples of computing (or bounding) !d.Z/ for “fractal” sets Z can be
found in [18]. Computations for !cd.Z/ are essentially the same. In particular,
in an example given in [18] in connection to [10] we have that for Z D Zr D
f1; 1=2r; 1=3r; : : : ; 1=kr; : : : g

!d.Zr/ � rr

.r C 1/rC1dr
; !cd.Zr/ � .2r C 1/r

.2r C 2/rC1drC1=2
:

The asymptotic behavior here is for d ! 1, as in [10].

4.2 An Example

We conclude this section with one very specific example. Let

Z D Z.d; h/ D fz1; z2; : : : ; z2d�1; z2dg ; zi 2 C; d � 2:

We assume that Z consists of d, 2�-separated couples of points, with points in
each couple being in a distance 2h. Let 2D.Z/ be the diameter of the smallest disk
containing Z. Assume h  1, 2� � h.

Proposition 4.11 Let Z be as above. Then,

(1) !d.Z/ D dh.
(2) !cd.Z/ D p

dh.
(3) For ˛ > 0, we have cd;˛.Z/ 
 d

1
˛ h.

(4) For ˛ � 1, we have cd;˛.Z/ D d
1
˛ h.

(5) For � D Œlogd.
D.Z/
h /��1, we have cd;�.Z/ � �.

Proof For " > h, we have M.";Z/ 
 d, and hence M.";Z/ � d is non-positive.
For " < h, we have M.";Z/ D 2d, and M.";Z/ � d D d. Thus the supremum of
".M.";Z/ � d/, or the supremum of ".M.";Z/ � d/

1
2 , is achieved as " < h tends to

h. Therefore, !d.Z/ D dh, and !cd.Z/ D p
dh.

Covering each couple with a separate ball of radius h, we get for any ˛ > 0 that
cd;˛.Z/ 
 d

1
˛ h. For ˛ � 1 it is easy to see that this uniform covering is minimal.

Thus, for such ˛ we have the equality cd;˛.Z/ D d
1
˛ h.

Now let us consider the case of a “small” ˛ D �. Take a covering of Z with
certain disks Dj, j 
 d. If there is at least one disk Dj containing three points of Z or



134 O. Friedland and Y. Yomdin

more, the radius of this disk is at least �. Thus, for this covering .
Pd

jD1 r�j /
1
� � �. If

each disk in the covering contains at most two points, it must contain exactly two,
otherwise these disks could not cover all the 2d points of Z. Hence, the radius of
each disk Dj in such covering is at least h, and their number is exactly d. We have,

by the choice of �, that .
Pd

jD1 r�j /
1
� � d

1
� h D D.Z/ � �. ut

Let us use two choices of ˛ in the Remez-type inequality of Theorem 4.3: ˛ D 1

and ˛ D �. We get two bounds for the constant Kd.Z/ W

Kd.Z/ 

�

6e

cd;1.Z/

�d

or Kd.Z/ 

�
6e1=�

cd;�.Z/

�d

:

By Proposition 4.11 we have cd;1.Z/ 
 dh, while cd;�.Z/ � �. Therefore we get

�
6e

cd;1.Z/

�d

�
�
6e

dh

�d

; while

�
6e1=�

cd;�.Z/

�d



�
6e1=�

�

�d

: (3)

But e1=� D elogd.
D.Z/
h / D .

D.Z/
h /

1
ln d . So the second bound of (3) takes a form

Kd.Z/ 

�
6D.Z/

�ln dh

� d
ln d

:

We see that for d � 3 and for h ! 0 the asymptotic behavior of this last bound,
corresponding to ˛ D �, is much better than of the first bound in (3), corresponding
to ˛ D 1. Notice, that � depends on h and D.Z/, i.e. on the specific geometry of the
set Z.

5 Remez Inequality

Now, we present a Remez-type inequality for .s; p/-valent functions. We recall that
by Proposition 2.5 above, any analytic function in an open neighborhood U of the
closed disk DR is .s; p.s//-valent in DR for any s with a certain sequence p.s/.
Consequently, the following theorem provides a non-trivial information for any
analytic function in an open neighborhood of the unit disk D1. Of course, this results
becomes really interesting only in cases where we can estimate p.s/ explicitly.

Theorem 5.1 Let f be an analytic function in an open neighborhoodU of the closed
disk D1. Assume that f has in D1 exactly s zeroes, and that it is .s; p/-valent in D1.
Let Z be a subset in the interior of D1, and put � D �.Z/ D minf� W Z � D�g. Then,
for any R < 1 function f satisfies

max
DR

jf .z/j 
 �p.R; �/Ks.Z/max
Z

jf .z/j;
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where �p.R; �/ D
	
1CR
1�R � 1C�

1��

2p

.

Proof Assume that jf .z/j is bounded by 1 on Z. Let z1; : : : ; zs be zeroes of f in D1.
Consider, as in Theorem 3.2, the polynomial

P.z/ D A
lY

jD1
.z � zj/;

where the coefficient A is chosen in such a way that the constant term in the Taylor
series for g.z/ D f .z/=P.z/ is equal to 1. Then by Theorem 3.2 for g we have

�
1 � jzj
1C jzj

�2p

 jg.z/j 


�
1C jzj
1� jzj

�2p
:

We conclude that P.z/ 
 .
1C�
1�� /

2p on Z. Hence by the polynomial Remez
inequality provided by Theorem 4.3 we obtain

jP.z/j 
 Ks.Z/

�
1C �

1 � �
�2p

on D1. Finally, we apply once more the bound of Theorem 3.2 to conclude that

jf .z/j 
 Ks.Z/

�
1C R

1� R

�2p �
1C �

1� �

�2p

on DR. ut
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A Remark on Projections of the Rotated Cube
to Complex Lines

Efim D. Gluskin and Yaron Ostrover

Abstract Motivated by relations with a symplectic invariant known as the “cylin-
drical symplectic capacity”, in this note we study the expectation of the area of a
minimal projection to a complex line for a randomly rotated cube.

1 Introduction and Result

Consider the complex vector space Cn with coordinates z D .z1; : : : ; zn/, and
equipped with its standard Hermitian structure hz;wiC D Pn

jD1 zjwj. By writing
zj D xj C iyj, we can look at Cn as a real 2n-dimensional vector space Cn '
R2n D Rn ˚ Rn equipped with the usual complex structure J, i.e., J is the linear
map J W R2n ! R2n given by J.xj; yj/ D .�yj; xj/. Moreover, note that the real part
of the Hermitian inner product h�; �iC is just the standard inner product on R2n, and
the imaginary part is the standard symplectic structure on R2n. As usual, we denote
the orthogonal and symplectic groups associated with these two structures by O.2n/
and Sp.2n/, respectively. It is well known that O.2n/ \ Sp.2n/ D U.n/, where the
unitary group U.n/ is the subgroup of GL.n;C/ that preserves the above Hermitian
inner product.

Symplectic capacities on R2n are numerical invariants which associate with every
open set U � R2n a number c.U/ 2 Œ0;1�. This number, roughly speaking,
measures the symplectic size of the set U (see e.g. [3], for a survey on symplectic
capacities). We refer the reader to the Appendix of this paper for more information
regarding symplectic capacities, and their role as an incentive for the current paper.
Recently, the authors observed (see Theorem 1.8 in [8]) that for symmetric convex
domains in R2n, a certain symplectic capacity c, which is the largest possible
normalized symplectic capacity and is known as the “cylindrical capacity”, is
asymptotically equivalent to its linearized version given by

cSp.2n/ .U/ D inf
S2Isp.2n/

Area
�
�.S.U//

�
: (1)

E.D. Gluskin (�) • Y. Ostrover
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Here,� is the orthogonal projection to the complex line E D fz 2 Cn j zj D 0 for j ¤
1g, and the infimum is taken over all S in the affine symplectic group ISp.2n/ D
Sp.2n/Ë T.2n/, which is the semi-direct product of the linear symplectic group and
the group of translations in R2n. We remark that in what follows we consider only
centrally symmetric convex bodies in R2n, and hence one can take S in (1) to be a
genuine symplectic matrix (i.e., S 2 Sp.2n/).

An interesting natural variation of the quantity cSp.2n/ , which serves as an upper
bound to it and is of independent interest, is obtained by restricting the infimum
on the right-hand side of (1) to the unitary group U.n/ (see the Appendix for more
details). More precisely, let L � R2n be a complex line, i.e., L D spanfv; Jvg for
some non-zero vector v 2 R2n, and denote by �L the orthogonal projection to the
subspace L. For a symmetric convex body K � R2n, the quantity of interest is

cU.n/ .K/ WD inf
U2U.n/

Area
�
�.U.K//

� D inf
n
Area

�
�L.K/

� j L � R
2n is a complex line

o
:

(2)

In this note we focus on understanding cU.n/ .OQ/, where O 2 O.2n/ is a random
orthogonal transformation, and Q D Œ�1; 1�2n � R2n is the standard cube. We
remark that in [8] it was shown that, in contrast with projections to arbitrary two-
dimensional subspaces of R2n, there exist an orthogonal transformation O 2 O.2n/
such that for every complex line L � R2n one has that Area.�L.OQ// � p

n=2.
Here we study the expectation of cU.n/ .OQ/ with respect to the Haar measure on the
orthogonal group O.2n/. The main result of this note is the following:

Theorem 1.1 There exist universal constants C; c1; c2 > 0 such that



˚
O 2 O.2n/ j 9 a complex line L � R

2n with diam.�L.OQ// 
 c1
p
n
 
 Cexp.�c2n/;

where 
 is the unique normalized Haar measure on O.2n/.

Note that for any rotation U 2 O.2n/, the image UQ contains the Euclidean unit
ball and hence for every complex line L one has Area.�LUQ/ � diam.�LUQ/. An
immediate corollary from this observation, Theorem 1.1, and the easily verified fact
that for every O 2 O.2n/, the complex line L0 WD Spanfv; Jvg, where v is one of the
directions where the minimal-width of OQ is obtained, satisfies Area.�L0 .OQ// 

4
p
2n, is that

Corollary 1.2 With the above notations one has

E


�
cU.n/ .OQ/

� � p
n; (3)

where E
 stands for the expectation with respect to the Haar measure 
 on O.2n/,
and the symbol � means equality up to universal multiplicative constants.
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Remark 1.3 We will see below that for every O 2 O.2n/, the quantity cU.n/ .OQ/
is bounded from below by the diameter of the section of the 4n-dimensional
octahedron B4n1 by the subspace

LO D f.x; y/ 2 R
2n ˚ R

2n j y D O�JOxg: (4)

This reduces the above problem of estimating E


�
cU.n/ .OQ/

�
to estimating the

diameter of a random section of the octahedron B4n1 with respect to a probability
measure � on the real Grassmannian G.4n; 2n/ induced by the map O 7! LO
from the Haar measure 
 on O.2n/. By duality, the diameter of a section of the
octahedron by a linear subspace is equal to the deviation of the Euclidean ball
from the orthogonal subspace with respect the l1-norm. The right order of the
minimal deviation from half-dimensional subspaces was found in the remarkable
work of Kašin [11]. For this purpose, he introduced some special measure on the
Grassmannian and proved that the approximation of the ball by random subspaces
is almost optimal. In his exposition lecture [17], Mitjagin treated Kashin’s work as
a result about octahedron sections, which gave a more geometric intuition into it,
and rather simplified the proof. At about the same time, the diameter of random
(this time with respect to the classical Haar measure on the Grassmannian) sections
of the octahedron, and more general convex bodies, was studied by Milman [14];
Figiel, Lindenstrauss and Milman [4]; Szarek [22], and many others with connection
with Dvoretzky’s theorem (see also [1, 5–7, 15, 19], as well as Chap. 5 of [20]
and Chaps. 5 and 7 of [2] for more details). It turns out that random sections
of the octahedron B4n1 , with respect to the measure � on the real Grassmannian
G.4n; 2n/ mentioned above, also have almost optimal diameter. To prove this we
use techniques which are now standard in the field. For completeness, all details
will be given in Sects. 2 and 3 below.

Notations The letters C; c; c1; c2; : : : denote positive universal constants that take
different values from one line to another. Whenever we write ˛ � ˇ, we mean that
there exist universal constants c1; c2 > 0 such that c1˛ 
 ˇ 
 c2˛. For a finite set V ,
denote by #V the number of elements in V . For a 2 R let Œa� be its integer part. The
standard Euclidean inner product and norm on Rn will be denoted by h�; �i, and j � j,
respectively. The diameter of a subset V � Rn is denoted by diam.V/ D supfjx�yj W
x; y 2 Vg. For 1 
 p 
 1, we denote by lnp the space Rn equipped with the norm
k � kp given by kxkp D .

Pn
jD1 kxijp/1=p (where kxk1 D maxfjxij j i D 1; : : : ; ng),

and the unit ball of the space lnp is denoted by Bn
p D fx 2 R

n j kxkp 
 1g. We
denote by Sn the unit sphere in RnC1, i.e., Sn D fx 2 RnC1 j jxj2 D 1g, and by �n
the standard measure on Sn. Finally, for a measure space .X; 
/ and a measurable
function ' W X ! R we denote by E
' the expectation of ' with respect to the
measure 
.
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2 Preliminaries

Here we recall some basic notations and results required for the proof of Theo-
rem 1.1.

Let V be a subset of a metric space .X; �/, and let " > 0. A set F � V is called
an "-net for V if for any x 2 V there exist y 2 F such that �.x; y/ 
 ". It is a well
known and easily verified fact that for any given set G with V � G, if T is a finite
"-net for G, then there exists a 2"-net F of V with #F 
 #T .

Remark 2.1 From now on, unless stated otherwise, all nets are assumed to be taken
with respect to the standard Euclidean metric on the relevant space.

Next, fix n 2 N and 0 < � < 1. We denote by Gn
� the set Gn

� WD Sn�1 \ �
p
nBn

1.
The following proposition goes back to Kašin [11]. The proof below follows
Makovoz [12] (cf. [21] and the references therein).

Proposition 2.2 For every " such that 8 ln n
n < " < 1

2
, there exists a set T � Gn

�

such that #T 
 exp."n/, and which is a 8�
q

ln.1="/
�

-net for Gn
� .

For the proof of Proposition 2.2 we shall need the following lemma.

Lemma 2.3 For k; n 2 N, the set Fk;n WD Zn \ kBn
1 is a

p
k-net for the set kBn

1, and

#Fk;n 
 .2e.1C n=k///k: (5)

Proof of Lemma 2.3 Let x D .x1; : : : ; xn/ 2 kBn
1, and set yj D Œjxjj� � sgn.xj/, for

1 
 j 
 n. Note that y D .y1; : : : ; yn/ 2 Fk;n, and jxj � yjj 
 minf1; jxjjg for any
1 
 j 
 n. Thus, jx � yj2 D Pn

jD1 jxj � yjj2 
 Pn
jD1 jxjj D k. This shows that Fk;n

is a
p
k-net for kBn

1. In order to prove the bound (5) for the cardinality of Fk;n, note
that by definition

#Fk;n D #fv 2 Z
n j

nX
iD1

jvij 
 kg 
 2k#fv 2 Z
nC1
C j

nC1X
iD1

vi D kg

D 2k

 
n C k

k

!

 2k

	e.n C k/

k


k
:

This completes the proof of the lemma. ut
Proof of Proposition 2.2 We assume n > 1 (the case n D 1 can be checked
directly). Set k D Œ "n

8 ln.1="/ �. Note that since " > 8 ln n
n , one has that k � 1. From

Lemma 2.3 it follows that �
p
n
k Fk;n is a �

p
n
k -net for �

p
nBn

1. From the remark
in the beginning of this section and Lemma 2.3 we conclude that there is a set
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T � Gn
� � �

p
nBn

1 which is a 2�
p n

k -net for Gn
� , and moreover,

#T 
 #Fk;n 
 �
2e.1C n=k//

�k
:

Finally, from our choice of " it follows that k � "n
16 ln.1="/ , and hence 2�

p n
k 


8�

q
ln.1="/
"

, and moreover that
�
2e.1C n=k/

�k=n 
 e". This completes the proof of
the proposition. ut

We conclude this section with the following well-known result regarding con-
centration of measure for Lipschitz functions on the sphere (see, e.g., [16], Sect. 2
and Appendix V).

Proposition 2.4 Let f W Sn�1 ! R be an L-Lipschitz function and set Ef DR
Sn�1 fd�n�1, where �n�1 is the standard measure on Sn�1. Then,

�n�1
�fx 2 Sn�1 j jf .x/� Ef j � tg� 
 Cexp.��t2n=L2/;

where C; � > 0 are some universal constants.

3 Proof of the Main Theorem

Proof of Theorem 1.1 Let Q D Œ�1; 1�2n � R2n. The proof is divided into two steps:

Step I ("-Net Argument): Let L � R2n be a complex line, and e 2 S2n�1 \ L.
Note that the vectors e and Je form an orthogonal basis for L, and for every
x 2 R2n one has

�L.x/ D hx; eie C hx; JeiJe:

Thus, one has

diam.�L.UQ// D 2max
x2Q

p
jhUx; eij2 C jhUx; Jeij2

� max
x2Q maxfjhx;U�eij; jhx;U�Jeijg

D maxfkU�ek1; kU�Jek1g:

(6)

It follows that for every U 2 O.2n/, the minimum over all complex lines satisfies

min
L

diam.�L.UQ// � min
v2S2n�1

maxfkvk1; kU�JUvk1g: (7)
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Next, for a given constant � > 0, denote G� WD S2n�1 \ �p
nB2n1 , and

A	 WD fU 2 O.2n/ j 9 a complex line L � R
2n with diam.�L.UQ// 
 	

p
ng:

(8)

Recall that in order to prove Theorem 1.1, we need to show that there is a constant
	 for which the measure of A	 � O.2n/ is exponentially small, a task to which
we now turn. From (7) it follows that for any U 2 A	 one has

G	 \ U�JUG	 ¤ ;:

Indeed, if U 2 A	, then by (6) one has that kU�ek1 
 	
p
n and

k.U�JU/U�ek1 
 	
p
n, so z WD U�e1 2 G	 and U�JUz 2 G	. Hence, we

conclude that

A	 � fU 2 O.2n/ jG	 \ U�JUG	 ¤ ;g:

Next, let F be a ı-net for G	 for some ı > 0. For any U 2 A	 there exists
x 2 G	 \ U�JUG	, and y 2 F for which jy � xj 
 ı. Thus, one has

kU�JUyk1 
 kU�JUxk1 C kU�JU.y � x/k1

 	

p
n C p

2njU�JU.y � x/j 
 p
n.	C p

2ı/:

It follows that

A	 �
[
y2F

n
U 2 O.2n/ jU�JUy 2 G	Cp

2ı

o
: (9)

From (9) and Proposition 2.2 from Sect. 2 it follows that for every 	 > 0


.A	/ 

X
y2F


fU 2 O.2n/ jU�JUy 2 G	Cp
2ıg


 exp.2"n/ sup
y2S2n�1


fU 2 O.2n/ jU�JUy 2 G	Cp
2ıg;

(10)

where 8 ln.2n/
2n < " < 1

2
, and ı D 8	

q
ln.1="/
"

.

Step II (Concentration of Measure): For y 2 S2n�1 let �y be the push-forward
measure on S2n�1 induced by the Haar measure 
 on O.2n/ through the map
f W O.2n/ ! S2n�1 defined by U 7! U�JUy. Using the measure �y, we can
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rewrite inequality (10) as


.A	/ 
 exp.2"n/ sup
y2S2n�1

�y.G	Cp
2ı/

D exp.2"n/ sup
y2S2n�1

�yfx 2 S2n�1 j kxk1 
 p
n.	C p

2ı/g: (11)

Note that if V 2 O.2n/ preserves y, i.e., Vy D y, then

V.f .U// D V.U�JUy/ D .UV�/�J.UV�/.Vy/ D f .UV�/:

Thus, the measure �y is invariant under any rotation in O.2n/ that preserves y.
Note also that for any y 2 S2n�1 one has

hU�JUy; yi D hJUy;Uyi D 0:

This means that �y is supported on S2n�1 \ fyg?, and hence we conclude that �y
is the standard normalized measure on S2n�1 \ fyg?.

Next, let Sy D S2n�1\fyg?. For x 2 Sy set '.x/ D kxk1. Note that ' is a Lipschitz
function on Sy with Lipschitz constant k'kLip 
 p

2n. Using a concentration of
measure argument (see Proposition 2.4 above), we conclude that for any ˛ > 0

�yfx 2 Sy j '.x/ < E�y' � ˛
p
ng 
 Cexp.��2˛2n2=k'k2Lip/ 
 Cexp.��2˛2n/;

(12)
for some universal constants C and �.

Our next step is to estimate the expectation E�y' that appear in (12). For this
purpose let us take some orthogonal basis fz1; : : : ; z2n�1g of the subspace L D
fyg? � R2n. For 1 
 j 
 2n, denote by wj the vector wj D .z1. j/; : : : ; z2n�1. j//,
where zk. j/ stands for the jth coordinate of the vector zk. Then, the measure �y,
which is the standard normalized Lebesgue measure on S2n�1 \ fyg?, can be
described as the image of the normalized Lebesgue measure �2n�2 of S2n�2 under
the map

S2n�2 3 a D .a1; : : : ; a2n�1/ 7!
2n�1X
kD1

akzk D .ha;w1i; ha;w2i; : : : ha;w2ni/ 2 Sy:

Consequently,

E�y' D E�2n�2 .a 7!
2nX
jD1

jha;wjij/ � 1p
2n � 1

r
2

�

2nX
jD1

jwjj:
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Since fz1; : : : ; z2n�1; yg is a basis of R2n, one has that jwjj2 C y2j D 1 and hence

E�y' D 1p
2n � 1

r
2

�

2nX
jD1

q
1 � y2j � 1p

2n � 1

r
2

�
.2n � 1/ � 1

2

p
n:

Thus, from inequality (12) with ˛ D 1
4

we conclude that

�yfx 2 Sy j '.x/ < 1

4

p
ng 
 �yfx 2 Sy j '.x/ < E�y' � 1

4

p
ng 
 Cexp.��

2n

16
/:

(13)

In other words, for any � 
 1
4

and any y 2 S2n�1 one has that

�y.G� / 
 Cexp.��
2n

16
/;

for some constant �. Thus, for every 	 such that 	 C p
2ı 
 1=4, we conclude

by (11) that


.A	/ 
 Cexp.2n"/ � exp
�� �2n

16

�
:

To complete the proof of the Theorem it is enough to take " D �2=64, and 	 which

satisfies the inequality 	
	
1C 16

q
ln.1="/
"




 1=4. ut
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Appendix

Here we provide some background from symplectic topology which partially served
as a motivation for the current paper. For more detailed information on symplectic
topology we refer the reader e.g., to the books [10, 13] and the references therein.

A symplectic vector space is a pair .V; !/, consisting of a finite-dimensional
vector space and a non-degenerate skew-symmetric bilinear form !, called the
symplectic structure. The group of linear transformations which preserve ! is
denoted by Sp.V; !/. The archetypal example of a symplectic vector space is the
Euclidean space R2n equipped with the skew-symmetric bilinear form ! which
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is the imaginary part of the standard Hermitian inner product in R2n ' Cn.
More precisely, if fx1; : : : ; xn; y1; : : : ; yng stands for the standard basis of R2n, then
!.xi; xj/ D !.yi; yj/ D 0, and !.xi; yj/ D ıij. In this case the group of linear
symplectomorphisms is usually denoted by Sp.2n/. More generally, the group of
diffeomorphisms ' of R2n which preserve the symplectic structure, i.e., when the
differential d' at each point is a linear symplectic map, is called the group of
symplectomorphisms of R2n, and is denoted by Symp.R2n; !/. In the spirit of
Klein’s Erlangen program, symplectic geometry can be defined as the study of
transformations which preserves the symplectic structure. We remark that already
in the linear case, the geometry of a skew-symmetric bilinear form is very different
from that of a symmetric form, e.g., there is no natural notion of distance or angle
between two vectors. We further remark that symplectic vector spaces, and more
generally symplectic manifolds, provide a natural setting for Hamiltonian dynamics,
as the evolution of a Hamiltonian system is known to preserve the symplectic form
(see, e.g., [10]). Historically, this is one of the main motivations to study symplectic
geometry.

In sharp contrast with Riemannian geometry where, e.g., curvature is an obstruc-
tion for two manifolds to be locally isometric, in the realm of symplectic geometry
it is known that there are no local invariants (Darboux’s theorem). Moreover,
unlike the Riemannian setting, a symplectic structure has a very rich group of
automorphisms. More precisely, the group of symplectomorphisms is an infinite-
dimensional Lie group. The first results distinguishing (non-linear) symplecto-
morphisms from volume preserving transformations were discovered only in the
1980s. The most striking difference between the category of volume preserving
transformations and the category of symplectomorphisms was demonstrated by
Gromov [9] in his famous non-squeezing theorem. This theorem asserts that if
r < 1, there is no symplectomorphism  of R2n which maps the open unit ball
B2n.1/ into the open cylinder Z2n.r/ D B2.r/ � Cn�1. This result paved the way
to the introduction of global symplectic invariants, called symplectic capacities,
which are significantly differ from any volume related invariants, and roughly
speaking measure the symplectic size of a set (see e.g., [3], for the precise definition
and further discussion). Two examples, defined for open subsets of R2n, are the

Gromov radius c.U/ D supf�r2 W B2n.r/
s
,! Ug, and the cylindrical capacity

c.U/ D inff�r2 W U s
,! Z2n.r/g. Here

s
,! stands for symplectic embedding.

Shortly after Gromov’s work [9] many other symplectic capacities were con-
structed, reflecting different geometrical and dynamical properties. Nowadays, these
invariants play an important role in symplectic geometry, and their properties,
interrelations, and applications to symplectic topology and Hamiltonian dynamics
are intensively studied (see e.g., [3]). However, in spite of the rapidly accumulating
knowledge regarding symplectic capacities, they are usually notoriously difficult to
compute, and there are very few general methods to effectively estimate them, even
within the class of convex domains in R2n (we refer the reader to [18] for a survey
of some known results and open questions regarding symplectic measurements of
convex sets in R2n). In particular, a long standing central question is whether all
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symplectic capacities coincide on the class of convex bodies in R2n (see, e.g., Sect. 5
in [18]). Recently, the authors proved that for centrally symmetric convex bodies,
several symplectic capacities, including the Ekeland-Hofer-Zehnder capacity cEHZ ,
spectral capacities, the cylindrical capacity c, and its linearized version cSp.2n/ given
in (1), are all equivalent up to an absolute constant. More precisely, the following
was proved in [8].

Theorem 3.1 For every centrally symmetric convex body K � R2n

1

kJkKı!K

 cEHZ.K/ 
 c.K/ 
 cSp.2n/ .K/ 
 4

kJkKı!K
;

where kJkKı!K is the operator norm of the complex structure J, when the latter
is considered as a linear map between the normed spaces J W .R2n; k � kKı/ !
.R2n; k � kK/:

Theorem 3.1 implies, in particular, that despite the non-linear nature of the
Ekeland-Hofer-Zehnder capacity cEHZ , and the cylindrical capacity c (both, by defi-
nition, are invariant under non-linear symplectomorphisms), for centrally symmetric
convex bodies they are asymptotically equivalent to a linear invariant: the linearized
cylindrical capacity cSp.2n/ . Motivated by the comparison between the capacities
c and cSp.2n/ in Theorem 3.1, it is natural to introduce and study the following
geometric quantity:

cG.K/ D inf
g2G

Area
�
�.g.K//

�
; (14)

where K lies in the class of convex domains of R2n ' C
n (or possibly, some other

class of bodies), � is the orthogonal projection to the complex line E D fz 2
C

n j zj D 0 for j ¤ 1g, and G is some group of transformations of R2n. One possible
choice is to take the group G in (14) to be the unitary group U.n/, which is the
maximal compact subgroup of Sp.2n/. In this case it is not hard to check (by looking
at linear symplectic images of the cylinder Z2n.1/) that the cylindrical capacity c is
not asymptotically equivalent to cU.n/ . Still, one can ask if these two quantities are
asymptotically equivalent on average. More precisely,

Question 3.2 Is it true that for every convex body K � R2n one has

E
 .c.OK// � E


�
cU.n/ .OK/

�
‹;

where 
 is the Haar measure on the orthogonal group O.2n/.

The answer to Question 3.2 is negative. A counterexample is given by the
standard cube Q D Œ�1; 1�2n in R2n. We remark that the quantity E


�
cU.n/ .OQ/

�
is the main objects of interest of the current paper. To be more precise, we turn now
to the following proposition, which is a direct corollary of Theorem 3.1, and might
be of independent interest. For completeness, we shall give a proof below.



A Remark on Projections of the Rotated Cube to Complex Lines 147

Proposition 3.3 For the standard cube Q D Œ�1; 1�2n � R2n one has

E
 .cEHZ.OQ// � E
 .c.OQ// � E


�
cSp.2n/ .OQ/

� �
r

n

ln n
;

where 
 is the Haar measure on the orthogonal group O.2n/.

Note that the combination of the main result of the current paper (in particular,
Corollary 1.2) with Proposition 3.3 above gives a negative answer to Question 3.2,
and thus further emphasizes the difference between the symplectic and complex
structures on R2n ' Cn.

Proof of Proposition 3.3 Note that by definition one has that

kJk.OQ/ı!.OQ/ D max
x2.OQ/ı

kJxkOQ D max
x2B2n1

kO�JOxk1 D max
iD1;:::;2n kO�JOeik1;

where feig2niD1 stands for the standard basis ofR2n. It follows from Step II of the proof
of Theorem 1.1 above that for a random rotation O 2 O.2n/, the vector O�JOei
is uniformly distributed on S2n�2 ' S2n�1 \ feig? with respect to the standard
normalized measure �2n�2 on S2n�2. The distribution of the lk1-norm on the sphere
Sk�1 is well-studied, and in particular one has (see e.g., Sects. 5.7 and 7 in [16]) that
for every ei

E


�k.O�JOei/k1
� �

q
ln n
n ; (15)

and

P


˚
.k.O�JOei/k1 � E


�k.O�JOei/k1
�
> t
 
 c1exp.�c2t

2n/; (16)

for some universal constants c1; c2 > 0. From (15) and (16) it immediately follows
that

E


�kJk.OQ/ı!.OQ/
� �

q
ln n
n : (17)

Moreover, one has that for some universal constants c3; c4 > 0,

P


˚
.kJk.OQ/ı!.OQ/ 
 c3

q
ln n
n

 
 c4
n
: (18)

Indeed, from the above it follows that

P


˚kJk.OQ/ı!.OQ/ 
 t
 
 P


˚
.k.O�JOe1/k1 
 t

 D P�2n�2

˚kvk1 
 t

:
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Using the standard Gaussian probability measure �2n�1 on R2n�1, one can further
estimate

P�2n�2

˚kvk1 
 t
 D �2n�1

˚kgk1 
 tkgk2



 �2n�1

˚kgk1 
 2
p
2n � 1tC �2n�1

˚kgk2 � 2
p
2n � 1


;

where g is a Gaussian vector in R2n�1 with independent standard Gaussian coordi-
nates. One can directly check that (18) now follows from the above inequalities, and
the following standard estimates for the Gaussian probability measure �k on Rk, and
0 < " < 1:

�k
˚kgk1 
 ˛

 
 Œ1�
q

2
�

exp.�˛2=2/
˛

�k; and �k
n
x 2 R

k j kgk22 � k
.1�"/

o

 exp.�"2k=4/:

Taking into account the fact that 1p
2n


 kJk.OQ/ı!.OQ/ 
 1, we conclude from (17)
and (18) above that

E


�
.kJk.OQ/ı!.OQ//

�1� �
q

n
ln n :

Together with Theorem 3.1, this completes the proof of Proposition 3.3. ut
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On the Expectation of Operator Norms
of Random Matrices

Olivier Guédon, Aicke Hinrichs, Alexander E. Litvak, and Joscha Prochno

Abstract We prove estimates for the expected value of operator norms of Gaussian
random matrices with independent (but not necessarily identically distributed) and
centered entries, acting as operators from `np� to `mq , 1 
 p� 
 2 
 q < 1.

1 Introduction and Main Results

Random matrices and their spectra are under intensive study in Statistics since the
work of Wishart [28] on sample covariance matrices, in Numerical Analysis since
their introduction by von Neumann and Goldstine [25] in the 1940s, and in Physics
as a consequence of Wigner’s work [26, 27] since the 1950s. His Semicircle Law,
a fundamental theorem in the spectral theory of large random matrices describing
the limit of the empirical spectral measure for what is nowadays known as Wigner
matrices, is among the most celebrated results of the theory.

In Banach Space Theory and Asymptotic Geometric Analysis, random matrices
appeared already in the 70s (see e.g. [2, 3, 9]). In [2], the authors obtained asymptotic
bounds for the expected value of the operator norm of a random matrix B D .bij/

m;n
i;jD1

with independent mean-zero entries with jbijj 
 1 from `n2 to `mq , 2 
 q < 1. To be
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more precise, they proved that

E
��B W `n2 ! `mq

�� 
 Cq � max
�
m1=q;

p
n
�
;

where Cq depends only on q. This was then successfully used to characterize
.p; q/-absolutely summing operators on Hilbert spaces. Ever since, random matrices
are extensively studied and methods of Banach spaces have produced numerous
deep and new results. In particular, in many applications the spectral properties
of a Gaussian matrix, whose entries are independent identically distributed (i.i.d.)
standard Gaussian random variables, were used. Seginer proved in [22] that for
an m � n random matrix with i.i.d. symmetric random variables the expectation
of its spectral norm (that is, the operator norm from `n2 to `m2 ) is of the order
of the expectation of the largest Euclidean norm of its rows and columns. He
also obtained an optimal result in the case of random matrices with entries
"ijaij, where "ij are independent Rademacher random variables and aij are fixed
numbers. We refer the interested reader to the surveys [6, 7] and references
therein.

It is natural to ask similar questions about general random matrices, in particular
about Gaussian matrices whose entries are still independent centered Gaussian
random variables, but with different variances. In this structured case, where we
drop the assumption of identical distributions, very little is known. It is conjectured
that the expected spectral norm of such a Gaussian matrix is as in Seginer’s result,
that is, of the order of the expectation of the largest Euclidean norm of its rows and
columns. A big step toward the solution was made by Latała in [15], who proved
a bound involving fourth moments, which is of the right order max.

p
m;

p
n/ in

the i.i.d. setting, but does not capture the right behavior in the case of, for instance,
diagonal matrices. On one hand, as is mentioned in [15], in view of the classical
Bai-Yin theorem, the presence of fourth moments is not surprising, on the other
hand they are not needed if the conjecture is true.

Later in [20], Riemer and Schütt proved the conjecture up to a log n factor. The
two results are incomparable—depending on the choice of variances, one or another
gives a better bound. The Riemer-Schütt estimate was used recently in [21].

We would also like to mention that the non-commutative Khintchine inequality
can be used to show that the expected spectral norm is bounded from above by the
largest Euclidean norm of its rows and columns times a factor

p
log n (see e.g. .4:9/

in [23]).
Another big step toward the solution was made a short while ago by Bandeira

and Van Handel [1]. In particular, they proved that

E
��.aijgij/ W `n2 ! `m2

�� 
 C
	
jjjAjjj C

p
log min.n;m/ � max

ij
jaijj



; (1)

where jjjAjjj denotes the largest Euclidean norm of the rows and columns of .aij/,
C > 0 is a universal constant, and gij are independent standard Gaussian random
variables (see [1, Theorem 3.1]). Under mild structural assumptions, the bound (1)
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is already optimal. Further progress was made by Van Handel [24] who verified the
conjecture up to a

p
log log n factor. In fact, more was proved in [24]. He computed

precisely the expectation of the largest Euclidean norm of the rows and columns
using Gaussian concentration. And, while the moment method is at the heart of the
proofs in [22] and [1], he proposed a very nice approach based on the comparison of
Gaussian processes to improve the result of Latała. His approach can be also used
for our setting. We comment on this in Sect. 4.

The purpose of this work is to provide bounds for operator norms of such
structured Gaussian random matrices considered as operators from `np� to `mq .

In what follows, by gi, gij, i � 1, j � 1 we always denote independent standard
Gaussian random variables. Let n;m 2 N and A D .aij/

m;n
i;jD1 2 Rm�n. We write

G D GA D .aijgij/
m;n
i;jD1. For r � 1, we denote by �r � p

r the Lr-norm of a
standard Gaussian random variable. The notation f � h means that there are two
absolute positive constants c and C (that is, independent of any parameters) such
that cf 
 h 
 Cf and f �p;q h means that there are two positive constants c.p; q/
and C.p; q/, which depend only on the parameters p and q, such that c.p; q/f 
 h 

C.p; q/f .

Our main result is the following theorem.

Theorem 1.1 For every 1 < p� 
 2 
 q < 1 one has

E
��G W `np� ! `mq

�� 

	
E
��G W `np� ! `mq

��q
1=q


 C p5=q .logm/1=q
�
�p max

i�m
k.aij/njD1kp C �q Emax

i�m
j�n

jaijgijj
�

C 21=q �q max
j�n

k.aij/miD1kq;

where C is a positive absolute constant.

We conjecture the following bound.

Conjecture 1.2 For every 1 
 p� 
 2 
 q 
 1 one has

E
��G W `np� ! `mq

�� � max
i�m

k.aij/njD1kp C max
j�n

k.aij/miD1kq C Emax
i�m
j�n

jaijgijj:

Here, as usual, p is defined via the relation 1=p C 1=p� D 1. This con-
jecture extends the corresponding conjecture for the case p D q D 2 and
m D n. In this case, Bandeira and Van Handel proved in [1] an estimate withp

log min.m; n/max jaijj instead of Emax jaijgijj (see Eq. (1)), while in [24] the
corresponding bound is proved with

p
log log n in front of the right hand side.

Remark 1.3 The lower bound in the conjecture is almost immediate and follows
from standard estimates. Thus the upper bound is the only difficulty.
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Remark 1.4 In the case p� D 1 and q � 2, a direct computation following along
the lines of Lemma 3.2 below, shows that

E
��G W `n1 ! `mq

�� . �q max
j�n

k.aij/miD1kq C Emax
i�m
j�n

jaijgijj:

Remark 1.5 Note that if 1 
 p� 
 2 
 q 
 1, in the case of matrices of tensor
structure, that is, .aij/ni;jD1 D x ˝ y D .xj � yi/ni;jD1, with x; y 2 Rn, Chevet’s theorem
[3, 4] and a direct computation show that

E
��G W `np� ! `nq

�� �p;q kykqkxk1 C kyk1kxkp:

If the matrix is diagonal, that is, .aij/ni;jD1 D diag.a11; : : : ; ann/, then we immediately
obtain

E
��G W `np� ! `nq

�� D E k.aiigii/niD1k1 � max
i�n

p
ln.i C 3/ � a�

ii � k.aii/niD1kMg ;

where .a�
ii/i�n is the decreasing rearrangement of .jaiij/i�n and Mg is the Orlicz

function given by

Mg.s/ D
r
2

�

Z s

0

e� 1

2t2 dt

(see Lemma 2.2 below and [11, Lemma 5.2] for the Orlicz norm expression).
Slightly different estimates, but of the same flavour, can also be obtained in the

case 1 
 q 
 2 
 p� 
 1.

2 Notation and Preliminaries

By c;C;C1; : : : we always denote positive absolute constants, whose values may
change from line to line, and we write cp;Cp; : : : if the constants depend on some
parameter p.

Given p 2 Œ1;1�, p� denotes its conjugate and is given by the relation
1=p C 1=p� D 1. For x D .xi/i�n 2 Rn, kxkp denotes its `p-norm, that is
kxk1 D maxi�n jxij and, for p < 1,

kxkp D
	 nX

iD1
jxijp


1=p
:

The corresponding space .Rn; k � kp/ is denoted by `np, its unit ball by Bn
p.
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If E is a normed space, then E� denotes its dual space and BE its closed unit ball.
The modulus of convexity of E is defined for any " 2 .0; 2/ by

ıE."/ WD inf
n
1 �

���x C y

2

���
E

W kxkE D 1; kykE D 1; kx � ykE > "
o
:

We say that E has modulus of convexity of power type 2 if there exists a positive
constant c such that for all " 2 .0; 2/, ıE."/ � c"2. It is well known that this property
(see e.g. [8] or [18, Proposition 2.4]) is equivalent to the fact that

���x C y

2

���2
E

C 	�2
���x � y

2

���2
E


 kxk2E C kyk2E
2

holds for all x; y 2 E, where 	 > 0 is a constant depending only on c. In that case,
we say that E has modulus of convexity of power type 2 with constant 	. We clearly
have ıE."/ � "2=.2	2/.

Recall that a Banach space E is of Rademacher type r for some 1 
 r 
 2 if
there is C > 0 such that for all n 2 N and for all x1; : : : ; xn 2 E,

�
E"

���
nX

iD1
"ixi
���2
�1=2


 C

 
nX

iD1
kxikr

!1=r
;

where ."i/1iD1 is a sequence of independent random variables defined on some
probability space .�;P/ such that P."i D 1/ D P."i D �1/ D 1

2
for every i 2 N.

The smallest C is called type-r constant of E, denoted by Tr.E/. This concept was
introduced into Banach space theory by Hoffmann-Jørgensen [14] in the early 1970s
and the basic theory was developed by Maurey and Pisier [17].

We will need the following theorem.

Theorem 2.1 Let E be a Banach space with modulus of convexity of power type 2
with constant 	. Let X1; : : : ;Xm 2 E� be independent random vectors, q � 2 and
define

B WD C	4T2.E
�/
r

logm

m

	
Emax

i�m
kXikqE�


1=2
;

and

� WD sup
y2BE

 
1

m

mX
iD1

EjhXi; yijq
!1=q

:

Then

E sup
y2BE

ˇ̌
ˇ̌ 1
m

mX
iD1

jhXi; yijq � EjhXi; yijq
ˇ̌
ˇ̌ 
 B2 C B � �q=2:



156 O. Guédon et al.

Its proof is done following the argument “proof of condition (H)” of [13] in com-
bination with the improvement on covering numbers established in [12, Lemma 2].
Indeed, in [12], the argument is only made in the simpler case q D 2, but it can be
extended verbatim to the case q � 2.

We also recall known facts about Gaussian random variables. The next lemma is
well-known (see e.g. Lemmas 2.3, 2.4 in [24]).

Lemma 2.2 Let a D .ai/i�n 2 Rn and .a�
i /i�n be the decreasing rearrangement of

.jaij/i�n. Then

E max
i�n

jaigij � max
i�n

p
ln.i C 3/ � a�

i :

Note that in general the maximum of i.i.d. random variables weighted by coordinates
of a vector a is equivalent to a certain Orlicz norm kakM , where the function M
depends only on the distribution of random variables (see [10, Corollary 2] and
Lemma 5.2 in [11]).

The following theorem is the classical Gaussian concentration inequality (see
e.g. [5] or inequality (2.35) and Proposition 2.18 in [16]).

Theorem 2.3 Let n 2 N and .Y; k�kY/ be a Banach space. Let y1; : : : ; yn 2 Y and
X D Pn

iD1 giyi. Then, for every t > 0,

P

	ˇ̌ kXkY � E kXkY
ˇ̌ � t




 2 exp

�
� t2

2�Y.X/2

�
; (2)

where �Y .X/ D supk�kY� D1
	Pn

iD1 j�.yi/j2

1=2

.

Remark 2.4 Let p � 2. Let a D .aj/j�n 2 Rn and X D .ajgj/j�n. Then we clearly
have

�`np.X/ D max
j�n

jajj:

Thus, Theorem 2.3 implies for X D .ajgj/j�n

P

	ˇ̌kXkp � EkXkp
ˇ̌
> t




 2 exp

�
� t2

2maxj�n jajj2
�
: (3)

Note also that

EkXkp 

� nX

jD1
jajjp Ejgjjp

�1=p
D �pkakp: (4)
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3 Proof of the Main Result

We will apply Theorem 2.1 with E D `np� , 1 < p� 
 2 and X1; : : : ;Xm being the
rows of the matrix G D .aijgij/

m;n
i;jD1. We start with two lemmas in which we estimate

the quantity � and the expectation, appearing in that theorem.

Lemma 3.1 Let m; n 2 N, 1 < p� 
 2 
 q, and for i 
 m let Xi D .aijgij/njD1. Then

� D sup
y2Bn

p�

�
1

m

mX
iD1

E
ˇ̌hXi; yi

ˇ̌q�1=q D �q

m1=q
max
j�n

k.aij/miD1kq:

Proof For every i 
 m, hXi; yi D Pn
jD1 aijyjgij, is a Gaussian random variable with

variance k.aijyj/njD1k2. Hence,

�q D sup
y2Bn

p�

1

m

mX
iD1

EjhXi; yijq D �qq

m
sup
y2Bn

p�

mX
iD1

� nX
jD1

jaijyjj2
�q=2

:

Since p� 
 2 
 q, the function

�.z/ D
mX
iD1

� nX
jD1

jaijj2jzjj2=p�

�q=2

is a convex function on the simplex S D fz 2 Rn j Pn
jD1 
 1; 8j W zj � 0g.

Therefore, it attains its maximum on extreme points, that is, on vectors of the
canonical unit basis of Rn, e1; : : : ; en. Thus,

sup
y2Bn

p�

mX
iD1

� nX
jD1

jaijyjj2
�q=2

D sup
z2S

�.z/ D sup
k�n

�.ek/ D max
j�n

k.aij/miD1kqq;

which completes the proof. ut
Now we estimate the expectation in Theorem 2.1. The proof is based on the

Gaussian concentration, Theorem 2.3, and is similar to Theorem 2.1 and Remark 2.2
in [24].

Lemma 3.2 Let m; n 2 N, 1 < p� 
 2 
 q, and for i 
 m let Xi D .aijgij/njD1. Then

	
Emax

i�m
kXikqp


1=q 
 max
i�m

EkXikp C C �q Emax
i�m
j�n

jaijgijj


 �p max
i�m

k.aij/njD1kp C C �q Emax
i�m
j�n

jaijgijj;

where C is a positive absolute constant.
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Proof We have

	
Emax

i�m
kXikqp


1=q 
 ��max
i�m

ˇ̌kXikp � EkXikp
ˇ̌C max

i�m
EkXikp

��
Lq



	
Emax

i�m

ˇ̌kXikp � EkXikp
ˇ̌q
1=q C max

i�m
EkXikp:

For all i 
 m and t > 0 by (3) we have

P

	ˇ̌kXikp � EkXikp
ˇ̌
> t




 2 exp

�
� t2

2maxj�n jaijj2
�
: (5)

By permuting the rows of .aij/
m;n
i;jD1, we can assume that

max
j�n

ja1jj � � � � � max
j�n

jamjj:

For each i 
 m, choose j.i/ 
 n such that jaij.i/j D maxj�n jaijj. Clearly,

max
i�m
j�n

jaijgijj � max
i�m

jaij.i/j � jgij.i/j

and hence, by independence of gij’s and Lemma 2.2,

b WD Emax
i�m
j�n

jaijgijj � Emax
i�m

jaij.i/j � jgij � cmax
i�m

p
log.i C 3/ � jaij.i/j;

where the latter inequality follows since ja1j.1/j � � � � � janj.n/j. Thus, for i 
 m,

max
j�n

jaijj2 D a2ij.i/ 
 b2

c log.i C 3/
:

By (5) we observe for every t > 0,

P

	
max
i�m

ˇ̌kXikp � EkXikp
ˇ̌
> t




 2

mX
iD1

exp

�
� ct2 log.i C 3/

2b2

�

D 2

mX
iD1

�
1

i C 3

�ct2=2b2


 2

Z 1

3

x�ct2=2b2 dx


 6 � 3�ct2=2b2 ;

whenever ct2=b2 � 4. Integrating the tail inequality proves that

�
Emax

i�m

ˇ̌
ˇkXikp � EkXikp

ˇ̌
ˇq
�1=q


 C1
p
q b 
 C2 �q Emax

i�m
j�n

jaijgijj:
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By the triangle inequality, we obtain the first desired inequality, the second one
follows by (4). ut

We are now ready to present the proof of the main theorem.

Proof of Theorem 1.1 First observe that

E
��G W `np� ! `mq

�� 

	
E
��G W `np� ! `mq

��q
1=q D
�
E sup

y2Bn
p�

mX
iD1

ˇ̌hXi; yi
ˇ̌q�1=q

:

We have

E sup
y2Bn

p�

mX
iD1

ˇ̌hXi; yi
ˇ̌q 
 E sup

y2Bn
p�

"
mX
iD1

ˇ̌hXi; yi
ˇ̌q � E

ˇ̌hXi; yi
ˇ̌q
#

C sup
y2Bn

p�

mX
iD1

E
ˇ̌hXi; yi

ˇ̌q

D m � E sup
y2Bn

p�

"
1

m

mX
iD1

ˇ̌hXi; yi
ˇ̌q � E

ˇ̌hXi; yi
ˇ̌q
#

Cm � �q:

Hence, Theorem 2.1 applied with E D `np� implies

E
��G W `np� ! `mq

��q 
 m � �B2 C B�q=2
�C m � �q 
 2m

�
B2 C �q

�
;

where B and � are defined in that theorem. Therefore,

	
E
��G W `np� ! `mq

��q
1=q 
 21=qm1=q
�
B2=q C �

�
:

Now, recall that T2.`np/ � p
p and that Bn

p� has modulus of convexity of power type

2 with 	�2 � 1=p (see, e.g., [19, Theorem 5.3]). Therefore,

B2=q D C2=q	8=q T2=q2 .`np/

�
logm

m

�1=q 	
Emax

i�m
kXikqp


1=q

D C2=qp5=q.logm/1=qm�1=q
	
Emax

i�m
kXikqp


1=q
:

Applying Lemma 3.1, we obtain

	
E
��G W `np� ! `mq

��q
1=q


 .2C2/1=q � p5=q � .logm/1=q
	
Emax

i�m
kXikqp


1=q

C 21=q�q � max
j�n

k.aij/miD1kq:

The desired bound follows now from Lemma 3.2. ut
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Remark 3.3 This proof can be extended to the case of random matrices whose rows
are centered independent vectors with multivariate Gaussian distributions. We leave
the details to the interested reader.

4 Concluding Remarks

In this section, we briefly outline what can be obtained using the approach of [24].
We use a standard trick to pass to a symmetric matrix. The matrix GA being given,
define S as

S D 1

2

�
0 GT

A

GA 0

�
:

Then, S is a random symmetric matrix and

sup
w

hSw;wi D sup
u2Bn

p�

sup
v2Bm

q�

hGAu; vi D ��GA W `np� ! `mq
��;

where the supremum in w is taken over all vectors of the form .u; v/T with u 2 Bn
p�

and v 2 Bm
q� . Repeating verbatim the proof of Theorem 4.1 in [24] one gets

E
��GA W `np� ! `mq

�� .p;q Emax
i�m

� nX
jD1

jgjjpjaijjp
�1=p

C Emax
j�n

� mX
iD1

jgijqjaijjg
�1=q

C Emax
i

Yi;

where Y � N.0;A�/ and A� is a positive definite matrix whose diagonal elements
are bounded by

max

 
max
i�m

sX
j

a4ij ; max
j�n

sX
i

a4ij

!
:

However, the bounds obtained here and in Theorem 1.1 are incomparable. Depend-
ing on the situation one may be better than the other.
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The Restricted Isometry Property
of Subsampled Fourier Matrices

Ishay Haviv and Oded Regev

Abstract A matrix A 2 Cq�N satisfies the restricted isometry property of order
k with constant � if it preserves the `2 norm of all k-sparse vectors up to a factor
of 1 ˙ �. We prove that a matrix A obtained by randomly sampling q D O.k �
log2 k � logN/ rows from an N � N Fourier matrix satisfies the restricted isometry
property of order k with a fixed � with high probability. This improves on Rudelson
and Vershynin (Comm Pure Appl Math, 2008), its subsequent improvements, and
Bourgain (GAFA Seminar Notes, 2014).

1 Introduction

A matrix A 2 Cq�N satisfies the restricted isometry property of order k with constant
� > 0 if for every k-sparse vector x 2 CN (i.e., a vector with at most k nonzero
entries), it holds that

.1 � �/ � kxk22 
 kAxk22 
 .1C �/ � kxk22 : (1)

Intuitively, this means that every k columns of A are nearly orthogonal. This
notion, due to Candès and Tao [9], was intensively studied during the last decade
and found various applications and connections to several areas of theoretical
computer science, including sparse recovery [8, 20, 27], coding theory [14], norm
embeddings [6, 22], and computational complexity [4, 25, 31].

The original motivation for the restricted isometry property comes from the area
of compressed sensing. There, one wishes to compress a high-dimensional sparse
vector x 2 C

N to a vector Ax, where A 2 C
q�N is a measurement matrix that enables
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reconstruction of x from Ax. Typical goals in this context include minimizing the
number of measurements q and the running time of the reconstruction algorithm. It
is known that the restricted isometry property of A, for � <

p
2 � 1, is a sufficient

condition for reconstruction. In fact, it was shown in [8, 9, 11, 12] that under this
condition, reconstruction is equivalent to finding the vector of least `1 norm among
all vectors that agree with the given measurements, a task that can be formulated as
a linear program [13, 16], and thus can be solved efficiently.

The above application leads to the challenge of finding matrices A 2 Cq�N that
satisfy the restricted isometry property and have a small number of rows q as a
function of N and k. (For simplicity, we ignore for now the dependence on �.)
A general lower bound of q D �.k � log.N=k// is known to follow from [18]
(see also [17]). Fortunately, there are matrices that match this lower bound, e.g.,
random matrices whose entries are chosen independently according to the normal
distribution [10]. However, in many applications the measurement matrix cannot be
chosen arbitrarily but is instead given by a random sample of rows from a unitary
matrix, typically the discrete Fourier transform. This includes, for instance, various
tests and experiments in medicine and biology (e.g., MRI [28] and ultrasound
imaging [21]) and applications in astronomy (e.g., radio telescopes [32]). An
advantage of subsampled Fourier matrices is that they support fast matrix-vector
multiplication, and as such, are useful for efficient compression as well as for
efficient reconstruction based on iterative methods (see, e.g., [26]).

In recent years, with motivation from both theory and practice, an intensive line
of research has aimed to study the restricted isometry property of random sub-
matrices of unitary matrices. Letting A 2 Cq�N be a (normalized) matrix whose
rows are chosen uniformly and independently from the rows of a unitary matrix
M 2 CN�N , the goal is to prove an upper bound on q for which A is guaranteed to
satisfy the restricted isometry property with high probability. Note that the fact that
the entries of every row of A are not independent makes this question much more
difficult than in the case of random matrices with independent entries.

The first upper bound on the number of rows of a subsampled Fourier matrix that
satisfies the restricted isometry property was O.k � log6 N/, which was proved by
Candès and Tao [10]. This was then improved by Rudelson and Vershynin [30] to
O.k �log2 k �log.k logN/�logN/ (see also [15, 29] for a simplified analysis with better
success probability). A modification of their analysis led to an improved bound of
O.k � log3 k � logN/ by Cheraghchi, Guruswami, and Velingker [14], who related
the problem to a question on the list-decoding rate of random linear codes over
finite fields. Interestingly, replacing the log.k logN/ term in the bound of [30] by
log k was crucial for their application.1 Recently, Bourgain [7] proved a bound of
O.k � log k � log2 N/, which is incomparable to those of [14, 30] (and has a worse
dependence on �; see below). We finally mention that the best known lower bound
on the number of rows is �.k � logN/ [5].

1Note that the list-decoding result of [14] was later improved by Wootters [33] using different
techniques.
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1.1 Our Contribution

In this work, we improve the previous bounds and prove the following.

Theorem 1.1 (Simplified) Let M 2 CN�N be a unitary matrix with entries of
absolute value O.1=

p
N/, and let � > 0 be a fixed constant. For some q D

O.k �log2 k �logN/, let A 2 Cq�N be a matrix whose q rows are chosen uniformly and
independently from the rows of M, multiplied by

p
N=q. Then, with high probability,

the matrix A satisfies the restricted isometry property of order k with constant �.

The main idea in our proof is described in Sect. 1.3. We arrived at the proof
from our recent work on list-decoding [19], where a baby version of the idea
was used to bound the sample complexity of learning the class of Fourier-sparse
Boolean functions.2 Like all previous work on this question, our proof can be
seen as a careful union bound applied to a sequence of progressively finer nets,
a technique sometimes known as chaining. However, unlike the work of Rudelson
and Vershynin [30] and its improvements [14, 15], we avoid the use of Gaussian
processes, the “symmetrization process,” and Dudley’s inequality. Instead, we
follow and refine Bourgain’s proof [7], and apply the chaining argument directly
to the problem at hand using only elementary arguments. It would be interesting to
see if our proof can be cast in the Gaussian framework of Rudelson and Vershynin.

We remark that the bounds obtained in the previous works [14, 30] have a
multiplicative O.��2/ term, whereas a much worse term of O.��6/ was obtained
in [7]. In our proof of Theorem 1.1 we nearly obtain the best known dependence on
�. For simplicity of presentation we first prove in Sect. 3 our bound with a weaker
multiplicative term of O.��4/, and then, in Sect. 4, we modify the analysis and
decrease the dependence on � to O.��2/ up to logarithmic terms.

1.2 Related Literature

As mentioned before, one important advantage of using subsampled Fourier
matrices in compressed sensing is that they support fast, in fact nearly linear time,
matrix-vector multiplication. In certain scenarios, however, one is not restricted to
using subsampled Fourier matrices as the measurement matrix. The question then is
whether one can decrease the number of rows using another measurement matrix,
while still keeping the near-linear multiplication time. For k < N1=2�� where � > 0
is an arbitrary constant, the answer is yes: a construction with the optimal number

2The result in [19] is weaker in two main respects. First, it is restricted to the case that Ax is in
f0; 1gq. This significantly simplifies the analysis and leads to a better bound on the number of rows
of A. Second, the order of quantifiers is switched, namely it shows that for any sparse x, a random
subsampled A works with high probability, whereas for the restricted isometry property we need
to show that a random A works for all sparse x.
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O.k � logN/ of rows follows from works by Ailon and Chazelle [1] and Ailon and
Liberty [2] (see [6]). For general k, Nelson, Price, and Wootters [27] suggested
taking subsampled Fourier matrices and “tweaking” them by bunching together
rows with random signs. Using the Gaussian-process-based analysis of [14, 30] and
introducing further techniques from [23], they showed that with this construction
one can reduce the number of rows by a logarithmic factor to O.k � log2.k logN/ �
logN/while still keeping the nearly linear multiplication time. Our result shows that
the same number of rows (in fact, a slightly smaller number) can be achieved already
with the original subsampled Fourier matrices without having to use the “tweak.” A
natural open question is whether the “tweak” from [27] and their techniques can be
combined with ours to further reduce the number of rows. An improvement in the
regime of parameters of k D !.

p
N/ would lead to more efficient low-dimensional

embeddings based on Johnson–Lindenstrauss matrices (see, e.g., [1–3, 22, 27]).

1.3 Proof Overview

Recall from Theorem 1.1 and from (1) that our goal is to prove that a matrix A given
by a random sample Q of q rows of M satisfies with high probability that for all
k-sparse x, kAxk22 � kxk22. Since M is unitary, the latter is equivalent to saying that
kAxk22 � kMxk22. Yet another way of expressing this condition is as

E
j2Q
�
.jMxj2/j

� � E
j2ŒN�

�
.jMxj2/j

�
;

i.e., that a sample Q � ŒN� of q coordinates of the vector jMxj2 gives a good
approximation to the average of all its coordinates. Here, jMxj2 refers to the
vector obtained by taking the squared absolute value of Mx coordinate-wise. For
reasons that will become clear soon, it will be convenient to assume without loss
of generality that kxk1 D 1. With this scaling, the sparsity assumption implies that
kMxk22 is not too small (namely at least 1=k), and this will determine the amount of
additive error we can afford in the approximation above. This is the only way we
use the sparsity assumption.

At a high level, the proof proceeds by defining a finite set of vectorsH that forms
a net, i.e., a set satisfying that any vector jMxj2 is close to one of the vectors in H.
We then argue using the Chernoff-Hoeffding bound that for any fixed vector h 2 H,
a sample of q coordinates gives a good approximation to the average of h. Finally,
we complete the proof by a union bound over all h 2 H.

In order to define the set H we notice that since kxk1 D 1, Mx can be seen
as a weighted average of the columns of M (possibly with signs). In other words,
we can think of Mx as the expectation of a vector-valued random variable given
by a certain probability distribution over the columns of M. Using the Chernoff-
Hoeffding bound again, this implies that we can approximate Mx well by taking the
average over a small number of samples from this distribution. We then let H be the
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set of all possible such averages, and a bound on the cardinality of H follows easily
(basically N raised to the number of samples). This technique is sometimes referred
to as Maurey’s empirical method.

The argument above is actually oversimplified, and carrying it out leads to
rather bad bounds on q. As a result, our proof in Sect. 3 is slightly more delicate.
Namely, instead of just one set H, we have a sequence of sets, H1;H2; : : :, each
being responsible for approximating a different scale of jMxj2. The first set H1

approximates jMxj2 on coordinates on which its value is highest; since the value
is high, we need less samples in order to approximate it well, as a result of which
the set H1 is small. The next set H2 approximates jMxj2 on coordinates on which
its value is somewhat smaller, and is therefore a bigger set, and so on and so forth.
The end result is that any vector jMxj2 can be approximately decomposed into a
sum

P
i h
.i/, with h.i/ 2 Hi. To complete the proof, we argue that a random choice

of q coordinates approximates all the vectors in all the Hi well. The reason working
with several Hi leads to the better bound stated in Theorem 1.1 is this: even though
as i increases the number of vectors in Hi grows, the quality of approximation that
we need the q coordinates to provide decreases, since the value of jMxj2 there is
small and so errors are less significant. It turns out that these two requirements on q
balance each other perfectly, leading to the desired bound on q.

2 Preliminaries

Notation The notation x ��;˛ y means that x 2 Œ.1 � �/y � ˛; .1C �/y C ˛�. For a
matrix M, we denote by M.`/ the `th column of M and define kMk1 D maxi;j jMi;jj.
The Restricted Isometry Property The restricted isometry property is defined as
follows.

Definition 2.1 We say that a matrix A 2 Cq�N satisfies the restricted isometry
property of order k with constant � if for every k-sparse vector x 2 CN it holds
that

.1 � �/ � kxk22 
 kAxk22 
 .1C �/ � kxk22:

Chernoff-Hoeffding Bounds We now state the Chernoff-Hoeffding bound (see,
e.g., [24]) and derive several simple corollaries that will be used extensively later.

Theorem 2.2 Let X1; : : : ;XN be N identically distributed independent random
variables in Œ0; a� satisfying EŒXi� D 
 for all i, and denote X D 1

N � PN
iD1 Xi.

Then there exists a universal constant C such that for every 0 < � 
 1=2, the
probability that X ��;0 
 is at least 1 � 2e�C�N
�2=a.

Corollary 2.3 Let X1; : : : ;XN be N identically distributed independent random
variables in Œ0; a� satisfying EŒXi� D 
 for all i, and denote X D 1

N � PN
iD1 Xi.
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Then there exists a universal constant C such that for every 0 < � 
 1=2 and
˛ > 0, the probability that X ��;˛ 
 is at least 1 � 2e�C�N˛�=a.

Proof If 
 � ˛
"

then by Theorem 2.2 the probability that X ��;0 
 is at least

1 � 2e�C�N
�2=a, which is at least 1 � 2e�C�N˛�=a. Otherwise, Theorem 2.2 for Q" D
˛


> � implies that the probability that X �Q";0 
, hence X �0;˛ 
, is at least

1 � 2e�C�N
Q"2=a, and the latter is at least 1 � 2e�C�N˛�=a. �

Corollary 2.4 Let X1; : : : ;XN be N identically distributed independent random
variables in Œ�a;Ca� satisfying EŒXi� D 
 and EŒjXij� D Q
 for all i, and denote
X D 1

N � PN
iD1 Xi. Then there exists a universal constant C such that for every

0 < "0 
 1=2 and ˛ > 0, the probability that X �0;�0 � Q
C˛ 
 is at least
1 � 4e�C�N˛�0=a.

Proof The corollary follows by applying Corollary 2.3 to max.Xi; 0/ and to
� min.Xi; 0/. �

We end with the additive form of the bound, followed by an easy extension to the
complex case.

Corollary 2.5 Let X1; : : : ;XN be N identically distributed independent random
variables in Œ�a;Ca� satisfying EŒXi� D 
 for all i, and denote X D 1

N � PN
iD1 Xi.

Then there exists a universal constant C such that for every b > 0, the probability
that X �0;b 
 is at least 1 � 4e�C�Nb2=a2 .

Proof We can assume that b 
 2a. The corollary follows by applying Corollary 2.4
to, say, ˛ D 3b=4 and �0 D b=.4a/. �

Corollary 2.6 Let X1; : : : ;XN be N identically distributed independent complex-
valued random variables satisfying jXij 
 a and EŒXi� D 
 for all i, and denote
X D 1

N �PN
iD1 Xi. Then there exists a universal constant C such that for every b > 0,

the probability that jXj �0;b j
j is at least 1 � 8e�C�Nb2=a2 .

Proof By Corollary 2.5 applied to the real and imaginary parts of the random
variables X1; : : : ;XN it follows that for a universal constant C, the probability that
Re.X/ �0;b=

p
2 Re.
/ and Im.X/ �0;b=

p
2 Im.
/ is at least 1 � 8e�C�Nb2=a2 . By

triangle inequality, it follows that with such probability we have jXj �0;b j
j, as
required. �

3 The Simpler Analysis

In this section we prove our result with a multiplicative term of O.��4/ in the bound.
This will be obtained in Theorem 3.7 as an easy corollary of the following theorem.

Theorem 3.1 For a sufficiently large N, a matrix M 2 CN�N, and sufficiently small
�; � > 0, the following holds. For some q D O.��3��1 logN � log2.1=�//, let Q
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be a multiset of q uniform and independent random elements of ŒN�. Then, with
probability 1 � 2��.��2�logN�log.1=�//, it holds that for every x 2 CN,

E
j2Q
�j.Mx/jj2

� ��;��kxk21 �kMk21 E
j2ŒN�

�j.Mx/jj2
�
:

Throughout the proof we assume without loss of generality that the matrix M 2
CN�N satisfies kMk1 D 1. For �; � > 0, we denote t D log2.1=�/, r D log2.1=�

2/,
and � D �=.2t/.

We now define the approximating vector sets Hi, i D 1; : : : ; t, each responsible
for coordinates of jMxj2 of a different scale (the larger the i the smaller the scale). We
start by defining the “raw approximations”Gi, which are essentially vectors obtained
by averaging a certain number of columns of M. We then define the vectors in Hi by
restricting the vectors in Gi (actually GiCr) to the set of coordinates Bi where there
is a clear “signal” and not just noise. This is necessary in order to make sure that the
small coordinates of jMxj2 are not flooded by noise from the coarse approximations.
Details follow.

The Vector Sets Gi For every 1 
 i 
 t C r, let Gi denote the set of all vectors
g.i/ 2 CN that can be represented as

g.i/ D
p
2

jFj �
X
.`;s/2F

.�1/s=2 � M.`/ (2)

for a multiset F of O.2i � log.1=�// pairs in ŒN� � f0; 1; 2; 3g. A trivial counting
argument gives the following.

Claim 3.2 For every 1 
 i 
 t C r, jGij 
 NO.2i�log.1=�//:

The Vector Sets Hi For a t-tuple of vectors .g.1Cr/; : : : ; g.tCr// 2 G1Cr �� � ��GtCr

and for 1 
 i 
 t, let Bi be the set of all j 2 ŒN� for which i is the smallest index
satisfying jg.iCr/

j j � 2 � 2�i=2. For such i, define the vector h.i/ by

h.i/j D min.jg.iCr/
j j2 � 1j2Bi ; 9 � 2�i/: (3)

Let Hi be the set of all vectors h.i/ that can be obtained in this way.

Claim 3.3 For every 1 
 i 
 t, jHij 
 NO.��2�2i�log.1=�//:

Proof Observe that every h.i/ 2 Hi is fully defined by some .g.1Cr/; : : : ; g.iCr// 2
G1Cr � � � � � GiCr. Hence

jHij 
 jG1Crj � � � jGiCrj 
 NO.log.1=�//�.21CrC22CrC���C2iCr/ 
 NO.log.1=�//�2iCrC1

:

Using the definition of r, the claim follows. �
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Lemma 3.4 For every Q� > 0 and some q D O.��3 Q��1 logN � log.1=�//, let Q
be a multiset of q uniform and independent random elements of ŒN�. Then, with
probability 1 � 2��.��2�logN�log.1=�//, it holds that for all 1 
 i 
 t and h.i/ 2 Hi ,

E
j2Q

h
h.i/j

i
��;Q� E

j2ŒN�

h
h.i/j

i
:

Proof Fix an 1 
 i 
 t and a vector h.i/ 2 Hi, and denote 
 D Ej2ŒN�Œh.i/j �. By

Corollary 2.3, applied with ˛ D Q� and a D 9 � 2�i (recall that h.i/j 
 a for every

j), with probability 1 � 2��.2i�q�Q�/, it holds that Ej2QŒh.i/j � ��;Q� 
. Using Claim 3.3,
the union bound over all the vectors in Hi implies that the probability that some
h.i/ 2 Hi does not satisfy Ej2QŒh.i/j � ��;Q� 
 is at most

NO.��2 �2i�log.1=�// � 2��.2i�q�Q�/ 
 2��.��2�2i�logN�log.1=�// :

We complete the proof by a union bound over i. �

Approximating the Vectors Mx

Lemma 3.5 For every vector x 2 CN with kxk1 D 1, every multiset Q � ŒN�, and
every 1 
 i 
 t C r, there exists a vector g 2 Gi that satisfies j.Mx/jj �0;2�i=2 jgjj
for all but at most � fraction of j 2 ŒN� and for all but at most � fraction of j 2 Q.

Proof Observe that for every ` 2 ŒN� there exist p`;0; p`;1; p`;2; p`;3 � 0 that satisfy

3X
sD0

p`;s D jx`j and
p
2 �

3X
sD0

p`;s � .�1/s=2 D x`:

Notice that the assumption kxk1 D 1 implies that the numbers p`;s form a probability
distribution. Thus, the vector Mx can be represented as

Mx D
NX
`D1

x` � M.`/ D p
2 �

NX
`D1

3X
sD0

p`;s � .�1/s=2 � M.`/ D E
.`;s/�D

Œ
p
2 � .�1/s=2 �M.`/�;

where D is the distribution that assigns probability p`;s to the pair .`; s/.
Let F be a multiset of O.2i � log.1=�// independent random samples from D, and

let g 2 Gi be the vector corresponding to F as in (2). By Corollary 2.6, applied with
a D p

2 (recall that kMk1 D 1) and b D 2�i=2, for every j 2 ŒN� the probability
that

j.Mx/jj �0;2�i=2 jgjj (4)

is at least 1 � �=4. It follows that the expected number of j 2 ŒN� that do not
satisfy (4) is at most �N=4, so by Markov’s inequality the probability that the
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number of j 2 ŒN� that do not satisfy (4) is at most �N is at least 3=4. Similarly, the
expected number of j 2 Q that do not satisfy (4) is at most � jQj=4, so by Markov’s
inequality, with probability at least 3=4 it holds that the number of j 2 Q that do not
satisfy (4) is at most � jQj. It follows that there exists a vector g 2 Gi for which (4)
holds for all but at most � fraction of j 2 ŒN� and for all but at most � fraction of
j 2 Q, as required. �

Lemma 3.6 For every multiset Q � ŒN� and every vector x 2 CN with kxk1 D 1

there exists a t-tuple of vectors .h.1/; : : : ; h.t// 2 H1 � � � � � Ht for which

1. Ej2Q
�j.Mx/jj2

� �O.�/;O.�/ Ej2Q
hPt

iD1 h
.i/
j

i
and

2. Ej2ŒN�
�j.Mx/jj2

� �O.�/;O.�/ Ej2ŒN�
hPt

iD1 h
.i/
j

i
.

Proof By Lemma 3.5, for every 1 
 i 
 t there exists a vector g.iCr/ 2 GiCr that
satisfies

j.Mx/jj �0;2�.iCr/=2 jg.iCr/
j j (5)

for all but at most � fraction of j 2 ŒN� and for all but at most � fraction of j 2 Q. We
say that j 2 ŒN� is good if (5) holds for every 1 
 i 
 t, and otherwise that it is bad.
Notice that all but at most t� fraction of j 2 ŒN� are good and that all but at most t�
fraction of j 2 Q are good. Let .h.1/; : : : ; h.t// and .B1; : : : ;Bt/ be the vectors and
sets associated with .g.1Cr/; : : : ; g.tCr// as defined in (3). We claim that h.1/; : : : ; h.t/

satisfy the requirements of the lemma.
We first show that for every good j it holds that j.Mx/jj2 �3�;9�

Pt
iD1 h

.i/
j . To

obtain it, we observe that if j 2 Bi for some i, then

2 � 2�i=2 
 jg.iCr/
j j 
 3 � 2�i=2: (6)

The lower bound follows simply from the definition of Bi. For the upper bound,
which trivially holds for i D 1, assume that i � 2, and notice that the definition of
Bi implies that jg.iCr�1/

j j < 2 �2�.i�1/=2. Using (5), and assuming that � is sufficiently
small, we obtain that

jg.iCr/
j j 
 j.Mx/jj C 2�.iCr/=2 
 jg.iCr�1/

j j C 2�.iCr�1/=2 C 2�.iCr/=2


 2�i=2.23=2 C 21=2 � � C �/ 
 3 � 2�i=2:

Hence, by the upper bound in (6), for a good j 2 Bi we have h.i/j D jg.iCr/
j j2 and

h.i
0/

j D 0 for i0 ¤ i. Observe that by the lower bound in (6),

j.Mx/jj 2 Œjg.iCr/
j j�2�.iCr/=2; jg.iCr/

j jC2�.iCr/=2� � Œ.1��/�jg.iCr/
j j; .1C�/�jg.iCr/

j j�;
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and that this implies that j.Mx/jj2 �3�;0

Pt
iD1 h

.i/
j . On the other hand, in case that j

is good but does not belong to any Bi, recalling that t D log2.1=�/, it follows that

j.Mx/jj 
 jg.tCr/
j j C 2�.tCr/=2 
 2 � 2�t=2 C 2�.tCr/=2 
 3 � 2�t=2 
 3

p
�;

and thus j.Mx/jj2 �0;9� 0 D Pt
iD1 h

.i/
j .

Finally, for every bad j we have

ˇ̌
ˇ̌
ˇj.Mx/jj2 �

tX
iD1

h.i/j

ˇ̌
ˇ̌
ˇ 
 max

	
j.Mx/jj2;

tX
iD1

h.i/j




 2:

Since at most t� fraction of the elements in ŒN� and in Q are bad, their effect on the
difference between the expectations in the lemma can be bounded by 2t� . By our
choice of � , this is �, completing the proof of the lemma. �

Finally, we are ready to prove Theorem 3.1.

Proof of Theorem 3.1 By Lemma 3.4, applied with Q� D �=.2t/, a random multiset
Q of size

q D O
	
��3��1 � t � logN � log.1=�/



D O

	
��3��1 logN � log2.1=�/




satisfies with probability 1� 2��.��2�logN�log.1=�// that for all 1 
 i 
 t and h.i/ 2 Hi,

E
j2Q

h
h.i/j

i
��;�=t E

j2ŒN�

h
h.i/j

i
;

in which case we also have

E
j2Q

"
tX

iD1
h.i/j

#
��;� E

j2ŒN�

"
tX

iD1
h.i/j

#
:

We show that a Q with the above property satisfies the requirement of the
theorem. Let x 2 CN be a vector, and assume without loss of generality that kxk1 D
1. By Lemma 3.6, there exists a t-tuple of vectors .h.1/; : : : ; h.t// 2 H1 � � � � � Ht

satisfying Items 1 and 2 there. As a result,

E
j2Q
�j.Mx/jj2

� �O.�/;O.�/ E
j2ŒN�

�j.Mx/jj2
�
;

and we are done. �
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3.1 The Restricted Isometry Property

Equipped with Theorem 3.1, it is easy to derive our result on the restricted isometry
property (see Definition 2.1) of random sub-matrices of unitary matrices.

Theorem 3.7 For sufficiently large N and k, a unitary matrix M 2 CN�N satisfying
kMk1 
 O.1=

p
N/, and a sufficiently small � > 0, the following holds. For some

q D O.��4 � k � log2.k=�/ � logN/, let A 2 Cq�N be a matrix whose q rows are chosen
uniformly and independently from the rows of M, multiplied by

p
N=q. Then, with

probability 1 � 2��.��2�logN�log.k=�//, the matrix A satisfies the restricted isometry
property of order k with constant �.

Proof Let Q be a multiset of q uniform and independent random elements of ŒN�,
defining a matrix A as above. Notice that by the Cauchy-Schwarz inequality, any
k-sparse vector x 2 CN with kxk2 D 1 satisfies kxk1 
 p

k. Applying Theorem 3.1
with �=2 and some � D �.�=k/, we get that with probability 1�2��.��2�logN�log.k=�//,
it holds that for every x 2 CN with kxk2 D 1,

kAxk22 D N � E
j2Q
�j.Mx/jj2

� ��=2;�=2 N � E
j2ŒN�

�j.Mx/jj2
� D kMxk22 D 1 :

It follows that every vector x 2 CN satisfies kAxk22 ��;0 kxk22, hence A satisfies the
restricted isometry property of order k with constant �. �

4 The Improved Analysis

In this section we prove the following theorem, which improves the bound of
Theorem 3.1 in terms of the dependence on �.

Theorem 4.1 For a sufficiently large N, a matrix M 2 CN�N, and sufficiently small
�; � > 0, the following holds. For some q D O.log2.1=�/ ���1��1 logN � log2.1=�//,
let Q be a multiset of q uniform and independent random elements of ŒN�. Then, with
probability 1 � 2��.logN�log.1=�//, it holds that for every x 2 CN,

E
j2Q
�j.Mx/jj2

� ��;��kxk21 �kMk21 E
j2ŒN�

�j.Mx/jj2
�
: (7)

We can assume that � � �, as otherwise, one can apply the theorem with
parameters �=2; �=2 and derive (7) for �; � as well (because the right-hand size
is bounded from above by kxk21 � kMk21). As before, we assume without loss of
generality that kMk1 D 1. For � � � > 0, we define t D log2.1=�/ and
r D log2.1=�

2/. For the analysis given in this section, we define � D �=.60.tC r//.
Throughout the proof, we use the vector sets Gi from Sect. 3 and Lemma 3.5 for this
value of � .
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The Vector Sets Di;m For a .t C r/-tuple of vectors .g.1/; : : : ; g.tCr// 2 G1 � � � � �
GtCr and for 1 
 i 
 t, let Ci be the set of all j 2 ŒN� for which i is the smallest
index satisfying jg.i/j j � 2 � 2�i=2. For m D i; : : : ; i C r define the vector h.i;m/ by

h.i;m/j D jg.m/j j2 � 1j2Ci ; (8)

and for other values of m define h.i;m/ D 0. Now, for every m, let�.i;m/ be the vector
defined by

�
.i;m/
j D

(
h.i;m/j � h.i;m�1/

j ; if jh.i;m/j � h.i;m�1/
j j 
 30 � 2�.iCm/=2I

0; otherwise.
(9)

Note that the support of �.i;m/ is contained in Ci. Let Di;m be the set of all vectors
�.i;m/ that can be obtained in this way.

Claim 4.2 For every 1 
 i 
 t and i 
 m 
 i C r, jDi;mj 
 NO.2m�log.1=�//:

Proof Observe that every vector in Di;m is fully defined by some .g.1/; : : : ; g.m// 2
G1 � � � � � Gm. Hence

jDi;mj 
 jG1j � � � jGmj 
 NO.log.1=�//�.21C22C���C2m/ 
 NO.log.1=�//�2mC1

;

and the claim follows. �

Lemma 4.3 For every Q"; Q� > 0 and some q D O.Q"�1 Q��1 logN � log.1=�//, let
Q be a multiset of q uniform and independent random elements of ŒN�. Then, with
probability 1 � 2��.logN�log.1=�//, it holds that for every 1 
 i 
 t, m, and a vector
�.i;m/ 2 Di;m associated with a set Ci,

E
j2Q

h
�
.i;m/
j

i
�0;b E

j2ŒN�

h
�
.i;m/
j

i
for b D O

	
Q" � 2�i � jCij

N
C Q�



: (10)

Proof Fix i, m, and a vector �.i;m/ 2 Di;m associated with a set Ci as in (9). Notice
that

E
j2ŒN�

Œj�.i;m/
j j� 
 30 � 2�.iCm/=2 � jCij

N
:

By Corollary 2.4, applied with

�0 D Q" � 2.m�i/=2; ˛ D Q�; and a D 30 � 2�.iCm/=2;

we have that (10) holds with probability 1� 2��.2m�qQ"Q�/. Using Claim 4.2, the union
bound over all the vectors in Di;m implies that the probability that some�.i;m/ 2 Di;m
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does not satisfy (10) is at most

NO.2m�log.1=�// � 2��.2m�qQ"Q�/ 
 2��.2m�logN�log.1=�// :

The result follows by a union bound over i and m. �

Approximating the Vectors Mx

Lemma 4.4 For every multiset Q � ŒN� and every vector x 2 CN with kxk1 D 1

there exist vector collections .�.i;m/ 2 Di;m/mDi;:::;iCr associated with sets Ci (1 

i 
 t), for which

1. Ej2ŒN�
�j.Mx/jj2

� � Pt
iD1 2�i � jCi j

N � �;

2. Ej2Q
�j.Mx/jj2

� �O.�/;O.�/ Ej2Q
hPt

iD1
PiCr

mDi�
.i;m/
j

i
; and

3. Ej2ŒN�
�j.Mx/jj2

� �O.�/;O.�/ Ej2ŒN�
hPt

iD1
PiCr

mDi�
.i;m/
j

i
:

Proof By Lemma 3.5, for every 1 
 i 
 t C r there exists a vector g.i/ 2 Gi that
satisfies

j.Mx/jj �0;2�i=2 jg.i/j j (11)

for all but at most � fraction of j 2 ŒN� and for all but at most � fraction of j 2 Q. We
say that j 2 ŒN� is good if (11) holds for every i, and otherwise that it is bad. Notice
that all but at most .t C r/� fraction of j 2 ŒN� are good and that all but at most
.t C r/� fraction of j 2 Q are good. Consider the sets Ci and vectors h.i;m/; �.i;m/

associated with .g.1/; : : : ; g.tCr// as defined in (8). We claim that �.i;m/ satisfy the
requirements of the lemma.

Fix some 1 
 i 
 t. For every good j 2 Ci, the definition of Ci implies that
jg.i/j j � 2 � 2�i=2, so using (11) it follows that

j.Mx/jj � jg.i/j j � 2�i=2 � 2�i=2: (12)

We also claim that j.Mx/jj 
 3 � 2�.i�1/=2. This trivially holds for i D 1, so assume

that i � 2, and notice that the definition of Ci implies that jg.i�1/j j < 2 � 2�.i�1/=2, so
using (11), it follows that

j.Mx/jj 
 jg.i�1/j j C 2�.i�1/=2 
 3 � 2�.i�1/=2: (13)

Since at most .t C r/� fraction of j 2 ŒN� are bad, (12) yields that

E
j2ŒN�

�j.Mx/jj2
� �

tX
iD1

2�i � jCij
N

� .t C r/�=2 �
tX

iD1
2�i � jCij

N
� �;

as required for Item 1.
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Next, we claim that every good j satisfies

j.Mx/jj2 �O.�/;O.�/

tX
iD1

h.i;iCr/
j : (14)

For a good j 2 Ci and m � i,
ˇ̌
ˇj.Mx/jj2 � h.i;m/j

ˇ̌
ˇ 
 2 � j.Mx/jj � 2�m=2 C 2�m 
 10 � 2�.iCm/=2; (15)

where the first inequality follows from (11) and the second from (13). In particular,
for m D i C r (recall that r D log2.1=�

2/), we have
ˇ̌
ˇj.Mx/jj2 � h.i;iCr/

j

ˇ̌
ˇ 
 10 � � � 2�i 
 10 � � � j.Mx/jj2 ;

and thus j.Mx/jj2 �O.�/;0 h.i;iCr/
j . Since every good j belongs to at most one of the

sets Ci, for every good j 2 SCi we have j.Mx/jj2 �O.�/;0
Pt

iD1 h
.i;iCr/
j . On the other

hand, if j is good but does not belong to any Ci, by our choice of t, it satisfies

j.Mx/jj 
 jg.t/j j C 2�t=2 
 3 � 2�t=2 D 3
p
� ;

and thus j.Mx/jj2 �0;9� 0 D Pt
iD1 h

.i;iCr/
j . This establishes that (14) holds for every

good j.
Next, we claim that for every good j,

j.Mx/jj2 �O.�/;O.�/

tX
iD1

iCrX
mDi

�
.i;m/
j : (16)

This follows since for every 1 
 i 
 t, the vector h.i;iCr/ can be written as the
telescopic sum

h.i;iCr/ D
iCrX
mDi

.h.i;m/ � h.i;m�1// ;

where we used that h.i;i�1/ D 0. We claim that for every good j, these differences
satisfy

jh.i;m/j � h.i;m�1/
j j 
 30 � 2�.iCm/=2;

thus establishing that (16) holds for every good j. Indeed, for m � iC1, (15) implies
that

jh.i;m/j � h.i;m�1/
j j 
 10 � .2�.iCm/=2 C 2�.iCm�1/=2/ 
 30 � 2�.iCm/=2; (17)

and for m D i it follows from (11) combined with (13).
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Finally, for every bad j we have

ˇ̌
ˇj.Mx/jj2 �

tX
iD1

iCrX
mDi

�
.i;m/
j

ˇ̌
ˇ 
 1C 30 � max

1�i�t

	 iCrX
mDi

2�.iCm/=2




 60 :

Since at most .t C r/� fraction of the elements in ŒN� and in Q are bad, their effect
on the difference between the expectations in Items 2 and 3 can be bounded by
60.t C r/� . By our choice of � this is �, as required. �

Finally, we are ready to prove Theorem 4.1.

Proof of Theorem 4.1 Recall that it can be assumed that � � �. By Lemma 4.3,
applied with Q" D �=r and Q� D �=.rt/, a random multiset Q of size

q D O
	
��1��1 � r2 � t � logN � log.1=�/




D O
	

log2.1=�/ � ��1��1 logN � log2.1=�/



satisfies with probability 1 � 2��.logN�log.1=�//, that for every 1 
 i 
 t, m, and
�.i;m/ 2 Di;m associated with a set Ci,

E
j2Q

h
�
.i;m/
j

i
�0;bi E

j2ŒN�

h
�
.i;m/
j

i
for bi D O

	"
r

� 2�i � jCij
N

C �

rt



;

in which case we also have

E
j2Q

"
tX

iD1

iCrX
mDi

�
.i;m/
j

#
�0;b E

j2ŒN�

"
tX

iD1

iCrX
mDi

�
.i;m/
j

#
for b D O

	
��

tX
iD1

2�i � jCij
N

C�


:

(18)

We show that a Q with the above property satisfies the requirement of the
theorem. Let x 2 CN be a vector, and assume without loss of generality that
kxk1 D 1. By Lemma 4.4, there exist vector collections .�.i;m/ 2 Di;m/mDi;:::;iCr

associated with sets Ci (1 
 i 
 t), satisfying Items 1, 2, and 3 there. Combined
with (18), this gives

E
j2Q
�j.Mx/jj2

� �O.�/;O.�/ E
j2ŒN�

�j.Mx/jj2
�
;

and we are done. �

4.1 The Restricted Isometry Property

It is easy to derive now the following theorem. The proof is essentially identical to
that of Theorem 3.7, using Theorem 4.1 instead of Theorem 3.1.
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Theorem 4.5 For sufficiently large N and k, a unitary matrix M 2 CN�N satisfying
kMk1 
 O.1=

p
N/, and a sufficiently small � > 0, the following holds. For some

q D O.log2.1=�/��2 �k�log2.k=�/�logN/, let A 2 Cq�N be a matrix whose q rows are
chosen uniformly and independently from the rows of M, multiplied by

p
N=q. Then,

with probability 1 � 2��.logN�log.k=�//, the matrix A satisfies the restricted isometry
property of order k with constant �.
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Upper Bound for the Dvoretzky Dimension
in Milman-Schechtman Theorem

Han Huang and Feng Wei

Abstract For a symmetric convex body K � R
n, the Dvoretzky dimension k.K/ is

the largest dimension for which a random central section of K is almost spherical. A
Dvoretzky-type theorem proved by V.D. Milman in 1971 provides a lower bound for
k.K/ in terms of the averageM.K/ and the maximum b.K/ of the norm generated by
K over the Euclidean unit sphere. Later, V.D. Milman and G. Schechtman obtained a
matching upper bound for k.K/ in the case when M.K/

b.K/ > c. log.n/
n /

1
2 . In this paper, we

will give an elementary proof of the upper bound in Milman-Schechtman theorem
which does not require any restriction on M.K/ and b.K/.

1 Introduction

Given a symmetric convex body K in Rn, we have a corresponding norm kxkK D
inffr > 0 ; x 2 rKg. Let j � j denote the Euclidean norm, �n denote the normalized
Haar measure on the Euclidean sphere, Sn�1, and �n;k denote the normalized Haar
measure on the Grassmannian manifold Grn;k. Let M D M.K/ WD R

Sn�1 kxkKd�n
and b D b.K/ WD supfkxkK ; x 2 Sn�1g be the mean and the maximum of the norm
over the unit sphere.

In 1971, V.D. Milman proved the following Dvoretzky-type theorem [3]:

Theorem 1 Let K be a symmetric convex body in Rn. Assume that kxkK 
 bjxj for
all x 2 Rn. For any � 2 .0; 1/, there is k � C�.M=b/2n such that

�n;kfF 2 Gn;k W .1 � "/M < k � kK\F < .1C "/Mg > 1 � exp.�Qck/

where Qc > 0 is a universal constant, C� > 0 is a constant depending only on �.

The quantity C� was of the order �2 log�1. 1
�
/ in the original proof of V.D. Milman.

It was improved to the order of �2 by Gordon [2] and later, with a simpler argument,
by Schechtman [6].
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In 1997, Milman and Schechtman [5] found that the bound on k appearing
in Theorem 1 is essentially optimal. More precisely, they proved the following
theorem.

Theorem A (Milman–Schechtman, See e.g., Sect. 5.3 in [1]) Let K be a symmet-
ric convex body in Rn. For � 2 .0; 1/, define k.K/ to be the largest dimension k such
that

�n;k
�fF 2 Gn;k W 8x 2 Sn�1 \ F ; .1 � "/M < kxkK < .1C "/Mg� > pn;k D n

n C k
:

Then,

QC�n.M=b/2 � k.K/ � NC�n.M=b/2

when M
b > c. log.n/

n /
1
2 for some universal constant c > 0, where k � kF denotes the

norm corresponding to the convex body K \ F in F, and QC�; NC� > 0 are constants
depending only on �.

Because the Dvoretzky-Milman theorem cannot guarantee the lower bound with
small M

b for pn;k D n
nCk , the original proof required an assumption that M

b >

c. log.n/
n /

1
2 for some c. In [1, p. 197], S. Artstein-Avidan, A.A. Giannopoulos, and

V.D. Milman addressed it as an open question whether one can prove the same
result when pn;k is a constant, such as 1

2
. When pn;k D 1

2
, the lower estimate on

k.K/ is a direct result of Dvoretzky-Milman theorem [3], but the upper bound was
unknown. In this paper, we are going to give upper bound estimate with pn;k D 1

2
,

our main result is the following theorem:

Theorem B Let K be a symmetric convex body in Rn. Fix a constant � 2 .0; 1/, let
k.K/ be the largest dimension k such that

�n;kfF 2 Gn;k W .1 � "/M < k � kK\F < .1C "/Mg > 1

2
:

Then,

Cn.M=b/2 � k.X/ � NC�n.M=b/2

where C > 0 is a universal constant and NC� > 0 is a constant depending only on �.
In the next section, we will provide a proof of Theorem B with no restriction on
M
b . In fact, from the proof, one can see that 1

2
can be replaced by any c 2 .0; 1/ or

1 � exp.�Qck/, which is the probability appearing in Milman-Dvoretzky theorem.
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2 Proof of Theorem B

Let Pk be the orthogonal projection from Sn�1 to some fixed k-dimensional
subspace, and j � j be the Euclidean norm. The upper estimate is related to the
distribution of jPk.x/j, where x is uniformly distributed on Sn�1 .

Recall the concentration inequality for Lipschitz functions on the sphere (see,
e.g., [4]):

Theorem 2 (Measure Concentration on Sn�1) Let f W Sn�1 ! R be a Lipschitz
continuous function with Lipschitz constant b. Then, for every t > 0,

�n.fx 2 Sn�1 W j f .x/� E. f /j � btg/ 
 4 exp.�c0t
2n/

where c0 > 0 is a universal constant.

Theorem 2 implies the following elementary lemma.

Lemma 3 Fix any c1 > 0, let Pk be an orthogonal projection from Rn to some
subspace Rk. If t > c1p

n
and �n.fx 2 Sn�1 W jPk.x/j < tg/ > 1

2
, then k < c2t2n,

where c2 > 0 is a constant depending only on c1.

Proof jPk.x/j is a 1-Lipschitz function on Sn�1 with EjPk.x/j about
q

k
n . If we want

the measure of fx W jPk.x/j < tg to be greater than 1=2, then measure concentration
will force EjPkj to be bounded by the size of t, which means k < c2t2n for some
universal constant c2. Since t2n > c21, we may and shall assume k is bigger than
some absolute constant in our proof, then adjust c2.

To make it precise, we will first give a lower bound on EjPkj. By Theorem 2,

�n.jjPk.x/j � EjPk.x/jj2 > t/ 
 4 exp.�c0tn/:

Thus,

EjPkj2 � .EjPkj/2 D E.jPkj.x/ � EjPkj/2

<

Z 1

0

�n.jjPk.x/j � EjPk.x/jj2 > t/dt



Z 1

0

4 exp.�c0tn/dt D 4

c0n
:

With EjPkj2 D E
Pk

iD1 jxij2 D k
n , we get E.jPkj/ >

q
k
n � 4

c0n
. If we assume that

k > 24
c0

, then we have

E.jPkj/ >
r
1

2

k

n
:
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Assuming k > 8t2n, we have

E.jPkj/ � t >

r
1

2

k

n
� t � 1

2

r
1

2

k

n
> 0:

Applying Theorem 2 again, we obtain

�n.jPkj < t/ < �n .jjPkj � EjPkjj > E.jPkj/ � t/ 
 4 exp.�c0.E.jPkj/� t/2n/


 4 exp.�c0.
1

2

r
1

2

k

n
/2n/ 
 4 exp.�c0

8
k/ 
 4 exp.�3/ < 1

2
;

which proves our result by contradiction. ut
Theorem 4 Let K be a symmetric convex body with inradius 1

b . For � 2 .0; 1/, let
k be the largest integer such that

�n;kfF 2 Gn;k W .1 � "/M < k � kK\F < .1C "/Mg > 1

2
:

Then k < Cn.Mb /
2 where C > 0 is an absolute constant.

Proof We may assume ke1kK D b, then K � S D fx 2 Rn W jx1j < 1
bg, thus

kxkK � kxkS D bjhx; e1ij. This implies

fV 2 Gn;k W 8x 2 V \ Sn�1 ; .1 � �/M < kxkK < .1C �/Mg
� fV 2 Gn;k W 8x 2 V \ Sn�1 ; kxkS < .1C �/Mg

D fV 2 Gn;k W sup
x2V\Sn�1

hx; e1i < .1C �/
M

b
g

D fV 2 Gn;k W jPV.e1/j < .1C �/
M

b
g (1)

where PV is the orthogonal projection from Rn to V . If V is uniformly distributed
on Gn;k and x is uniformly distributed on Sn�1, then jPV0.x/j and jPV.e1/j are equi-
distributed for any fixed k-dimensional subspace V0. Therefore,

�n;k.fV 2 Gn;k W jPV.e1/j < .1C�/
M

b
g/ D �n.fx 2 Sn�1 W jPV0.x/j < .1C�/

M

b
g/:

As shown in the Remark 5.2.2(iii) of [1, p. 164], the ratio M
b has a lower bound

c0p
n
. Setting c1 D c0 and t D .1C �/Mb , it is easy to see that if

�n;kfF 2 Gn;k W .1 � "/M < k � kK\F < .1C "/Mg > 1

2
;

then k 
 c1.1C �/2
�
M
b

�2
n < Cn.Mb /

2 by Lemma 3 and (1). ut
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Now we can prove Theorem B as a corollary of Theorems 4 and 1:

Proof of Theorem B Theorem 1 shows that if C�.M=b/2n >
log.2/

Qc , then there is
k � C�.M=b/2n such that

�n;kfF 2 Gn;k W .1 � "/M < k � kF < .1C "/Mg > 1 � exp.�Qck/ > 1

2
:

Otherwise, .M=b/2n < log.2/
QcC� . Therefore, k.K/ � minf QcC�

log.2/ ;C�g.M=b/2n. Combin-
ing it with Theorem 4, we get

C.
M

b
/2n � k.K/ � minf QcC�

log.2/
;C�g.M=b/2n:

ut
Remark

(1) It is worth noticing that the number 1
2

plays no special role in our proof. Thus,
if we define the Dvoretzky dimension to be the largest dimension such that

�n;kfF 2 Gn;k W .1 � "/M < k � kK\F < .1C "/Mg > c

for some c 2 .0; 1/, then exactly the same proof will work. We will still have
k.K/ � .Mb /

2n. Similarly, if we fix � and replace 1
2

by 1 � exp.�Qck/, then
the lower bound of k.K/ is the one from Theorem 1. For k bigger than some
absolute constant, we have 1 � exp.�Qck/ > 1

2
. Thus, the upper bound is still

of order
�
M
b

�2
n. Therefore, we can replace 1

2
by 1 � exp.�Qck/ in Theorem A.

With this probability choice, it also shows Theorem 1 provides an optimal k
depending on M; b.

(2) Usually, we are only interested in � 2 .0; 1/. In the lower bound, NC� D o�.1/. It
is a natural question to ask if we could improve the upper bound from a universal
constant C to o�.1/. Unfortunately, it is not possible due to the following
observation. Let K D conv.Bn

2;Re1/
ı. By passing from the intersection on K

to the projection of Kı, one can show that k.K/ does not exceed the maximum
dimension k such that �n.Pk.Rx/ < 1 C �/ > 1

2
. Choosing R D p n

l , we get
n.Mb /

2 � l and k.X/ � l by Theorem 2 and a similar argument to that of
Lemma 3. This example shows that no matter what M

b is, one can not improve
the upper bound in Theorem A from an absolute constant C to o�.1/.
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Super-Gaussian Directions of Random Vectors

Bo’az Klartag

Abstract We establish the following universality property in high dimensions: Let
X be a random vector with density in R

n. The density function can be arbitrary.
We show that there exists a fixed unit vector � 2 R

n such that the random variable
Y D hX; �i satisfies

min fP.Y � tM/;P.Y 
 �tM/g � ce�Ct2 for all 0 
 t 
 Qcpn;

where M > 0 is any median of jYj, i.e., minfP.jYj � M/;P.jYj 
 M/g � 1=2.
Here, c; Qc;C > 0 are universal constants. The dependence on the dimension n is
optimal, up to universal constants, improving upon our previous work.

1 Introduction

Consider a random vector X that is distributed uniformly in some Euclidean ball
centered at the origin in Rn. For any fixed vector 0 ¤ � 2 Rn, the density of
the random variable hX; �i D P

i �iXi may be found explicitly, and in fact it is
proportional to the function

t 7!
�
1 � t2

A2n

�.n�1/=2

C
.t 2 R/ (1)

where xC D maxfx; 0g and A > 0 is a parameter depending on the length of � and
the radius of the Euclidean ball. It follows that when the dimension n is large, the
density in (1) is close to a Gaussian density, and the random variable Y D hX; �i
has a tail of considerable size:

P.Y � tM/ � c exp.�Ct2/ for all 0 
 t 
 Qcpn: (2)
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tMM−M

area = 1/2

area ≥ ce−Ct2

Fig. 1 An example of a density of a Super-Gaussian random variable

Here, M D Median.jYj/ is any median of jYj, i.e., minfP.jYj � M/;P.jYj 
 M/g �
1=2, and c; Qc;C > 0 are universal constants. Both the median and the expectation of
jYj differ from A by a factor which is at most a universal constant. We prefer to work
with a median since in the cases we will consider shortly, the expectation of jYj is
not guaranteed to be finite. The inequality in (2) expresses the property that the tail
distribution of Y=M is at least as heavy as the standard Gaussian tail distribution,
for

p
n standard deviations. The dependence on the dimension n is optimal, since

for t > QCp
n, the probability on the left-hand side of (2) vanishes (Fig. 1).

Our goal in this paper is to show that a similar phenomenon occurs for essentially
any random vector in Rn, and not only for the uniform distribution on the high-
dimensional Euclidean ball. Recall that when n is large and the random vector
X D .X1; : : : ;Xn/ has independent coordinates, the classical central limit theorem
implies that under mild assumptions, there exists 0 ¤ � 2 Rn for which hX; �i is
approximately Gaussian. It is curious to note that a Gaussian lower bound on the
tail persists, even when the independence assumption is completely dropped.

Let Y be a real-valued random variable and let L > 0. We say that Y is Super-
Gaussian of length L with parameters ˛; ˇ > 0 if P.Y D 0/ D 0 and for any
0 
 t 
 L,

min fP.Y � tM/;P.Y 
 �tM/g � ˛e�t2=ˇ;

where M D Median.jYj/ is any median of jYj. The requirement that P.Y D 0/ D 0

is necessary only to avoid trivialities. A Gaussian random variable is certainly super-
Gaussian of infinite length, as well as a symmetric exponential random variable.
Write jxj D phx; xi for the standard Euclidean norm of x 2 Rn, and denote Sn�1 D
fx 2 Rn I jxj D 1g.

Theorem 1.1 Let X be a random vector with density in Rn. Then there exists a fixed
vector � 2 Sn�1 such that hX; �i is Super-Gaussian of length c1pn with parameters
c2; c3 > 0, where c1; c2; c3 > 0 are universal constants.

Theorem 1.1 improves upon Corollary 1.4 from [5], in which the dependence on
the dimension n was logarithmic. In the case where X is distributed uniformly in a
1-unconditional convex body in Rn, Theorem 1.1 goes back to Pivovarov [9] up to
logarithmic factors. In the case where X is distributed uniformly in a convex body
satisfying the hyperplane conjecture with a uniform constant, Theorem 1.1 is due to
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Paouris [8]. Theorem 1.1 provides a universal lower bound on the tail distribution,
which is tight up to constants in the case where X is uniformly distributed in a
Euclidean ball centered at the origin. In particular, the dependence on the dimension
in Theorem 1.1 is optimal, up to the value of the universal constants.

The assumption that the random vector X has a density in Rn may be somewhat
relaxed. The following definition appears in [2, 5] with minor modifications:

Definition 1.2 Let X be a random vector in a finite-dimensional vector space B and
let d > 0. We say that “the effective rank of X is at least d”, or in short that X is of
class eff.rank�d if for any linear subspace E � B,

P.X 2 E/ 
 dim.E/=d; (3)

with equality if and only if there is a subspace F � B with E ˚ F D B and P.X 2
E [ F/ D 1.

Intuitively, when X is of class eff.rank�d we think of the support of X as
effectively spanning a subspace whose dimension is at least d. Note, however, that
d is not necessarily an integer. By substituting E D B in (3), we see that there are no
random vectors in Rn of class eff.rank�d with d > n. We say that the effective rank
of X is d when X is of class eff.rank�d, but for any " > 0 the random vector X is not
of class eff.rank�dC". The effective rank of X is d� if X is of class eff.rank�d�" for
all 0 < " < d but X is not of class eff.rank�d. In the terminology of [5], the random
vector X has an effective rank greater than d if and only if it is "-decent for some
" < 1=d.

There are many random vectors in Rn whose effective rank is precisely n. For
example, any random vector with density in Rn, or any random vector X that is
distributed uniformly on a finite set that spans Rn and does not contain the origin. It
was shown by Böröczky et al. [1] and by Henk and Linke [4] that the cone volume
measure of any convex body in Rn with barycenter at the origin is of class eff.rank�n

as well. Note that a random variable Y is Super-Gaussian of length L with parameters
˛; ˇ > 0 if and only if for any number 0 ¤ r 2 R, also rY is Super-Gaussian of
length L with the same parameters ˛; ˇ > 0. Theorem 1.1 is thus a particular case
of the following:

Theorem 1.3 Let d � 1 and let B be a finite-dimensional linear space. Let X be
a random vector in B whose effective rank is at least d. Then there exists a non-
zero, fixed, linear functional ` W B ! R such that the random variable `.X/ is
Super-Gaussian of length c1

p
d with parameters c2; c3 > 0, where c1; c2; c3 > 0

are universal constants.

Theorem 1.3 admits the following corollary, pertaining to infinite-dimensional
spaces:

Corollary 1.4 Let B be a topological vector space with a countable family of
continuous linear functionals that separates points in B. Let X be a random vector,
distributed according to a Borel probability measure in B. Assume that d � 1 is
such that P.X 2 E/ 
 dim.E/=d for any finite-dimensional subspace E � B.
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Then there exists a non-zero, fixed, continuous linear functional ` W B ! R such
that the random variable `.X/ is Super-Gaussian of length c1

p
d with parameters

c2; c3 > 0, where c1; c2; c3 > 0 are universal constants.

The remainder of this paper is devoted to the proof of Theorem 1.3 and
Corollary 1.4. We use the letters c;C; QC; c1;C2 etc. to denote various positive
universal constants, whose value may change from one line to the next. We use
upper-case C to denote universal constants that we think of as “sufficiently large”,
and lower-case c to denote universal constants that are “sufficiently small”. We write
#.A/ for the cardinality of a set A. When we write that a certain set or a certain
number are fixed, we intend to emphasize that they are non-random.

We denote by �n�1 the uniform probability measure on the sphere Sn�1, which is
the unique rotationally-invariant probability measure on Sn�1. When we say that
a random vector � is distributed uniformly on Sn�1, we refer to the probability
measure �n�1. Similarly, when we write that a random subspace E is distributed
uniformly over the Grassmannian Gn;k of k-dimensional subspaces of Rn, we refer
to the unique rotationally-invariant probability measure on Gn;k.

2 Proof Strategy

The main ingredient in the proof of Theorem 1.3 is the following proposition:

Proposition 2.1 Let X be a random vector in Rn with P.X D 0/ D 0 such that

E

�
X

jXj ; �
�2


 5

n
for all � 2 Sn�1: (4)

Then there exists a fixed vector � 2 Sn�1 such that the random variable hX; �i is
Super-Gaussian of length c1

p
n with parameters c2; c3 > 0, where c1; c2; c3 > 0 are

universal constants.

The number 5 in Proposition 2.1 does not play any particular role, and may be
replaced by any other universal constant, at the expense of modifying the values of
c1; c2 and c3. Let us explain the key ideas in the proof of Proposition 2.1. In our
previous work [5], the unit vector � 2 Sn�1 was chosen randomly, uniformly on
Sn�1. In order to improve the dependence on the dimension, here we select � a bit
differently. We shall define �1 and �2 via the following procedure:

(i) Let M > 0 be a 1=3-quantile of jXj, i.e., P.jXj � M/ � 1=3 and P.jXj 
 M/ �
2=3. We fix a vector �1 2 Sn�1 such that

P

�
jXj � M and

ˇ̌
ˇ̌ X
jXj � �1

ˇ̌
ˇ̌ 
 1

5

�
� 1

2
� sup
�2Sn�1

P

�
jXj � M and

ˇ̌
ˇ̌ X
jXj � �

ˇ̌
ˇ̌ 
 1

5

�
:
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(ii) Next, we fix a vector �2 2 Sn�1 with jh�1; �2ij 
 1=10 such that

P

�
jXj � M and

ˇ̌
ˇ̌ X
jXj � �2

ˇ̌
ˇ̌ 
 1

5

�
� 1

2
� sup

�2Sn�1

jh�;�1ij�1=10

P

�
jXj � M and

ˇ̌
ˇ̌ X
jXj � �

ˇ̌
ˇ̌ 
 1

5

�
:

In the following pages we will describe a certain subset F3 � Sn�1 which satisfies
�n�1.F3/ � 1 � C=nc and �2 � �1 62 F3. We will show that for any �3 2 F3, the
random variable hX; �i is Super-Gaussian of length c

p
n with parameters c1; c2 > 0,

where � is defined as follows:

� D �1 � �2 C �3

j�1 � �2 C �3j : (5)

Thus, �1 and �2 are fixed vectors, while most choices of �3 will work for us, where
by “most” we refer to the uniform measure on Sn�1. The first step the proof below
is to show that for any unit vector � 2 Sn�1,

Median .jhX; �ij/ 
 CM=
p
n; (6)

that is, any median of jhX; �ij is at most CM=
p
n. Then we need to show that when

�3 2 F3 and � is defined as in (5), for all 0 
 t 
 c
p
n,

min

�
P

�
Y � tMp

n

�
;P

�
Y 
 � tMp

n

��
� Qce�QCt2 : (7)

The proof of (7) is divided into three sections. The case where t 2 Œ0;
p

log n� may
essentially be handled by using the methods of [5], see Sect. 3. Let t0 > 0 be defined
via

e�t20 D P

�
jXj � M and

ˇ̌
ˇ̌ X
jXj � �2

ˇ̌
ˇ̌ 
 1

5

�
: (8)

In order to prove (7) in the range t 2 Œ
p

log n; t0�, we will use tools from the local
theory of Banach spaces, such as Sudakov’s inequality as well as the concentration
of measure on the sphere. Details in Sect. 4 below. The remaining interval t 2
Œt0; c

p
n� is analyzed in Sect. 5. In Sect. 6 we deduce Theorem 1.3 and Corollary 1.4

from Proposition 2.1 by using the angularly-isotropic position, along the lines of
[5].
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3 Central Limit Regime

This section is the first in a sequence of three sections that are dedicated to the proof
of Proposition 2.1. Thus, we are given a random vector X in R

n with P.X D 0/ D 0

such that (4) holds true. We fix a number M > 0 with the property that

P.jXj � M/ � 1=3; P.jXj 
 M/ � 2=3: (9)

That is, M is a 1=3-quantile of jXj. Our first lemma verifies (6), as it states that for
any choice of a unit vector � , any median of the random variable jhX; �ij is at most
CM=

p
n.

Lemma 3.1 For any � 2 Sn�1,

P
�jhX; �ij � CM=

p
n
�
< 1=2;

where C > 0 is a universal constant.

Proof It follows from (4) that for any � 2 Sn�1,

E

h
hX; �i2 1fjXj�Mg

i

 E

�
hX; �i2 � M2

jXj2
�

D M2 � E
�
X

jXj ; �
�2


 5M2

n
:

By the Markov-Chebyshev inequality,

P

	
hX; �i2 1fjXj�Mg � 35M2=n




 1=7:

Since P.jXj > M/ 
 1=3, we obtain

P

�
jhX; �ij � 6Mp

n

�

 P.jXj > M/C P

�
jhX; �ij � 6Mp

n
and jXj 
 M

�

 1

3

C1

7
<
1

2
:

The lemma follows with C D 6. ut
The rest of this section is devoted to the proof of (7) in the range t 2 Œ0;plog n�.

The defining properties of �1; �2 2 Sn�1 from the previous section will not be used
here, the entire analysis in this section applies for arbitrary unit vectors �1 and �2.

Lemma 3.2 Let �1; �2 2 Sn�1 be any two fixed vectors. Then,

P

�
jXj � M; jhX; �1ij 
 10jXjp

n
and jhX; �2ij 
 10jXjp

n

�
>
1

5
:
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Proof By (4) and the Markov-Chebyshev inequality, for j D 1; 2,

P

�
jhX; �jij � 10jXjp

n

�

 n

100
� E
�
X

jXj ; �j
�2


 n

100
� 5
n

D 1

20
:

Thanks to (9), we conclude that

P

�
jXj � M; jhX; �1ij 
 10jXjp

n
; jhX; �2ij 
 10jXjp

n

�
� 1�

�
2

3
C 1

20
C 1

20

�
>
1

5
:

ut
Let 1 
 k 
 n. Following [5], we write Ok � .Rn/k for the collection of all

k-tuples .v1; : : : ; vk/ with the following property: There exist orthonormal vectors
w1; : : : ;wk 2 Rn and real numbers .aij/i;jD0;:::;k such that jaijj < aii=k2 for j < i, and

vi D
iX

jD1
aijwj for i D 1; : : : ; k: (10)

In other words, Ok consists of k-tuples of vectors that are almost orthogonal. By
recalling the Gram-Schmidt process from linear algebra, we see that .v1; : : : ; vk/ 2
Ok assuming that

jProjEi�1
vij < jvij=k2 for i D 1; : : : ; k; (11)

where Ei is the subspace spanned by the vectors v1; : : : ; vi 2 R
n and ProjEi

is the
orthogonal projection operator onto Ei in R

n. Here, E0 D f0g.

Lemma 3.3 Assume that 1 
 k 
 n and fix .v1; : : : ; vk/ 2 Ok. Then there exists
F � Sn�1 with �n�1.F/ � 1 � C exp.�c

p
k/ such that for any � 2 F and 0 
 t 
p

log k,

#

�
1 
 i 
 k I hvi; �i � c1

jvijp
n

� t
�

� c2e
�C3t2 � k;

where c1; c2;C3; c;C > 0 are universal constants.

Proof Let w1; : : : ;wk and .aij/ be as in (10). By applying an orthogonal trans-
formation in Rn, we may assume that wi D ei, the standard ith unit vector.
Let  D .1; : : : ; n/ 2 Rn be a standard Gaussian random vector in Rn. For
i D 1; : : : ; n and t > 0, it is well-known that

P.i � t/ D 1p
2�

Z 1

t
e�s2=2ds 2 Œce�t2 ;Ce�t2=2�:
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Therefore, by the Chernoff large deviations bound (e.g., [3, Chap. 2]), for any t > 0,

P

	
# f1 
 i 
 k I i � tg � c

2
� e�t2 � k



� 1 � QC exp

	
�Qce�t2k



: (12)

From the Bernstein large deviation inequality (e.g., [3, Chap. 2]),

P
�jj 
 2

p
n
� � 1 � Ce�cn; P

 
kX

iD1
jij 
 2k

!
� 1 � OCe� Ock: (13)

Note that when
Pk

iD1 jij 
 2k, for any i D 1; : : : ; k,

h; vii D aii �
*
; ei C

iX
jD2

aij
aii

ej

+
� aii

 
i �

Pk
jD1 jjj
k2

!
� aii

�
i � 2

k

�
:

(14)

Moreover, aii D jvi � P
j�2 aijejj � jvij � aii=k for all i D 1; : : : ; k. Therefore

aii � jvij=2 for all i. It thus follows from (14) that when
Pk

iD1 jij 
 2k, for any i,

i � t H) h; vii � aiii=2 � jvijt=4 for all t � 4=k:

Hence we deduce from (12) and (13) that for all t � 4=k,

P

�
#

�
i I h; vii � tjvij

4

�
� c

2
� e�t2 � k

�
� 1 � QC exp

	
�Qce�t2k



: (15)

Write I D f` 2 Z I ` � 2; 2` 
 p
log k=5g. By substituting t D 2` into (15) we see

that

P

	
8` 2 I; #

˚
i I h; vii � 2`�2jvij

 � c

2
� e�.2`/2 � k



� 1� QC

X
`2I

exp
	
�Qce�.2`/2k



:

The latter sum is at most C exp.�c
p
k/. Moreover, suppose that x 2 Rn is a fixed

vector such that # fi I hx; vii � tjvij=4g � .c=2/e�t2k for all 1 
 t 
 p
log k=5 of

the form t D 2` for an integer ` � 2. By adjusting the constants, we see that for any
real number t with 0 
 t 
 p

log k,

# fi I hx; vii � c1tjvijg � Qce�QCt2k:

Consequently,

P

	
8t 2 Œ0;plog k�; # fi I h; vii � c1tjvijg � Qce�QCt2 � k



� 1 � Ce�c

p
k:
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Recall that jj 
 2
p
n with a probability of at least 1� Ce�cn. Therefore, as k 
 n,

P

�
8t 2 Œ0;plog k�; #

�
i I
�


jj ; vi
�

� c1
tjvij
2
p
n

�
� Qce�QCt2 � k

�
� 1 � OCe�Ocpk:

(16)

Since =jj is distributed uniformly on Sn�1, the lemma follows from (16). ut
Let E � Rn be an arbitrary subspace. It follows from (4) that

E

ˇ̌
ˇ̌ProjE

X

jXj
ˇ̌
ˇ̌2 D E

dim.E/X
iD1

�
X

jXj ; ui
�2


 5
dim.E/

n
; (17)

where u1; : : : ; um is an orthonormal basis of the subspace E for m D dim.E/.

Lemma 3.4 Set ` D bn1=8c and let �1; �2 2 Sn�1 be any fixed vectors. Let
X1; : : : ;X` be independent copies of the random vector X. Then with a probability
of at least 1 � C=` of selecting X1; : : : ;X`, there exists a subset I � f1; : : : ; `g with
the following three properties:

(i) k WD #.I/ � `=10.
(ii) We may write I D fi1; : : : ; ikg such that .Xi1 ; : : : ;Xik/ 2 Ok.
(iii) For j D 1; : : : ; k,

jXij j � M; jhXij ; �1ij 
 10jXij j=
p
n and jhXij ; �2ij 
 10jXijj=

p
n:

Here, C > 0 is a universal constant.

Proof We may assume that ` � 10, as otherwise the lemma trivially holds with any
C � 10. Define

I D ˚
1 
 i 
 ` I jXij � M; jhXi; �1ij 
 10jXij=

p
n; jhXi; �2ij 
 10jXij=

p
n

:

Denote k D #.I/ and let i1 < i2 < : : : < ik be the elements of I. We conclude from
Lemma 3.2 and the Chernoff large deviation bound that

P.#.I/ � `=10/ � 1 � C exp.�c`/: (18)

Thus (i) holds with a probability of at least 1 � C exp.�c`/. Clearly (iii) holds true
with probability one, by the definition of I. All that remains is to show that (ii) holds
true with a probability of at least 1 � 1=`. Write Fi for the subspace spanned by
X1; : : : ;Xi, with F0 D f0g. It follows from (17) that for i D 1; : : : ; `,

E

ˇ̌
ˇ̌ProjFi�1

Xi

jXij
ˇ̌
ˇ̌2 
 5 � dim.Fi�1/

n

 5.i � 1/

n

 5`

n
<
1

`6
;
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as 10 
 ` 
 n1=8. It follows from the Markov-Chebyshev inequality that with a
probability of at least 1� 1=`,

ˇ̌
ˇ̌ProjFi�1

Xi

jXij
ˇ̌
ˇ̌ < 1

`2
for all i D 1; : : : ; `:

Write Ej for the subspace spanned by Xi1 ; : : : ;Xij . Then Ej�1 � Fij�1. Therefore,
with a probability of at least 1 � 1=`,

ˇ̌
ˇ̌ProjEj�1

Xij

jXij j
ˇ̌
ˇ̌ 


ˇ̌
ˇ̌ProjFij�1

Xij

jXij j
ˇ̌
ˇ̌ < 1

`2

 1

k2
for all j D 1; : : : ; k:

In view of (11), we see that (ii) holds true with a probability of at least 1� 1=`, thus
completing the proof of the lemma. ut

By combining Lemmas 3.3 and 3.4 we arrive at the following:

Lemma 3.5 Let `; �1; �2 be as in Lemma 3.4. Then there exists a fixed subset F �
Sn�1 with �n�1.F/ � 1 � C=

p
` such that for any �3 2 F the following holds:

Define � via (5). Let X1; : : : ;X` be independent copies of the random vector X. Then
with a probability of at least 1 � C=

p
` of selecting X1; : : : ;X`,

#

�
1 
 i 
 ` I hXi; �i � c1

Mp
n

� t
�

� c2e
�C3t2 � `; for all 0 
 t 
 p

log `;

(19)
and

#

�
1 
 i 
 ` I hXi; �i 
 �c1

Mp
n

� t
�

� c2e
�C3t2 � `; for all 0 
 t 


p
log `:

(20)
Here, c1; c2;C3; c;C > 0 are universal constants.

Proof Let ‚ be a random vector, distributed uniformly on Sn�1. According to
Lemma 3.4, with a probability of at least 1 � C=` of selecting X1; : : : ;X`, there
exists a subset

I D fi1; : : : ; ikg � f1; : : : ; `g

such that properties (i)–(iii) of Lemma 3.4 hold true. Let us apply Lemma 3.3. Then
under the event where properties (i)–(iii) hold true, with a probability of at least
1 � QC exp.�Qcp`/ of selecting‚ 2 Sn�1,

#

�
1 
 j 
 k I hXij ; ‚i � c1

jXij jp
n

� t
�

� c2e
�C3t2 �k for all 0 
 t 
 p

log k;
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and moreover k � `=10 with

max

( ˇ̌
ˇ̌
ˇ
*
Xij

jXij j
; �1

+ˇ̌
ˇ̌
ˇ ;
ˇ̌
ˇ̌
ˇ
*
Xij

jXij j
; �2

+ˇ̌
ˇ̌
ˇ
)


 10p
n

for j D 1; : : : ; k:

Consequently, under the event where properties (i)–(iii) hold true, with a probability
of at least 1 � QC exp.�Qcp`/ of selecting ‚ 2 Sn�1,

#

(
1 
 j 
 k I

*
Xij

jXij j
; �1 � �2 C‚

+
� c1
2

tp
n

)
� c2e�C3t2 �k for t 2 Œ80=c1;

p
log k�:

Since k � `=10, the condition t 2 Œ80=c1;plog k� can be upgraded to t 2 Œ0;plog `�
at the cost of modifying the universal constants. Recall that by Lemma 3.3(iii),
we have that jXij j � M for all j. By the triangle inequality, with probability one,
0 < j�1 � �2 C‚j 
 3. Hence,

jXij j=j�1 � �2 C‚j � M=3:

Therefore, under the event where properties (i)–(iii) hold true, with a probability of
at least 1 � QC exp.�Qcp`/ of selecting ‚ 2 Sn�1,

8t 2 Œ0;plog `�; #

�
1 
 i 
 ` I

�
Xi;

�1 � �2 C‚

j�1 � �2 C‚j
�

� Nc1 Mp
n

� t
�

� Nc2e� NC3t2 � `:
(21)

Write A for the event that the statement in (21) holds true. Denoting EX D
.X1; : : : ;X`/, we have shown that

P..‚; EX/ 2 A/ � 1 � QC exp.�Qc
p
`/ � C=` � 1 � NC=`:

Denote

F D
n
� 2 Sn�1 I PEX..�; EX/ 2 A/ � 1 � NC=

p
`
o
:

Then,

1 � NC
`


 P..‚; EX/ 2 A/ 
 P.‚ 2 F/C
�
1 � NCp

`

�
P.‚ 62 F/: (22)

It follows from (22) that �n�1.F/ D P.‚ 2 F/ � 1 � 1=
p
`. By the definition

of F � Sn�1, for any �3 2 F , with a probability of at least 1 � NCp
` of selecting

X1; : : : ;X`,

8t 2 Œ0;plog `�; #

�
1 
 i 
 ` I

�
Xi;

�1 � �2 C �3

j�1 � �2 C �3j
�

� Nc1 Mp
n

� t
�

� Nc2e� NC3t2 � `:
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This completes the proof of (19). The argument for (20) requires only the most
trivial modifications, and we leave it for the reader to complete. ut

We will use the well-known fact that for any random variable Y and measurable
sets A1; : : : ;A`, by the Markov-Chebyshev inequality,

1

s
�
X̀
iD1

P.Y 2 Ai/ D 1

s
�E
X̀
iD1

1fY2Aig � P
�
# fi I Y 2 Aig � s

�
.s > 0/:

Corollary 3.6 Let �1; �2 2 Sn�1 be any fixed vectors. Then there exists a fixed
subset F � Sn�1 with �n�1.F/ � 1 � C=nc such that for any �3 2 F , defining �
via (5),

8t 2 Œ0; 5plog n�; min

�
P

�
hX; �i � c1

Mp
n

� t
�
;P

�
hX; �i 
 �c1

Mp
n

� t
��

� c2e
�C3t2 ;

where c;C; c1; c2;C3 > 0 are universal constants.

Proof We may assume that n exceeds a certain fixed universal constant, as otherwise
the conclusion of the lemma trivially holds for F D ;. Set ` D bn1=8c and let F be
the set from Lemma 3.5. Let �3 2 F and define � via (5). Suppose that X1; : : : ;X`
are independent copies of the random vector X. Then for any 0 
 t 
 p

log `,

P

�
hX; �i � c1

Mp
n

� t
�

D c2e
�C3 t2

1

c2e�C3t2 � `
X̀
iD1

P

�
hXi; �i � c1

Mp
n

� t
�

� c2e
�C3t2 � P

�
#
�
iI hXi; �i � c1

Mp
n

� t
�

� c2e
�C3 t2 � `

�
� c2e

�C3t2 � .1� C=
p
`/;

where the last passage is the content of Lemma 3.5. We may similarly obtain a
corresponding lower bound for P

�hX; �i 
 �c1tM=
p
n
�
. Since ` D bn1=8c, the

desired conclusion follows by adjusting the constants. ut

4 Geometry of the High-Dimensional Sphere

This is the second section dedicated to the proof of Proposition 2.1. A few geometric
properties of the high-dimensional sphere will be used here. For example, the sphere
Sn�1 does not contain more than n mutually orthogonal vectors, yet it contains
e"n mutually almost-orthogonal vectors. Moreover, for the purpose of computing
the expectation of the supremum, a family of e"n standard Gaussians which are
almost-orthogonal in pairs behaves approximately like a collection of independent
Gaussians.
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While Corollary 3.6 takes care of the interval t 2 Œ0; 5plog n�, in this section we
deal with the range t 2 Œ5plog n; t0� where t0 is defined in (8). We begin with some
background on Sudakov’s minoration theorem and the concentration of measure
inequality on the sphere. Given a bounded, non-empty subset S � R

n, its supporting
functional is defined via

hS.�/ D sup
x2S

hx; �i .� 2 R
n/:

The supporting functional hS is a convex function on Rn whose Lipschitz constant
is bounded by R.S/ D supx2S jxj. The mean width of S is 2M�.S/ where

M�.S/ D
Z
Sn�1

hS.�/d�n�1.�/:

The concentration inequality for Lipschitz functions on the sphere (see, e.g., [7,
Appendix V]) states that for any r > 0,

�n�1
�˚
v 2 Sn�1 I jhS.v/� M�.S/j � r � R.S/� 
 Ce�cr2n: (23)

A lower bound for M�.S/ is provided by the following Sudakov’s minoration
theorem (see, e.g., [6, Sect. 3.3]):

Theorem 4.1 (Sudakov) Let N � 1; ˛ > 0 and let x1; : : : ; xN 2 Rn. Set S D
fx1; : : : ; xNg and assume that jxi � xjj � ˛ for any i ¤ j. Then,

M�.S/ � c˛

r
logN

n
;

where c > 0 is a universal constant.

We shall need the following elementary lemma:

Lemma 4.2 Let Z1; : : : ;ZN be random variables attaining values in f0; 1g. Let 1 

k 
 N; 0 
 " 
 1, and assume that for any A � f1; : : : ;Ng with #.A/ D k,

P .9i 2 A; Zi D 1/ � 1 � ": (24)

Then,

P

 
NX
iD1

Zi � N

3k

!
� 1 � 2": (25)

Proof If k � N=3 then (25) holds true, since it follows from (24) that with a
probability of at least 1� ", there is a non-zero element among Z1; : : : ;ZN . Suppose
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now that k < N=3. The number of k-elements subsets A � f1; : : : ;Ng with
maxi2A Zi D 0 equals

 
N �PN

iD1 Zi
k

!
:

Write E for the event that
PN

iD1 Zi 
 N=.3k/. Conditioning on the event E ,

1�N
k

� X
#.A/Dk

P .8i 2 A; Zi D 0 j E/ �
�N�bN=.3k/c

k

�
�N
k

� �
�
1 � N=.3k/

N � k

�k

>

�
1 � 1

2k

�k

� 1

2
:

However, by (24),

" � 1�N
k

� X
#.A/Dk

P .8i 2 A; Zi D 0/

� 1�N
k

� X
#.A/Dk

P.E/ � P .8i 2 A; Zi D 0 j E/ � P.E/=2:

Hence P.E/ 
 2" and the lemma is proven. ut
Sudakov’s theorem is used in the following lemma:

Lemma 4.3 Let N � n and let x1; : : : ; xN 2 Sn�1 be such that hxi; xji 
 49=50 for
any i ¤ j. Then there exists F � Sn�1 with �n�1.F/ � 1 � C=nc such that for any
� 2 F ,

#
˚
1 
 i 
 N I hxi; �i � c1t=

p
n


N
� c2e

�C3t2 ; for all t 2 Œplog n;
p

logN�;

(26)
where c1; c2;C3; c;C > 0 are universal constants.

Proof Denote S D fx1; : : : ; xNg � Sn�1 and note that jxi�xjj � p
2 � 49=25 D 1=5

for all i ¤ j. Fix a number t 2 Œplog n;
p

logN�. Let A � fx1; : : : ; xNg be any subset
with #.A/ � exp.t2/. By Theorem 4.1,

M�.A/ � ct=
p
n: (27)

Next we will apply the concentration inequality (23) with r D M�.A/=.2R.A//.
Since R.A/ D 1, it follows from (23) and (27) that

�n�1

�˚
� 2 Sn�1 I hA.�/ � M�.A/=2

� � 1� C exp

 
�cn

�
M�.A/

R.A/

�2!
� 1� QCe�Qct2 :
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Let ‚ be a random vector, distributed uniformly over Sn�1. By combining the last
inequality with (27), we see that for any fixed subset QA � f1; : : : ;Ng with #. QA/ D
dexp.t2/e,

P
�9i 2 QA I hxi; ‚i � ct=

p
n
� � 1 � QCe�Qct2 :

Let us now apply Lemma 4.2 for Zi D 1fhxi;‚i�ct=
p
ng. Lemma 4.2 now implies that

with a probability of at least 1 � 2 QCe�Qct2 of selecting ‚ 2 Sn�1,

#
˚
1 
 i 
 N I hxi; ‚i � ct=

p
n
 � N

3dexp.t2/e � N

6
� e�t2 :

We now let the parameter t vary. Let I be the collection of all integer powers of two
that lie in the interval Œ

p
log n;

p
logN�. Then,

P

 
8t 2 I;

#
˚
1 
 i 
 N I hxi; ‚i � ct=

p
n


N
� e�t2

6

!
� 1�

X
t2I
2 QCe�Qct2 � 1�

OC
nOc :

The restriction t 2 I may be upgraded to the condition t 2 Œ
p

log n;
p

logN� by
adjusting the constants. The lemma is thus proven. ut

Recall the construction of �1 and �2 from Sect. 2, and also the definition (8) of the
parameter t0. From the construction we see that for any v 2 Sn�1 with jhv; �1ij 

1=10,

P

�
jXj � M and

ˇ̌
ˇ̌ X
jXj � v

ˇ̌
ˇ̌ 
 1

5

�

 2e�t20 ; (28)

where M > 0 satisfies P.jXj � M/ � 1=3 and P.jXj 
 M/ � 2=3.

Lemma 4.4 Assume that t0 � 5
p

log n and set N D bet20=4c. Let X1; : : : ;XN be
independent copies of X. Then with a probability of at least 1 � C=n of selecting
X1; : : : ;XN, there exists I � f1; : : : ;Ng with the following three properties:

(i) #.I/ � N=10.
(ii) For any i; j 2 I with i ¤ j we have hXi;Xji 
 .49=50/ � jXij � jXjj.
(iii) For any i 2 I,

jXij � M; jhXi; �1ij 
 10jXij=
p
n and jhXi; �2ij 
 10jXij=

p
n:

Here, C > 0 is a universal constant.

Proof We may assume that n � 104, as otherwise for an appropriate choice of the
constant C, all we claim is that a certain event holds with a non-negative probability.
Write

A D fv 2 R
n I jvj � M; max

jD1;2 jhv=jvj; �jij 
 10=
p
ng:
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According to Lemma 3.2, for i D 1; : : : ;N,

P.Xi 2 A/ > 1=5:

Denote I D fi D 1; : : : ;N I Xi 2 Ag. By the Chernoff large deviation bound,

P.#.I/ � N=10/ � 1 � C exp.�cN/:

Note that 10=
p
n 
 1=10 and that if v 2 A then jhv=jvj; �1ij 
 1=10. It thus follows

from (28) that for any i; j 2 f1; : : : ;Ng with i ¤ j,

P

�
i; j 2 I and

ˇ̌
ˇ̌ Xj

jXjj � Xi

jXij
ˇ̌
ˇ̌ 
 1

5

�


 P

�
Xj 2 A and

ˇ̌
ˇ̌ Xj

jXjj � Xi

jXij
ˇ̌
ˇ̌ 
 1

5

ˇ̌
ˇ Xi 2 A

�

 2e�t20 
 2

N4
:

Consequently,

P

�
9i; j 2 I with i ¤ j and

ˇ̌
ˇ̌ Xi

jXij � Xj

jXjj
ˇ̌
ˇ̌ 
 1

5

�

 N.N � 1/

2
� 2
N4


 1

N2
:

We conclude that with a probability of at least 1� C exp.�cN/� 1=N2 � 1� QC=n,

#.I/ � N=10 and 8i; j 2 I; i ¤ j H)
ˇ̌
ˇ̌ Xi

jXij � Xj

jXjj
ˇ̌
ˇ̌ > 1

5
:

Note that hXi;Xji 
 .49=50/ � jXij � jXjj if and only if jXi=jXij � Xj=jXjjj � 1=5.
Thus conclusions (i)–(iii) hold true with a probability of at least 1 � QC=n, thereby
completing the proof. ut

By combining Lemmas 4.3 and 4.4 we arrive at the following:

Lemma 4.5 Assume that t0 � 5
p

log n and set N D bet20=4c. Then there exists
a fixed subset F � Sn�1 with �n�1.F/ � 1 � C=nc such that for any �3 2 F
the following holds: Define � via (5). Let X1; : : : ;XN be independent copies of the
random vector X. Then with a probability of at least 1� QC=nQc of selecting X1; : : : ;XN,

#
n
1 
 i 
 N I hXi; �i � c1

Mp
n

� t
o

N
� c2e

�C3t2 ; for all t 2 Œplog n; t0�;

(29)
and

#
n
1 
 i 
 N I hXi; �i 
 �c1

Mp
n

� t
o

N
� c2e

�C3t2 ; for all t 2 Œplog n; t0�:

(30)
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Here, c1; c2;C3; c;C; Qc; QC > 0 are universal constants.
Proof This proof is almost identical to the deduction of Lemma 3.5 from Lem-
mas 3.3 and 3.4. Let us spell out the details. Set EX D .X1; : : : ;XN/ and let ‚ be a
random vector, independent of EX, distributed uniformly on Sn�1. We say that EX 2 A1

if the event described in Lemma 4.4 holds true. Thus,

P.EX 2 A1/ � 1 � C=n:

Assuming that EX 2 A1, we may apply Lemma 4.3 and obtain that with a probability
of at least 1 � QC=nQc of selecting ‚ 2 Sn�1,

#
�
1 
 i 
 N I

�
Xi

jXij ; ‚
�

� c1t=
p
n

�
� c2e

�C3t2 �.N=10/ for all t 2 Œplog n;
p

logN�:

Assuming that EX 2 A1, we may use Lemma 4.4(iii) in order to conclude that with a
probability of at least 1� QC=nQc of selecting ‚ 2 Sn�1, for t 2 Œplog n; 4

p
logN�,

#

�
1 
 i 
 N I

�
Xi;

�1 � �2 C‚

j�1 � �2 C‚j
�

� Nc1 Mp
n

� t
�

� Nc2e� NC3t2 � N: (31)

Write A2 for the event that (31) holds true for all t 2 Œplog n; 4
p

logN�. Thus,

P..‚; EX/ 2 A2/ � 1 � C=n � QC=nQc � 1 � NC=nNc:

Consequently, there exists F � Sn�1 with

�n�1.F/ � 1 � OC=nOc

with the following property: For any �3 2 F , with a probability of at least 1� OC=nOc
of selecting X1; : : : ;XN , for all t 2 Œplog n; 4

p
logN�,

#

�
1 
 i 
 N I

�
Xi;

�1 � �2 C �3

j�1 � �2 C �3j
�

� c1
Mp
n

� t
�

� c2e
�C3t2 � N:

Recalling that 4
p

logN � t0, we have established (29). The proof of (30) is similar.
ut

The short proof of the following corollary is analogous to that of Corollary 3.6.

Corollary 4.6 There exists a fixed subset F � Sn�1 with �n�1.F/ � 1�C=nc such
that for any �3 2 F , defining � via (5),

8t 2 Œplog n; t0�; min
�
P

�
hX; �i � c1

Mp
n

� t
�
;P

�
hX; �i 
 �c1

Mp
n

� t
��

� c2e�C3t2 ;

where c;C; c1; c2;C3 > 0 are universal constants.
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Proof We may assume that n exceeds a certain fixed universal constant. Let F be the
set from Lemma 4.5, denote N D bexp.t20=4/c, and let X1; : : : ;XN be independent
copies of X. Then for any �3 2 F , defining � via (5) we have that for any t 2
Œ
p

log n; t0�,

P

�
hX; �i � c1

Mp
n

� t
�

� c2e
�C3t2 � P

0
@#

n
iI hXi; �i � c1

Mp
n

� t
o

N
� c2e

�C3t2

1
A

� c2
2
e�C3t2 ;

where the last passage is the content of Lemma 4.5. The bound for P
�hX; �i 


�c1tM=
p
n
�

is proven similarly. ut

5 Proof of the Main Proposition

In this section we complete the proof of Proposition 2.1. We begin with the
following standard observation:

Lemma 5.1 Suppose that X is a random vector in Rn with P.X D 0/ D 0. Then
there exists a fixed subset F � Sn�1 of full measure, such that P.hX; �i D 0/ D 0

for all � 2 F .

Proof For a > 0, we say that a subspace E � R
n is a-basic if P.X 2 E/ � a while

P.X 2 F/ < a for all subspaces F ¨ E. Lemma 7.1 in [5] states that there are
only finitely many subspaces that are a-basic for any fixed a > 0. Write S for the
collection of all subspaces that are a-basic for some rational number a > 0. Then
S is a countable family which does not contain the subspace f0g. Consequently, the
set

F D f� 2 Sn�1 I 8E 2 S; E 6� �?g

is a set of full measure in Sn�1, as its complement is the countable union of spheres
of lower dimension. Here, �? D fx 2 Rn I hx; �i D 0g. Suppose that � 2 F , and let
us prove that P.hX; �i D 0/ D 0. Otherwise, there exists a rational number a > 0

such that

P.hX; �i D 0/ � a:

Thus �? contains an a-basic subspace, contradicting the definition of F . ut
Recall the definition of M; �1 and �2 from Sect. 2.
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Lemma 5.2 Let F3 � ˚
�3 2 Sn�1 I jh�3; �1ij 
 1

10
and jh�3; �2ij 
 1

10


. Then for

any �3 2 F3 and v 2 Sn�1,

jv � �1j 
 1

5
H) hv; �1 � �2 C �3i � 1

10
; (32)

and

jv � �2j 
 1

5
H) hv; �1 � �2 C �3i 
 � 1

10
: (33)

Proof Recall that jh�1; �2ij 
 1=10. Note that for any �3 2 F3 and i; j 2 f1; 2; 3g
with i ¤ j,

p
9=5 
 j�i � �jj 
 p

11=5:

Let v 2 Sn�1 be any vector with jv � �1j 
 1=5. Then for any �3 2 F3 and j D 2; 3

we have that

r
9

5
� 1

5

 j�j � �1j � j�1 � vj 
 jv � �jj 
 j�j � �1j C j�1 � vj 


r
11

5
C 1

5
;

and hence for j D 2; 3,

hv; �ji D 1 � 1

2
� jv � �jj2 2

2
41 � 1

2
�
 r

11

5
C 1

5

!2
; 1 � 1

2
�
 r

9

5
� 1

5

!23
5

�
�
�3
7
;
3

7

�
: (34)

However, hv; �1i � 49=50 for such v, and hence (32) follows from (34). By
replacing the triplet .�1; �2; �3/ by .�2; �1;��3/ and repeating the above argument,
we obtain (33). ut
Proof of Proposition 2.1 From Corollaries 3.6 and 4.6 we learn that there exists
F � Sn�1 with �n�1.F3/ � 1 � C=nc such that for any �3 2 F , defining � via (5),

8t 2 Œ0; t0�; min

�
P

�
hX; �i � c1

Mp
n

� t
�
;P

�
hX; �i 
 �c1

Mp
n

� t
��

� c2e
�C3t2 :

(35)

According to Lemma 5.1, we may remove a set of measure zero from F and
additionally assume that P.hX; �i D 0/ D 0. From Lemma 3.1 we learn that any
median of jhX; �ij is at most CM=

p
n. Hence (35) shows that for any �3 2 F ,

defining � via (5) we have that hX; �i is Super-Gaussian of length c1t0, with
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parameters c2; c3 > 0. We still need to increase the length to c1
p
n. To this end,

denote

F3 D
�
�3 2 F I jh�3; �1ij 
 1

10
and jh�3; �2ij 
 1

10

�
:

Then �n�1.F3/ � �n�1.F/ � C exp.�cn/ � 1 � QC=nQc. Recall from Sect. 2 that for
j D 1; 2,

P

�
jXj � M and

ˇ̌
ˇ̌ X
jXj � �j

ˇ̌
ˇ̌ 
 1

5

�
� 1

2
� e�t20 : (36)

Let us fix t 2 Œt0;pn�; �3 2 F3 and define � via (5). Since 0 < j�1 � �2 C �3j 
 3,
by (36) and Lemma 5.2,

P

�
hX; �i � Mt

30
p
n

�
� P

�
hX; �1 � �2 C �3i � Mt

10
p
n

�

� P

��
X

jXj ; �1 � �2 C �3

�
� M

10jXj
�

� P

�
jXj � M;

ˇ̌
ˇ̌ X
jXj � �1

ˇ̌
ˇ̌ 
 1

5

�
� 1

2
� e�t20 � 1

2
� e�t2 :

Similarly,

P

�
hX; �i 
 � Mt

30
p
n

�
� P

��
X

jXj ; �1 � �2 C �3

�

 � M

10jXj
�

� P

�
jXj � M;

ˇ̌
ˇ̌ X
jXj � �2

ˇ̌
ˇ̌ 
 1

5

�
D e�t20 � e�t2 :

Therefore, we may upgrade (35) to the following statement: For any �3 2 F and
t 2 Œ0;pn�, defining � via (5),

min

�
P

�
hX; �i � c1

Mp
n

� t
�
;P

�
hX; �i 
 �Oc1 Mp

n
� t
��

� Oc2e� OC3t2 :

We have thus proven that hX; �i is Super-Gaussian of length c1
p
n with parameters

c2; c3 > 0. ut

6 Angularly-Isotropic Position

In this section we deduce Theorem 1.3 from Proposition 2.1 by using the angularly-
isotropic position which is discussed below. We begin with the following:
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Lemma 6.1 Let d;X;B be as in Theorem 1.3. Set n D dde. Then there exists a fixed
linear map T W B ! Rn such that for any " > 0, the random vector T.X/ is of class
eff.rank�d�".

Proof We will show that a generic linear map T works. Denote N D dim.B/ and
identify B Š R

N . Since the effective rank of X is at least d, necessarily d 
 N
and hence also n D dde 
 N. Let L � R

N be a random n-dimensional subspace,
distributed uniformly in the Grassmannian GN;n. Denote T D ProjL W RN ! L, the
orthogonal projection operator onto the subspace L.

For any fixed subspace E � R
N , with probability one of selecting L 2 GN;n,

dim.ker.T/ \ E/ D maxf0; dim.E/� ng;

or equivalently,

dim.T.E// D dim.E/� dim.ker.T/ \ E/ D minfn; dim.E/g: (37)

Recall that for a > 0, a subspace E � RN is a-basic if P.X 2 E/ � a while
P.X 2 F/ < a for all subspaces F ¨ E. Lemma 7.1 in [5] states that there exist only
countably many subspaces that are a-basic with a being a positive, rational number.
Write G for the collection of all these basic subspaces. Then with probability one of
selecting L 2 GN;n,

8E 2 G; dim.T.E// D minfn; dim.E/g: (38)

We now fix a subspace L 2 GN;n for which T D ProjL satisfies (38). Let S � L be
any subspace and assume that a 2 Q \ .0; 1� satisfies

P.T.X/ 2 S/ � a:

Then P.X 2 T�1.S// � a. Therefore T�1.S/ contains an a-basic subspace E. Thus
E 2 G while E � T�1.S/ and P.X 2 E/ � a. Since the effective rank of X is at least
d, necessarily dim.E/ � a � d. Since T.E/ � S, from (38),

dim.S/ � dim.T.E// D minfn; dim.E/g � minfn; da � deg D da � de:

We have thus proven that for any subspace S � L and a 2 Q \ .0; 1�,

P.T.X/ 2 S/ � a H) dim.S/ � da � de: (39)

It follows from (39) that for any subspace S � L,

P.T.X/ 2 S/ 
 dim.S/=d:

This implies that for any " > 0, the random vector T.X/ is of class eff.rank�d�". ut
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Lemma 6.2 Let d;X;B be as in Theorem 1.3. Assume that d < dim.B/ and that
for any subspace f0g ¤ E ¨ B,

P.X 2 E/ < dim.E/=d: (40)

Then there exists " > 0 such that X is of class eff.rank�dC".

Proof Since the effective rank of X is at least d, necessarily P.X D 0/ D 0. Assume
by contradiction that for any " > 0, the random vectorX is not of class eff.rank�dC".
Then for any " > 0 there exists a subspace f0g ¤ E � B with

P.X 2 E/ � �"C dim.E/=d:

The Grassmannian of all k-dimensional subspaces of B is compact. Hence there is a
dimension 1 
 k 
 dim.B/ and a converging sequence of k-dimensional subspaces
E1;E2; : : : � B with

P.X 2 E`/ � �1=`C dim.E`/=d D �1=`C k=d for all ` � 1: (41)

Denote E0 D lim` E`, which is a k-dimensional subspace in B. Let U � B be an
open neighborhood of E0 with the property that tx 2 U for all x 2 U; t 2 R. Then
E` � U for a sufficiently large `, and we learn from (41) that

P.X 2 U/ � k=d: (42)

Since E0 is the intersection of a decreasing sequence of such neighborhoods U, it
follows from (42) that

P.X 2 E0/ � k=d D dim.E0/=d: (43)

Since d < dim.B/, the inequality in (43) shows that E0 ¤ B. Hence 1 
 dim.E0/ 

dim.B/� 1, and (43) contradicts (40). The lemma is thus proven. ut

The following lemma is a variant of Lemma 5.4 from [5].

Lemma 6.3 Let d;X;B be as in Theorem 1.3. Then there exists a fixed scalar
product h�; �i on B such that denoting j� j D ph�; �i, we have

E

�
X

jXj ; �
�2


 j� j2
d

for all � 2 B: (44)

Proof By induction on the dimension n D dim.B/. Assume first that there exists a
subspace f0g ¤ E ¨ B, such that equality holds true in (3). In this case, there exists
a subspace F � B with E ˚ F D B and P.X 2 E [ F/ D 1. We will construct
a scalar product in B as follows: Declare that E and F are orthogonal subspaces,
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and use the induction hypothesis in order to find appropriate scalar products in the
subspace E and in the subspace F. This induces a scalar product in B which satisfies

E

�
X

jXj ; �
�2


 j� j2
d

for all � 2 E [ F:

For any � 2 B we may decompose � D �E C �F with �E 2 E; �F 2 F. Since
P.X 2 E [ F/ D 1, we obtain

E

�
X

jXj ; �
�2

D E

�
X

jXj ; �E
�2

C E

�
X

jXj ; �F
�2


 j�Ej2 C j�Fj2
d

D j� j2
d
;

proving (44).
Next, assume that for any subspace f0g ¤ E ¨ B, the inequality in (3) is strict.

There are two distinct cases, either d D n or d < n. Consider first the case where
d D n D dim.B/. Thus, for any subspace E � B with E ¤ f0g and E ¤ B,

P.X 2 E/ < dim.E/=n:

This is precisely the main assumption of Corollary 5.3 in [5]. By the conclusion of
the corollary, there exists a scalar product in B such that (44) holds true. We move
on to the case where d < n. Here, we apply Lemma 6.2 and conclude that X is of
class eff.rank�dC" for some " > 0. Therefore, for some " > 0,

P.X 2 E/ < dim.E/=.d C "/ 8E � B: (45)

Now we invoke Lemma 5.4 from [5]. Its assumptions are satisfies thanks to (45).
From the conclusion of that lemma, there exists a scalar product in B for which (44)
holds true. ut

The condition that the effective rank of X is at least d is not only sufficient but
is also necessary for the validity of conclusion (44) from Lemma 6.3. Indeed, it
follows from (44) that for any subspace E � B,

P.X 2 E/ 
 E

ˇ̌
ˇ̌ProjE

X

jXj
ˇ̌
ˇ̌2 D

dim.E/X
iD1

E

�
X

jXj ; ui
�2


 dim.E/

d
; (46)

where u1; : : : ; um is an orthonormal basis of the subspace E with m D dim.E/.
Equality in (46) holds true if and only if P.X 2 E [ E?/ D 1, where E? is the
orthogonal complement to E. Consequently, the effective rank of X is at least d.

Definition 6.4 Let X be a random vector in Rn with P.X D 0/ D 0. We say that X
is angularly-isotropic if

E

�
X

jXj ; �
�2

D 1

n
for all � 2 Sn�1: (47)
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For 0 < d 
 n we say that X=jXj is sub-isotropic with parameter d if

E

�
X

jXj ; �
�2


 1

d
for all � 2 Sn�1: (48)

We observe that X is angularly-isotropic if and only if X=jXj is sub-isotropic with
parameter n. Indeed, suppose that (48) holds true with d D n. Given any � 2 Sn�1
we may find an orthonormal basis �1; : : : ; �n 2 Rn with �1 D � . Hence

1 D E

ˇ̌
ˇ̌ X
jXj
ˇ̌
ˇ̌2 D E

nX
iD1

�
X

jXj ; �i
�2



nX

iD1

1

n
D 1;

and (47) is proven.

Proof of Theorem 1.3 According to Lemma 6.1, we may project X to a lower-
dimensional space, and assume that dim.B/ D n D dde and that the effective rank
of X is at least n=2. Lemma 6.3 now shows that there exists a scalar product in B
with respect to which X=jXj is sub-isotropic with parameter n=2. We may therefore
identify B with R

n so that

E

�
X

jXj ; �
�2


 2

n
for all � 2 Sn�1:

Thus condition (4) of Proposition 2.1 is verified. By the conclusion of Proposi-
tion 2.1, there exists a non-zero linear functional ` W Rn ! R such that `.X/ is
Super-Gaussian of length c1

p
n � c

p
d with parameters c2; c3 > 0. ut

Proof of Corollary 1.4 By assumption, P.X 2 E/ 
 dim.E/=d for any finite-
dimensional subspace E � B. Lemma 7.2 from [5] states that there exists a
continuous, linear map T W B ! RN such that T.X/ has an effective rank of at least
d=2. We may now invoke Theorem 1.3 for the random vector T.X/, and conclude
that for some non-zero, fixed, linear functional ` W RN ! R, the random variable
.` ı T/.X/ is Super-Gaussian of length c1

p
d with parameters c2; c3 > 0. ut

Remark 6.5 We were asked by Yaron Oz about analogs of Theorem 1.1 in the
hyperbolic space. We shall work with the standard hyperboloid model

H
n D

(
.x0; : : : ; xn/ 2 R

nC1 I �x20 C
nX

iD1
x2i D �1; x0 > 0

)

where the Riemannian metric tensor is g D �dx20 C Pn
iD1 dx2i . For any linear

subspace L � RnC1, the intersection L \ Hn is a totally-geodesic submanifold
of Hn which is called a hyperbolic subspace. When we discuss the dimension of
a hyperbolic subspace, we refer to its dimension as a smooth manifold. Note that
an .n � 1/-dimensional hyperbolic subspace E � Hn divides Hn into two sides.
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A signed distance function dE W Hn ! R is a function that equals the hyperbolic
distance to E on one of these sides, and minus the distance to E on the other side.
Given a linear functional ` W RnC1 ! R such that E D Hn \ fx 2 RnC1 I `.x/ D 0g
we may write

dE.x/ D arcsinh.˛ � `.x// .x 2 H
n/

for some 0 ¤ ˛ 2 R. It follows from Theorem 1.3 that for any absolutely-
continuous random vector X in Hn, there exists an .n � 1/-dimensional hyperbolic
subspace E � Hn and an associated signed distance function dE such that the
random variable sinh.dE.X// is Super-Gaussian of length c1

p
n with parameters

c2; c3 > 0. In general, we cannot replace the random variable sinh.dE.X// in the
preceding statement by dE.X/ itself. This is witnessed by the example of the random
vector

X D
0
@
vuut1C R2

nX
iD1

Z2i ;RZ1; : : : ;RZn

1
A 2 R

nC1

which is supported in Hn. Here, Z1; : : : ;Zn are independent standard Gaussian
random variables, and R > 1 is a fixed, large parameter.
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A Remark on Measures of Sections of Lp-balls

Alexander Koldobsky and Alain Pajor

Abstract We prove that there exists an absolute constant C so that


.K/ 
 C
p
p max
�2Sn�1


.K \ �?/ jKj1=n

for any p > 2; any n 2 N; any convex body K that is the unit ball of an n-
dimensional subspace of Lp; and any measure 
 with non-negative even continuous
density in Rn: Here �? is the central hyperplane perpendicular to a unit vector
� 2 Sn�1; and jKj stands for volume.

1 Introduction

The slicing problem [1, 4, 5, 29], a major open question in convex geometry, asks
whether there exists a constant C so that for any n 2 N and any origin-symmetric
convex body K in Rn;

jKj n�1
n 
 C max

�2Sn�1
jK \ �?j;

where jKj stands for volume of proper dimension, and �? is the central hyperplane
in Rn perpendicular to a unit vector �: The best-to-date result C 
 O.n1=4/ is due
to Klartag [15], who improved an earlier estimate of Bourgain [6]. The answer is
affirmative for unconditional convex bodies (as initially observed by Bourgain; see
also [3, 14, 29]), intersection bodies [10, Theorem 9.4.11], zonoids, duals of bodies
with bounded volume ratio [29], the Schatten classes [23], k-intersection bodies
[21, 22]; see [7] for more details.
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The case of unit balls of finite dimensional subspaces of Lp is of particular interest
in this note. It was shown by Ball [2] that the slicing problem has an affirmative
answer for the unit balls of finite dimensional subspaces of Lp; 1 
 p 
 2: Junge
[13] extended this result to every p 2 .1;1/; with the constant C depending on
p and going to infinity when p ! 1: Milman [27] gave a different proof for
subspaces of Lp; 2 < p < 1; with the constant C 
 O.

p
p/: Another proof of

this estimate can be found in [22].
A generalization of the slicing problem to arbitrary measures was considered

in [18–21]. Does there exist a constant C so that for every n 2 N; every origin-
symmetric convex body K in Rn; and every measure 
 with non-negative even
continuous density f in Rn;


.K/ 
 C max
�2Sn�1


.K \ �?/ jKj1=n ‹ (1)

For every k-dimensional subspace of Rn; 1 
 k 
 n and any Borel set A � E;


.A/ D
Z
A
f .x/dx;

where the integration is with respect to the k-dimensional Lebesgue measure on E:
Inequality (1) was proved with an absolute constant C for intersection bodies

[18] (see [16], this includes the unit balls of subspaces of Lp with 0 < p 
 2/,
unconditional bodies and duals of bodies with bounded volume ratio in [20], for
k-intersection bodies in [21]. For arbitrary origin-symmetric convex bodies, (1) was
proved in [19] with C 
 O.

p
n/:A different proof of the latter estimate was recently

given in [8], where the symmetry condition was removed.
For the unit balls of subspaces of Lp; p > 2; (1) was proved in [21] with

C 
 O.n1=2�1=p/: In this note we improve the estimate to C 
 O.
p
p/; extending

Milman’s result [27] to arbitrary measures in place of volume. In fact, we prove a
more general inequality


.K/ 
 .C
p
p/k max

H2Grn�k


.K \ H/ jKjk=n; (2)

where 1 
 k < n; Grn�k is the Grassmanian of .n � k/-dimensional subspaces of
Rn; K is the unit ball of any n-dimensional subspace of Lp; p > 2;
 is a measure
on Rn with even continuous density, and C is a constant independent of p; n; k;K; 
:

The proof is a combination of two known results. Firstly, we use the reduction of
the slicing problem for measures to computing the outer volume ratio distance from
a body to the class of intersection bodies established in [20]; see Proposition 1.
Note that outer volume ratio estimates have been applied to different cases of the
original slicing problem by Ball [2], Junge [13], and Milman [27]. Secondly, we use
an estimate for the outer volume ratio distance from the unit ball of a subspace of
Lp; p > 2; to the class of origin-symmetric ellipsoids proved by Milman in [27].
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This estimate also follows from results of Davis, Milman and Tomczak-Jaegermann
[9]. We include a concentrated version of the proof in Proposition 2.

2 Slicing Inequalities

We need several definitions and facts. A closed bounded set K in R
n is called a star

body if every straight line passing through the origin crosses the boundary of K at
exactly two points, the origin is an interior point of K; and the Minkowski functional
of K defined by

kxkK D minfa � 0 W x 2 aKg

is a continuous function on Rn:

The radial function of a star body K is defined by

�K.x/ D kxk�1
K ; x 2 R

n; x ¤ 0:

If x 2 Sn�1 then �K.x/ is the radius of K in the direction of x:
We use the polar formula for volume of a star body

jKj D 1

n

Z
Sn�1

k�k�n
K d�: (3)

The class of intersection bodies was introduced by Lutwak [25]. Let K;L be
origin-symmetric star bodies in Rn: We say that K is the intersection body of L if
the radius of K in every direction is equal to the .n � 1/-dimensional volume of
the section of L by the central hyperplane orthogonal to this direction, i.e. for every
� 2 Sn�1;

�K.�/ D k�k�1
K D jL \ �?j

D 1

n � 1
Z
Sn�1\�?

k�k�nC1
L d� D 1

n � 1
R
�k � k�nC1

L

�
.�/;

where R W C.Sn�1/ ! C.Sn�1/ is the spherical Radon transform

Rf .�/ D
Z
Sn�1\�?

f .x/dx; 8f 2 C.Sn�1/:

All bodies K that appear as intersection bodies of different star bodies form the class
of intersection bodies of star bodies. A more general class of intersection bodies is
defined as follows. If 
 is a finite Borel measure on Sn�1; then the spherical Radon
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transform R
 of 
 is defined as a functional on C.Sn�1/ acting by

.R
; f / D .
;Rf / D
Z
Sn�1

Rf .x/d
.x/; 8f 2 C.Sn�1/:

A star body K in Rn is called an intersection body if k � k�1
K D R
 for some measure


; as functionals on C.Sn�1/; i.e.

Z
Sn�1

kxk�1
K f .x/dx D

Z
Sn�1

Rf .x/d
.x/; 8f 2 C.Sn�1/:

Intersection bodies played a crucial role in the solution of the Busemann-Petty
problem and its generalizations; see [17, Chap. 5].

A generalization of the concept of an intersection body was introduced by Zhang
[30] in connection with the lower dimensional Busemann-Petty problem. For 1 

k 
 n � 1; the .n � k/-dimensional spherical Radon transform Rn�k W C.Sn�1/ !
C.Grn�k/ is a linear operator defined by

Rn�kg.H/ D
Z
Sn�1\H

g.x/ dx; 8H 2 Grn�k

for every function g 2 C.Sn�1/:
We say that an origin symmetric star body K in Rn is a generalized k-intersection

body, and write K 2 BPn
k ; if there exists a finite Borel non-negative measure 
 on

Grn�k so that for every g 2 C.Sn�1/
Z
Sn�1

kxk�k
K g.x/ dx D

Z
Grn�k

Rn�kg.H/ d
.H/: (4)

When k D 1 we get the class of intersection bodies. It was proved by Goodey and
Weil [11] for k D 1 and by Grinberg and Zhang [12, Lemma 6.1] for arbitrary
k (see also [28] for a different proof) that the class BPn

k is the closure in the radial
metric of k-radial sums of origin-symmetric ellipsoids. In particular, the classes BPn

k
contain all origin-symmetric ellipsoids in Rn and are invariant with respect to linear
transformations. Recall that the k-radial sum KCk L of star bodies K and L is defined
by

�kKCkL D �kK C �kL:

For a convex body K in R
n and 1 
 k < n; denote by

o.v.r..K;BPn
k/ D inf

(� jCj
jKj

�1=n
W K � C; C 2 BPn

k

)

the outer volume ratio distance from a body K to the class BPn
k :
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Let Bn
2 be the unit Euclidean ball in Rn; let j � j2 be the Euclidean norm in Rn;

and let � be the uniform probability measure on the sphere Sn�1 in Rn: For every
x 2 Rn, let x1 be the first coordinate of x. We use the fact that for every p > �1

Z
Sn�1

jx1jpd�.x/ D . pC1
2
/. n

2
/p

�. nCp
2
/

I (5)

see for example [17, Lemma 3.12], where one has to divide by jSn�1j D
2�.n�1/=2=. n

2
/; because the measure � on the sphere is normalized.

In [20], the slicing problem for arbitrary measures was reduced to estimating the
outer volume ratio distance from a convex body to the classes BPn

k , as follows.

Proposition 1 For any n 2 N; 1 
 k < n; any origin-symmetric star body K in Rn;

and any measure 
 with even continuous density on K;


.K/ 
 �
o.v.r..K;BPn

k/
�k n

n � k
cn;k max

H2Grn�k


.K \ H/ jKjk=n;

where cn;k D jBn
2j.n�k/=n=jBn�k

2 j 2 .e�k=2; 1/:

It appears that for the unit balls of subspaces of Lp; p > 2 the outer volume ration
distance to the classes of intersection bodies does not depend on the dimension. As
mentioned in the introduction, the following estimate was proved in [27] and also
follows from results of [9]. We present a short version of the proof.

Proposition 2 Let p > 2; n 2 N; 1 
 k < n; and let K be the unit ball of an
n-dimensional subspace of Lp: Then

o.v.r..K;BPn
k/ 
 C

p
p;

where C is an absolute constant.

Proof Since the classes BPn
k are invariant under linear transformations, we can

assume that K is in the Lewis position. By a result of Lewis in the form of [26,
Theorem 8.2], this means that there exists a measure � on the sphere so that for
every x 2 Rn

kxkpK D
Z
Sn�1

j.x; u/jpd�.u/;

and

jxj22 D
Z
Sn�1

j.x; u/j2d�.u/:

Also, by the same result of Lewis [24], K � n1=2�1=pBn
2:
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Let us estimate the volume of K from below. By the Fubini theorem, formula (5)
and Stirling’s formula, we get

Z
Sn�1

kxkpKd�.x/ D
Z
Sn�1

Z
Sn�1

j.x; u/jpd�.x/d�.u/

D
Z
Sn�1

jx1jpd�.x/
Z
Sn�1

d�.u/ 

�

Cp

n C p

�p=2 Z
Sn�1

d�.u/:

Now

Cp

n C p

�Z
Sn�1

d�.u/

�2=p
�
�Z

Sn�1

kxkpKd�.x/
�2=p

�
�Z

Sn�1

kxk�n
K d�.x/

��2=n
D
� jKj

jBn
2j
��2=n

� 1

n
jKj�2=n;

because jBn
2j1=n � n�1=2: On the other hand,

1 D
Z
Sn�1

jxj22d�.x/ D
Z
Sn�1

Z
Sn�1

.x; u/2d�.u/d�.x/

D
Z
Sn�1

Z
Sn�1

jx1j2d�.x/d�.u/ D 1

n

Z
Sn�1

d�.u/;

so

Cp

n C p
n2=p � 1

n
jKj�2=n;

and

jKj1=n � cn�1=p
s

n C p

np
� cn1=2�1=pp

p
jBn
2j1=n:

Finally, since K � n1=2�1=pBn
2; and Bn

2 2 BPn
k for every k; we have

o.v.r..K;BPn
k/ 


� jn1=2�1=pBn
2j

jKj
�1=n


 C
p
p;

where C is an absolute constant.

We now formulate the main result of this note.

Corollary 1 There exists a constant C so that for any p > 2; n 2 N; 1 
 k < n;
any convex body K that is the unit ball of an n-dimensional subspace of Lp; and any
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measure 
 with non-negative even continuous density in Rn;


.K/ 
 .C
p
p/k max

H2Grn�k


.K \ H/ jKjk=n:

Proof Combine Proposition 1 with Proposition 2. Note that n
n�k 2 .1; ek/; and cn;k 2

.e�k=2; 1/; so these constants can be incorporated in the constant C: �
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Sharp Poincaré-Type Inequality
for the Gaussian Measure on the Boundary
of Convex Sets

Alexander V. Kolesnikov and Emanuel Milman

Abstract A sharp Poincaré-type inequality is derived for the restriction of the
Gaussian measure on the boundary of a convex set. In particular, it implies a
Gaussian mean-curvature inequality and a Gaussian iso-second-variation inequality.
The new inequality is nothing but an infinitesimal equivalent form of Ehrhard’s
inequality for the Gaussian measure. While Ehrhard’s inequality does not extend to
general CD.1;1/ measures, we formulate a sufficient condition for the validity of
Ehrhard-type inequalities for general measures on R

n via a certain property of an
associated Neumann-to-Dirichlet operator.

1 Introduction

We consider Euclidean space .Rn; h�; �i/ equipped with the standard Gaussian
measure � D ��dx, ��.x/ D .2�/�n=2 exp.� jxj2 =2/. Let K � Rn denote a convex
domain with C2 smooth boundary and outer unit-normal field � D �@K . The second
fundamental form II D II@K of @K at x 2 @K is as usual (up to sign) defined by
IIx.X;Y/ D hrX�;Yi, X;Y 2 Tx@K. The quantities:

H.x/ WD tr.IIx/ ; H� .x/ WD H.x/� hx; �.x/i ;

are called the mean-curvature and Gaussian mean-curvature of @K at x 2 @K,
respectively. It is well-known that H governs the first variation of the (Lebesgue)
boundary-measure Vol@K under the normal-map t 7! exp.t�/, and similarly H�
governs the first variation of the Gaussian boundary-measure �@K WD ��Vol@K , see
e.g. [15] or Sect. 2.

Recall that the Gaussian isoperimetric inequality of Borell [4] and Sudakov–
Tsirelson [20] asserts that if E is a half-plane with �.E/ D �.K/, then
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�@K.@K/ � �@E.@E/ (in fact, this applies not just to convex sets but to all Borel
sets, with an appropriate interpretation of Gaussian boundary measure). In other
words:

�@K.@K/ � I�.�.K//

with equality for half-planes, where I� W Œ0; 1� ! RC denotes the Gaussian
isoperimetric profile, given by I� WD ' ı ˚�1 with '.t/ D 1p

2�
exp.�t2=2/ and

˚.t/ D R t
�1 '.s/ds. Note that I� is concave and symmetric around 1=2, hence it is

increasing on Œ0; 1=2� and decreasing on Œ1=2; 1�.
Our main result is the following new Poincaré-type inequality for the Gaussian

boundary-measure on @K:

Theorem 1.1 For all convex K and f 2 C1.@K/ for which the following expressions
make sense, we have:

Z
@K

H� f
2d�@K � .log I� /0.�.K//

�Z
@K

fd�@K

�2


Z
@K

˝
II�1@Kr@K f ;r@K f

˛
d�@K :

(1)

Here r@K f denotes the gradient of f on @K with its induced metric, and
.log I� /0.v/ D �˚�1.v/=I�.v/.

This inequality is already interesting for the constant function f � 1:

Corollary 1.2 (Gaussian Mean-Curvature Inequality)

Z
@K

H�d�@K 
 .log I� /
0.�.K//�@K.@K/2: (2)

In particular, if �.K/ � 1=2 then necessarily
R
@K H�d�@K 
 0.

The latter inequality is sharp, yielding an equality when K is any half-plane E.
Indeed, since I� .�.E// D �@E.@E/, it is enough to note that E D .�1; t� � Rn�1
has constant Gaussian mean-curvature H� D �t D .log'/0.t/ D I0

� .�.E//.
More surprisingly, we will see in Sect. 4 that Corollary 1.2 in fact implies the

Gaussian isoperimetric inequality (albeit only for convex sets). Furthermore, we
have:

Corollary 1.3 (Gaussian Iso-Curvature Inequality) If E is a half-plane with
�.E/ D �.K/ � 1=2, then the following iso-curvature inequality holds:

Z
@K

H�d�@K 

Z
@E

H�d�@E . 
 0/:
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Proof This is immediate from (2), the Gaussian isoperimetric inequality �@K.@K/ �
�@E.@E/, the assumption that .log I� /0.�.K// 
 0, and the equality in (2) for half-
planes.

Clearly, by passing to complements, the latter corollary yields a reverse inequality
when applied to K, the complement to a convex set C satisfying �.K/ 
 1=2 (since
@K D @C with reverse orientation and thus their generalized mean-curvature simply
changes sign). It is also easy to check that a reverse inequality holds when K is a
small Euclidean (convex) ball centered at the origin. It is probably unreasonable to
expect that a reverse inequality holds for all convex K with �.K/ 
 1=2, but we
have not seriously searched for a counterexample.

We proceed to give the following interpretation of the latter two corollaries.
Denoting:

ı0�.K/ D �.K/ ; ı1�.K/ D �@K.@K/ ; ı
2
� .K/ D

Z
@K

H�d�@K ;

we note that ıi� .K/ is precisely the i-th variation of the function t 7! �.Kt/, where
Kt WD fx 2 Rn I d.x;K/ 
 tg and d denotes Euclidean distance. Consequently,
Corollary 1.3 may be rewritten as:

Corollary 1.4 (Gaussian Iso-Second-Variation Inequality) If E is a half-plane
with �.E/ D �.K/ � 1=2, then the following iso-second-variation inequality holds:

ı2� .K/ 
 ı2� .E/ . 
 0/:

It is interesting to note that we are not aware of an analogous statement on any other
metric-measure space, and in particular, for the Lebesgue measure in Euclidean
space, as all known isoperimetric inequalities only pertain (by definition) to the first-
variation (and with reversed direction of the inequality). Furthermore, in contrast to
the isoperimetric inequality, it is easy to see that the second-variation inequality
above is false without the assumption that K is convex, as witnessed for instance
by taking the complement of any non-degenerate slab fx 2 Rn I a 
 x1 
 bg of
measure 1=2. As for Corollary 1.2, we see that it may be rewritten as:

Corollary 1.5 (Minkowski’s Second Inequality for Euclidean Gaussian
Extensions)

ı2� .K/ 
 .log I� /0.ı0� .K//.ı1�.K//2: (3)

This already hints at the proof of Theorem 1.1. To describe the proof, and put the
latter interpretation in the appropriate context, let us recall some classical facts from
the Brunn-Minkowski theory (for the Lebesgue measure).
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1.1 Brunn–Minkowski Inequality

The Brunn–Minkowski inequality [13, 19] asserts that:

Vol..1� t/K C tL/1=n � .1 � t/Vol.K/1=n C tVol.L/1=n ; 8t 2 Œ0; 1� ; (4)

for all convex K;L � Rn; it was extended to arbitrary Borel sets by Lyusternik.
Here Vol denotes Lebesgue measure and A C B WD fa C b I a 2 A; b 2 Bg denotes
Minkowski addition. We refer to the excellent survey by Gardner [13] for additional
details and references.

For convex sets, (4) is equivalent to the concavity of the function t 7! Vol.K C
tL/1=n. By Minkowski’s theorem, extending Steiner’s observation for the case that L
is the Euclidean ball, Vol.K C tL/ is an n-degree polynomial

Pn
iD0

�n
i

�
Wn�i.K;L/ti,

whose coefficients

Wn�i.K;L/ WD .n � i/Š

nŠ

�
d

dt

�i
ˇ̌
ˇ̌
ˇ
tD0

Vol.K C tL/ ; (5)

are called mixed-volumes. The above concavity thus amounts to the fol-
lowing “Minkowski’s second inequality”, which is a particular case of the
Alexandrov–Fenchel inequalities:

Wn�1.K;L/2 � Wn�2.K;L/Wn.K;L/ : (6)

Specializing to the case that L is the Euclidean unit-ball D, noting that Kt D KC tD,
and denoting by ıi.K/ the i-th variation of t 7! Vol.Kt/, we have as before:

ı0.K/ D Vol.K/ ; ı1.K/ D Vol@K.@K/ ; ı
2.K/ D

Z
@K

HdVol@K:

The corresponding distinguished mixed-volumes Wn�i.K/ D Wn�i.K;D/, which
are called intrinsic-volumes or quermassintegrals, are related to ıi.K/ via (5).
Consequently, when L D D, Minkowski’s second inequality amounts to the
inequality:

ı2.K/ 
 n � 1

n

1

ı0.K/
.ı1.K//2:

The analogy with (3) becomes apparent, in view of the fact that .log I/0.v/ D n�1
n

1
v

,

where I.v/ D cnv
n�1
n is the standard isoperimetric profile of Euclidean space

.Rn; h�; �i/ endowed with the Lebesgue measure.
An important difference to note with respect to the classical theory, is that

in the Gaussian theory, ı2� .K/ may actually be negative, in contrast to the non-
negativity of all mixed-volumes, and in particular of ı2.K/. One reason for this
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is that the Gaussian measure is finite whereas the Lebesgue measure is not, so that I
is monotone increasing whereas I� is not. This feature seems to also be responsible
for the peculiar iso-second-variation corollary.

1.2 Ehrhard Inequality

A remarkable extension of the Brunn-Minkowski inequality to the Gaussian setting
was obtained by Ehrhard [11], who showed that:

˚�1.�..1� t/K C tL// � .1 � t/˚�1.�.K//C t˚�1.�.L// 8t 2 Œ0; 1�;

for all convex sets K;L � Rn, with equality when K and L are parallel half-planes
(pointing in the same direction). This was later extended by Latała [16] to the case
that only one of the sets is assumed convex, and finally by Borell [6, 7] to arbitrary
Borel sets. As before, for K;L convex sets, Ehrhard’s inequality is equivalent to the
concavity of the function t 7! F�.t/ WD ˚�1.�..1� t/K C tL//.

To prove Theorem 1.1, we repeat an idea of A. Colesanti. In [9] (see also
[10]), Colesanti showed that the Brunn-Minkowski concavity of t 7! F.t/ WD
Vol..1 � t/K C tL/1=n is equivalent to a certain Poincaré-type inequality on @K, by
parametrizing K;L via their support functions and calculating the second variation
of F.t/. Repeating the calculation for F� .t/, Theorem 1.1 turns out to be an
equivalent infinitesimal reformulation of Ehrhard’s inequality for convex sets.

1.3 Comparison with Previous Results

Going in the other direction, we have recently shown in our previous work [15] how
to directly derive a Poincaré-type inequality on the boundary of a locally-convex
subset of a weighted Riemannian manifold, which may then be used to infer a
Brunn-Minkowski inequality in the weighted Riemannian setting via an appropriate
geometric flow. In particular, in the Euclidean setting, our results apply to Borell’s
class of 1=N-concave measures [5] ( 1N 2 Œ�1; 1n �), defined as those measures 
 on
Rn satisfying the following generalized Brunn-Minkowski inequality:


..1 � t/A C tB/ � �
.1 � t/
.A/1=N C t
.B/1=N

�N
;

for all t 2 Œ0; 1� and Borel sets A;B � Rn with 
.A/; 
.B/ > 0. It was shown
by Brascamp–Lieb [8] and Borell [5] that the absolutely continuous members of
this class are precisely characterized by having density � so that .N � n/�1=.N�n/ is
concave on its convex support˝ (interpreted as log� being concave whenN D 1),
amounting to the Bakry–Émery CD.0;N/ condition [1, 2, 14]. Our results from
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[15] then imply that for any (say) compact convex K in the interior of ˝ with C2

boundary, and any f 2 C1.@K/, one has:

Z
@K

H
 f
2d
@K � N � 1

N

1


.K/

�Z
@K

fd
@K

�2


Z
@K

˝
II�1
@K r@K f ;r@K f

˛
d
@K ;

(7)

with 
@K D �Vol@K denoting the boundary measure and H
 D H C hlog�; �i the

-weighted mean-curvature. Note that the Gaussian measure � satisfies CD.1;1/

and in particular CD.0;1/, as log�� is concave on R
n. Consequently, applying (7)

with N D 1, we have:

Z
@K

H
 f
2d�@K � 1

�.K/

�Z
@K

fd�@K

�2


Z
@K

˝
II�1
@K r@K f ;r@K f

˛
d�@K : (8)

It is easy to verify that .log I� /0.v/ < 1
v

for all v 2 .0; 1/, and hence Theorem 1.1
constitutes an improvement over (8).

A very important point is that the latter improvement is strict only for test func-
tions f with non-zero mean,

R
@K fd�@K ¤ 0. Put differently, the entire significance of

Theorem 1.1 lies in the coefficient in front of the
�R
@K fd�@K

�2
term, since by (7), for

zero-mean test functions, the inequality asserted in Theorem 1.1 holds not only for
the Gaussian measure, but in fact for Borell’s entire class of concave (or CD.0; 0/)
measures (using our convention from [14, 15] that N�1

N D �1 when N D 0 and
that 1 � 0 D 0).

Unfortunately, our method from [15], involving L2-duality and the Reilly formula
from Riemannian geometry, cannot be used in the Gaussian setting without some
additional ingredients, like information on an associated Neumann-to-Dirichlet
operator, see Sect. 3. In particular, we observe in Sect. 4 that Theorem 1.1 (or
equivalently, Ehrhard’s inequality for convex sets) and even Corollary 1.2, are
simply false for a general CD.1;1/ probability measure in Euclidean space, having
density � D exp.�V/ with r2V � Id.

2 Proof of Theorem 1.1

The general formulation of Theorem 1.1 is reduced to the case that K is compact
with strictly-convex C3 smooth boundary (II@K > 0) by a standard (Euclidean)
approximation argument—this class of convex sets is denoted by C 3C (and anal-
ogously we define the class C 2C). As explained in the Introduction, the proof of
Theorem 1.1 boils down to a direct calculation of the second variation of the
function:

t 7! ˚�1.�..1� t/K C tL//
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for an appropriately chosen L. Ehrhard’s inequality ensures that this function is
concave when K;L are convex.

The second variation will be conveniently expressed using support functions.
Recall that the support function of a convex body (convex compact set with non-
empty interior) C is defined as the following function on the Euclidean unit sphere
Sn�1:

hC.�/ WD sup fh�; xi I x 2 Cg ; � 2 Sn�1:

It is easy to see that the correspondence C 7! hC between convex bodies and
functions on Sn�1 is injective and positively linear: haC1CbC2 D ahC1 C bhC2 for
all a; b � 0. As K 2 C 3C we know that hK is C3 smooth [19, p. 106].

Now let f 2 C2.@K/, and consider the function h� WD f ı ��1
@K W Sn�1 ! R.

Since K 2 C 3C this function is well-defined and C2 smooth. Moreover, it is not hard
to show (e.g. [19, pp. 38, 111], [9]) that for � > 0 small enough, hK C th� is the
support function of a convex body Kt 2 C 2C for all t 2 Œ0; ��. It follows by linearity
of the support functions that K�t D .1� t/KC tK� for all t 2 Œ0; 1�, and so Ehrhard’s
inequality implies that:

t 7! F� .t/ WD ˚�1.�.Kt//

is concave on Œ0; ��.
The first and second variations of t 7! 
.Kt/ were calculated by Colesanti in

[9] for the case that 
 is the Lebesgue measure, and for general measures 
 with
positive density � by the authors in [15] (in fact in a general weighted Riemannian
setting, with an appropriate interpretation of Kt avoiding support functions):

ı0 WD .d=dt/0jtD0 
.Kt/ D 
.K/ ;

ı1 WD .d=dt/1jtD0 
.Kt/ D
Z
@K

fd
@K ;

ı2 WD .d=dt/2jtD0 
.Kt/ D
Z
@K

H
f
2d
@K �

Z
@K

˝
II�1
@Kr@K f ;r@K f

˛
d
@K :

Applying the above formulae for 
 D � , calculating:

0 � F00
� .0/ D .˚�1/00.ı0/.ı1/2 C .˚�1/0.ı0/ı2;

dividing by .˚�1/0.ı0/ > 0 and using that:

.˚�1/00.v/
.˚�1/0.v/

D �.log I� /0.v/;

Theorem 1.1 readily follows for f 2 C2.@K/. The general case for f 2 C1.@K/ is
obtained by a standard approximation argument.
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Going in the other direction, it should already be clear that Theorem 1.1 implies
back Ehrhard’s inequality. Indeed, given K;L 2 C 2C, consider Kt D .1 � t/K C tL
for t 2 Œ0; 1�, and note that hKt D .1 � t/hK C thL. Fixing t0 2 .0; 1/, it follows that
hKt0C�

D hKt0
C �.hL � hK/. Inspecting the proof above, we see that the statement

of Theorem 1.1 for Kt0 and f D .hL � hK/ ı � 2 C1.@K/, is precisely equivalent
to the concavity of the function � 7! ˚�1.�.Kt0C�// at � D 0. Since the point
t0 2 .0; 1/ was arbitrary, we see that Theorem 1.1 implies the concavity of Œ0; 1� 3
t 7! ˚�1.�..1� t/KC tL// for K;L 2 C 2C. The case of general convex K;L follows
by approximation.

3 Neumann-to-Dirichlet Operator

In this section, we mention how a certain property of a Neumann-to-Dirichlet
operator can be used to directly obtain an Ehrhard-type inequality for general
measures 
 D exp.�V.x//dx on Rn (say with C2 positive density). Define the
associated weighted Laplacian L D L
 as:

L D L
 WD exp.V/r � .exp.�V/r/ D � � hrV;ri :

Given a compact set ˝ � Rn with C1 smooth boundary, note that the usual
integration by parts formula is satisfied for f ; g 2 C2.˝/:

Z
˝

L. f /gd
 D
Z
@M

f�gd
@M�
Z
˝

hrf ;rgid
 D
Z
@˝

. f�g�g� f /d
@˝C
Z
˝

L.g/fd
 ;

where u� D � � u.
Given a compact convex body K 2 C 2C and f 2 C1;˛.@K/, let us now solve the

following Neumann Laplace equation:

Lu � 1


.K/

Z
@K

fd
@K on K ; u� D f on @K: (9)

Since the compatibility condition
R
K Lud
 D R

@K fd
@K is satisfied, it is known (e.g.
[15]) that a solution u 2 C2;˛.K/ exists (and is unique up to an additive constant).
The operator mapping f 7! u is called the Neumann-to-Dirichlet operator.

Theorem 3.1 Assume that there exists a function F W RC ! R so that for all K, f
and u as above:

F.
.K//.
Z
@K

fd
@K/
2 


Z
@K
.hr@K f ;r@Kui C u�;�f / d
@K : (10)
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Denote G.v/ WD 1
v

� F.v/ and ˚�1

 .v/ WD R v

1=2
exp.� R t

1=2
G.s/ds/dt. Then for all

f 2 C1.@K/:

Z
@K

H
 f
2d
@K � G.
.K//

�Z
@K

fd
@K

�2


Z
@K

˝
II�1@Kr@K f ;r@K f

˛
d
@K ; (11)

and for all convex K;L � Rn and t 2 Œ0; 1�:

˚�1

 ..1 � t/K C tL/ � .1 � t/˚�1


 .K/C t˚�1

 .L/: (12)

For the proof, we require the following lemma. We denote by
��r2u

�� the Hilbert-
Schmidt norm of the Hessian r2u.

Lemma 3.2 With the above notation:
Z
K

	˝r2V ru;ru
˛C ��r2u

��2
 d
 D
Z
@K
.hr@K f ;r@Kui C u�;�f / d
@K :

Remark 3.3 The integrand on the left-hand-side above is the celebrated Bakry–
Émery iterated carré-du-champ �2.u/, associated to .K; h�; �i ; 
/ [2].

Proof Denoting ru D .u1; : : : ; un/, we calculate:

Z
K

��r2u
��2 d
 D

Z
K

nX
iD1

jruij2 d
 D
Z
@K

nX
iD1

ui;�uid
@K �
Z
K

nX
iD1

L.ui/uid
:

To handle the L.ui/ terms, we take the i-th partial derivative in the Laplace
equation (9), yielding:

0 D .Lu/i D L.ui/� hru;rVii :

Consequently, we have:

nX
iD1

L.ui/ui D ˝r2V ru;ru
˛
;

and therefore:

Z
K

	˝r2V ru;ru
˛C ��r2u

��2
 d
 D
Z
@K

nX
iD1

ui;�uid
@K :

Recalling that f D u� , the assertion follows.

Proof (Proof of Theorem 3.1) As in [15], our starting point is the generalized Reilly
formula [14], which is an integrated form of Bochner’s formula in the presence of a
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boundary. In the Euclidean setting, it states that for any u 2 C2.K/ (see [14] for less
restrictions on u):

Z
K
.Lu/2d
 D

Z
K

��r2u
��2 d
C

Z
K

˝r2V ru;ru
˛
d


C
Z
@K

H
.u�/
2d
@KC

Z
@K

hII@K r@Ku;r@Kui d
@K�2
Z
@K

hr@Ku�;r@Kui d
@K :
(13)

As we assume that II@K > 0, we may apply the Cauchy–Schwarz inequality to the
last-term above:

2 hr@Ku�;r@Kui 
 hII@K r@Ku;r@Kui C ˝
II�1
@Kr@Ku�;r@Ku�

˛
; (14)

yielding:

Z
K
.Lu/2d
 �

Z
K

��r2u
��2 d
C

Z
K

˝r2V ru;ru
˛
d


C
Z
@K

H
.u�/
2d
@K �

Z
@K

˝
II�1
@K r@Ku�;r@Ku�

˛
d
@K :

Given f 2 C1;˛.@K/, we now apply the above inequality to the solution u of the
Neumann Laplace equation (9). Together with Lemma 3.2, this yields:

Z
@K

H
.u�/
2d
@K � 1


.K/

�Z
K
fd


�2
C
Z
@K
.hr@K f ;r@Kui C u�;�f / d
@K



Z
@K

˝
II�1
@K r@K f ;r@K f

˛
d
@K :

Invoking our assumption (10), the asserted inequality (11) follows for f 2 C1;˛.@K/.
The case of a general f 2 C1.@K/ follows by a standard approximation argument.

Lastly, (12) is an equivalent version of (11). Indeed, the proof provided in Sect. 2
demonstrates how to pass from (12) to (11), with:

G.v/ D .˚�1

 /00.v/

.˚�1

 /0.v/

D .log..˚�1

 /0//0.v/:

To see the other direction, repeat the argument described in the previous section.
After establishing (12) for K;L 2 C 2C, the general case follows by a standard
approximation argument.
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Unfortunately, we cannot claim that condition (10) is equivalent to the Ehrhard-
type inequality (12), since the proof of Theorem 3.1 involved an application of the
Cauchy-Schwarz inequality (14). Consequently, we pose this as a question:

Question 1 (Gaussian Neumann-to-Dirichlet Operator on Convex Domains)
Does (10) hold for 
 D � the Gaussian measure with F.v/ D 1

v
� .log I� /0.v/?

Note that the analogous question for 1
N -concave measures 
, 1

N 2 .�1; 1n �, has
a positive answer: (10) holds for any K 2 C 2C in the support of 
 with F.v/ D 1

N
1
v

.
Indeed, if 
 D �.x/dx D exp.�V.x//dx satisfies on its support:

�.N � n/
r2�

1
N�n

�
1

N�n

D r2V � 1

N � n
rV ˝ rV � 0;

then by several applications of the Cauchy–Schwarz inequality (see [14]):

Z
@K
.hr@K f ;r@Kui C u�;�f / d
@K D

Z
K

	˝r2V ru;ru
˛C ��r2u

��2
 d


�
Z
K

�
1

N � n
hru;rVi2 C 1

n
.�u/2

�
d
 �

Z
K

1

N
.�u � hru;rVi/2d


D 1

N

Z
K
.Lu/2d
 D 1

N

1


.K/
.

Z
@K

fd
@K/
2:

4 Concluding Remarks

4.1 Refined Version

Peculiarly, as in [15], it is possible to strengthen Theorem 1.1 by applying it to f C z
and optimizing over z 2 R. This results in the following stronger inequality:

Z
@M

H� f
2d
@M � .log I� /0.�.K//.

Z
@K

fd�@K/
2 C

�R
@K fˇd�@K

�2
R
@K ˇd�@K



Z
@K

˝
II�1
@K r@K f ;r@K f

˛
d�@K ;

where:

ˇ.x/ WD .log I� /0.�.K//�@K.@K/� H� .x/ :

Note that indeed
R
@K ˇd�@K � 0 by Corollary 1.2, so the additional third term

appearing above is always non-negative.
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Recall that our original weaker inequality (1) is an equivalent infinitesimal form
of Ehrhard’s inequality, and so one cannot hope to obtain a strict improvement in the
cases when Ehrhard’s inequality is sharp (and indeed when K is a half-plane we see
that ˇ � 0). On the other hand, it would be interesting to integrate back the stronger
inequality above and obtain a refined version of Ehrhard’s inequality, which would
perhaps be better suited for obtaining delicate stability results (cf. [12, 18] and the
references therein). We leave this for another occasion.

4.2 Mean-Curvature Inequality Implies Isoperimetric
Inequality

As explained in Sect. 2, Theorem 1.1 is an equivalent infinitesimal form of Ehrhard’s
inequality (for convex domains K;L), i.e. equivalent to the concavity of Œ0; 1� 3 t 7!
˚�1.�..1� t/K C tL//. Similarly, Corollary 1.2, which is obtained by setting f � 1

in Theorem 1.1, is an equivalent infinitesimal form of the concavity of:

RC 3 t 7! F.t/ WD ˚�1.�.K C tBn
2//;

where Bn
2 denotes the Euclidean unit-ball; indeed, Corollary 1.2 expresses precisely

that F00.0/ 
 0.
It is worthwhile to note that the latter concavity may be used to recover the

Gaussian isoperimetric inequality (albeit only for convex sets). The following is
a variant on an argument due to Ledoux (private communication), who showed how
Ehrhard’s inequality with L being a multiple of Bn

2, may be used to recover the
Gaussian isoperimetric inequality (for general Borel sets). Indeed, the concavity of
F implies that:

F0.0/ � lim
t!1

F.t/� F.0/

t
D lim

t!1
F.t/

t
� lim

t!1
˚�1.�.tBn

2//

t
:

A straightforward calculation (e.g. [3]) verifies that the right-hand-side is equal to
1, and hence:

1 
 F0.0/ D .˚�1/0.�.K//�@K.@K/;

or equivalently:

�@K.@K/ � I� .�.K//;

as asserted.
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4.3 Ehrhard’s Inequality is False for CD.1;1/Measures

It is well known (e.g. [17]) that various isoperimetric, functional and concentration
inequalities which are valid for the Gaussian measure are also valid for any measure

 D exp.�V/dx on Rn with r2V � Id, the so-called class of CD.1;1/ measures
in Euclidean space.

However, we remark that it is not possible to extend Ehrhard’s inequality (and
hence Theorem 1.1) to this more general class, providing in particular a negative
answer to Question 1 for several natural members of this class. Indeed, this is
witnessed already by considering the probability measure 
 obtained by condition-
ing the one-dimensional Gaussian measure onto a half-line .�1; b� (which may
clearly be approximated in total-variation by probability measures exp.�V/dx with
V 00 � 1). It is not true that:

˚�1.
..1� t/K C tL// � .1 � t/˚�1.
.K//C t˚�1.
.L//;

even for half-lines K;L. If that were the case, it would mean that the function
.�1; b� 3 t 7! ˚�1.˚.t/=˚.b// is concave, but it is easy to see that this is not
the case as t ! b. The same argument shows that RC 3 t 7! ˚�1.
.K C tŒ�1; 1�//
is not concave even for a half-line K, and so we see that even Corollary 1.2 cannot
be extended to the CD.1;1/ setting.

4.4 Dual Inequality for Mean-Convex Domains

Lastly, for completeness, we specialize a dual Poincaré-type inequality obtained in
[15], for the case of the Gaussian measure:

Theorem 4.1 (Dual Inequality for Mean-Convex Domains) Let K � Rn denote
a compact set with C2 smooth boundary which is strictly Gaussian mean-convex,
i.e. H� > 0 on @K. Then for any f 2 C2.@K/ and C 2 R:

Z
@K

hII@K r@K f ;r@K f i d�@K 

Z
@K

1

H�

	
L@K f C . f � C/

2


2
d�@K :

Here L@K D �@K � hx;r@Ki denotes the induced Ornstein–Uhlenbeck generator on
@K.
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invariant measures. Zap. Naučn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 41, 14–
24, 165 (1974). Problems in the theory of probability distributions, II

arxiv.org/abs/1310.2526


Rigidity of the Chain Rule and Nearly
Submultiplicative Functions

Hermann König and Vitali Milman

Abstract Assume that T W C1.R/ ! C.R/ nearly satisfies the chain rule in the
sense that

jT. f ı g/.x/� .Tf /.g.x//.Tg/.x/j 
 S.x; . f ı g/.x/; g.x//

holds for all f ; g 2 C1.R/ and x 2 R, where S W R3 ! R is a suitable fixed function.
We show under a weak non-degeneracy and a weak continuity assumption on T that
S may be chosen to be 0, i.e. that T satisfies the chain rule operator equation, the
solutions of which are explicitly known. We also determine the solutions of one-
sided chain rule inequalities like

T. f ı g/.x/ 
 .Tf /.g.x//.Tg/.x/C S.x; . f ı g/.x/; g.x//

under a further localization assumption. To prove the above results, we investigate
the solutions of nearly submultiplicative inequalities on R

�.˛ˇ/ 
 �.˛/�.ˇ/C d

and characterize the nearly multiplicative functions on R

j�.˛ˇ/� �.˛/�.ˇ/j 
 d

under weak restrictions on �.
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1 Introduction and Results

Several fundamental operations in analysis and geometry such as derivatives, the
Fourier transform, the Legendre transform, multiplicative maps or the duality of
convex bodies may be characterized, essentially, by elementary properties or as
solutions of simple operator functional equations on classical function spaces, cf.
[2–4]. The latter may be abstract versions of the Leibniz or the chain rule. In this
paper, we concentrate on the question to what extent the chain rule and perturbations
of the chain rule determine the derivative. It turns out that the chain rule shows a
remarkable rigidity and stability which we will study in this paper. This involves
the investigation of nearly multiplicative functions on the real line, i.e. functions
which are multiplicative up to some fixed error. We start with known results on the
solutions of chain rule equation before considering perturbations of it.

Let T W C1.R/ ! C.R/ be an operator satisfying the chain rule equation

T. f ı g/ D ..Tf / ı g/ � Tg ; f ; g 2 C1.R/ :

By Artstein-Avidan et al. [3], if T is not identically zero on the bounded functions
and T.�Id/.0/ < 0, T has the form

Tf D H ı f

H
sgnf 0 j f 0jp

for a suitable p > 0 and a continuous function H W R ! R>0. The equation is very
stable: if it is replaced by

V. f ı g/ D ..T1f / ı g/ � .T2g/ ; f ; g 2 C1.R/

for operators V;T1;T2 W C1.R/ ! C.R/, its solutions under a mild condition of
non-degeneracy of V are of a very similar type:

Vf D .c1 ı f / � c2 � Tf ; T1 f D .c1 ı f / � Tf ; T2 f D c2 � Tf

where c1; c2 2 C.R/ and T has the above form, cf. [5]. It is also stable in another
sense: if S W R3 ! R is a function such that

T. f ı g/ D ..Tf / ı g/ � Tg C S.�; f ı g.�/; g.�// ; f ; g 2 C1.R/

holds, under weak conditions one may show that the only possible choice is S D 0,
i.e. that T satisfies the chain rule equation properly, cf. [5]. The stability even extends
to the chain rule inequality

T. f ı g/ 
 ..Tf / ı g/ � Tg ; f ; g 2 C1.R/
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which under weak assumptions on T has only solutions of the form

Tf D
8<
:

Hıf
H f 0p f 0 � 0

�A Hıf
H j f 0jp f 0 < 0

9=
;

with p and H as before and a constant A � 1; A D jT.�Id/.0/j, cf. [6]. In this
paper, we study a joint extension of the last two problems. We consider the one-
sided operator inequality

T. f ı g/ 
 ..Tf / ı g/ � Tg C S.�; f ı g.�/; g.�// ; f ; g 2 C1.R/

and the two-sided operator inequality

jT. f ı g/� ..Tf / ı g/ � Tgj 
 S.�; f ı g.�/; g.�// ; f ; g 2 C1.R/

and determine the general form of their solutions under reasonable assumptions
on T. In the case of the last operator inequality, S may be chosen to be 0, i.e. T
actually again satisfies the chain rule operator equation. Hence these equations and
inequalities are very rigid and stable under perturbations.

In our previous papers the difference T. f ı g/ � ..Tf / ı g/ � Tg was assumed to
be a function of .x; . f ı g/.x/; g.x// which is much stronger than assuming that it is
only bounded by a function of these three parameters as done in this paper.

After localizing the problem of the two-sided operator inequality, i.e. showing
that there is a function F W R3 ! R such that Tf .x/ D F.x; f .x/; f 0.x//, f 2 C1.R/,
x 2 R, the two operator inequalities for T turn into functional inequalities for F.
To solve these, we have to characterize continuous functions � W R ! R which are
submultiplicative up to constants. We start with a result for these functions which
has some independent interest.

Assumption 1 Let � W R ! R be continuous with lim˛!1 �.˛/ D 1. Suppose
also that there is ˛0 > 0 such that �.�˛0/ < 0.

Theorem 1 Let � W R ! R satisfy Assumption 1 and suppose that there is d 2 R

such that for all ˛; ˇ 2 R

�.˛ˇ/ 
 �.˛/�.ˇ/C d : (1)

Then d � 0 and there are p > 0 and A � 1 such that for all ˛ > 0

�.˛/ D ˛p ; �A˛p 
 �.�˛/ 
 min.� 1
A
˛p;�A˛p C d/ : (2)

Moreover the limit lim˛!1 �.�˛/
�˛p exists and A D lim˛!1 �.�˛/

�˛p .
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The case d D 0 was considered in Theorem 1.1 of [6]. For d ¤ 0, in general
�jR<0 is not of power type, although it is a bounded perturbation of the power
type function �A˛p, and the estimates in (2) are the best possible, as the following
example shows for p D 1, A D 2 and d D 3

2
:

Example 1 Define the continuous, piecewise affine function � W R ! R by

�.˛/ WD

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

˛ ˛ � 0

1
2
˛ ˛ 2 Œ�1; 0/
3C 7

2
˛ ˛ 2 Œ�2;�1/

2˛ ˛ 2 .�1;�2/

9>>>>>>>=
>>>>>>>;
:

Then �.˛ˇ/ 
 �.˛/�.ˇ/C d for all ˛; ˇ 2 R, where d D 3
2
. Obviously, �.˛ˇ/ D

�.˛/�.ˇ/ for ˛; ˇ � 0.

For ˛; ˇ 
 0, �.˛ˇ/ D ˛ˇ. Clearly �.˛/ 
 1
2
˛. Hence if ˇ 
 �2, �.˛/�.ˇ/ �

1
2
˛2ˇ D ˛ˇ D �.˛ˇ/. If ˛; ˇ 2 Œ�2; 0�, �.˛/�.ˇ/ � 1

2
˛�.ˇ/ � ˛ˇ � 3

2
. The last

inequality is easily checked for ˇ 2 Œ�1; 0� and ˇ 2 Œ�2;�1� separately.
For ˛ < 0 < ˇ, �.ˇ/ D ˇ and �.˛/ � 2˛, hence �.˛/�.ˇ/ � 2˛ˇ. If

˛ˇ 2 .�1;�2�, �.˛ˇ/ D 2˛ˇ 
 �.˛/�.ˇ/. If ˛ˇ 2 Œ�1; 0/, �.˛ˇ/ D 1
2
˛ˇ 


2˛ˇ C 3
2


 �.˛/�.ˇ/C 3
2
. If ˛ˇ 2 Œ�2;�1/, �.˛ˇ/ � �.˛/�.ˇ/ 
 .3C 7

2
˛ˇ/ �

2˛ˇ D 3C 3
2
˛ˇ 
 3

2
.

This shows that �.˛ˇ/ 
 �.˛/�.ˇ/ C 3
2

holds for all ˛; ˇ 2 R, and that the
estimate in (2) with A D 2, p D 1 cannot be improved, in general.

For the analogue of Theorem 1 for nearly supermultiplicative functions we need
a modified assumption.

Assumption 2 Let � W R ! R be continuous with lim˛!1 �.�˛/ D �1.
Suppose also that there is ˛0 > 0 such that �.˛0/ > 0.

Theorem 2 Let � W R ! R satisfy Assumption 2 and suppose that there is d 2 R

such that for all ˛; ˇ 2 R

�.˛ˇ/ � �.˛/�.ˇ/ � d :

Then d � 0 and there are p > 0 and 0 < B 
 1 such that for all ˛ > 0

�.˛/ D ˛p ; max.� 1
B
˛p;�B˛p � d/ 
 �.�˛/ 
 �B˛p :

Moreover the limit lim˛!1 �.�˛/
�˛p exists and B D lim˛!1 �.�˛/

�˛p .
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As an immediate consequence of both theorems we get

Corollary 3 Suppose that � W R ! R satisfies Assumptions 1 and 2 and that there
is d 2 R such that for all ˛; ˇ 2 R

j�.˛ˇ/� �.˛/�.ˇ/j 
 d :

Then there is p > 0 such that for all ˛ 2 R

�.˛/ D sgn˛ j˛jp :

We will use the previous results to study the rigidity and the stability of the chain
rule operator equation. To formulate our result, we need the following assumptions.

Definition An operator T W C1.R/ ! C.R/ is called pointwise continuous provided
that for any functions f ; fn 2 C1.R/, n 2 N such that fn ! f and f 0

n ! f 0 converge
uniformly on compact subsets of R, we have that .Tfn/.x/ ! .Tf /.x/ converges
pointwise for all x 2 R.

Definition An operator T W C1.R/ ! C.R/ is called non-degenerate provided
that

(a) for all open intervals I � R, all x 2 I and all t > 0 there are functions f1; f2 2
C1.R/ with f1.x/ D f2.x/ D x, Imf1 � I, Imf2 � I and .Tf1/.x/ � t, .Tf2/.x/ 

�t,

(b) for some x0 2 R, T.�Id/.x0/ < 0.

We then have the following rigidity result for the chain rule operator inequality.

Theorem 4 Assume that T W C1.R/ ! C.R/ is pointwise continuous and non-
degenerate. Suppose further that there is a function S W R3 ! R such that the
perturbed chain operator inequality

jT. f ı g/.x/� .Tf /.g.x// � .Tg/.x/j 
 S.x; . f ı g/.x/; g.x// (3)

holds for all f ; g 2 C1.R/ and all x 2 R. Then there are p > 0 and a positive
continuous function H W R ! R>0 such that for all f 2 C1.R/ and all x 2 R

Tf .x/ D H. f .x//

H.x/
sgnf 0.x/ j f 0.x/jp :

This implies, in particular, that we may choose S D 0, i.e. that we have equality

T. f ı g/.x/ D .Tf /.g.x// � .Tg/.x/ ; f ; g 2 C1.R/; x 2 R :
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The proof of Theorem 4 relies on the following localization result:

Proposition 5 Assume that T W C1.R/ ! C.R/ is non-degenerate and pointwise
continuous. Suppose further that there is a function S W R3 ! R such that the
perturbed chain rule inequality

jT. f ı g/.x/� .Tf /.g.x//.Tg/.x/j 
 S.x; . f ı g/.x/; g.x//

holds for all f ; g 2 C1.R/ and all x 2 R. Then there is a function F W R3 ! R such
that for all f 2 C1.R/ and all x 2 R

.Tf /.x/ D F.x; f .x/; f 0.x// :

This means that Tf .x/ depends only on x; f .x/ and f 0.x/, i.e. the germ of f at x,
and does not depend on values or derivatives of f on values y different from x. The
two-sided chain rule operator inequality then turns into two functional inequalities
for F which we then will solve using Theorems 1 and 2. In the case of the one-sided
operator inequality

T. f ı g/.x/ 
 .Tf /.g.x//.Tg/.x/C S.x; . f ı g/.x/; g.x// ;

localization is not true, in general, as the following example shows, even though it
satisfies the non-degeneracy and the pointwise continuity assumption.

Example 2 For f 2 C1.R/, x 2 R with f 0.x/ 2 .�1; 0/, let If ;x denote the interval
If ;x WD Œx C f 0.x/.1C f 0.x//; x�. Then 0 < jIf ;xj 
 1

4
. Let Jf .x/ WD 1

jIf ;xj
R
If ;x

f .y/ dy.

Choose any non-constant function H 2 C.R/ with 4 
 H 
 5. For f 2 C1.R/,
x 2 R put

Tf .x/ WD

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

H. f .x//
H.x/ f 0.x/ f 0.x/ � 0

H. f .x//
H.x/ 4f

0.x/ f 0.x/ 
 �2
H. f .x//
H.x/ .7C 15

2
f 0.x// �2 < f 0.x/ 
 �1

H.Jf .x//
H.x/

1
2
f 0.x/ �1 < f 0.x/ < 0

9>>>>>>>=
>>>>>>>;
:

Then T maps C1.R/ into C.R/ and satisfies

T. f ı g/.x/ 
 .Tf /.g.x// � .Tg/.x/C 5 I f ; g 2 C1.R/; x 2 R :

We will prove this statement in Sect. 4. Obviously, T is not localized.
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However, assuming that T is defined locally, we can determine the general form
of solutions of the one-sided chain rule operator inequality:

Theorem 6 Assume that T W C1.R/ ! C.R/ is pointwise continuous and non-
degenerate. Suppose further that there is a function S W R3 ! R such that the
perturbed chain operator inequality

T. f ı g/.x/ 
 .Tf /.g.x// � .Tg/.x/C S.x; . f ı g/.x/; g.x// (4)

holds for all f ; g 2 C1.R/ and all x 2 R. Assume also that there is a function
F W R3 ! R such that

Tf .x/ D F.x; f .x/; f 0.x// I f 2 C1.R/; x 2 R :

Then there are p > 0, A � 1, a positive continuous function H W R ! R>0 and a
function K W R2 �R<0 ! R<0 which is continuous in the second and third variable
with

�A˛p 
 K.x; z;�˛/ 
 min.� 1
A
˛p;�A˛p C H.x/

H.z/
minŒS.x; z; x/; S.x; z; z/�/ ;

for all x; z 2 R, ˛ > 0, where the limits limˇ!1 K.x;z;�ˇ/
�ˇp exist for all x; z 2 R with

A D limˇ!1 K.x;z;�ˇ/
�ˇp such that for all f 2 C1.R/ and x 2 R

Tf .x/ WD
8<
:

H. f .x//
H.x/ f 0.x/p f 0.x/ � 0

H. f .x//
H.x/ K.x; f .x/; f 0.x// f 0.x/ < 0

9=
; :

The property of K means that for negative values of f 0.x/, Tf .x/ is
reasonably close to �A H. f .x//

H.x/ j f 0.x/jp, deviating from this value by at most
maxŒS.x; f .x/; x/; S.x; f .x/; f .x//�. The inequality case with S D 0 has been
considered in Theorem 1.2 of [6] and the equality case that

T. f ı g/.x/ D .Tf /.g.x// � .Tg/.x/C S.x; . f ı g/.x/; g.x//

with general S has been solved in Theorem 8 of [5].
A similar result holds for the perturbed supermultiplicative operator inequality

T. f ı g/.x/ � .Tf /.g.x// � .Tg/.x/� S.x; . f ı g/.x/; g.x//

with the property of K being replaced by

� 1
B
˛p 
 K.x; y;�˛/ 
 �B˛p ; 0 < lim

ˇ!1
K.x; y;�ˇ/

�ˇp
D B 
 1

for all x; y 2 R and ˛ > 0.
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Of course, Theorem 4 is a consequence of Proposition 5, Theorem 6 and its
supermultiplicative analogue.

2 Proof of Theorems 1 and 2

To prove Theorem 1, we need a lemma.

Lemma 7 Under the assumptions of Theorem 1, �.1/ D 1, �.0/ D 0 and �jR<0 <
0 < �jR>0 . Moreover

lim
˛!1 �.˛/ D 1 ; lim

˛!1�.�˛/ D �1 ;

where both limits exist. The same is true under the assumptions of Theorem 2.

Proof

(i) If there would be 0 ¤ N̨ 2 R with �. N̨ / D 0, by (1)

�.˛/ 
 �. N̨ /�.˛N̨ /C d ; ˛ 2 R

so that � would be bounded from above, contradicting Assumption 1. Since �
is continuous and lim˛!1 �.˛/ D 1, we have that �.˛/ > 0 for all ˛ > 0

since otherwise there would be a zero of �. Hence �jR>0 > 0.
(ii) By assumption, lim˛!1 �.˛/ D 1. Choose ˛n ! 1 with limn!1 �.˛n/ D

1. Then �.˛n/ 
 �.1/�.˛n/ C d implies �.1/ � 1: if 0 < �.1/ < 1,
supn2N �.˛n/ 
 d=.1��.1//would be bounded. Since � is continuous, M WD
sup�jŒ0;1� is finite. Choose n0 2 N such that for all n � n0, �.˛n/ � 2d. Then
for all ˛ � ˛n, n � n0

�.˛n/ 
 �.
˛n

˛
/�.˛/C d 
 M�.˛/C 1

2
�.˛n/ ;

�.˛/ � 1
2M�.˛n/. Hence lim˛!1 �.˛/ D 1 and therefore the limit

lim˛!1 �.˛/ exists and is 1.
(iii) By Assumption 1 there is ˛0 > 0 with �.�˛0/ < 0. For all ˛ > 0

�.�˛/ 
 �.�˛0/�. ˛
˛0
/C d :

Hence lim˛!1 �. ˛
˛0
/ D 1 implies that lim˛!1 �.�˛/ D �1 and

�.�˛/ 
 �.1/�.�˛/C d
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yields �.1/ 
 1. Hence �.1/ D 1. Again by continuity, �jR<0 < 0, since
otherwise � would have a zero in R<0. Since � is continuous and �jR<0 < 0 <
�jR>0 , �.0/ D 0 follows.

(iv) In the case of Theorem 2, under Assumption 2, again there is no non-zero N̨
with �. N̨ / D 0, since otherwise in view of

�.�˛/ � �. N̨ /�.�˛N̨ /� d D �d

� would be bounded from below, contradicting lim˛!1 �.�˛/ D �1. This
again yields that �jR<0 < 0 < �jR>0 . We claim that lim˛!1 �.�˛/ D �1:
Choose ˛n ! 1 with �.�˛n/ ! �1. There is n0 2 N such that for all
n � n0, j�.�˛n/j D ��.�˛n/ � 2d. Also M WD sup�jŒ0;1� is finite. Therefore
for all ˛ � ˛n, n � n0

M�.�˛/ 
 �.
˛n

˛
/�.�˛/ 
 �.�˛n/C d 
 1

2
�.�˛n/ ;

�.�˛/ 
 1
2M�.�˛n/ proving lim˛!1 �.�˛/ D �1. Since �.˛/ �

�.�1/�.�˛/� d, also lim˛!1 �.˛/ D 1. �

Proof of Theorem 1

(a) For any b > 1, by Lemma 7 there is �0 D �0.b/ � 1 such that for any ˛; ˇ 2 R

with ˛ˇ � �0 we have �.˛ˇ/ � b
b�1d and for all ˛; ˇ 2 R with ˛ˇ 
 ��0 we

have �.˛ˇ/ 
 � 1
b�1d. Then by (1) for ˛ˇ � �0

1

b
�.˛ˇ/C d 
 1

b
�.˛ˇ/C b � 1

b
�.˛ˇ/

D �.˛ˇ/ 
 �.˛/�.ˇ/C d ; �.˛ˇ/ 
 b�.˛/�.ˇ/ ; ˛ˇ � �0 :

Also by (1) for ˛ˇ 
 ��0
b�.˛ˇ/ D �.˛ˇ/C .b � 1/�.˛ˇ/ 
 �.˛ˇ/� d 
 �.˛/�.ˇ/ ;

b�.˛ˇ/ 
 �.˛/�.ˇ/ ; ˛ˇ 
 ��0 :

Let �1 WD b�, �2 WD 1
b�. Then �1 D b2�2 and

8<
:
�1.˛ˇ/ 
 �1.˛/�1.ˇ/ ; ˛ˇ � �0

�2.˛ˇ/ 
 �2.˛/�2.ˇ/ ; ˛ˇ 
 ��0 ;

9=
; (5)

i.e. we have submultiplicativity for large j˛ˇj .
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(b) Define f W R ! R by f .t/ WD ln�1.exp.t//, t 2 R and put t0 WD t0.b/ WD
ln �0.b/ � 0. For all ˛ > 0

�1.˛/ D exp. f .ln ˛// ; �.˛/ D exp. f .ln˛/ � ln b/ :

For all s; t 2 R with t C s � t0, exp.t/ exp.s/ � �0 and hence by (5)

f .t C s/ D ln�1.exp.t/ exp.s//


 ln�1.exp.t//C ln�1.exp.s// D f .t/C f .s/ (6)

for t C s � t0. Since lim˛!1 �1.˛/ D 1, �1.0/ D 0 and �1 is continuous, we
have

lim
t!1 f .t/ D 1 ; lim

t!�1 f .t/ D �1 :

By (6), f .t0/ 
 f .t0 � t/C f .t/, t 2 R which yields for t ! 1 with

f .t0/

t
C f .t0 � t/

�t

 f .t/

t

that limt!1
f .t/
t � 0. Note here that for large t > 0, f .t0�t/ < 0 and f .t0�t/

�t � 0.

Hence p WD inft�t0
f .t/
t 2 R is finite, using that f is continuous since �1 is. We

claim that

p WD inf
t�t0

f .t/

t
D lim

t!1
f .t/

t
; (7)

and that the limit exists. To see this, let � > 0. Choose c > t0 � 0 with f .c/
c 


p C �. For any t � 2c, choose n 2 N with t 2 Œ.n C 1/c; .n C 2/c�. Then
t � nc 2 Œc; 2c�. Let M WD sup f jŒc;2c�. By (6)

p 
 f .t/

t
D f .nc C .t � nc//

t

 nf .c/

t
C f .t � nc/

t

 nc

t

f .c/

c
C M

t
:

Since nc
t ! 1 for t ! 1, we find for any � > 0

p 
 lim
t!1

f .t/

t

 p C � D inf

t�t0

f .t/

t
C � :

Hence limt!1 f .t/
t exists and is equal to p D inft�t0

f .t/
t . Since limt!1 f .t/ D

1, it follows that p � 0.
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(c) By (6), f .t/ 
 f .0/ C f .t/ for any t � t0. Therefore f .0/ � 0. For any t 2 R,
choose s 2 R such that s � t0 and s C t � t0. Then by (6)

f .s/ 
 f .s C t/C f .�t/ 
 f .s/C f .t/C f .�t/ :

Hence f .t/C f .�t/ � 0 for any t 2 R. Define a W R ! R by f .t/ D pt C a.t/,
t 2 R. Then by (7), a.t/ � 0 for any t � t0 and limt!1 a.t/

t D 0 as well as
a.s C t/ 
 a.s/C a.t/ for s C t � t0. Note that f .t/ � �f .�t/ implies

�1.˛/ D exp. f .ln ˛// � exp.�f .� ln˛// D 1

�1.
1
˛
/
:

(d) We now turn to �jR<0 . Define g W R ! R by g.t/ WD ln j�2.� exp.t//j,
t 2 R. Recall that �2 D 1

b�, �1 D b2�2 and �2jR<0 < 0 so that �2.�˛/ D
� exp.g.ln˛// for any ˛ > 0. For any t; s 2 R with t C s � t0 D ln �0,
� exp.t/ exp.s/ 
 ��0 and by (5)

�2.� exp.t/ exp.s// 
 �2.� exp.t//�2.exp.s// ;

j�2.� exp.t/ exp.s//j � j�2.� exp.t//j�2.exp.s// D j�2.� exp.t//j 1
b2
�1.exp.s// :

This yields

g.t C s/ � g.t/C f .s/ � 2 ln b ; t C s � t0 : (8)

We find for any t 2 R using (8) and f .s/ � �f .�s/

g.t0/ � g.t/C f .t0 � t/ � 2 ln b � g.t/� f .t � t0/� 2 ln b

D g.t/ � p.t � t0/� a.t � t0/� 2 ln b :

Define � WD g.t0/ � pt0. Then

g.t/ 
 � C pt C a.t � t0/C 2 ln b ; t 2 R : (9)

For t � t0 there is a reverse type inequality since by (8)

g.t/ � g.t0/C f .t � t0/� 2 ln b

D g.t0/C p.t � t0/C a.t � t0/� 2 ln b ;

g.t/ � � C pt C a.t � t0/� 2 ln b ; t � t0 : (10)
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Note that for t � 2t0, t � t0 � t0, a.t � t0/ � 0 in (9) and (10). Since
limt!1 a.t/

t D 0, (9) and (10) imply, in particular, that limt!1 g.t/
t D p and

for t � t0

jg.t/ � .� C pt C a.t � t0//j 
 2 ln b : (11)

(e) We know that a is submultiplicative for large arguments. We now want to show
that a satisfies a weak form of supermultiplicativity for large arguments and that
a is bounded. Let A WD exp.�/. Then for any ˛ � �0 D exp.t0/ by (11)

exp.g.ln.˛// D A˛p exp.a.ln
˛

�0
// �˛ ;

where 1
b2


 �˛ 
 b2. Therefore we have by definition of f and g

8<
:
�.˛/ D 1

b�1.˛/ D 1
b˛

p exp.a.ln ˛// ; ˛ > 0

�.�˛/ D b�2.�˛/ D �b exp.g.ln ˛// D �A˛p exp.a.ln ˛
�0
//b�˛ ; ˛ � �0

9=
; ;
(12)

where 1
b2


 �˛ 
 b2. Let ˛ � �0, ˇ > 0. By (1)

�.�˛ˇ/ 
 �.�˛/�.ˇ/C d

where �.�˛/ < 0 < �.ˇ/, �.�˛ˇ/ < 0. Hence by (12)

�A.˛ˇ/p exp.a.ln.
˛

�0
ˇ///b3 
 �.�˛ˇ/ 
 �.�˛/�.ˇ/C d


 �A˛p exp.a.ln.
˛

�0
///
1

b
ˇp exp.a.ln.ˇ///

1

b
C d

which yields

b5 expŒa.ln.
˛

�0
/C ln.ˇ//� � expŒa.ln.

˛

�0
//C a.ln.ˇ//� � db2

A.˛ˇ/p
:

This yields for any t D ln. ˛
�0
/ � 0 and s D ln.ˇ/ 2 R

a.t/C a.s/ 
 lnŒb5 exp.a.t C s//C db2

A�p0 exp. p.t C s//
� :

Since for any x � 1 and � > 0

ln.x C �/ D ln x C ln.1C �

x
/ 
 ln x C ln.1C �/ 
 ln x C � ;
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we find for t C s � t0 when a.t C s/ � 0 and t � 0

a.t/C a.s/ 
 a.t C s/C 5 ln b C db2

A�p0 exp. p.t C s//
:

In particular, for t D s � 1
2
t0 D 1

2
t0.b/

2a.t/ 
 a.2t/C 5 ln b C db2

A�p0 exp.2pt/
:

We know that p � 0. Assume first that p > 0. Then there is t1 D t1.b/ � 1
2
t0.b/

such that for all t � t1

2a.t/ 
 a.2t/C 6 ln b : (13)

We claim that this implies a.t/ 
 ı WD 6 ln b for all t � t1. If this would be
false, there would be B > 1 and Nt � t1 such that a.Nt/ � Bı. Then by (13)

2Bı 
 2a.Nt/ 
 a.2Nt/C ı ; .2B � 1/ı 
 a.2Nt/ :

Iterating this, we get

2.2B � 1/ı 
 2a.2Nt/ 
 a.4Nt/C ı ; .4B � 3/ı 
 a.4Nt/

and by induction

2n.B � 1/ı 
 .2nB � 2n C 1/ı 
 a.2nNt/ ;

0 < .B � 1/ıNt 
 a.2nNt/
2nNt :

However, limn!1 a.2nNt/
2nNt D 0. This yields a contradiction.

We now show that p D 0 is impossible. If p D 0, instead of (13) we would
have for all t � 1

2
t0

2a.t/ 
 a.2t/C 5 ln b C db2

A
:

The same proof as above then shows that a.t/ 
 5 ln bC db2

A DW ı for all t � 1
2
t0.

Hence a is bounded and for ˛ ! 1

�.˛/ D ˛p exp.a.ln˛// D exp.a.ln˛//
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would be bounded, contradicting Assumption 1. Hence p > 0 and 0 
 a.t/ 

6 ln b holds for all t � t1.

( f) Let t2 WD max.t0; t1/ and �2 WD exp.t2/. The previous bound for a and (12)
together imply for all ˛ � �2 � 1

1

b
˛p 
 �.˛/ D 1

b
˛p exp.a.ln˛// 
 b5˛p

and for all ˛ � �0�2 DW �1

�Ab9˛p 
 �.�˛/ D �A˛p exp.a.ln
˛

�0
//b�˛ 
 �A

1

b
˛p :

Hence for all ˛ � �1

1

b

 �.˛/

˛p

 b5 ;

1

b

 �.�˛/

�A˛p

 b9 : (14)

Since b > 1 was arbitrary, we find

lim
˛!1

�.˛/

˛p
D 1 ; lim

˛!1
�.�˛/
�A˛p

D 1 :

Note here that by definition of A, A formally depends on b. However, 1
b 


�.�˛/
�A˛p 
 b9 for all ˛ � �1.b/ implies for b ! 1 and ˛ ! 1 that
limb!1 A.b/ DW A exists.

(g) We now claim that for all ˛ > 0, �.˛/ D ˛p. Let ˛ > 0. Choose ˇ > 0 so large
that ˛ˇ � �1.� �0/ and ˇ � �1. Then by (5) and (14)

1

b
.˛ˇ/p 
 �.˛ˇ/ 
 b�.ˇ/�.˛/ 
 b6ˇp�.˛/ ;

1

b7
˛p 
 �.˛/ :

Since this holds for all b > 1, �.˛/ � ˛p. For the same choice of ˇ > 0, again
by (5) and (14)

�Ab9.˛ˇ/p 
 �.�˛ˇ/ 
 1

b
�.�ˇ/�.˛/ 
 �A

1

b2
ˇp�.˛/ ; �.˛/ 
 b11˛p ;

i.e. �.˛/ 
 ˛p for b ! 1. This proves that �.˛/ D ˛p for all ˛ > 0.
(h) We now show �.�˛/ � �A˛p for all ˛ > 0. Let ˛ > 0 and choose ˇ � �1

such that ˛ˇ � �1. Then by (5), (14) and part (g)

�A.˛ˇ/pb9 
 �.�˛ˇ/ 
 1

b
�.�˛/�.ˇ/ D 1

b
�.�˛/ˇp ; �A˛pb10 
 �.�˛/ :

Since b > 1 was arbitrary, �.�˛/ � �A˛p for all ˛ > 0.
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Next we prove �.�˛/ 
 � 1
A˛

p for all ˛ > 0. Let ˛ > 0 and choose ˇ �
�1 such that ˛ˇ � �1. We get similarly as before, noting that �.�˛/ < 0,
�.�ˇ/<0,

.˛ˇ/p D �.˛ˇ/ 
 b�.�˛/�.�ˇ/ 
 b�.�˛/.�Aˇpb9/ ; �.�˛/ 
 � 1
A
˛p

1

b10

and for b ! 1, �.�˛/ 
 � 1
A˛

p, ˛ > 0. Clearly, A � 1.
Let ˛ > 0 and choose ˇ > 0 such that ˛ˇ � �1. Then by (1) and (14)

�.�˛/ D �.�˛ˇ 1
ˇ
/ 
 �.�˛ˇ/ 1

ˇp
C d 
 �1

b
A.˛ˇ/p

1

ˇp
C d D �1

b
A˛p C d :

For b ! 1 we get a second estimate for �.�˛/: �.�˛/ 
 �A˛p C d. �
Proof of Theorem 2 The proof of Theorem 2 for nearly supermultiplicative func-
tions is similar to the one of Theorem 1, reversing inequalities. We indicate some
changes. In particular, by Lemma 7, for any b > 1 there is �0 D �0.b/ � 1 such that
for all ˛; ˇ 2 R

�.˛ˇ/ � 1

b � 1
d ; ˛ˇ � �0 ;

�.˛ˇ/ 
 � b

b � 1
d ; ˛ˇ 
 ��0 :

Then for �1 WD 1
b�, �2 WD b�, �2 D b2�1

�1.˛ˇ/ � �1.˛/�1.ˇ/ ; ˛ˇ � �0 ;

�2.˛ˇ/ � �2.˛/�2.ˇ/ ; ˛ˇ 
 ��0 :

Let f .t/ WD ln �1.exp.t//, t 2 R and t0 WD ln �0 � 0. Defining p WD supt�t0
f .t/
t ,

one shows that the limit limt!1 f .t/
t exists and is equal to p. Then p � 0. Define

a W R ! R by f .t/ D pt C a.t/. Then a.t/ 
 0 for all t � t0 and hence �1.˛/ 
 ˛p

for all ˛ � �0. Since lim˛!1 f .t/ D 1, p > 0 follows immediately. Also a.0/ 
 0

and a.t/ 
 �a.�t/ for all t 2 R as well as a.t C s/ � a.t/ C a.s/ for t C s � t0.
Again, let g.t/ WD ln j�2.� exp.t//j, t 2 R. Then (9) and (10) are replaced by

g.t/ � � C pt C a.t � t0/ � 2 ln b ; t 2 R ;

g.t/ 
 � C pt C a.t � t0/C 2 ln b ; t � t0 ;

with � WD g.t0/ � pt0. Again limt!1 g.t/
t D p follows. Parts (e) to (h) of the proof

of Theorem 1 are easily adapted by reversing signs, with 0 < B WD exp.�/ 
 1. �
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Corollary 3 is a combination of Theorems 1 and 2. However, there is a much
simpler direct proof of Corollary 3 which we now give

Second Proof of Corollary 3 By Lemma 7, limj˛j!1 j�.˛/j D 1. Hence by
assumption for all ˛ 2 R and ˇ ! 1

j�.˛ˇ/
�.ˇ/

� �.˛/j 
 d

j�.ˇ/j ! 0 :

This yields that

�.˛/ D lim
ˇ!1

�.˛ˇ/

�.ˇ/
;

where the limit exists. Therefore

�.˛/�.ˇ/ D lim
�;ı!1

�.˛�/

�.�/

�.ˇı/

�.ı/
:

Now �.˛�/�.ˇı/ 
 �.˛ˇ�ı/C d and �.�/�.ı/ � �.�ı/� d. Hence

�.˛/�.ˇ/ 
 lim
�;ı!1

�.˛ˇ�ı/C d

�.�ı/� d
D lim

�;ı!1
�.˛ˇ�ı/

�.�ı/
D �.˛ˇ/ :

Similarly, �.˛/�.ˇ/ � �.˛ˇ/. Hence � W R ! R is multiplicative, �.˛/�.ˇ/ D
�.˛ˇ/ for all ˛; ˇ 2 R which implies by Lemma 13 of [3] that �.˛/ D sgn˛ j˛jp for
a suitable p 2 R and all ˛ 2 R. Since � is continuous in 0 and lim˛!1 �.˛/ D 1,
we have p > 0. �

3 Further Results on Submultiplicativity

To prove the rigidity and stability results for the chain operator inequalities, i.e.
Theorems 6 and 4, we need a proposition on two nearly submultiplicative functions.

Proposition 8 Let �; W R ! R be continuous functions and d; e; f ; g 2 R with
f > 0 be such that for all ˛; ˇ 2 R

�.˛ˇ/ 
 �.˛/�.ˇ/C d (15)

 .˛ˇ/ 
  .˛/�.ˇ/C e (16)

�.˛/ 
 f .˛/ C g : (17)
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Suppose also that � satisfies Assumption 1. Then there exist p > 0, A � 1 and C > 0
such that for all ˛ > 0

�.˛/ D ˛p ; �A˛p 
 �.�˛/ 
 min.� 1
A
˛p;�A˛p C d/ ;

 .˛/ D C˛p ; �AC˛p 
  .�˛/ 
 min.� 1
A
C˛p;�AC˛p C e/ :

Also, lim˛!1 �.�˛/
�˛p D A and lim˛!1  .�˛/

�˛p D AC, where both limits exist.

Hence �jR<0 and  jR<0 are bounded perturbations of the power type functions
�A˛p and �AC˛p.

Proof

(a) Since lim˛!1 �.˛/ D 1, (17) implies that lim˛!1  .˛/ D 1. If there
would be ˛0 ¤ 0 with  .˛0/ D 0, (16) would yield

 .˛/ 
  .˛0/�.
˛

˛0
/C e D e ;

i.e.  would be bounded above, a contradiction. Since  is continuous, this
implies that  jR>0 > 0. By Lemma 7, �.�1/ < 0, and hence (16) yields

 .�˛/ 
  .˛/�.�1/C e ;

i.e. lim˛!1  .�˛/ D �1. Therefore by the continuity of  ,  jR<0 < 0 and
 .0/ D 0.

(b) We claim that C WD lim˛!1  .˛/

˛p
exists with C 
  .1/. By (15) and

Theorem 1, there are p > 0 and A D lim˛!1 �.�˛/
�˛p � 1 such that for all

˛ > 0

�.˛/ D ˛p ; �A˛p 
 �.�˛/ 
 min.� 1
A
˛p;�A˛p C d/ :

By (16),  .˛/ 
  .1/�.˛/C e D  .1/˛p C e. Hence

0 
 lim
˛!1

 .˛/

˛p

 lim

˛!1
 .˛/

˛p

  .1/ :

For any � > 0, there is ˛0 > 0 such that

 .˛0/

˛
p
0


 lim
˛!1

 .˛/

˛p
C � :
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Choose ˇn ! 1 such that

lim
n!1

 .˛0ˇn/

.˛0ˇn/p
D lim

˛!1
 .˛/

˛p
:

Since  .˛0ˇn/ 
  .˛0/�.ˇn/C e D  .˛0/ˇ
p C e ,

lim
˛!1

 .˛/

˛p
D lim

n!1
 .˛0ˇn/

.˛0ˇn/p

  .˛0/

˛
p
0


 lim
˛!1

 .˛/

˛p
C � :

Hence C WD lim˛!1  .˛/

˛p
exists and C 
  .1/.

(c) We claim that D WD lim˛!1  .�˛/
�˛p exists with D 
 j .�1/j C e. We use (16)

for ˛ > 0 in the form

 .�1/ D  .�˛ 1
˛
/ 
  .�˛/�. 1

˛
/C e D  .�˛/ 1

˛p
C e ;

0 
  .�˛/
�˛p 
 j .�1/j C e and e � 0. Therefore

0 
 lim
˛!1

 .�˛/
�˛p 
 lim

˛!1
 .�˛/

�˛p < 1 :

For any � > 0, choose ˛1 > 0 such that ˛p1 > 1=� and

 .�˛1/
�˛p1


 lim
˛!1

 .�˛/
�˛p C � :

Choose ˇn ! 1 such that

lim
n!1

 .�˛1ˇn/
�.˛1ˇn/p D lim

˛!1
 .�˛/

�˛p :

By (16)

 .�˛1/ D  .�˛1ˇn 1
ˇn
/ 
  .�˛1ˇn/�. 1

ˇn
/C e D  .�˛1ˇn/ 1

ˇn
p C e ;

hence

lim
˛!1

 .�˛/
�˛p D lim

n!1
 .�˛1ˇn/
�.˛1ˇn/p 
  .�˛1/

�˛p1
C e

˛1p

 lim

˛!1
 .˛/

˛p
C .1C e/� :

Therefore D WD lim˛!1  .�˛/
�˛p exists and D 
 j .�1/j C e.
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(d) We now show that D D AC. By (16), for ˛; ˇ ! 1,

D D lim
˛;ˇ!1

 .�˛ˇ/
�.˛ˇ/p � lim

˛!1
 .˛/

˛p
lim
ˇ!1

�.�ˇ/
�ˇp

D CA :

On the other hand, by (17), �.˛/ 
 f .˛/ C g, yielding for ˛ > 0 and then
˛ ! 1

1 D �.˛/

˛p

 f

 .˛/

˛p
C g

˛p
; 1 
 fC :

Also by (17), �.�˛/ 
 f .�˛/C g, i.e. with f � 1
C

A D lim
˛!1

�.�˛/
�˛p � f lim

˛!1
 .�˛/

�˛p D fD � D

C
:

Therefore D � CA � CD
C D D, D D CA.

(e) We now claim that  .˛/ D C˛p for all ˛ > 0. Let ˛ > 0. For any � > 0, there
is a large ˇ > 0 such that, using (16),

.C � �/.˛ˇ/p 
  .˛ˇ/ 
  .˛/ˇp C e ;

.C � �/˛p 
  .˛/C e
ˇp

. This yields for � ! 0; ˇ ! 1 that C˛p 
  .˛/.
Similarly, for any � > 0, there is a large ˇ > 0 such that by (16)

�.D C �/.˛ˇ/p 
  .�˛ˇ/ 
  .˛/�.�ˇ/C e ;

.D C �/˛p �  .˛/
�.�ˇ/
�ˇp

� e

ˇp
:

This together with (d) implies for � ! 0; ˇ ! 1 that

D˛p �  .˛/A ;  .˛/ 
 D

A
˛p D C˛p :

Therefore  .˛/ D C˛p for all ˛ > 0.
( f) We now show �AC˛p 
  .�˛/ 
 � 1

AC˛
p for any ˛ > 0. Let ˛ > 0. For any

� > 0, there is a large ˇ > 0 such that

�.D C �/.˛ˇ/p 
  .�˛ˇ/ 
  .�˛/�.ˇ/C e D  .�˛/ˇp C e ;

i.e.

�AC˛p D �D˛p 
  .�˛/ :
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Also, there is a large ˇ > 0 such that

.C � �/.˛ˇ/p 
  .˛ˇ/ 
  .�˛/�.�ˇ/C e ;

C˛p 
 � .�˛/A ;  .�˛/ 
 � 1
A
C˛p :

Finally we claim that  .�˛/ 
 �AC˛p C e for any ˛ > 0. Given any ˛ > 0

and � > 0, there is a large ˇ > 0 such that, using (16),

 .�˛/ D  .�˛ˇ 1
ˇ
/ 
  .�˛ˇ/ 1

ˇp
Ce 
 �.D��/.˛ˇ/p 1

ˇp
Ce D �.D��/˛pCe

which implies for � ! 0 that  .�˛/ 
 �AC˛p C e. �
The supermultiplicative analogue of Proposition 8 is

Proposition 9 Let �; W R ! R be continuous functions and d; e; f ; g 2 R with
f > 0 be such that for all ˛; ˇ 2 R

�.˛ˇ/ � �.˛/�.ˇ/ � d

 .˛ˇ/ �  .˛/�.ˇ/ � e

�.˛/ � f .˛/ � g :

Suppose also that � satisfies Assumption 2. Then there exist p > 0, 0 < B 
 1 and
C > 0 such that for all ˛ > 0

�.˛/ D ˛p ; max.� 1
B
˛p;�B˛p � d/ 
 �.�˛/ 
 �B˛p ;

 .˛/ D C˛p ; max.� 1
B
C˛p;�B˛p � e/ 
  .�˛/ 
 �BC˛p :

Also, lim˛!1 �.�˛/
�˛p D B and lim˛!1  .�˛/

�˛p D BC, where both limits exist.

Both results together imply

Corollary 10 Let �; W R ! R be continuous functions and d; e; f ; g > 0 be such
that for all ˛; ˇ 2 R

j�.˛ˇ/� �.˛/�.ˇ/j 
 d

j .˛ˇ/ �  .˛/�.ˇ/j 
 e

j�.˛/ � f .˛/j 
 g :



Rigidity of the Chain Rule and Nearly Submultiplicative Functions 255

Assume also that � satisfies Assumptions 1 and 2. Then there exist p > 0 and C > 0
such that for all ˛ 2 R

�.˛/ D sgn˛ j˛jp ;  .˛/ D C sgn˛ j˛jp D C�.˛/ :

Proof Just note that by Propositions 8 and 9

1 
 A D lim
˛!1

�.�˛/
�˛p D B 
 1 ;

hence A D B D 1. Therefore we have with AC D C D lim˛!1  .�˛/
�˛p > 0 that

�.�˛/ D �˛p,  .�˛/ D �C˛p holds for all ˛ > 0. We remark that C D 1
f . �

4 Proof of the Rigidity and the Stability of the Chain Rule

We now show that in the case of the two-sided chain rule operator inequality
T is determined locally by function and derivative evaluations. The proof of
Proposition 5 relies on the following lemma.

Lemma 11 Let T W C1.R/ ! C.R/ be non-degenerate, pointwise continuous and
satisfy the perturbed chain rule inequality

T. f ıg/.x/ 
 ..Tf /ıg/.x/�.Tg/.x/CS.x; . fıg/.x/; g.x// I f ; g 2 C1.R/; x 2 R :

Then we have for any open interval I � R:

(a) Let c 2 R, f 2 C1.R/ with f jI D c. Then Tf jI D 0.
(b) Let f 2 C1.R/ with f jI D IdjI . Then Tf jI D 1.
(c) Assuming that

jT. fıg/.x/�..Tf /ıg/.x/�Tg.x/j 
 S.x; fıg.x/; g.x// I f ; g 2 C1.R/; x 2 R ;

we have for any f1; f2 2 C1.R/ with f1jI D f2jI that Tf1jI D Tf2jI .
Proof

(a) For the constant function c, c ı g D c for any g 2 C1.R/, hence
Tc.x/ D T.c ı g/.x/ 
 Tc.g.x// Tg.x/ C S.x; c; g.x// for any x 2 I. By

non-degeneration of T, we find g1;i; g2;i 2 C1.R/ with gj;i.x/ D x, Im.gj;i/ � I,
j 2 f1; 2g; i 2 N and limi!1 Tg1;i.x/ D 1, limi!1 Tg2;i.x/ D �1. Assuming
Tc.x/ > 0, we get Tc.x/ < 0 by applying Tc.x/ 
 Tc.g.x// Tg.x/CS.x; c; x/ for
g D g2;i and letting i ! 1, a contradiction. Assuming Tc.x/ < 0, and applying
g1;i, we find for i ! 1 that Tc.x/ D �1, again a contradiction. Therefore
Tc.x/ D 0 for all x 2 I.
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Now assume that f 2 C1.R/ satisfies f jI D c. Choose g1;i; g2;i for all i 2 N as
before. Then f ı gj;i D c , j 2 f1; 2g; i 2 N and hence, by what we just showed,
for x 2 I, 0 D Tc.x/ 
 Tf .x/ Tgj;i.x/C S.x; c; x/, implying Tf .x/ D 0.

(b) Assume that f 2 C1.R/ satisfies f jI D IdjI . Let x 2 I and choose again
g1;i; g2;i 2 C1.R/ with gj;i.x/ D x , Im.gj;i/ � I, j 2 f1; 2g; i 2 N with
limi!1 Tg1;i.x/ D 1 and limi!1 Tg2;i.x/ D �1. Then f ı gj;i D gj;i for
j 2 f1; 2g; i 2 N and

Tgj;i.x/ D T. f ı gj;i/.x/ 
 Tf .x/ Tgj;i.x/

C S.x; x; x/ ; .1 � Tf .x//Tgj;i.x/ 
 B.x; x; x/ :

If Tf .x/ < 1 would hold, Tgj;i.x/ would be bounded from above, a contradiction
when choosing j D 1. If Tf .x/ > 1 would hold, Tgj;i.x/ would be bounded from
below, a contradiction when choosing j D 2. Therefore Tf .x/ D 1.

(c) Now assume that the two-sided inequality holds

jT. f ı g/.x/� ..Tf / ı g/.x/ � Tg.x/j

 S.x; f ı g.x/; g.x// ;�S.x; f ı g.x/; g.x//


 T. f ı g/.x/� ..Tf / ı g/.x/ � Tg.x/

 S.x; f ı g.x/; g.x// :

Let I � R be open and f1; f2 2 C1.R/ be such that f1jI D f2jI . We claim that
Tf1jI D Tf2jI holds. Let x 2 I. Choose gi for all i 2 N with gi.x/ D x, Im.gi/ � I
and limi!1 Tgi.x/ D 1. Then for g D gi and f D f1 by the above inequalities

�S.x; f1.x/; x/ 
 T. f1 ı gi/.x/ � .Tf1/.x/ � Tgi.x/ 
 S.x; f1.x/; x/ :

Since limi!1 S.x;f1.x/;x/
Tgi.x/

D 0, we get by dividing the previous inequality by
Tgi.x/ that

Tf1.x/ D lim
i!1

T. f1 ı gi/.x/

Tgi.x/
;

where the limit exists. Now note that f1 ı gi D f2 ı gi. Therefore the quotient on
the right side stays the same by exchanging f1 with f2 and hence Tf1.x/ D Tf2.x/
for all x 2 I. �

Proof of Proposition 5 Fix x0 2 R and consider f 2 C1.R/. Let J1 WD .x0;1/ and
J2 WD .�1; x0/. Consider the tangent of f at x0, g.x/ WD f .x0/C .x� x0/f 0.x0/; x 2
R. It suffices to prove that .Tf /.x0/ D .Tg/.x0/. Define h 2 C1.R/ by

h.x/ WD
�
g.x/ x 2 J1
f .x/ x 2 NJ2

�
:
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Then h jJ1D g jJ1 and h jJ2D f jJ2 . Hence by Lemma 11(c)

.Tg/ jJ1D .Th/ jJ1 and .Th/ jJ2D .Tf / jJ2 :

These equalities extend by continuity to x0 2 NJ1 \ NJ2. We conclude that .Tg/.x0/ D
.Th/.x0/ D .Tf /.x0/. Therefore the value .Tf /.x0/ depends only on the two
parameters f .x0/ and f 0.x0/, for any fixed x0 2 R. We encode this information by
letting .Tf /.x0/ D Fx0. f .x0/; f

0.x0//, where Fx0 W R2 ! R is a fixed function for
any x0 2 R. Finally denoting F.x; y; z/ WD Fx.y; z/, we have that for any x 2 R and
f 2 C1.R/

Tf .x/ D F.x; f .x/; f 0.x// :

�

Proof of the Claim in Example 2 We show that the operator T defined by

Tf .x/ WD

8̂
ˆ̂̂̂
ˆ̂<
ˆ̂̂̂
ˆ̂̂:

H. f .x//
H.x/ f 0.x/ f 0.x/ � 0

H. f .x//
H.x/ 4f

0.x/ f 0.x/ 
 �2
H. f .x//
H.x/ .7C 15

2
f 0.x// �2 < f 0.x/ 
 �1

H.Jf .x//
H.x/

1
2
f 0.x/ �1 < f 0.x/ < 0

9>>>>>>>=
>>>>>>>;
;

with H 2 C.R/, 4 
 H 
 5 non-constant, maps C1.R/ into C.R/ and satisfies

T. f ı g/.x/ 
 .Tf /.g.x// � .Tg/.x/C 5 I f ; g 2 C1.R/; x 2 R :

This operator is not localized since the term containing H.Jf .x// involves the
integral of f over some interval. Note that Tf 2 C.R/: If xn 2 R are such that
f 0.xn/ 2 .�1; 0/ and xn ! x, f 0.xn/ ! �1 or f 0.xn/ ! 0, then Jf .xn/ ! f .x/ since
jIf ;xn j ! 0. Further, 7 C 15

2
˛ D 4˛ for ˛ D �2 and 7 C 15

2
˛ D 1

2
˛ for ˛ D �1.

Therefore T maps C1.R/ into C.R/. The operator T is not localized since Jf .x/ is
not locally defined. Clearly we have 4

5

 H.y/

H.z/ 
 5
4

for all y; z 2 R. To prove the

claimed inequality, we distinguish several cases. For f ; g 2 C1.R/, x 2 R, denote
˛ WD f 0.g.x// and ˇ WD g0.x/. Then ˛ˇ D . f ı g/0.x/.

(i) If ˛ � 0 and ˇ � 0, T. f ı g/.x/ D .Tf /.g.x//.Tg/.x/.
(ii) If ˛ < 0 and ˇ < 0, . f ıg/0.x/ > 0 and 0 < T. f ıg/.x/ D H. fıg.x//

H.x/ ˛ˇ 
 5
4
˛ˇ.

Note that .Tg/.x/ 
 1
2
4
5
ˇ < 0; indeed, if ˇ 2 .�1; 0/, this follows directly

from the definition of Tg, if ˇ 2 Œ�2;�1�, we get 7 C 15
2
ˇ 
 1

2
ˇ, and if

ˇ 
 �2, we find 4ˇ 
 1
2
ˇ.
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If ˛ 
 �2, .Tf /.g.x// D H. fıg.x//
H.g.x// 4˛ 
 44

5
˛. Therefore

.Tf /.g.x//.Tg/.x/ � .4
4

5
˛/.

1

2

4

5
ˇ/ D 32

25
˛ˇ ;

T. f ı g/.x/� .Tf /.g.x//.Tg/.x/ 
 .
5

4
� 32

25
/˛ˇ D � 3

100
˛ˇ < 0 :

If ˇ 
 �2 and ˛ < 0, the same argument holds with ˛ and ˇ exchanged.
If both ˛; ˇ 2 Œ�2; 0/, 0 < ˛ˇ 
 4 and

.Tf /.g.x//.Tg/.x/ � .
1

2

4

5
/2˛ˇ D 4

25
˛ˇ ;

T. f ı g/.x/� .Tf /.g.x//.Tg/.x/ 
 .
5

4
� 4

25
/˛ˇ < 5 :

(iii) If ˛ < 0 < ˇ, T. f ı g/.x/ < 0, .Tf /.g.x// < 0 and 0 < .Tg/.x/ D H.g.x//
H.x/ ˇ 


5
4
ˇ.

(a) Assume first that ˛ 
 �1. Then .Tf /.g.x// � 4
H. fıg.x//
H.g.x// ˛, since for ˛ 2

Œ�2;�1�, we have 7C 15
2
˛ � 4˛. Hence

.Tf /.g.x//.Tg/.x/ � .4
H. f ı g.x//

H.g.x//
˛/.

H.g.x//

H.x/
ˇ/ D 4

H. f ı g.x//

H.x/
˛ˇ :

If ˛ˇ 
 �2, the right side is just T. f ı g/.x/. If ˛ˇ 2 .�2;�1�,

T. f ı g/.x/� .Tf /.g.x//.Tg/.x/ 
 H. f ı g.x//

H.x/
.7C 15

2
˛ˇ � 4˛ˇ/


 5

4
.7C 7

2
˛ˇ/ 
 35

8
< 5 :

If ˛ˇ 2 .�1; 0/, T. f ı g/.x/ 
 1
2
4
5
˛ˇ and

T. f ı g/.x/� .Tf /.g.x//.Tg/.x/ 
 .
1

2

4

5
� 45

4
/˛ˇ 
 23

5
< 5 :

b) Now assume that �1 < ˛ < 0. Then .Tf /.g.x// D 1
2

H.Jf .g.x///
H.g.x// ˛ � 1

2
5
4
˛.

.Tf /.g.x//.Tg/.x/ � .
1

2

5

4
˛/.

5

4
ˇ/ D 1

2
.
5

4
/2˛ˇ :
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If ˛ˇ 
 �2, T. f ı g/.x/ D 4
H. fıg.x//

H.x/ ˛ˇ 
 44
5
˛ˇ and

T. f ı g/.x/� .Tf /.g.x//.Tg/.x/ 
 .4
4

5
� 1

2
.
5

4
/2/˛ˇ 
 0 :

If �2 < ˛ˇ < 0, T. f ı g/.x/ 
 1
2
4
5
˛ˇ and therefore

T. f ı g/.x/� .Tf /.g.x//.Tg/.x/ 
 .
1

2

4

5
� 1

2
.
5

4
/2/˛ˇ 
 1 :

(iv) For ˇ < 0 < ˛, the argument is essentially the same as in (iii), with ˛ and ˇ
being exchanged. �

In the situation of Theorems 4 and 6, we have localization: There exists a function
F W R3 ! R such that

Tf .x/ D F.x; f .x/; f 0.x// (18)

holds for all f 2 C1.R/ and all x 2 R. In the case of Theorem 4, this is
true by Proposition 5, and in the case of Theorem 6, by assumption. Further by
Lemma 11 (b) T.Id/ D 1, i.e. F.x; x; 1/ D 1 for all x 2 R. The chain rule operator
inequalities then translate into functional inequalities for the function F the structure
of which we have to determine. Whereas there is extensive knowledge on functional
equations, cf. [1], less is known about functional inequalities.

Proof of Theorem 6

(a) For any x; y; z 2 R, ˛; ˇ 2 R, choose f ; g 2 C1.R/ with g.x/ D y, f .y/ D z and
g0.x/ D ˇ, f 0.y/ D ˛. Using (18), the operator inequality (4) for T is equivalent
to the functional inequality for F,

F.x; z; ˛ˇ/ 
 F.y; z; ˛/F.x; y; ˇ/C S.x; z; y/ ; (19)

x; y; z; ˛; ˇ 2 R. For x; z 2 R, define �x;  x;z W R ! R by �x.˛/ WD F.x; x; ˛/,
 x;z.˛/ WD F.x; z; ˛/. Let dx WD S.x; x; x/. By (19) for x D y D z

�x.˛ˇ/ 
 �x.˛/�x.ˇ/C dx ; ˛; ˇ 2 R : (20)

For x; z; ˛ 2 R, define fx;z;˛ 2 C1.R/ by fx;z;˛.y/ WD ˛y C .z � ˛x/. Then
fx;z;˛.x/ D z and f 0

x;z;˛.x/ D ˛. Hence .Tfx;z;˛/.x/ D F.x; z; ˛/. For sequences
zn ! z and ˛n ! ˛, fx;zn;˛n ! fx;z;˛ and f 0

x;zn;˛n ! f 0
x;z;˛ uniformly on compact

subsets of R. By the assumption of pointwise continuity of T,

F.x; zn; ˛n/ D .Tfx;zn;˛n/.x/ ! .Tfx;z;˛/.x/ D F.x; z; ˛/ :
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Therefore F is continuous in the second and third variable. In particular, in the
constant case zn D z, all  x;z and for x D z all �x are continuous functions.

Since for f 2 C1.R/ with f .x/ D x we have Tf .x/ D F.x; x; f 0.x// by the
assumption of non-degeneration of T, we conclude that for all x 2 R

sup
˛2R

�x.˛/ D sup
˛2R

F.x; x; ˛/ D 1 :

By the above, F.x; �; 1/ and F.x; �;�1/ are continuous functions. Assume
there would be y 2 R with F.x; y; 1/ 
 0. Then, since F.x; x; 1/ D T.Id/.x/ D
1 > 0, by continuity there would be also z 2 R with F.x; z; 1/ D 0. But then
by (19)

F.x; x; ˛/ 
 F.z; x; ˛/F.x; z; 1/C S.x; x; z/ D S.x; x; z/

would imply sup˛2R �x.˛/ 
 S.x; z; z/, i.e. �x would be bounded from above on
R, a contradiction. Hence F.x; z; 1/ > 0 for all x; z 2 R.

By assumption, there is x0 2 R with T.�Id/.x0/ D F.x0;�x0;�1/ < 0.
Since T.�Id/ is continuous, if there were x1 2 R with T.�Id/.x1/ � 0, there
would be also x2 2 R with F.x2;�x2;�1/ D T.�Id/.x2/ D 0. But then, using
again (19)

�x2 .˛/ D F.x2; x2; ˛/ 
 F.�x2; x2;�˛/F.x2;�x2;�1/C S.x2; x2;�x2/

D S.x2; x2;�x2/ ;

�x2 would be bounded from above on R, a contradiction. Hence F.x;�x;�1/ <
0 for all x 2 R. Assume now there would be x0 2 R with �x0 .�1/ D
F.x0; x0;�1/ � 0. Since F.x0;�x0;�1/ < 0, by continuity of F.x0; �;�1/,
there would be z 2 R with F.x0; z;�1/ D 0. Then

�x0.˛/ D F.x0; x0; ˛/ 
 F.z; x0;�˛/F.x0; z;�1/C S.x0; x0; z/ D S.x0; x0; z/ ;

i.e. �x0 would be bounded from above, a contradiction. Hence �x.�1/ D
F.x; x;�1/ < 0 holds for all x 2 R.

We now claim that lim˛!1 �x.˛/ D 1 for all x 2 R. If not, there would
be x0 2 R such that lim˛!1 �x0 .˛/ < 1 and hence lim˛!1 �x.�˛/ D 1
since we know that sup˛2R �x0 .˛/ D 1 and that by continuity �x0 is bounded
on compact subsets of R. Then by (20)

�x0.�˛/ 
 �x0 .˛/�x0 .�1/C dx0 :
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Since �x0 .�1/ < 0, this implies that lim˛!1 �x0 .˛/ D �1. Thus there would
be ˛0 > 0 with �x0.˛0/ < 0. But �x0 .1/ D T.Id/.x0/ D 1 > 0 and by continuity
of �x0 there would be ˛1 > 0 with �x0 .˛1/ D 0. Hence by (20)

�x0 .ˇ/ 
 �x0 .˛1/�x0 .
ˇ

˛1
/C dx0 D dx0 ;

i.e. supˇ2R �x0.ˇ/ < 1, a contradiction. This shows that lim˛!1 �x.˛/ D 1
and that Assumption 1 is satisfied for all �x.

Hence by Theorem 1 there are p.x/ > 0 and A.x/ � 1 such that for all ˛ > 0

�x.˛/ D ˛p.x/ ; �A.x/˛p.x/ 
 �x.�˛/ 
 min.� 1

A.x/
˛p.x/;�A.x/˛p.x/Cdx/

and A.x/ D lim˛!1 �x.�˛/
�˛p.x/ � 1.

(b) Let ex;z WD S.x; z; x/ and gx;z WD S.x; z; z/. Putting y D x in (19), we find that

 x;z.˛ˇ/ 
  x;z.˛/�x.ˇ/C ex;z ; ˛; ˇ 2 R :

For y D z in (19), we get after exchanging ˛ and ˇ,

 x;z.˛ˇ/ 
  x;z.˛/�z.ˇ/C gx;z ; ˛; ˇ 2 R :

Let fx;z WD F.z; x; 1/. Replacing z by x and putting y D z, ˛ D 1 in (19), we get
after renaming ˇ by ˛

F.x; x; ˛/ 
 F.z; x; 1/F.x; z; ˛/C S.x; x; z/ ;

�x.˛/ 
 fx;z x;z.˛/C hx;z ; ˛ 2 R ;

with hx;z WD S.x; x; z/. Replacing x by z and putting y D x, ˇ D 1 in (19), we
get with the same value fx;z

�z.˛/ 
 fx;z x;z.˛/C hz;x ; ˛ 2 R :

Note that f WD fx;z D F.z; x; 1/ > 0. Therefore the assumptions of Proposition 8
are satisfied for � D �x,  D  x;z, e D ex;z D S.x; z; x/ and g D hx;z D
S.x; x; z/, and also for � D �z,  D  x;z, e D gx;z D S.x; z; z/ and g D hz;x D
S.z; z; x/. Therefore there are C.x; z/ > 0 and QC.x; z/ > 0 such that for any
˛ > 0

F.x; z; ˛/ D  x;z.˛/ D C.x; z/˛p.x/ D QC.x; z/˛p.z/ :
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Obviously this implies that p WD p.x/ D p.z/ is independent of x and z and that
C.x; z/ D QC.x; z/,

F.x; z; ˛/ D C.x; z/˛p :

Also by Proposition 8

lim
˛!1

 x;z.�˛/
�˛p D A.x/C.x; z/ D A.z/C.x; z/ ;

since the assumptions are satisfied for both pairs of functions �; . Therefore
also A.x/ D A.z/ DW A � 1 is independent of x; z 2 R. Moreover, we have

�AC.x; z/˛p � F.x; z;�˛/ � min.� 1

A
C.x; z/˛p;�AC.x; z/˛p C minŒS.x; z; x/; S.x; z; z/�/

and lim˛!1 F.x;z;�˛/
�˛p D lim˛!1  x;z.�˛/

�˛p D AC.x; z/.
(c) Inserting F.x; z; ˛/ D C.x; z/˛p into (19), we find for all ˛; ˇ > 0

C.x; z/.˛ˇ/p 
 C.y; z/˛pC.x; y/ˇp C S.x; z; y/ :

For ˛; ˇ ! 1 it follows that C.x; z/ 
 C.y; z/C.x; y/ for all x; y; z 2 R. On the
other hand, by (19) and part (b)

AC.x; z/ D lim
˛;ˇ!1

 x;z.�˛ˇ/
�.˛ˇ/p � lim

˛!1

 y;z.�˛/
�˛p � lim

ˇ!1

 x;y.ˇ/

ˇp
D AC.y; z/C.x; y/ ;

i.e. C.x; z/ � C.y; z/C.x; y/. We conclude that for all x; y; z 2 R, C.x; z/ D
C.y; z/C.x; y/.

For x D z, �x.˛/ D  x;x.˛/ D ˛p, ˛ > 0. Hence C.x; x/ D 1 and 1 D
C.x; x/ D C.0; x/C.x; 0/ for all x 2 R. Let H.x/ WD C.0; x/. Then

C.x; z/ D C.0; z/C.x; 0/ D H.z/

H.x/
:

The function H is continuous since H.z/ D C.0; z/ D F.0; z; 1/ is continuous
in z 2 R as we have seen. We find for all x; z 2 R, ˛ > 0

F.x; z; ˛/ D H.z/

H.x/
˛p ;

.Tf /.x/ D H. f .x//

H.x/
f 0.x/p

provided that f 0.x/ � 0.
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(d) For x; z 2 R and ˛ > 0, define

K.x; z;�˛/ WD F.x; z;�˛/
C.x; z/

D H.x/

H.z/
F.x; z;�˛/ < 0 :

By (a), F and hence also K is continuous in the second and third variable. Then
for any f 2 C1.R/ with f .x/ D z and f 0.x/ < 0

Tf .x/ D F.x; f .x/; f 0.x// D H. f .x//

H.x/
K.x; f .x/; f 0.x// :

By part (b), lim˛!1 K.x;z;�˛/
�˛p D A exists and is independent of x; z 2 R and for

all ˛ > 0, x; z 2 R

�A˛p 
 K.x; z;�˛/ 
 min.� 1
A
˛p;�A˛p C H.x/

H.z/
minŒS.x; z; x/; S.x; z; z/�/ :

This proves Theorem 6. �
Proof of Theorem 4 We have by assumption (3)

.Tf /.g.x// Tg.x/� S.x; . f ı g/.x/; g.x// 
 T. f ı g/.x/


 .Tf /.g.x// Tg.x/C S.x; . f ı g/.x/; g.x// :

Proposition 5 and Theorem 6 thus implies the result of Theorem 4 for all f 2 C1.R/,
x 2 R with f 0.x/ � 0. Proposition 5, Theorem 6 and its supermultiplicative analogue
yield for f 2 C1.R/, x 2 R with f 0.x/ < 0 that for the same functions H and K as in
Theorem 6

Tf .x/ D H. f .x//

H.x/
K.x; f .x/; f 0.x// ;

where

1 
 A D lim
ˇ!1

K.x; y;�ˇ/
�ˇp

D B 
 1 ;

i.e. A D B D 1. Therefore �A˛p 
 K.x; y;�˛/ 
 1
A˛

p yields K.x; y;�˛/ D �˛p
for all x; y 2 R, ˛ > 0. Therefore, if f 0.x/ < 0,

Tf .x/ D �H. f .x//

H.x/
j f 0.x/jp ;
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or generally for all f 2 C1.R/, x 2 R

Tf .x/ D H. f .x//

H.x/
sgnf 0.x/ j f 0.x/jp :

This operator clearly satisfies

T. f ı g/.x/ D .Tf /.g.x//.Tg/.x/ ;

i.e. the function S a posteriori can be chosen to be S D 0. �
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Royen’s Proof of the Gaussian Correlation
Inequality

Rafał Latała and Dariusz Matlak

Abstract We present in detail Thomas Royen’s proof of the Gaussian correlation
inequality which states that 
.K \ L/ � 
.K/
.L/ for any centered Gaussian
measure 
 on R

d and symmetric convex sets K;L in R
d.

1 Introduction

The aim of this note is to present in a self contained way the beautiful proof of the
Gaussian correlation inequality, due to Thomas Royen [7]. Although the method is
rather simple and elementary, we found the original paper not too easy to follow.
One of the reasons behind it is that in [7] the correlation inequality was established
for more general class of probability measures. Moreover, the author assumed
that the reader is familiar with properties of certain distributions and may justify
some calculations by herself/himself. We decided to reorganize a bit Royen’s proof,
restrict it only to the Gaussian case and add some missing details. We hope that this
way a wider readership may appreciate the remarkable result of Royen.

The statement of the Gaussian correlation inequality is as follows.

Theorem 1 For any closed symmetric sets K;L in R
d and any centered Gaussian

measure 
 on Rd we have


.K \ L/ � 
.K/
.L/: (1)

For d D 2 the result was proved by Pitt [5]. In the case when one of the sets
K;L is a symmetric strip (which corresponds to minfn1; n2g D 1 in Theorem 2
below) inequality (1) was established independently by Khatri [3] and Šidák [9].
Hargé [2] generalized the Khatri-Šidak result to the case when one of the sets is a
symmetric ellipsoid. Some other partial results may be found in papers of Borell [1]
and Schechtman et al. [8].
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Up to our best knowledge Thomas Royen was the first to present a complete proof
of the Gaussian correlation inequality. Some other recent attempts may be found
in [4] and [6], however both papers are very long and difficult to check. The first
version of [4], placed on the arxiv before Royen’s paper, contained a fundamental
mistake (Lemma 6.3 there was wrong).

Since any symmetric closed set is a countable intersection of symmetric strips, it
is enough to show (1) in the case when

K D fx 2 R
dW 81�i�n1 jhx; viij 
 tig and

L D fx 2 R
dW 8n1C1�i�n1Cn2 jhx; viij 
 tig;

where vi are vectors in Rd and ti nonnegative numbers. If we set n D n1 C n2,
Xi WD hvi;Gi, where G is the Gaussian random vector distributed according to 
,
we obtain the following equivalent form of Theorem 1.

Theorem 2 Let n D n1 C n2 and X be an n-dimensional centered Gaussian vector.
Then for any t1; : : : ; tn > 0,

P.jX1j 
 t1; : : : ; jXnj 
 tn/

� P.jX1j 
 t1; : : : ; jXn1 j 
 tn1 /P.jXn1C1j 
 tn1C1; : : : ; jXnj 
 tn/:

Remark 3

(i) The standard approximation argument shows that the Gaussian correlation
inequality holds for centered Gaussian measures on separable Banach spaces.

(ii) Theorem 1 has the following functional form:

Z
Rd

fgd
 �
Z
Rd

fd

Z
Rd

gd


for any centered Gaussian measure 
 on Rd and even functions f ; gWRd !
Œ0;1/ such that sets ff � tg and fg � tg are convex for all t > 0.

(iii) Thomas Royen established Theorem 2 for a more general class of random
vectors X such that X2 D .X21 ; : : : ;X

2
n/ has an n-variate gamma distribution

with appropriately chosen parameters (see [7] for details).

Notation By N .0;C/ we denote the centered Gaussian measure with the covari-
ance matrix C. We write Mn�m for a set of n�m matrices and jAj for the determinant
of a square matrix A. For a matrix A D .aij/i;j�n and J � Œn� WD f1; : : : ; ng by AJ we
denote the square matrix .aij/i;j2J and by jJj the cardinality of J.
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2 Proof of Theorem 2

Without loss of generality we may and will assume that the covariance matrix C of
X is nondegenerate (i.e. positive-definite). We may write C as

C D
�
C11 C12
C21 C22

�
;

where Cij is the ni � nj matrix. Let

C.�/ WD
�
C11 �C12
�C21 C22

�
; 0 
 � 
 1:

Set Zi.�/ WD 1
2
Xi.�/

2, 1 
 i 
 n, where X.�/ � N .0;C.�//.
We may restate the assertion as

P.Z1.1/ 
 s1; : : : ;Zn.1/ 
 sn/ � P.Z1.0/ 
 s1; : : : ;Zn.0/ 
 sn/;

where si D 1
2
t2i . Therefore it is enough to show that the function

� 7! P.Z1.�/ 
 s1; : : : ;Zn.�/ 
 sn/ is nondecreasing on Œ0; 1�:

Let f .x; �/ denote the density of the random vector Z.�/ and K D Œ0; s1� � � � � �
Œ0; sn�. We have

@

@�
P.Z1.�/ 
 s1; : : : ;Zn.�/ 
 sn/ D @

@�

Z
K
f .x; �/dx D

Z
K

@

@�
f .x; �/dx;

where the last equation follows by Lemma 6 applied to 	1 D : : : D 	n D 0.
Therefore it is enough to show that

R
K

@
@�
f .x; �/ � 0.

To this end we will compute the Laplace transform of @
@�
f .x; �/. By Lemma 6,

applied to K D Œ0;1/n, we have for any 	1 : : : ; 	n � 0,

Z
Œ0;1/n

e�Pn
iD1 	ixi

@

@�
f .x; �/dx D @

@�

Z
Œ0;1/n

e�Pn
iD1 	ixi f .x; �/dx:

However by Lemma 4 we have

Z
Œ0;1/n

e�Pn
iD1 	ixi f .x; �/dx D E exp

 
�1
2

nX
iD1

	iX
2
i .�/

!
D jI CƒC.�/j�1=2;

whereƒ D diag.	1; : : : ; 	n/.
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Formula (2) below yields

jI CƒC.�/j D 1C
X

;¤J	Œn�
j.ƒC.�//J j D 1C

X
;¤J	Œn�

jC.�/J j
Y
j2J
	j:

Fix ; ¤ J � Œn�. Then J D J1 [ J2, where J1 WD Œn1� \ J, J2 WD J n Œn1� and

C.�/J D
�
CJ1 �CJ1J2

�CJ2J1 CJ2

�
. If J1 D ; or J2 D ; then C.�/J D CJ , otherwise by (3)

we get

jC.�/J j D jCJ1 jjCJ2 j
ˇ̌
ˇIjJ1j � �2C�1=2

J1
CJ1J2C

�1
J2 CJ2J1C

�1=2
J1

ˇ̌
ˇ

D jCJ1 jjCJ2 j
jJ1jY
iD1
.1 � �2
J1;J2 .i//;

where 
J1;J2 .i/, 1 
 i 
 jJ1j denote the eigenvalues of C�1=2
J1

CJ1J2C
�1
J2
CJ2J1C

�1=2
J1

(by (4) they belong to Œ0; 1�). Thus for any ; ¤ J � Œn� and � 2 Œ0; 1� we have

aJ.�/ WD � @

@�
jC.�/J j � 0:

Therefore

@

@�
jI CƒC.�/j�1=2 D �1

2
jI CƒC.�/j�3=2

X
;¤J	Œn�

@

@�
jC.�/J jjƒJj

D 1

2
jI CƒC.�/j�3=2

X
;¤J	Œn�

aJ.�/
Y
j2J
	j:

We have thus shown that
Z
Œ0;1/n

e�Pn
iD1 	ixi

@

@�
f .x; �/dx D

X
;¤J	Œn�

1

2
aJ.�/jI CƒC.�/j�3=2

Y
j2J
	j:

Let h� WD h3;C.�/ be the density function on .0;1/n defined by (5). By Lemmas 8
and 7 (iii) we know that

jI CƒC.�/j�3=2
Y
j2J
	j D

Z
.0;1/n

e�Pn
iD1 	ixi

@jJj

@xJ
h� :
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This shows that

@

@�
f .x; �/ D

X
;¤J	Œn�

1

2
aJ.�/

@jJj

@xJ
h� .x/:

Finally recall that aJ.�/ � 0 and observe that by Lemma 7 (ii),

lim
xi!0C

@jIj

@xI
h� .x/ D 0 for i … I � Œn�;

thus

Z
K

@jJj

@xJ
h� .x/dx D

Z
Q

j2Jc Œ0;sj�
h� .sJ ; xJc/dxJc � 0;

where Jc D Œn� n J and y D .sJ ; xJc/ if yi D si for i 2 J and yi D xi for i 2 Jc. ut

3 Auxiliary Lemmas

Lemma 4 Let X be an n dimensional centered Gaussian vector with the covariance
matrix C. Then for any 	1; : : : ; 	n � 0 we have

E exp

 
�

nX
iD1

	iX
2
i

!
D jIn C 2ƒCj�1=2;

where ƒ WD diag.	1; : : : ; 	n/.

Proof Let A be a symmetric positive-definite matrix. Then A D UDUT for some
U 2 O.n/ and D D diag.d1; d2; : : : ; dn/. Hence

Z
Rn

exp.�hAx; xi/dx D
Z
Rn

exp.�hDx; xi/dx D
nY

kD1

r
�

dk
D �n=2jDj�1=2 D �n=2jAj�1=2:

Therefore for a canonical Gaussian vector Y � N .0; In/ and a symmetric matrix B
such that 2B < In we have

E exp.hBY;Yi/ D .2�/�n=2
Z
Rn

exp

�
�
��
1

2
In�B

�
x; x

��
dx D 2�n=2

ˇ̌
ˇ̌1
2
In�B

ˇ̌
ˇ̌�1=2

D jIn�2Bj�1=2:
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We may represent X � N .0;C/ as X � AY with Y � N .0; In/ and C D AAT .
Thus

E exp

 
�

nX
iD1

	iX
2
i

!
D E exp.�hƒX;Xi/

D E exp.�hƒAY;AYi/ D E exp.�hATƒAY;Yi/
D jIn C 2ATƒAj�1=2 D jIn C 2ƒCj�1=2;

where to get the last equality we used the fact that jIn C A1A2j D jIn C A2A1j for
A1;A2 2 Mn�n. ut
Lemma 5

(i) For any matrix A 2 Mn�n,

jIn C Aj D 1C
X

;¤J	Œn�
jAJ j: (2)

(ii) Suppose that n D n1Cn2 and A 2 Mn�n is symmetric and positive-definite with

a block representation A D
�
A11 A12
A21 A22

�
, where Aij 2 Mni�nj . Then

jAj D jA11jjA22j
ˇ̌
ˇIn1 � A�1=2

11 A12A
�1
22 A21A

�1=2
11

ˇ̌
ˇ : (3)

Moreover,

0 
 A�1=2
11 A12A

�1
22 A21A

�1=2
11 
 In1 : (4)

Proof

(i) This formula may be verified in several ways—e.g. by induction on n or by
using the Leibniz formula for the determinant.

(ii) We have

�
A11 A12
A21 A22

�
D
 
A1=211 0

0 A1=222

! 
In1 A�1=2

11 A12A
�1=2
22

A�1=2
22 A21A

�1=2
11 In2

! 
A1=211 0

0 A1=222

!

and
ˇ̌
ˇ̌
ˇ
 

In1 A�1=2
11 A12A

�1=2
22

A�1=2
22 A21A

�1=2
11 In2

!ˇ̌
ˇ̌
ˇ D

ˇ̌
ˇ̌
ˇ
 
In1 � A�1=2

11 A12A�1
22 A21A

�1=2
11 0

A�1=2
22 A21A

�1=2
11 In2

!ˇ̌
ˇ̌
ˇ

D
ˇ̌
ˇIn1 � A�1=2

11 A12A
�1
22 A21A

�1=2
11

ˇ̌
ˇ :
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To show the last part of the statement notice that A�1=2
11 A12A�1

22 A21A
�1=2
11 D

BTB � 0, where B WD A�1=2
22 A21A

�1=2
11 . Since A is positive-definite, for any

t 2 R, x 2 Rn1 and y 2 Rn2 we have t2hA11x; xi C 2thA21x; yi C hA22y; yi � 0.
This implies hA21x; yi2 
 hA11x; xihA22y; yi. Replacing x by A�1=2

11 x and y by

A�1=2
22 y we get hBx; yi2 
 jxj2jyj2. Choosing y D Bx we get hBTBx; xi 
 jxj2,

i.e. BTB 
 In1 .

ut
Lemma 6 Let f .x; �/ be the density of the random vector Z.�/ defined above. Then
for any Borel set K in Œ0;1/n and any 	1; : : : ; 	n � 0,

Z
K
e�Pn

iD1 	ixi
@

@�
f .x; �/dx D @

@�

Z
K
e�Pn

iD1 	ixi f .x; �/dx:

Proof The matrix C is nondegenerate, therefore matrices C11 and C22 are nonde-
generate and C.�/ is nondegenerate for any � 2 Œ0; 1�. Random vector X.�/ �
N .0;C.�// has the density jC.�/j�1=2.2�/�n=2 exp.� 1

2
hC.�/�1x; xi/. Standard cal-

culation shows that Z.�/ has the density

f .x; �/ D jC.�/j�1=2.4�/�n=2 1p
x1 � � � xn

X
"2f�1;1gn

e�hC.�/�1"px;"
p
xi1.0;1/n.x/;

where for " 2 f�1; 1gn and x 2 .0;1/n we set "
p
x WD ."i

p
xi/i.

The function � 7! jC.�/j�1=2 is smooth on Œ0; 1�, in particular

sup
�2Œ0;1�

jC.�/j�1=2 C sup
�2Œ0;1�

@

@�
jC.�/j�1=2 DW M < 1:

Since C.�/ D �C.1/C .1 � �/C.0/ we have @
@�
C.�/ D C.1/� C.0/ and

@

@�
e�hC.�/�1"px;"

p
xi D �hC.�/�1.C.1/�C.0//C.�/�1"

p
x; "

p
xie�hC.�/�1"px;"

p
xi:

The continuity of the function � 7! C.�/ gives

hC.�/�1"px; "
p
xi � ah"px; "

p
xi D a

nX
iD1

jxij

and

jhC.�/�1.C.1/� C.0//C.�/�1"
p
x; "

p
xij 
 bh"px; "

p
xi D b

nX
iD1

jxij
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for some a > 0, b < 1. Hence for x 2 .0;1/n

sup
�2Œ0;1�

ˇ̌
ˇ̌ @
@�

f .x; �/

ˇ̌
ˇ̌ 
 g.x/ WD M��n=2 1p

x1 � � � xn

 
1C b

nX
iD1

jxij
!
e�a

Pn
iD1 jxij:

Since g.x/ 2 L1..0;1/n/ and e�Pn
iD1 	ixi 
 1 the statement easily follows by the

Lebesgue dominated convergence theorem. ut
Let for ˛ > 0,

g˛.x; y/ WD e�x�y
1X
kD0

xkC˛�1

.k C ˛/

yk

kŠ
x > 0; y � 0:

For 
; ˛1; : : : ; ˛n > 0 and a random vector Y D .Y1; : : : ;Yn/ such that P.Yi � 0/ D
1 we set

h˛1;:::;˛n;
;Y.x1; : : : ; xn/ WD E

"
nY

iD1

1



g˛i

�
xi


;Yi

�#
; x1; : : : ; xn > 0:

Lemma 7 Let 
 > 0 and Y be a random n-dimensional vector with nonnegative
coordinates. For ˛ D .˛1; : : : ; ˛n/ 2 .0;1/n set h˛ WD h˛1;:::;˛n ;
;Y .

(i) For any ˛ 2 .0;1/n, h˛ � 0 and
R
.0;1/n

h˛.x/dx D 1.

(ii) If ˛ 2 .0;1/n and ˛i > 1 then limxi!0C h˛.x/ D 0, @
@xi
h˛.x/ exists and

@

@xi
h˛.x/ D h˛�ei � h˛:

(iii) If ˛ 2 .1;1/n then for any J � Œn�, @
jJj

@xJ
h˛.x/ exists and belongs to L1..0;1/n/.

Moreover for 	1; : : : ; 	n � 0,

Z
.0;1/n

e�Pn
iD1 	ixi

@jJj

@xJ
h˛.x/dx D

Y
i2J
	i

Z
.0;1/n

e�Pn
iD1 	ixih˛.x/dx:

Proof

(i) Obviously h˛ 2 Œ0;1�. We have for any y � 0 and ˛ > 0,

Z 1

0

1



g˛

�
x



; y

�
dx D

Z 1

0

g˛.x; y/dx D 1:
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Hence by the Fubini theorem,

Z
.0;1/n

h˛.x/dx D E

nY
iD1

Z 1

0

1



g˛i

�
xi


;Yi

�
dxi D 1:

(ii) It is well known that .x/ is decreasing on .0; x0� and increasing on Œx0;1/,
where 1 < x0 < 2 and .x0/ > 1=2. Therefore for k D 1; : : : and ˛ > 0,
.k C ˛/ � 1

2
.k/ D 1

2
.k � 1/Š and

g˛.x; y/ 
 e�x
1X
kD0

xkC˛�1

.k C ˛/

 2

 
x˛�1e�x C x˛

1X
kD1

xk�1

.k � 1/Š
e�x

!

D 2x˛�1.e�x C x/:

This implies that for ˛ > 0 and 0 < a < b < 1, g˛.x; y/ 
 C.˛; a; b/ < 1
for x 2 .a; b/ and y � 0. Moreover,

h˛.x/ 

�
2




�n nY
iD1

�
xi



�˛i�1 �
1C xi




�
:

In particular limxi!0C h˛.x/ D 0 if ˛i > 1. Observe that for ˛ � 1, @
@x g˛ D

g˛�1 � g˛. Standard application of the Lebesgue dominated convergence
theorem concludes the proof of part (ii).

(iii) By (ii) we get

@jJj

@xJ
h˛ D

X
K	J

.�1/jJj�jKjh˛�Pi2K ei 2 L1..0;1/n/:

Moreover limxj!0C @jJj

@xJ
h˛.x/ D 0 for j … J. We finish the proof by induction

on jJj using integration by parts.
ut

Let C be a positive-definite symmetric n�n matrix. Then there exists 
 > 0 such
that B WD C�
In is positive-definite. Let X.l/ WD .X.l/i /i�n be independent Gaussian
vectors N .0; 1

2

B/,

Yi D
kX

lD1
.X.l/i /

2 1 
 i 
 n

and

hk;C WD h k
2 ;:::;

k
2 ;
;Y

: (5)
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Lemma 8 For any 	1; : : : ; 	n � 0 we have

Z
.0;1/n

e�Pn
iD1 	ixihk;C.x/ D jIn CƒCj� k

2 ;

where ƒ D diag.	1; : : : ; 	n/.

Proof We have for any ˛;
 > 0 and 	; y � 0

Z 1

0

1



e�	xg˛

�
x



; y

�
dx D e�y

1X
kD0

yk

kŠ.k C ˛/

Z 1

0

e�.	C 1

 /x

xkC˛�1


kC˛ dx

D e�y
1X
kD0

yk

kŠ.1C 
	/kC˛
D .1C 
	/�˛e� 
	

1C
	 y:

By the Fubini theorem we have

Z
.0;1/n

e�Pn
iD1 	ixihk;C.x/dx D E

nY
iD1

Z 1

0

e�	ixi 1


gk=2

�
xi


;Yi

�
dxi

D jIn C 
ƒj� k
2Ee�Pn

iD1

	i

1C
	i
Yi :

Therefore by Lemma 4 we have

Z
.0;1/n

e�Pn
iD1 	ixihk;C.x/dx D jIn C 
ƒj� k

2

ˇ̌
ˇ̌I C 2
ƒ.I C 
ƒ/�1

1

2

B

ˇ̌
ˇ̌�

k
2

D jIn CƒCj� k
2 :

ut
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A Simple Tool for Bounding the Deviation
of Random Matrices on Geometric Sets

Christopher Liaw, Abbas Mehrabian, Yaniv Plan, and Roman Vershynin

Abstract Let A be an isotropic, sub-gaussian m � n matrix. We prove that the
process Zx :D kAxk2�p

m kxk2 has sub-gaussian increments, that is, kZx �Zyk 2 

Ckx � yk2 for any x; y 2 R

n. Using this, we show that for any bounded set T � R
n,

the deviation of kAxk2 around its mean is uniformly bounded by the Gaussian
complexity of T. We also prove a local version of this theorem, which allows
for unbounded sets. These theorems have various applications, some of which are
reviewed in this paper. In particular, we give a new result regarding model selection
in the constrained linear model.

1 Introduction

Recall that a random variable Z is sub-gaussian if its distribution is dominated by
a normal distribution. One of several equivalent ways to define this rigorously is to
require the Orlicz norm

kZk 2 WD inf
˚
K > 0 W E 2.jZj=K/ 
 1g

C. Liaw
Department of Computer Science, University of British Columbia, 2366 Main Mall, Vancouver,
BC, Canada V6T 1Z4
e-mail: cvliaw@cs.ubc.ca

A. Mehrabian
Department of Computer Science, University of British Columbia, 2366 Main Mall, Vancouver,
BC, Canada V6T 1Z4

School of Computing Science, Simon Fraser University, 8888 University Drive, Burnaby, BC,
Canada V5A 1S6
e-mail: abbasmehrabian@gmail.com

Y. Plan
Department of Mathematics, University of British Columbia, 1984 Mathematics Rd, Vancouver,
BC, Canada V6T 1Z4
e-mail: yaniv@math.ubc.ca

R. Vershynin (�)
Department of Mathematics, University of Michigan, 530 Church St., Ann Arbor, MI 48109, USA
e-mail: romanv@umich.edu

© Springer International Publishing AG 2017
B. Klartag, E. Milman (eds.), Geometric Aspects of Functional Analysis,
Lecture Notes in Mathematics 2169, DOI 10.1007/978-3-319-45282-1_18

277

mailto:cvliaw@cs.ubc.ca
mailto:abbasmehrabian@gmail.com
mailto:yaniv@math.ubc.ca
mailto:romanv@umich.edu


278 C. Liaw et al.

to be finite, for the Orlicz function  2.x/ D exp.x2/ � 1. Also recall that a random
vector X in Rn is sub-gaussian if all of its one-dimensional marginals are sub-
gaussian random variables; this is quantified by the norm

kXk 2 WD sup
�2Sn�1

�� hX; �i ��
 2
:

For basic properties and examples of sub-gaussian random variables and vectors,
see e.g. [27].

In this paper we study isotropic, sub-gaussian random matrices A. This means
that we require the rows Ai of A to be independent, isotropic, and sub-gaussian
random vectors:

EAiA
T
i D I; kAik 2 
 K: (1)

In Remark 1 below we show how to remove the isotropic assumption.
Suppose A is an m � n isotropic, sub-gaussian random matrix, and T � Rn is

a given set. We are wondering when A acts as an approximate isometry on T, that
is, when kAxk2 concentrates near the value .EkAxk22/1=2 D p

mkxk2 uniformly over
vectors x 2 T.

Such a uniform deviation result must somehow depend on the “size” of the set
T. A simple way to quantify the size of T is through the Gaussian complexity

�.T/ WD E sup
x2T

j hg; xi j where g � N.0; In/: (2)

One can often find in the literature the following translation-invariant cousin of
Gaussian complexity, called the Gaussian width of T:

w.T/ WD E sup
x2T

hg; xi D 1

2
E sup

x2T�T
hg; xi :

These two quantities are closely related. Indeed, a standard calculation shows that

1

3

�
w.T/C kyk2

� 
 �.T/ 
 2
�
w.T/C kyk2

�
for every y 2 T: (3)

The reader is referred to [19, Sect. 2], [28, Sect. 3.5] for other basic properties of
Gaussian width. Our main result is that the deviation of kAxk2 over T is uniformly
bounded by the Gaussian complexity of T.

Theorem 1 (Deviation of Random Matrices on Sets) Let A be an isotropic, sub-
gaussian random matrix as in (1), and T be a bounded subset of Rn. Then

E sup
x2T

ˇ̌kAxk2 � p
mkxk2

ˇ̌ 
 CK2 � �.T/:
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(Throughout, c and C denote absolute constants that may change from line
to line). For Gaussian random matrices A, this theorem follows from a result of
Schechtman [23]. For sub-gaussian random matrices A, one can find related results
in [4, 10, 13]. Comparisons with these results can be found in Sect. 3.

The dependence of the right-hand-side of this theorem on T is essentially
optimal. This is not hard to see for m D 1 by a direct calculation. For general
m, optimality follows from several consequences of Theorem 1 that are known to be
sharp; see Sect. 2.5.

We do not know if the dependence on K in the theorem is optimal or if the
dependence can be improved to linear. However, none of the previous results have
shown a linear dependence on K even in partial cases.

Remark 1 (Removing Isotropic Condition) Theorem 1 and the results below may
also be restated without the assumption that A is isotropic using a simple linear
transformation. Indeed, suppose that instead of being isotropic, each row of A
satisfies EAiAT

i D ˙ for some invertible covariance matrix ˙ . Consider the
whitened version Bi WD p

˙�1Ai. Note that kBik 2 
 jjp˙�1jj � kAik 2 

jjp˙�1jj � K. Let B be the random matrix whose ith row is Bi. Then

E sup
x2T

ˇ̌
ˇkAxk2 � p

mkp
˙xk2

ˇ̌
ˇ D E sup

x2T

ˇ̌
ˇkBp

˙xk2 � p
mkp

˙xk2
ˇ̌
ˇ

D E sup
x2p

˙T

ˇ̌kBxk2 � p
mkxk2

ˇ̌


 Ck˙�1kK2�.p˙T/:

The last line follows from Theorem 1. Note also that �.
p
˙T/ 
 kp

˙k�.T/ Dpk˙k�.T/, which follows from Sudakov-Fernique’s inequality. Summarizing, our
bounds can be extended to anisotropic distributions by including in them the
smallest and largest eigenvalues of the covariance matrix ˙ .

Our proof of Theorem 1 given in Sect. 4.1 is particularly simple, and is inspired
by the approach of Schechtman [23]. He showed that for Gaussian matrices A,
the random process Zx WD kAxk2 � .EkAxk22/1=2 indexed by points x 2 Rn, has
sub-gaussian increments, that is

kZx � Zyk 2 
 Ckx � yk2 for every x; y 2 R
n: (4)

Then Talagrand’s Majorizing Measure Theorem implies the desired conclusion that1

E supx2T jZxj . �.T/.
However, it should be noted that G. Schechtman’s proof of (4) makes heavy use

of the rotation invariance property of the Gaussian distribution of A. When A is only
sub-gaussian, there is no rotation invariance to rely on, and it was unknown if one

1In this paper, we sometimes hide absolute constants in the inequalities marked ..
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can transfer G. Schechtman’s argument to this setting. This is precisely what we do
here: we show that, perhaps surprisingly, the sub-gaussian increment property (4)
holds for general sub-gaussian matrices A.

Theorem 2 (Sub-gaussian Process) Let A be an isotropic, sub-gaussian random
matrix as in (1). Then the random process

Zx WD kAxk2 � .EkAxk22/1=2 D kAxk2 � p
mkxk2

has sub-gaussian increments:

kZx � Zyk 2 
 CK2kx � yk2 for every x; y 2 R
n: (5)

The proof of this theorem, given in Sect. 5, essentially consists of a couple of
non-trivial applications of Bernstein’s inequality; parts of the proof are inspired
by G. Schechtman’s argument. Applying Talagrand’s Majorizing Measure Theorem
(see Theorem 8 below), we immediately obtain Theorem 1.

We also prove a high-probability version of Theorem 1.

Theorem 3 (Deviation of Random Matrices on Sets: Tail Bounds) Under the
assumptions of Theorem 1, for any u � 0 the event

sup
x2T

ˇ̌kAxk2 � p
mkxk2

ˇ̌ 
 CK2
�
w.T/C u � rad.T/

�

holds with probability at least 1 � exp.�u2/. Here rad.T/ WD supx2T kxk2 denotes
the radius of T.

This result will be deduced in Sect. 4.1 from a high-probability version of
Talagrand’s theorem.

In the light of the equivalence (3), notice that Theorem 3 implies the following
simpler but weaker bound

sup
x2T

ˇ̌kAxk2 � p
mkxk2

ˇ̌ 
 CK2u � �.T/ (6)

if u � 1. Note that even in this simple bound, �.T/ cannot be replaced with the
Gaussian width w.T/, e.g. the result would fail for a singleton T. This explains why
the radius of T appears in Theorem 3.

Restricting the set T to the unit sphere, we obtain the following corollary.

Corollary 1 Under the assumptions of Theorem 1, for any u � 0 the event

sup
x2T\Sn�1

ˇ̌kAxk2 � p
m
ˇ̌ 
 CK2

�
w.T \ Sn�1/C u

�

holds with probability at least 1 � exp.�u2/.
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In Theorems 1 and 3, we assumed that the set T is bounded. For unbounded sets,
we can still prove a ‘local version’ of Theorem 3. Let us state a simpler form of this
result here. In Sect. 6, we will prove a version of the following theorem with a better
probability bound.

Theorem 4 (Local Version) Let .Zx/x2Rn be a random process with sub-gaussian
increments as in (5). Assume that the process is homogeneous, that is, Z˛x D ˛Zx
for any ˛ � 0. Let T be a star-shaped2 subset of Rn, and let t � 1. With probability
at least 1 � exp.�t2/, we have

jZxj 
 t � CK2� �T \ kxk2Bn
2

�
for all x 2 T: (7)

Combining with Theorem 2, we immediately obtain the following result.

Theorem 5 (Local Version of Theorem 3) Let A be an isotropic, sub-gaussian
random matrix as in (1), and let T be a star-shaped subset ofRn, and let t � 1. With
probability at least 1 � exp.�t2/, we have

ˇ̌
ˇkAxk2 � p

mkxk2
ˇ̌
ˇ 
 t � CK2� �T \ kxk2Bn

2

�
for all x 2 T: (8)

Remark 2 We note that Theorems 4 and 5 can also apply when T is not a star-shaped
set, simply by considering the smallest star-shaped set that contains T:

star.T/ WD
[
	2Œ0;1�

	T:

Then one only needs to replace T by star.T/ in the right-hand side of Eqs. (7) and (8).

Results of the type of Theorems 1, 3 and 5 have been useful in a variety of
applications. For completeness, we will review some of these applications in the
next section.

2 Applications

Random matrices have proven to be useful both for modeling data and transforming
data in a variety of fields. Thus, the theory of this paper has implications for several
applications. A number of classical theoretical discoveries as well as some new
results follow directly from our main theorems. In particular, the local version of our
theorem (Theorem 5), allows a new result in model selection under the constrained
linear model, with applications in compressed sensing. We give details below.

2Recall that a set T is called star-shaped if t 2 T implies 	t 2 T for all 	 2 Œ0; 1�.
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2.1 Singular Values of Random Matrices

The singular values of a random matrix are an important topic of study in random
matrix theory. A small sample includes covariance estimation [26], stability in
numerical analysis [29], and quantum state tomography [8].

Corollary 1 may be specialized to bound the singular values of a sub-gaussian
matrix. Indeed, take T D Sn�1 and note that w.T/ 
 p

n. Then the corollary states
that, with high probability,

ˇ̌kAxk2 � p
m
ˇ̌ 
 CK2

p
n for all x 2 Sn�1:

This recovers the well-known result that, with high probability, all of the singular
values of A reside in the interval Œ

p
m � CK2

p
n;

p
m C CK2

p
n� (see [27]). When

nK4  m, all of the singular values concentrate around
p
m. In other words, a tall

random matrix is well conditioned with high probability.

2.2 Johnson-Lindenstrauss Lemma

The Johnson-Lindenstrauss lemma [9] describes a simple and effective method of
dimension reduction. It shows that a (finite) set of data vectorsX belonging to a very
high-dimensional space, Rn, can be mapped to a much lower dimensional space
while roughly preserving pairwise distances. This is useful from a computational
perspective since the storage space and the speed of computational tasks both
improve in the lower dimensional space. Further, the mapping can be done simply
by multiplying each vector by the random matrix A=

p
m.

The classic Johnson-Lindenstrauss lemma follows immediately from our results.
Indeed, take T 0 D X�X . To construct T, remove the 0 vector from T 0 and project all
of the remaining vectors onto Sn�1 (by normalizing). Since T belongs to the sphere
and has fewer than jX j2 elements, it is not hard to show that �.T/ 
 C

p
log jX j.

Then by Corollary 1, with high probability,

sup
x2T

ˇ̌
ˇ̌ 1p

m
kAxk2 � 1

ˇ̌
ˇ̌ 
 CK2

p
log jX jp
m

:

Equivalently, for all x; y 2 X

.1 � ı/kx � yk2 
 1p
m

kA.x � y/k2 
 .1C ı/kx � yk2; ı D CK2
p

log jX jp
m

:

This is the classic Johnson-Lindenstrauss lemma. It shows that as long as m �
K4 log jX j, the mapping x ! Ax=

p
m nearly preserves pair-wise distances. In other
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words, X may be embedded into a space of dimension slightly larger than log jX j
while preserving distances.

In contrast to the classic Johnson-Lindenstrauss lemma that applies only to finite
sets X , the argument above based on Corollary 1 allows X to be infinite. In this case,
the size of X is quantified using the notion of Gaussian width instead of cardinality.

To get even more precise control of the geometry of X in Johnson-Lindenstrauss
lemma, we may use the local version of our results. To this end, apply Theorem 5
combined with Remark 2 to the set T D X � X . This shows that with high
probability, for all x; y 2 X ,

ˇ̌
ˇ̌ 1p

m
kA.x � y/k2 � kx � yk2

ˇ̌
ˇ̌ 
 CK2�

�
star.X � X / \ kx � yk2Bn

2

�
p
m

: (9)

One may recover the classic Johnson-Lindenstrauss lemma from the above bound
using the containment star.X �X / � cone.X �X /. However, the above result also
applies to infinite sets, and further can benefit when X � X has different structure
at different scales, e.g., when X has clusters.

2.3 Gordon’s Escape Theorem

In [7], Gordon answered the following question: Let T be an arbitrary subset of
Sn�1. What is the probability that a random subspace has nonempty intersection
with T? Gordon showed that this probability is small provided that the codimension
of the subspace exceedsw.T/. This result also follows from Corollary 1 for a general
model of random subspaces.

Indeed, let A be an isotropic, sub-gaussian m � n random matrix as in (1). Then
its kernel kerA is a random subspace in Rn of dimension at least n�m. Corollary 1
implies that, with high probability,

kerA \ T D ; (10)

provided that m � CK4w.T/2. To see this, note that in this case Corollary 1 yields
that

ˇ̌kAxk2 � p
m
ˇ̌
<

p
m for all x 2 T, so kAxk2 > 0 for all x 2 T, which in turn

is equivalent to (10).
We also note that there is an equivalent version of the above result when T is a

cone. Then, with high probability,

kerA \ T D f0g provided that m � CK4�.T \ Sn�1/2: (11)

The conical version follows from the spherical version by expanding the sphere
into a cone.
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2.4 Sections of Sets by Random Subspaces: The M� Theorem

The M� theorem [14, 15, 18] answers the following question: Let T be an arbitrary
subset of Rn. What is the diameter of the intersection of a random subspace with T?
We may bound the radius of this intersection (which of course bounds the diameter)
using our main results, and again for a general model of random subspaces.

Indeed, let us consider the kernel of an m� n random matrix A as in the previous
section. By Theorem 3 (see (6)), we have

sup
x2T

ˇ̌kAxk2 � p
mkxk2

ˇ̌ 
 CK2�.T/ (12)

with high probability. On the event that the above inequality holds, we may further
restrict the supremum to kerA \ T, giving

sup
x2kerA\T

p
mkxk2 
 CK2�.T/:

The left-hand side is
p
m times the radius of T \ kerA. Thus, with high probability,

rad.kerA \ T/ 
 CK2�.T/p
m

: (13)

This is a classical form of the so-called M� estimate. It is typically used for sets T
that contain the origin. In these cases, the Gaussian complexity �.T/ can be replaced
by Gaussian width w.T/. Indeed, (3) with y D 0 implies that these two quantities
are equivalent.

2.5 The Size of Random Linear Images of Sets

Another question that can be addressed using our main results is how the size of a set
T in Rn changes under the action of a random linear transformation A W Rn ! Rm.
Applying (6) and the triangle inequality, we obtain

rad.AT/ 
 p
m � rad.T/C CK2�.T/ (14)

with high probability. This result has been known for random projections, where
A D p

nP and P is the orthogonal projection onto a random m-dimensional
subspace in Rn drawn according to the Haar measure on the Grassmanian, see
[2, Proposition 5.7.1].

It is also known that the bound (14) is sharp (up to absolute constant factor) even
for random projections, see [2, Sect. 5.7.1]. This in particular implies optimality of
the bound in our main result, Theorem 1.
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2.6 Signal Recovery from the Constrained Linear Model

The constrained linear model is the backbone of many statistical and signal
processing problems. It takes the form

y D Ax C z; x 2 T; (15)

where x 2 T � Rn is unknown, y 2 Rm is a vector of known observations, the
measurement matrix A 2 Rm�n is known, and z 2 Rm is unknown noise which can
be either fixed or random and independent of A.

For example, in the statistical linear model,A is a matrix of explanatory variables,
and x is a coefficient vector. It is common to assume, or enforce, that only a small
percentage of the explanatory variables are significant. This is encoded by taking T
to be the set of vectors with less than s non-zero entries, for some s 
 n. In other
words, T encodes sparsity. In another example, y is a vector of MRI measurements
[12], in which case x is the image to be constructed. Natural images have quite a
bit of structure, which may be enforced by bounding the total variation, or requiring
sparsity in a certain dictionary, each of which gives a different constraint set T.
There are a plethora of other applications, with various constraint sets T, including
low-rank matrices, low-rank tensors, non-negative matrices, and structured sparsity.
In general, a goal of interest is to estimate x.

When T is a linear subspace, it is standard to estimate x via least squares
regression, and the performance of such an estimator is well known. However, when
T is non-linear, the problem can become quite complicated, both in designing a
tractable method to estimate x and also analyzing the performance. The field of
compressed sensing [5, 6] gives a comprehensive treatment of the case when T
encodes sparsity, showing that convex programming can be used to estimate x, and
that enforcing the sparse structure this way gives a substantial improvement over
least squares regression. A main idea espoused in compressed sensing is that random
matrices A give near optimal recovery guarantees.

Predating, but especially following, the works in compressed sensing, there have
also been several works which tackle the general case, giving results for arbitrary
T [1, 3, 11, 16, 17, 20, 21, 25]. The deviation inequalities of this paper allow for a
general treatment as well. We will first show how to recover several known signal
recovery results, and then give a new result in Sect. 2.7.

Consider the constrained linear model (15). A simple and natural way to estimate
the unknown signal x is to solve the optimization problem

Ox WD arg min
x02T kAx0 � yk22 (16)

We note that depending on T, the constrained least squares problem (16) may be
computationally tractable or intractable. We do not focus on algorithmic issues here,
but just note that T may be replaced by a larger tractable set (e.g., convexified) to
aid computation.
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Our goal is to bound the Euclidean norm of the error

h WD Ox � x:

Since Ox minimizes the squared error, we have kAOx � yk22 
 kAx � yk22. Simplifying
this, we obtain

kAhk22 
 2hh;ATzi: (17)

We now proceed to control khk2 depending on the structure of T.

2.6.1 Exact Recovery

In the noiseless case where z D 0, inequality (17) simplifies and we have

h 2 kerA \ .T � x/: (18)

(The second constraint here follows since h D Ox � x and Ox 2 T.)
In many cases of interest, T � x is a cone, or is contained in a cone, which is

called the tangent cone or descent cone. Gordon-type inequality (11) then implies
that h D 0, and thus we have exact recovery Ox D x, provided that the number of
observations m significantly exceeds the Gaussian complexity of this cone: m �
CK4�..T � x/ \ Sn�1/2.

For example, if x is a sparse vector with s non-zero entries, and T is an
appropriately scaled `1 ball, then T � x is contained in a tangent cone, D, satisfying
�.D/2 
 Cs log.n=s/. This implies that Ox D x with high probability, provided
m � CK4s log.n=s/.

2.6.2 Approximate Recovery

In the cases where T � x is not a cone or cannot be extended to a narrow cone
(for example, when x lies in the interior of T), we can use the M� Theorem for the
analysis of the error. Indeed, combining (18) with (13), we obtain

khk2 
 CK2w.T/p
m

:

Here we also used that since T � T contains the origin, we have �.T � T/ � w.T/
according to (3). In particular, this means that x can be estimated up to an additive
error of " in the Euclidean norm provided that the number of observations satisfies
m � CK4w.T/2="2.

For a more detailed description of the M� Theorem, Gordon’s Escape Theorem,
and their implications for the constrained linear model, see [28].
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2.7 Model Selection for Constrained Linear Models

It is often unknown precisely what constraint set to use for the constrained linear
model, and practitioners often experiment with different constraint sets to see which
gives the best performance. This is a form of model selection. We focus on the case
when the form of the set is known, but the scaling is unknown. For example, in
compressed sensing, it is common to assume that x is compressible, i.e., that it can
be well approximated by setting most of its entries to 0. This can be enforced by
assuming that x belongs to a scaled `p ball for some p 2 .0; 1�. However, generally
it is not known what scaling to use for this `p ball.

Despite this need, previous theory concentrates on controlling the error for one
fixed choice of the scaling. Thus, a practitioner who tries many different scalings
cannot be sure that the error bounds will hold uniformly over all such scalings. In
this subsection, we remove this uncertainty by showing that the error in constrained
least squares can be controlled simultaneously for an infinite number of scalings of
the constraint set.

Assume x 2 T, but the precise scaling of T is unknown. Thus, x is estimated
using a scaled version of T:

Ox	 WD arg min
x02	T kAx0 � yk22; 	 � 1: (19)

The following corollary controls the estimation error.

Corollary 2 Let T be a convex, symmetric set. Given 	 � 1, let Ox	 be the solution
to (19). Let h	 WD Ox	 � x, let v	 D h	=.1 C 	/, and let ı D kv	k2. Then with
probability at least 0:99, the following occurs. For every 	 � 1,

ı 
 CK2�.T \ ıBn
2/p

m
C CK

s
�.T \ ıBn

2/ � kzk2
m.1C 	/

: (20)

The corollary is proven using Theorem 5. To our knowledge, this corollary is
new. It recovers previous results that only apply to a single, fixed 	, as in [11, 20].
It is known to be nearly minimax optimal for many constraint sets of interest and
for stochastic noise term z, in which case kzk2 would be replaced by its expected
value [21].

The rather complex bound of Eq. (20) seems necessary in order to allow
generality. To aid understanding, we specialize the result to a very simple set—
a linear subspace—for which the behaviour of constrained least squares is well
known, the scaling becomes irrelevant, and the result simplifies significantly. When
T is a d-dimensional subspace, we may bound the Gaussian complexity as �.T \
ıB2/ 
 ı

p
d. Plugging in the bound on �.T \ ıBn

2/ into (20), substituting h	 back
in, and massaging the equation gives

kh	k22 
 CK4 � dkzk22
m2

as long as m � CK4d:
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If z is Gaussian noise with standard deviation � , then it’s norm concentrates aroundp
m� , giving (with high probability)

kh	k22 
 CK4 � d�
2

m
as long as m � CK4d:

In other words, the performance of least squares is proportional to the noise
level multiplied by the dimension of the subspace, and divided by the number of
observations, m. This is well known.

In this corollary, for simplicity we assumed that T is convex and symmetric. Note
that this already allows constraint sets of interest, such as the `1 ball. However, this
assumption can be weakened. All that is needed is for T � 	T to be contained in a
scaled version of T, and to be star shaped. This also holds, albeit for more complex
scalings, for arbitrary `p balls with p > 0.

Proof (of Corollary 2) For simplicity of notation, we assume K 
 10 (say), and
absorb K into other constants. The general case follows the same proof. First note
that h	 2 	T � T. Since T is convex and symmetric, we have 	T � T � .1C 	/T
and as v	 D h	=.1C 	/, we get

v	 2 T: (21)

Moreover, (17) gives

kAv	k22 
 hv	;ATzi
1C 	

; v	 2 T: (22)

We will show that, with high probability, any vector v	 satisfying (21) and (22) has a
small norm, thus completing the proof. We will do this by upper bounding hv	;ATzi
and lower bounding kAv	k2 by kv	k2 minus a deviation term.

For the former goal, let w WD ATz=kzk2. Recall that the noise vector z is fixed (and
in case z random and independent of A, condition on z to make it fixed). Then w is
a sub-gaussian vector with independent entries whose sub-gaussian norm is upper-
bounded by a constant; see [27]. Thus, the random process Zx WD hx;wi has the
sub-gaussian increments required in Theorem 4 (again, see [27]). By this theorem,
with probability � 0:995,

jZxj 
 C�.T \ kxk2Bn
2/ for all x 2 T:

Let F be the ‘good’ event that the above equation holds.
To control kAv	k2, consider the ‘good’ event G that

kAxk2 � p
mkxk2 � C�.T \ kxk2Bn

2/ for all x 2 T:

By Theorem 5, G holds with probability at least 0:995.
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Now, suppose that both G and F hold (which occurs with probability at least 0:99
by the union bound). We will show that for every 	 > 1, v	 is controlled. The event
G gives

hv	;ATzi 
 C�.T \ kv	k2Bn
2/ � kzk2:

The event F gives

kAv	k2 � p
mkv	k2 � C�.T \ kv	k2Bn

2/:

Taking square roots of both sides of (22) and plugging in these two inequalities
gives (20). ut

3 Comparison with Known Results

Several partial cases of our main results have been known. As we already mentioned,
the special case of Theorem 1 where the entries of A have standard normal
distribution follows from the main result of the paper by Schechtman [23].

Generalizing the result of [23], Klartag and Mendelson proved the following
theorem.

Theorem 6 (Theorem 4.1 in [10]) Let A be an isotropic, sub-gaussian random
matrix as in (1), and let T � Sn�1. Assume that w.T/ � C0.K/.3 Then with
probability larger than 1=2,

sup
x2T

ˇ̌kAxk2 � p
m
ˇ̌ 
 C.K/w.T/: (23)

Here C0.K/ and C.K/ may depend on K only.

A similar but slightly more informative statement follows from our main results.
Indeed, Corollary 1 gives the same conclusion, but with explicit dependence on
K (the sub-gaussian norms of the rows of A) as well as probability of success.
Moreover, our general results, Theorems 1 and 3, do not require the set T to lie
on the unit sphere.

Another related result was proved by S. Mendelson, A. Pajor, and N. Tomczak-
Jaegermann.

3This restriction is not explicitly mentioned in the statement of Theorem 4.1 in [10], but it is used in
the proof. Indeed, this result is derived from their Theorem 1.3, which explicitly requires that �.T/
be large enough. Without such requirement, Theorem 4.1 in [10] fails e.g. when T is a singleton,
since in that case we have w.T/ D 0.



290 C. Liaw et al.

Theorem 7 (Theorem 2.3 in [13]) Let A be an isotropic, sub-gaussian random
matrix as in (1), and T be a star-shaped subset of Rn. Let 0 < � < 1. Then with
probability at least 1 � exp.�c�2m=K4/ we have that all vectors x 2 T with

kxk2 � r� WD inf
˚
� > 0 W � � CK2�

�
T \ � � Sn�1� =.�p

m/


satisfy

.1 � �/ kxk22 
 kAxk22
m


 .1C �/ kxk22 :

Applying our Theorem 3 to the bounded set T \ r� � Sn�1 precisely implies
Theorem 7 with the same failure probability (up to the values of the absolute
constants c;C). Moreover, our Theorem 3 treats all x 2 T uniformly, whereas
Theorem 7 works only for x with large norm.

Yet another relevant result was proved by Dirksen [4, Theorem 5.5]. He showed
that the inequality

ˇ̌kAxk22 � mkxk22
ˇ̌

. K2w.T/2 C p
mK2 rad.T/w.T/

C u
p
mK2 rad.T/2 C u2K2 rad.T/2 (24)

holds uniformly over x 2 T with probability at least 1� exp.�u2/. To compare with
our results, one can see that Theorem 3 implies that, with the same probability,

ˇ̌kAxk22 � mkxk22
ˇ̌

. K4w.T/2 C p
mK2kxk2w.T/

C u
p
mK2 rad.T/kxk2 C uK4 rad.T/w.T/C u2K4 rad.T/2;

which is stronger than (24) when K D O.1/ and m & n, since then kxk2 
 rad.T/
and w.T/ . p

m rad.T/.

4 Preliminaries

4.1 Majorizing Measure Theorem, and Deduction
of Theorems 1 and 3

As we mentioned in the Introduction, Theorems 1 and 3 follow from Theorem 2 via
Talagrand’s Majorizing Measure Theorem (and its high-probability counterpart).
Let us state this theorem specializing to processes that are indexed by points in Rn.
For T � Rn, let diam.T/ :D supx;y2T kx � yk2.
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Theorem 8 (Majorizing Measure Theorem) Consider a random process .Zx/x2T
indexed by points x in a bounded set T � Rn. Assume that the process has sub-
gaussian increments, that is there exists M � 0 such that

kZx � Zyk 2 
 Mkx � yk2 for every x; y 2 T: (25)

Then

E sup
x;y2T

jZx � Zyj 
 CME sup
x2T

hg; xi ;

where g � N.0; In/. Moreover, for any u � 0, the event

sup
x;y2T

jZx � Zyj 
 CM
�
E sup

x2T
hg; xi C u diam.T/

�

holds with probability at least 1 � exp.�u2/.

The first part of this theorem can be found e.g. in [24, Theorems 2.1.1, 2.1.5].
The second part, a high-probability bound, is borrowed from [4, Theorem 3.2].

Let us show how to deduce Theorems 1 and 3. According to Theorem 2, the
random process Zx WD kAxk2 � p

mkxk2 satisfies the hypothesis (25) of the
Majorizing Measure Theorem 8 with M D CK2. Fix an arbitrary y 2 T and use
the triangle inequality to obtain

E sup
x2T

jZxj 
 E sup
x2T

jZx � Zyj C EjZyj: (26)

Majorizing Measure Theorem bounds the first term: E supx2T jZx � Zyj . K2w.T/.
(We suppress absolute constant factors in this inequality and below.) The second
term can be bounded more easily as follows: EjZyj . kZyk 2 . K2kyk2, where we
again used Theorem 2 with x D 0. Using (3), we conclude that

E sup
x2T

jZxj . K2.w.T/C kyk2/ . K2�.T/;

as claimed in Theorem 1.
We now prove Theorem 3. Since adding 0 to a set does not change its radius, we

may assume that 0 2 T. Let Zx WD kAxk2 � p
m kxk2. Since Z0 D 0, and since Zx

has sub-gaussian increments by Theorems 2, 8 gives that with probability at least
1 � exp.�u2/,

sup
x2T

jZxj D sup
x2T

jZx � Z0j . K2
�
E sup

x2T
hg; xi C u � diam.T/

�

. K2
�
E sup

x2T
hg; xi C u � rad.T/

�
: ut
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4.2 Sub-exponential Random Variables, and Bernstein’s
Inequality

Our argument will make an essential use of Bernstein’s inequality for sub-
exponential random variables. Let us briefly recall the relevant notions, which
can be found, e.g., in [27]. A random variable Z is sub-exponential if its distribution
is dominated by an exponential distribution. More formally, Z is sub-exponential if
the Orlicz norm

kZk 1 WD inf
˚
K > 0 W E 1.jZj=K/ 
 1g

is finite, for the Orlicz function  1.x/ D exp.x/ � 1. Every sub-gaussian random
variable is sub-exponential. Moreover, an application of Young’s inequality implies
the following relation for any two sub-gaussian random variables X and Y:

kXYk 1 
 kXk 2kYk 2 : (27)

The classical Bernstein’s inequality states that a sum of independent sub-
exponential random variables is dominated by a mixture of sub-gaussian and
sub-exponential distributions.

Theorem 9 (Bernstein-Type Deviation Inequality, See e.g. [27]) Let X1; : : : ;Xm

be independent random variables, which satisfy EXi D 0 and kXik 1 
 L. Then

P

( ˇ̌
ˇ 1
m

mX
iD1

Xi

ˇ̌
ˇ > t

)

 2 exp

h
� cmmin

	 t2
L2
;
t

L


i
; t � 0:

5 Proof of Theorem 2

Proposition 1 (Concentration of the Norm) Let X 2 Rm be a random vector with
independent coordinates Xi that satisfy EX2i D 1 and kXik 2 
 K. Then

���kXk2 � p
m
���
 2


 CK2:

Remark 3 If EXi D 0, this proposition follows from [22, Theorem 2.1], whose
proof uses the Hanson-Wright inequality.

Proof Let us apply Bernstein’s deviation inequality (Theorem 9) for the sum of
independent random variables kXk22 � m D Pm

iD1.X2i � 1/. These random variables
have zero means and sub-exponential norms

kX2i � 1k 1 
 2kX2i k 1 
 2kXik2 2 
 2K2:
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(Here we used a simple centering inequality which can be found e.g. in [27,
Remark 5.18] and the inequality (27).) Bernstein’s inequality implies that

P
˚ˇ̌kXk22 � m

ˇ̌
> tm

 
 2 exp
h

� cmmin
	 t2

K4
;

t

K2


i
; t � 0: (28)

To deduce a concentration inequality for kXk2� p
m from this, let us employ the

numeric bound jx2 � mj � p
m jx � p

mj valid for all x � 0. Using this together
with (28) for t D s=

p
m, we obtain

P
˚ˇ̌kXk2 � p

m
ˇ̌
> s

 
 P
˚ˇ̌kXk22 � m

ˇ̌
> s

p
m



 2 exp.�cs2=K4/ for s 
 K2
p
m:

To handle large s, we proceed similarly but with a different numeric bound, namely
jx2 � mj � .x� p

m/2 which is valid for all x � 0. Using this together with (28) for
t D s2=m, we obtain

P
˚ˇ̌kXk2 � p

m
ˇ̌
> s

 
 P
˚ˇ̌kXk22 � m

ˇ̌
> s2



 2 exp.�cs2=K2/ for s � K

p
m:

Since K � 1, in both cases we bounded the probability in question by
2 exp.�cs2=K4/. This completes the proof. ut
Lemma 1 (Concentration of a Random Matrix on a Single Vector) Let A be an
isotropic, sub-gaussian random matrix as in (1). Then

���kAxk2 � p
m
���
 2


 CK2 for every x 2 Sn�1:

Proof The coordinates of the vector Ax 2 Rm are independent random variables
Xi WD hAi; xi. The assumption that EAiAT

i D I implies that EX2i D 1, and the
assumption that kAik 2 
 K implies that kXik 2 
 K. The conclusion of the lemma
then follows from Proposition 1. ut

Lemma 1 can be viewed as a partial case of the increment inequality of
Theorem 2 for x 2 Sn�1 and y D 0, namely

kZxk 2 
 CK2 for every x 2 Sn�1: (29)

Our next intermediate step is to extend this by allowing y to be an arbitrary unit
vector.

Lemma 2 (Sub-Gaussian Increments for Unit Vectors) Let A be an isotropic,
sub-gaussian random matrix as in (1). Then

���kAxk2 � kAyk2
���
 2


 CK2kx � yk2 for every x; y 2 Sn�1:
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Proof Given s � 0, we will bound the tail probability

p WD P

( ˇ̌kAxk2 � kAyk2
ˇ̌

kx � yk2 > s

)
: (30)

Case 1: s � 2
p
m. Using the triangle inequality we have jkAxk2 � kAyk2j 


kA.x � y/k2. Denoting u WD .x � y/=kx � yk2, we find that

p 
 P
˚kAuk2 > s

 
 P
˚kAuk2 � p

m > s=2
 
 exp.�Cs2=K4/:

Here the second bound holds since s � 2
p
m, and the last bound follows by

Lemma 1.
Case 2: s 
 2

p
m. Multiplying both sides of the inequality defining p in (30) by

kAxk2 C kAyk2, we can write p as

p D P
˚jZj > s

�kAxk2 C kAyk2
�

where Z WD kAxk22 � kAyk22
kx � yk2 :

In particular,

p 
 P
˚jZj > skAxk2

 
 P

�
jZj > s

p
m

2

�

C P

�
kAxk2 


p
m

2

�
DW p1 C p2:

We may bound p2 using Lemma 1:

p2 
 2 exp
	

� .
p
m=2/2

C2K4



D 2 exp

	
� m

4C2K4




 2 exp

	
� s2

16C2K4



: (31)

Next, to bound p1, it will be useful to write Z as

Z D hA.x � y/;A.x C y/i
kx � yk2 D hAu;Avi ; where u WD x � y

kx � yk2 ; v WD x C y:

Since the coordinates of Au and Av are hAi; ui and hAi; vi respectively, Z can be
represented as a sum of independent random variables:

Z D
mX
iD1

hAi; ui hAi; vi : (32)

Note that each of these random variables hAi; ui hAi; vi has zero mean, since

E hAi; x � yi hAi; x C yi D E
� hAi; xi2 � hAi; yi2

� D 1 � 1 D 0:
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(Here we used the assumptions that EAiAT
i D I and kxk2 D kyk2 D 1.) Moreover,

the assumption that kAik 2 
 K implies that k hAi; ui k 2 
 Kkuk2 D K and
k hAi; vi k 2 
 Kkvk2 
 2K. Recalling inequality (27), we see that hAi; ui hAi; vi
are sub-exponential random variables with k hAi; ui hAi; vi k 1 
 CK2. Thus we can
apply Bernstein’s inequality (Theorem 9) to the sum of mean zero, sub-exponential
random variables in (32), and obtain

p1 D P

�
jZj > s

p
m

2

�

 2 exp.�cs2=K4/; since s 
 2K2

p
m:

Combining this with the bound on p2 obtained in (31), we conclude that

p D p1 C p2 
 2 exp.�cs2=K4/:

This completes the proof. ut
Finally, we are ready to prove the increment inequality in full generality, for all

x; y 2 Rn.

Proof (of Theorem 2) Without loss of generality we may assume that kxk2 D 1 and
kyk2 � 1. Consider the unit vector Ny WD y=kyk2 and apply the triangle inequality to
get

kZx � Zyk 2 
 kZx � ZNyk 2 C kZNy � Zyk 2 DW R1 C R2:

By Lemma 2, R1 
 CK2kx � Nyk2. Next, since Ny and y are collinear, we have R2 D
kNy� yk2 � kZNyk 2 . Since Ny 2 Sn�1, inequality (29) states that kZNyk 2 
 CK2, and we
conclude that R2 
 CK2kNy � yk2. Combining the bounds on R1 and R2, we obtain

kZx � Zyk 2 
 CK2
�kx � Nyk2 C kNy � yk2

�
:

It is not difficult to check that since kyk2 � 1, we have kx � Nyk2 
 kx � yk2 and
kNy � yk2 
 kx � yk2. This completes the proof. ut

6 Proof of Theorem 4

We will prove a slightly stronger statement. For r > 0, define

Er WD sup
x2 1

r T\Bn
2

jZxj:

Set W WD limr!rad.T/� �
�
1
r T \ Bn

2

�
. Since 1

r T \ Bn
2 contains at least one point on

the boundary for every r < rad.T/, it follows that W � p
2=� . We will show that,
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with probability at least 1 � exp
��c0t2W2

�
, one has

Er 
 t � CK2�
�
1

r
T \ Bn

2

�
for all r 2 .0;1/;

which, when combined with the assumption of homogeneity, will clearly imply the
theorem with a stronger probability.

Fix " > 0. Let " D r0 < r1 < : : : < rN be a sequence of real numbers satisfying
the following conditions:

• �
	
1
ri
T \ Bn

2



D 2 � �

	
1

riC1
T \ Bn

2



for i D 0; 1; : : : ;N � 1, and

• �
	
1
rN
T \ Bn

2




 2 � W.

The quantities r1; : : : ; rN exist since the map r 7! �
�
1
r T \ Bn

2

�
is decreasing and

continuous when T is star-shaped.
Applying the Majorizing Measure Theorem 8 to the set 1r T \ Bn

2 and noting that
Z0 D 0, we obtain that

Er . K2
�
�

�
1

r
T \ Bn

2

�
C u

�

with probability at least 1� exp.�u2/. Set c :D 10 �p�
2

� 10=W and use the above
inequality for u D ct�

�
1
r T \ Bn

2

�
. We get

Er . t � K2�
�
1

r
T \ Bn

2

�
(33)

holds with probability at least 1 � exp
	
�c2t2�

�
1
r T \ Bn

2

�2

. Thus for each i 2

f0; 1; : : : ;Ng, we have

Eri . t � K2�
�
1

ri
T \ Bn

2

�
(34)

with probability at least

1 � exp

 
�c2t24N�i�

�
1

rN
T \ Bn

2

�2!
� 1 � exp

��c2t24N�iW2
�
:

By our choice of c and the union bound, (34) holds for all i simultaneously with
probability at least

1 �
NX
iD0

exp
��c2t24N�iW2

� � 1 � 2 � exp.�100t2W2/ D: 1 � exp.�c0t2W2/:
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We now show that if (34) holds for all i, then (33) holds for all r 2 .";1/. This
is done via an approximation argument. To this end, assume that (34) holds and let
r 2 .ri�1; ri/ for some i 2 ŒN�. Since T is star-shaped, we have 1

r T\Bn
2 � 1

ri�1
T\Bn

2,
so

Er 
 Eri�1 . t � K2�
�
1

ri�1
T \ Bn

2

�
D 2t � K2�

�
1

ri
T \ Bn

2

�


 2t � K2�
�
1

r
T \ Bn

2

�
:

Also, for rad.T/ � r > rN we have

Er . t � K2�
�
1

rN
T \ Bn

2

�

 2t � K2W 
 2t � K2�

�
1

r
T \ Bn

2

�
:

Let Fk be the event that (33) holds for all r 2 .1=k;1/. We have just shown that
P
˚
Fk
 � 1 � exp

��c0t2W2
�

for all k 2 N. As F1 � F2 � : : : and \kFk D: F1 is
the event that (33) holds for all r 2 .0;1/, it follows by continuity of measure that
P
˚
F1

 � 1 � exp
��c0t2W2

�
, thus completing the proof.

7 Further Thoughts

In the definition of Gaussian complexity �.T/ D E supx2T j hg; xi j, the absolute
value is essential to make Theorem 1 hold. In other words, the bound would fail if
we replace �.T/ by the Gaussian width w.T/ D E supx2T hg; xi. This can be seen by
considering a set T that consists of a single point.

However, one-sided deviation inequalities do hold for Gaussian width. Thus a
one-sided version of Theorem 1 states that

E sup
x2T

	
kAxk2 � p

mkxk2




 CK2 � w.T/; (35)

and the same bound holds for E supx2T
� � kAxk2 C p

mkxk2
�
. To prove (35),

one modifies the argument in Sect. 4.1 as follows. Fix a y 2 T. Since EkAyk2 
�
EkAyk22

�1=2 D p
mkyk2, we have EZy 
 0, thus

E sup
x2T

Zx 
 E sup
x2T
.Zx � Zy/ 
 E sup

x2T
jZx � Zyj . K2w.T/

where the last bound follows by Majorizing Measure Theorem 8. Thus in this
argument there is no need to separate the term EjZyj as was done before in Eq. (26).
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On Multiplier Processes Under Weak Moment
Assumptions

Shahar Mendelson

Abstract We show that if V � R
n satisfies a certain symmetry condition that is

closely related to unconditionality, and if X is an isotropic random vector for which
k˝X; t˛kLp 
 L

p
p for every t 2 Sn�1 and every 1 
 p . log n, then the suprema of

the corresponding empirical and multiplier processes indexed by V behave as if X
were L-subgaussian.

1 Introduction

The motivation for this work comes from various problems in Learning Theory, in
which one encounters the following family of random processes.

Let X D .x1; : : :; xn/ be a random vector in Rn (whose coordinates .xi/niD1 need
not be independent) and let � be a random variable that need not be independent
of X. Set .Xi; �i/

N
iD1 to be N independent copies of .X; �/, and for V � Rn the

supremum of the centred multiplier process is

sup
v2V

ˇ̌
ˇ̌
ˇ
1p
N

NX
iD1

�
�i
˝
Xi; v

˛ � E�
˝
X; v

˛�ˇ̌ˇ̌
ˇ : (1)

Multiplier processes are often studied in a more general context, in which the
indexing set need not be a class of linear functionals on Rn. Instead, one may
consider an arbitrary probability space .�;
/ and a class of real-valued functions
F defined on �. If X1; : : :;XN are independent, distributed according to 
, then the
supremum of the multiplier process indexed by F is

sup
f2F

ˇ̌
ˇ̌
ˇ
1p
N

NX
iD1

.�i f .Xi/� E�f .Xi//

ˇ̌
ˇ̌
ˇ : (2)
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Naturally, the simplest multiplier process is when � � 1 and (2) is just the
supremum of the standard empirical process.

Controlling a multiplier process is relatively straightforward when � 2 Lq for
some q > 2 and is independent of X. For example, one may show (see, e.g., [20],
Chap. 2.9) that if .�i/NiD1 are independent copies of a mean-zero random variable
� 2 L2;1, and are independent of .Xi/

N
iD1, then

E sup
f2F

ˇ̌
ˇ̌
ˇ
1p
N

NX
iD1

.�i f .Xi/� E�f .Xi//

ˇ̌
ˇ̌
ˇ 
 Ck�kL2;1E sup

f2F

ˇ̌
ˇ̌
ˇ
1p
N

NX
iD1

"i f .Xi/

ˇ̌
ˇ̌
ˇ I

here and throughout the article ."i/NiD1 denote independent, symmetric f�1; 1g-
valued random variables that are independent of .Xi; �i/

N
iD1, and C is an absolute

constant.
This estimate and others of its kind show that multiplier processes are as

‘complex’ as their seemingly simpler empirical counterparts. However, the results
we are looking for are of a different nature: estimates on multiplier processes that
are based on some natural complexity parameter of the underlying class F which
exhibits the class’ geometry.

It turns out that chaining methods lead to such estimates, and the structure of F
may be captured by a parameter that is a close relative of Talagrand’s � -functionals
(see [19] for a detailed study on generic chaining and the � functionals).

Definition 1.1 For a random variable Z and p � 1, set

kZk. p/ D sup
1�q�p

kZkLqp
q
:

Given a class of functions F, u � 1 and s0 � 0, put

ƒs0;u.F/ D inf sup
f2F

X
s�s0

2s=2k f � �s fk.u22s/; (3)

where the infimum is taken with respect to all sequences .Fs/s�0 of subsets of F,
and of cardinality jFsj 
 22

s
. �s f is the nearest point in Fs to f with respect to the

.u22s/ norm.
Let

Qƒs0;u.F/ D ƒs0;u.F/C 2s0=2 sup
f2F

k�s0 fk.u22s0 /:

To put these definitions in some perspective, kZk. p/ measures the local-subgaussian
behaviour of Z, and the meaning of ‘local’ is that k k. p/ takes into account the growth
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of Z’s moments up to a fixed level p. In comparison,

kZk 2 � sup
q�2

kZkLqp
q
;

implying that for 2 
 p < 1, kZk. p/ . kZk 2 ; hence, for every u � 1 and s � s0,

ƒs0;u.F/ . inf sup
f2F

X
s�s0

2s=2k f � �s fk 2;

and Qƒ0;u.F/ 
 c�2.F;  2/.
Recall that the canonical gaussian process indexed by F is defined by assigning

to each f 2 F a centred gaussian random variables Gf , and the covariance structure
of the process is endowed by the inner product in L2.
/. Let

E sup
f2F

Gf D supfE sup
f2F0

Gf W F0 � F; F0 is finiteg

and note that if the class F � L2.
/ is L-subgaussian, that is, if for every f ; h 2
F [ f0g,

k f � hk 2.
/ 
 Lk f � hkL2.
/;

then Qƒs0;u.F/ may be bounded in terms of the process fGf W f 2 Fg. Indeed, by
Talagrand’s Majorizing Measures Theorem [18, 19], for every s0 � 0,

Qƒs0;u.F/ . L
�
E sup

f2F
Gf C 2s0=2 sup

f2F
k fkL2.
/

�
:

As an example, let V � Rn and set F D f˝v; �˛ W v 2 Vg to be the class of linear
functionals endowed by V . If X is an isotropic, L-subgaussian vector, it follows that
for every t 2 Rn,

k˝X; t˛k 2 
 Lk˝X; t˛kL2 D Lktk`n2 :

Therefore, if G D .g1; : : :; gn/ is the standard gaussian vector in Rn, `�.V/ D
E supv2V j˝G; v˛j and d2.V/ D supv2V kvk`n2 , one has

Qƒs0;u.F/ .L
�
E sup
v2V

˝
G; v

˛C 2s0=2 sup
v2V

k˝X; v˛kL2�

.L
�
`�.V/C 2s0=2d2.V/

�
:

As the following estimate from [11] shows, Qƒ can be used to control a multiplier
process in a relatively general situation.
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Theorem 1.2 For q > 2, there are constants c0, c1; c2; c3 and c4 that depend only
on q for which the following holds. Let � 2 Lq (that need not be independent of
X) and set .Xi; �i/

N
iD1 to be independent copies of .X; �/. Fix an integer s0 � 0 and

w; u > c0. Then, with probability at least

1 � c1w
�qN�..q=2/�1/ logq N � 2 exp.�c2u

22s0 /;

sup
f2F

ˇ̌
ˇ̌
ˇ
1p
N

NX
iD1

.�i f .Xi/� E�f /

ˇ̌
ˇ̌
ˇ 
 c3wuk�kLq Qƒs0;c4u.F/:

It follows from Theorem 1.2 that if X is an isotropic, L-subgaussian random
vector, V � Rn and

D.V/ D
�
`�.V/
d2.V/

�2

then with probability at least

1 � c2w
�qN�..q=2/�1/ logq N � 2 exp.�c3u

2D.V//;

sup
v2V

ˇ̌
ˇ̌
ˇ
1p
N

NX
iD1

�
�i
˝
v;Xi

˛ � E�
˝
v;X

˛�ˇ̌ˇ̌
ˇ . Lwuk�kLq`�.V/: (4)

There are other generic situations in which Qƒs0;u.F/ may be controlled using the
geometry of F; for example, when F is a class of linear functionals on R

n and X is
an isotropic, unconditional, log-concave random vector [11, 13]. However, these are
rather special cases, and there is no satisfactory theory that describes Qƒs0;u.F/ for
arbitrary F and 
. Moreover, because the definition of ƒs0;u.F/ involves k k. p/ for
every p, class members must have arbitrarily high moments for ƒs0;u.F/ to even be
well defined.

In the context of classes of linear functionals on R
n, one expects an analogous

result to Theorem 1.2 to be true even if the functionals
˝
X; t

˛
do not have arbitrarily

high moments. A realistic conjecture is that if for each t 2 Sn�1

k˝X; t˛kLq 
 L
p
qk˝X; t˛kL2 for every 2 
 q . n

then a subgaussian-type estimate like (4) should still be true, because Euclidean
entropy numbers of bounded sets in Rn decay very quickly once one uses more than
exp.cn/ points in a cover.

In what follows we will not focus on such a general result that is likely to hold
for every V � Rn. Rather, we will focus our attention on situations in which linear
functionals only satisfy that

k˝X; t˛kLq 
 L
p
qk˝X; t˛kL2 for every 2 
 q . log n:
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The obvious example in which only � log n moments should suffice is for V D Bn
1

(or similar sets that have � n extreme points). Having said that, the applications
that motivated this work require that a broad spectrum of sets exhibit a subgaussian
behaviour as in (4).

Question 1.3 Let X D .x1; : : :; xn/ be an isotropic random vector and assume that
kxikLq 
 L

p
q for every 2 
 q 
 p and 1 
 i 
 n. If � 2 Lq0 for some q0 > 2, how

small can p be and still ensure that

E sup
v2V

ˇ̌
ˇ̌
ˇ
1p
N

NX
iD1

�
�i
˝
Xi; v

˛ � E�
˝
X; v

˛�ˇ̌ˇ̌
ˇ 
 C.L; q0/k�kLq0 `�.V/‹

We will show p � log n suffices for a positive answer to Question 1.3 if the norm
kzkVı D supv2V j˝v; z˛j satisfies the following unconditionality property:

Definition 1.4 Given a vector x D .xi/niD1, let .x�
i /

n
iD1 be the non-increasing

rearrangement of .jxij/niD1.
The normed space .Rn; k k/ is K-unconditional with respect to the basis

fe1; : : :; eng if for every x 2 Rn and every permutation of f1; : : :; ng

k
nX

iD1
xieik 
 Kk

nX
iD1

x�.i/eik;

and if y 2 R
n and x�

i 
 y�
i for 1 
 i 
 n then

k
nX

iD1
xieik 
 Kk

nX
iD1

yieik:

Remark 1.5 This is not the standard definition of an unconditional basis, though
every unconditional basis (in the classical sense) of an infinite dimensional space
satisfies Definition 1.4 for some constant K (see, e.g., [1]).

There are many natural examples of K-unconditional spaces, most notably, all
the `p spaces. Moreover, the norm kzk D supv2V

Pn
iD1 v�

i z
�
i is 1-unconditional. In

fact, if V � Rn is closed under permutations and reflections (sign-changes), then
k � kVı is 1-unconditional.

We will show the following:

Theorem 1.6 There exists an absolute constant c1 and for K � 1, L � 1 and q0 > 2
there exists a constant c2 that depends only on K, L and q0 for which the following
holds. Consider

• V � Rn for which the norm k � kVı D supv2V j˝v; �˛j is K-unconditional with
respect to the basis fe1; : : :; eng.

• � 2 Lq0 for some q0 > 2.
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• An isotropic random vector X 2 Rn that satisfies

max
1�j�n

k˝X; ej˛k. p/ 
 L for p D c1 log n:

If .Xi; �i/
N
iD1 are independent copies of .X; �/ then

E sup
v2V

ˇ̌
ˇ̌
ˇ
1p
N

NX
iD1

�
�i
˝
Xi; v

˛ � E�
˝
X; v

˛�ˇ̌ˇ̌
ˇ 
 c2k�kLq0 `�.V/:

The proof of Theorem 1.6 is based on properties of a conditioned Bernoulli
process. Indeed, a standard symmetrization argument (see, e.g., [8, 20]) shows that
if ."i/NiD1 are independent, symmetric, f�1; 1g-valued random variables that are
independent of .Xi; �i/

N
iD1 then

E sup
v2V

ˇ̌
ˇ̌
ˇ
1p
N

NX
iD1

�
�i
˝
Xi; v

˛ � E�
˝
X; v

˛�ˇ̌ˇ̌
ˇ 
 CE sup

v2V

ˇ̌
ˇ̌
ˇ
1p
N

NX
iD1

"i�i
˝
Xi; v

˛ˇ̌ˇ̌
ˇ

for an absolute constant C; a similar bound hold with high probability, showing that
it suffices to study the supremum of the Bernoulli process

sup
v2V

ˇ̌
ˇ̌
ˇ
1p
N

NX
iD1

"i�i
˝
Xi; v

˛ˇ̌ˇ̌
ˇ D .�/

conditioned on .Xi; �i/
N
iD1.

Put xi. j/ D ˝
Xi; ej

˛
and set Zj D N�1=2PN

iD1 "i�ixi. j/, which is a sum of iid
random variables. Therefore, if Z D .Z1; : : :;Zn/ then

.�/ D sup
v2V

ˇ̌˝
Z; v

˛ˇ̌
:

The proof of Theorem 1.6 follows by showing that for a well-chosen constant C D
C.L; q/ the event

˚
Z�
j 
 CEg�

j for every 1 
 j 
 n


is of high probability, and if the norm k � kVı D supv2V j˝�; v˛j is K-unconditional
then

sup
v2V

ˇ̌˝
Z; v

˛ˇ̌ 
 C1.K;L; q/E sup
v2V

ˇ̌˝
G; v

˛ˇ̌
:
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Before presenting the proof of Theorem 1.6, let us turn to one of its outcomes—
estimates on the random Gelfand widths of a convex body. We will present another
application, motivated by a question in the rapidly developing area of Spare
Recovery in Sect. 3.

Let V � Rn be a convex, centrally symmetric set. A well known question
in Asymptotic Geometric Analysis has to do with the diameter of a random m-
codimensional section of V (see, e.g., [2, 14–16]). In the past, the focus was on
obtaining such estimates for subspaces selected uniformly according to the Haar
measure, or alternatively, according to the measure endowed by the kernel of anm�n
gaussian matrix (see, e.g. [17]). More recently, there has been a growing interest in
other notions of randomness, in particular randomness generated by kernels of other
random matrix ensembles. For example, the following was established in [12]:

Theorem 1.7 Let X1; : : :;Xm be distributed according to an isotropic, L-
subgaussian random vector on Rn, set  D Pm

iD1
˝
Xi; �

˛
ei and put

rG.V; �/ D inffr > 0 W `�.V \ rBn
2/ 
 �r

p
mg:

Then, with probability at least 1 � 2 exp.�c1.L/m/

diam.ker./ \ V/ 
 rG.V; c2.L//;

for constants c1 and c2 that depends only on L.

A version of Theorem 1.7 was obtained under a much weaker assumption: the
random vector need not be L-subgaussian; rather, it suffices that it satisfies a weak
small-ball condition.

Definition 1.8 The isotropic random vector X satisfies a small-ball condition with
constants � > 0 and 0 < " 
 1 if for every t 2 Sn�1,

Pr.j˝X; t˛j � �/ � ":

The analog of gaussian parameter rG for a general random vector X turns out to be

rX.V; �/ D inf
n
r > 0 W E sup

v2V\rBn
2

ˇ̌ 1p
m

mX
iD1

˝
Xi; v

˛ˇ̌ 
 �r
p
m
o
:

Clearly, if X is L-subgaussian then rX.V; �/ 
 rG.V; cL�/ for a suitable absolute
constant c.

Theorem 1.9 ([9, 10]) Let X be an isotropic random vector that satisfies the small-
ball condition with constants � and ". If X1; : : :Xm are independent copies of X and
 D Pm

iD1
˝
Xi; �

˛
ei, then with probability at least 1 � 2 exp.�c0."/m/

diam.ker./\ V/ 
 rX
�
V; c1.�; "/

�
:
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Therefore, if the norms supv2V\rBn
2

˝
v; �˛ are K-unconditional for every r > 0,

and if the growth of the moments of the coordinate linear functionals
˝
X; ei

˛
is

‘L-subgaussian’ up to the level p � log n, then the small-ball condition depends
only on L and rX.V; c1.L// 
 rG.V; c2.L;K//. Hence, with probability at least
1 � 2 exp.�c0.L/m/,

diam.ker./ \ V/ 
 rG
�
V; c2.L;K/

�
;

even when the choice of a subspace is made according to an ensemble that could be
very far from a subgaussian one.

We end this introduction with a word about notation. Throughout, absolute
constants are denoted by c; c1: : :, etc. Their value may change from line to line
or even within the same line. When a constant depends on a parameter ˛ it will be
denoted by c.˛/. A . B means that A 
 cB for an absolute constant c, and the
analogous two-sided inequality is denoted by A � B. In a similar fashion, A .˛ B
implies that A 
 c.˛/B, etc.

2 Proof of Theorem 1.6

There are two substantial difficulties in the proof of Theorem 1.6. First, Z1; : : :;Zn
are not independent random variables, not only because of the Bernoulli random
variables ."i/NiD1 that appear in all the Zi’s, but also because the coordinates of X D
.x1; : : :; xn/ need not be independent. Second, while there is some flexibility in the
moment assumptions on the coordinates of X, there is no flexibility in the moment
assumption on �, which is only ‘slightly better’ than square-integrable.

As a starting point, let us address the fact that the coordinates of Z need not be
independent.

Lemma 2.1 There exist absolute constants c1 and c2 for which the following holds.
Let ˇ � 1 and set p D 2ˇ log.en/. If .Wj/

n
jD1 are random variables and satisfy that

kWjk. p/ 
 L, then for every t � e, with probability at least 1 � c1t�2ˇ ,

W�
j 
 c2tL

p
ˇ log.en=j/ for every 1 
 j 
 n:

Proof Let a1; : : :; ak 2 R and by the convexity of t ! tq,

�1
k

kX
jD1

a2j
�q 
 1

k

kX
jD1

a2qj :
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Thus, given .ai/niD1, and taking the maximum over subsets of f1; : : :; ng of
cardinality k,

max
jJ1jDk

�1
k

X
j2J1

a2j
�q 
 max

jJ1jDk

1

k

X
j2J1

a2qj 
 1

k

nX
jD1

a2qj :

When applied to aj D Wj, it follows that point-wise,

�1
k

kX
jD1
.W�

j /
2
�q 
 1

k

nX
iD1

W2q
j : (5)

Since kWjk. p/ 
 L it is evident that EW2q
j 
 L2q.2q/q for 2q 
 p. Hence, taking the

expectation in (5),

	
E
�1
k

kX
jD1
.W�

j /
2
�q
1=q 
 qL2 � �n

k

�1=q 
 c1qL
2

for q D ˇ log.en=k/ (which does satisfy 2q 
 p). Therefore, by Chebyshev’s
inequality, for t � 1,

Pr
	1
k

X
j�k

.W�
j /
2 � .et/2c21L

2q




 1

t2q
� e�2q 


�
k

en

�2ˇ
� 1
t2ˇ
: (6)

Using (6) for k D 2j and applying the union bound, it is evident that for t � e, with
probability at least 1 � 2t�2ˇP.2j=n/2ˇ � 1 � ct�2ˇ , for every 1 
 k 
 n,

.W�
k /
2 
 1

k

X
j�k

.W�
j /
2 . t2L2ˇ log.en=k/:

�

Recall that q0 > 2 and set � D .q0 � 2/=4. Let u � 2 and consider the event

Au D f��
i 
 uk�kLq0 .eN=i/1=q0 for every 1 
 i 
 Ng:

A standard binomial estimate combined with Chebyshev’s inequality for j�jq0 shows
that Au is a nontrivial event. Indeed,

Pr
�
��
i � uk�kLq0 .eN=i/1=q0

� 

 
N

i

!
Pri

�j�j � uk�kLq0 .eN=i/1=q0
� 
 1

uiq0
;

and by the union bound for 1 
 i 
 n, Pr.Au/ 
 2=uq0 .
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The random variables we shall use in Lemma 2.1 are

Wj D Zj1Au ;

for u � 2 and 1 
 j 
 n.
The following lemma is the crucial step in the proof of Theorem 1.6.

Lemma 2.2 There exists an absolute constant c for which the following holds. Let
X be a random variable that satisfies kXk. p/ 
 L for some p > 2 and set X1; : : :;XN

to be independent copies if X. If

W D
ˇ̌
ˇ̌
ˇ
1p
N

NX
iD1

"i�iXi

ˇ̌
ˇ̌
ˇ1Au ;

then kWk. p/ 
 cuLk�kLq0 .
The proof of Lemma 2.2 requires two preliminary estimates on the ‘gaussian’

behaviour of the monotone rearrangement of N independent copies of a random
variable.

Lemma 2.3 There exists an absolute constant c for which the following holds.
Assume that kXk.2p/ 
 L. If X1; : : :;XN are independent copies of X, then for every
1 
 k 
 N and 2 
 q 
 p,

k�X
i�k

.X�
i /
2
�1=2kLq 
 cL.

p
k log.eN=k/C p

q/:

Proof The proof follows from a comparison argument, showing that up to the p-th
moment, the ‘worst case’ is when X is a gaussian variable.

Let V1; : : ::;Vk be independent, nonnegative random variables and set V 0
1; : : ::;V

0
k

to be independent and nonnegative as well. Observe that if kVikLq 
 LkV 0
ikLq for

every 1 
 q 
 p and 1 
 i 
 N, then

k
kX

iD1
VikLp 
 Lk

kX
iD1

V 0
ikLp : (7)

Indeed, consider all the integer-valued vectors Ę D .˛1; : : :; ˛k/, where ˛i � 0 andPk
iD1 ˛i D p. There are constants c Ę for which

k
kX

iD1
VikpLp D E

� kX
iD1

Vi
�p D E

X
Ę

c Ę
kY

iD1
V˛ii D

X
Ę

c Ę
kY

iD1
EV˛ii ;
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and an identical type of estimate holds for .V 0
i /. Equation (7) follows if

kY
iD1

EV˛ii 
 Lp
kY

iD1
E.V 0

i /
˛i ;

and the latter may be verified because kVikLq 
 LkV 0
i kLq for every 1 
 q 
 p.

Let G D .gi/kiD1 be a vector whose coordinates are independent standard gaussian
random variables. If Vi D X2i and V 0

i D c2L2g2i , then by (7), for every 1 
 q 
 p,

k
kX

iD1
X2i kLq 
 c2L2k

kX
iD1

g2i kLq D c2L2
	
EkGk2q

`k2


1=q
:

It is standard to verify that

EkGk2q
`k2


 c2q.
p
k C p

q/2q;

and therefore,

k
kX

iD1
X2i kLq . L2 maxfk; qg:

By a binomial estimate,

Pr
	X

i�k

.X�
i /
2 � t2





 
N

k

!
Pr
	X

i�k

X2i � t2





 
N

k

!
t�2qk

X
i�k

X2i kqLq .
�
eN

k

�k

t�2q � L2q.maxfk; qg/q;

and if q � k log.eN=k/ and t D euL
p
q for u � 1 then

Pr
	�X

i�k

.X�
i /
2
�1=2 � euL

p
q




 u�2q: (8)

Hence, setting q D k log.eN=k/, tail integration implies that

k.
X
i�k

.X�
i /
2/1=2kLq . L

p
k log.eN=k/;
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and if q � k log.eN=k/, one has

k.
X
i�k

.X�
i /
2/1=2kLq . L

p
q;

as claimed. �

The second preliminary result we require also follows from a straightforward
binomial estimate:

Lemma 2.4 Assume that kXk. p/ 
 L and let X1; : : :;XN be independent copies of X.
Consider s � 1, 1 
 q 
 p and 1 
 k 
 N that satisfies that k log.eN=k/ � q. Then

k�X
i>k

.X�
i /

s
�1=skLq 
 c.s/LN1=s;

for a constant c.s/ that depends only on s.

Proof Clearly, for every 1 
 i 
 N and 2 
 r 
 p,

Pr
�
X�
i � t

� 

 
N

i

!
Pri .X � t/ 


 
N

i

!�kXkrLr
tr

�i



�
eN

i
� L

rrr=2

tr

�i

:

Hence, if t D L
p
r � eu for u � 4 and r D 3 log.eN=i/, then

Pr
	
X�
i � u � eLp3 log.eN=i/




 u�3i log.eN=i/: (9)

Applying the union bound for every i � k, it follows that with probability at least
1 � .u=2/�3k log.eN=k/,

X�
i 
 u � eLp3 log.eN=i/; for every k 
 i 
 N: (10)

On that event

�X
i�k

.X�
i /

s
�1=s 
 c.s/uLN1=s;

and since k log.eN=k/ � q, tail integration shows that

k�X
i�k

.X�
i /

s
�1=skLq 
 c1.s/LN

1=s:

�
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Proof of Lemma 2.2 Recall that q0 D 2C 4�, that � 2 Lq0 and that

W D
ˇ̌
ˇ̌
ˇ
1p
N

NX
iD1

"i�iXi

ˇ̌
ˇ̌
ˇ1Au :

Note that for every .ai/NiD1 2 RN and any integer 0 
 k 
 N,

k
NX
iD1

"iaikLq .
X
i�k

a�
i C p

q
�X

i>k

.a�
i /
2
�1=2

(11)

where the two extreme cases of k D 0 and k D N mean that one of the terms in (11)
is 0.

Set r D 1C � and put � D 1=q0. Since ."i/NiD1 are independent of .Xi; �/
N
iD1 and

using the definition of the event Au,

Nq=2
EWq DNq=2

E.1AuE"W
q/ 
 cqE1Au

	�X
i�k

��
i X

�
i

�qCqq=2
�X

i>k

.��
i /
2.X�

i /
2
�q=2



cquqk�kLq0 � EX

	�X
i�k

.N=i/�X�
i

�q C qq=2
�X

i>k

.N=i/2� .X�
i /
2
�q=2


:

By the Cauchy-Schwarz inequality,

�X
i�k

.N=i/�X�
i

�q 
 �X
i�k

.N=i/2�
�q=2 � �X

i�k

.X�
i /
2
�q=2

;

and
X
i�k

.N=i/2� D
X
i�k

.N=i/1=1C2� 
 c1
�
N1=.1C2�/k2�=.1C2�/ 
 c1

�
N:

Therefore,

E
�X

i�k

.N=i/�X�
i

�q . ��q=2Nq=2
E
�X

i�k

.X�
i /
2
�q=2 D .�/:

Also, by Hölder’s inequality for r D 1C � and its conjugate index r0,
�X

i>k

.N=i/2� .X�
i /
2
�q=2 
 �X

i�k

.N=i/2�r
�q=2r � �X

i�k

.X�
i /
2r0�q=2r0

and

X
i�k

.N=i/2�r D
X
i�k

.N=i/.1C�/=.1C2�/ 
 c1
�
N:
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Hence,

E
�X

i>k

.N=i/2� .X�
i /
2
�q=2 . ��q=2rNq=2r

E
�X

i>k

.X�
i /
2r0�q=2r0 D .��/:

Let k 2 f1; : : :;Ng be the smallest that satisfies k log.eN=k/ � q (and without loss
of generality we will assume that such a k exists; if it does not, the modifications to
the proof are straightforward and are omitted).

Applying Lemma 2.3 for that choice of k,

.�/ 
 cq��q=2Nq=2 � Lq.
p
k log.eN=k/C p

q/q 
 cq1�
�q=2LqNq=2qq=2:

Turning to (**), set s D 2r0 � maxf��1; 2g and one has to control

E
�X

i>k

.X�
i /

s
�q=s

for the choice of k as above. By Lemma 2.4,

E
�X

i>k

.X�
i /

s
�q=s 
 cq.s/LqNq=s D cq1.�/L

qNq=2r0

:

Therefore,

.��/ 
 cq.�/LqNq=2r � Nq=2r0 D cq.�/LqNq=2:

Combining the two estimates,

Nq=2
EWq 
 Nq=2uk�kLq0 � cq.�/Lqqq=2;

implying that kWkLq=pq 
 c.�/uLk�kLq0 . �

Proof of Theorem 1.6 By Lemma 2.2, for every 1 
 j 
 n, kWjk. p/ 
 c.�/Lk�kLq0 ,
and thus, by Lemma 2.1, with probability at least 1 � c1t�2ˇ ,

W�
j 
 c.�/tLk�kLq0

p
ˇ log.en=j/ for every 1 
 j 
 n:

Moreover,Pr.Au/ � 1�2=uq0; therefore, with probability at least 1�c1t�2ˇ�2u�q0 ,
for every 1 
 j 
 n,

Z�
j 
 c.�/tuLk�kLq0

p
ˇ log.eN=j/:

Hence, on that event and because the norm supv2V j˝v; �˛j is K unconditional,

sup
v2V

j˝Z; v˛j 
 Kc.�/
p
ˇtuLk�kLq0 sup

v2V
j˝Z0; v˛j;
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for a fixed vector Z0 whose coordinates are .
p

log.en=j//njD1. Observe that
j˝Z0; ej˛j . Eg�

j , and thus

sup
v2V

j˝Z0; v˛j 
 K sup
v2V

j
nX

iD1
viEg

�
i j:

Therefore, by Jensen’s inequality, with probability at least 1 � t�2ˇ � 2u�q0 ,

sup
v2V

j˝Z; v˛j 
 c.�;K/
p
ˇtuLk�kLq0E sup

v2V
j˝G; v˛j:

And, fixing ˇ and integrating the tails,

E sup
v2V

j˝Z; v˛j 
 c.K; �;L/k�kLq0 `�.V/;

as claimed. �

3 Applications in Sparse Recovery

Spare recovery is a central topic in modern Statistics and Signal Processing, though
our outline of the sparse recovery problem is far from its most general form. Because
a detailed description of the subtleties of sparse recovery would be unreasonably
lengthy, some statements may appear a little vague; for more information on the
topic we refer the reader to the books [3–5].

The question in sparse recovery is to identify, or at least approximate, an
unknown vector v0 2 Rn, and to do so using relatively few linear measurements.
The measurements one is given are ‘noisy’, of the form

Yi D ˝
v0;Xi

˛ � �i for 1 
 i 
 NI

X1; : : :;XN are independent copies of a random, isotropic vector X 2 Rn and
�1; : : :; �N are independent copies of a random variable � that belongs to Lq for some
q > 2.

The reason for the name “sparse recovery” is the underlying assumption that v0
is sparse: it is supported on at most s coordinates, though the identity of the support
itself is not known. Thus, one would like to use the given random data .Xi;Yi/NiD1
and select Ov in a wise way, leading to a high probability estimate on the error rate
k Ov � v0k`n2 as a function of the number of measurements N and of the ‘degree of
sparsity’ s.
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In the simplest recovery problem, � D 0 and the data is noise-free. Alternatively,
one may assume that the �i’s are independent of X1; : : :;XN , or, in a more general
formulation, very little is assumed on the �i’s.

The standard method of producing Ov in a noise-free problem and when v0 is
assumed to be sparse is the basis pursuit algorithm. The algorithm produces Ov which
is the point in Rn with the smallest `n1 norm that satisfies

˝
Xi; v0

˛ D ˝
Xi; v

˛
for every

1 
 i 
 N.
It is well known [12] that if X is isotropic and L-subgaussian, v0 is supported on

at most s coordinates, and one is given

N D c.L/s log
	en
s



(12)

random measurements .
˝
Xi; v0

˛
/NiD1, then with high probability, the basis pursuit

algorithm has a unique solution, and that solution is v0.
Recently, it has been observed in [6] that the subgaussian assumption can be

relaxed: the same number of measurements as in (12) suffices for v0 to be the unique
solution of Basis Pursuit if

max
1�j�n

k˝X; ej˛k. p/ 
 L for p � log n:

Moreover, the estimate of p � log n happens to be almost optimal: there is an
example of an isotropic vector X with iid coordinates for which

max
1�j�n

k˝X; ej˛k. p/ 
 L for p � .log n/=.log log n/ (13)

but still, with probability 1=2, Basis Pursuit does not recover even a 1-sparse vector
when given the same number of random measurements as in (12).

Since ‘real world’ data is not noise-free, some effort has been invested in
producing analogs of the basis pursuit algorithm in a ‘noisy’ setup. The most well
known among these procedures is the LASSO (see, e.g. the books [3, 5] for more
details) in which Ov is selected to be the minimizer in Rn of the functional

v ! 1

N

NX
iD1
.
˝
v;Xi

˛ � Yi/
2 C 	kvk`n1 ; (14)

for a well-chosen of 	.
Following the introduction of the LASSO, there have been many variations on

the same theme—by changing the penalty k k`n1 and replacing it with other norms.
Until very recently, the behaviour of most of these procedures has been studied
under rather strong assumptions on X and �—usually, that X and � are independent
and gaussian, or at best, subgaussian.
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One may show that Theorem 1.6 can be used to extend the estimates on k Ov�v0k`n2
beyond the gaussian case thanks to two significant facts:

• The norms used in the LASSO and in many of its modifications happen to be
well behaved under permutations and sign changes: for example, among these
norms are weighted `n1 norms and mixtures of the `n1 and the `n2 norms.

• As noted in [7], if ‰ is a norm, B‰ is its unit ball and Ov is the minimizer in R
n of

the functional

v ! 1

N

NX
iD1
.
˝
v;Xi

˛ � Yi/
2 C 	‰.v/; (15)

then the key to controlling k Ov � vk`n2 is the behaviour of

sup
v2B‰\rBn

2

ˇ̌
ˇ̌
ˇ
1p
N

NX
iD1

�i
˝
Xi; v

˛ � E�
˝
X; v

˛ˇ̌ˇ̌
ˇ ; (16)

which is precisely the type of question that Theorem 1.6 deals with.
It follows from Theorem 1.6 that if � 2 Lq for some q > 2, and linear

forms have � log n subgaussian moments, then the expectation of (16) is, up to a
multiplicative constant, the same as if � and X were independent and gaussian. Thus,
under those conditions, one can expect the ‘gaussian’ error estimate in procedures
like (15). Moreover, because of (13), the condition that linear forms exhibit a
subgaussian growth of moments up to p � log n is necessary, making the outcome
of Theorem 1.6 optimal in this context.

The following is a simplified version of an application of Theorem 1.6. We refer
the reader to [7] for its general formulation, as well as for other examples of a similar
nature.

Let X be an isotropic measure on Rn that satisfies max1�j�n k˝X; ej˛k. p/ 
 L for
p 
 c0 log n. Set � 2 Lq for q > 2 that is mean-zero and independent of X and put
Y D ˝

X; v0
˛ � �.

Given an independent sample .Xi;Yi/NiD1 selected according to .X;Y/, let Ov be the
minimizer of the functional (14).

Theorem 3.1 Assume that v0 is supported on at most s coordinates and let 0 < ı <
1. If 	 D c1.L; ı/k�kLq

p
log.en/=N, then with probability at least 1 � ı, for every

1 
 p 
 2

k Ov � v0kp 
 c2.L; ı/k�kLq s1=p
r

log.ed/

N
:

The proof of Theorem 3.1 follows by combining Theorem 3.2 from [7] with
Theorem 1.6.
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Characterizing the Radial Sum for Star Bodies

Vitali Milman and Liran Rotem

Abstract In this paper we prove two theorems characterizing the radial sum of
star bodies. By doing so we demonstrate an interesting phenomenon: essentially the
same conditions, on two different spaces, can uniquely characterize very different
operations. In our first theorem we characterize the radial sum by its induced
homothety, and our list of assumptions is identical to the assumptions of the
corresponding theorem which characterizes the Minkowski sum for convex bodies.
In our second theorem give a different characterization from a short list of natural
properties, without assuming the homothety has any specific form. For this theorem
one has to add an assumption to the corresponding theorem for convex bodies, as
we demonstrate by a simple example.

1 Introduction

The main goal of this paper is to characterize addition operations on star-shaped
sets. Before doing so, however, we will quickly discuss addition of convex sets. To
fix some notation, let Kn

0 denote the class of closed convex sets containing the origin.

Definition 1 An addition operation on convex sets is a map ˚ W Kn
0 � Kn

0 ! Kn
0

such that:

1. ˚ is associative: For every A;B;C 2 Kn
0 one has .A ˚ B/˚ C D A ˚ .B ˚ C/ :

2. ˚ has an identity element: There exists K 2 Kn
0 such that A ˚ K D K ˚ A D A

for all A 2 Kn
0.

We will now describe two natural families of addition operations. Remember that
for A 2 Kn

0 the support function of A is the convex function hA W Rn ! Œ0;1�
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defined by hA.y/ D supx2A hx; yi. Fixing a parameter p 2 Œ1;1/, the p-addition
A Cp B of A and B is implicitly defined by the relation

hpACpB
.y/ D hpA.y/C hpB.y/

for all y 2 Rn. For p D 1, the 1-addition A C1 B is just the closure of the classical
Minkowski addition,

A C B D fa C b W a 2 A; b 2 Bg

(the closure is superfluous if A or B are compact, but may be necessary otherwise).
For p > 1, p-additions were originally defined by Firey [2], and were first
systematically studied by Lutwak [5, 6]. For p D 1 we set AC1B D conv .A [ B/,
where conv denotes the convex hull. Notice that hAC1B.y/ D max fhA.y/; hB.y/g.
It is easy to check that all p-additions are addition operations in the sense of
Definition 1, with f0g as an identity element.

Using p-additions, we may construct a second family of addition operations. For
A 2 Kn

0, the polar body Aı is defined by

Aı D fy 2 R
n W hA.y/ 
 1g :

For p 2 Œ1;1� we may now define the p-polar addition by AC�p B D �
Aı Cp Bı�ı.

All p-polar additions are addition operations in the sense of Definition 1, with Rn as
an identity element. Notice that A C�1 B D A \ B.

Given an addition operation ˚, we define the induced homothety ˇ W N�Kn
0 !

Kn
0 by

m ˇ A D A ˚ A ˚ � � � ˚ A„ ƒ‚ …
m times

:

For p 2 Œ�1;�1� [ Œ1;1�, The induced homothety of Cp is easily seen to be

m �p A D m1=pA D ˚
m1=pa W a 2 A


:

This formula is one of the reasons for the notation C�p for the p-polar addition.
Let us list a few properties we expect an addition to have. The p-additions and

p-polar additions all satisfy these properties:

Definition 2 We say that an addition ˚ W Kn
0 � Kn

0 ! Kn
0 is:

1. Monotone if A1 � B1 and A2 � B2 implies A1 ˚ A2 � B1 ˚ B2.
2. Strongly monotone if it is monotone, and in addition m ˇ A � m ˇ B implies

A � B.
3. Divisible if for everyA 2 Kn

0 andm 2 N there exists B 2 Kn
0 such that mˇB D A.

4. Subspace preserving if for every linear subspace V � Rn we have A;B � V
implies A ˚ B � V .
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In the paper [7], we proved several characterization theorems for the p-addition.
The first theorem shows that under mild hypotheses, ˚ is uniquely determined by
its homothety operation ˇ:

Theorem 1 Let ˚ W Kn
0 � Kn

0 ! Kn
0 be a monotone addition operation. Assume

that there exists a function f W N ! .0;1/ such that mˇA D f .m/A for all A 2 Kn
0

and m 2 N.

1. If f is not the constant function 1, then there exists p ¤ 0 such that A˚B D ACpB
for every A;B 2 Kn

0. If n � 2 then 1 
 jpj < 1.
2. If f � 1 and the identity element of ˚ is f0g, then A ˚ B D A C1 B for every

A;B 2 Kn
0. Similarly, if the identity element is R

n then A ˚ B D A C�1 B.

We also proved the following theorem, characterizing the p-addition without
assuming the homothety has any specific form:

Theorem 2 Assume n �2. Let ˚ W Kn
0 � Kn

0 ! Kn
0 be an addition operation with

f0g as identity element. Assume that ˚ is strongly monotone, divisible and subspace
preserving. Then there exists a p � 1 such that A ˚ B D A Cp B for all A;B 2 Kn

0.

The main observation of this note is that essentially the same conditions as in
Theorems 1 and 2, but on a different domain, can be used to characterize an entirely
different operation. Let us denote by Sn

0 the class of closed star bodies in Rn. By a
star-shaped set, or a star body, we mean any nonempty set A such that x 2 A implies
that 	x 2 A for all 0 
 	 
 1. Every star body A is uniquely characterized by its
radial function

rA.x/ D sup f	 � 0 W 	x 2 Ag :

The definition of an addition operation ˚ on Sn
0 is the obvious analogue of

Definition 1. We also define the induced homothety, and the various properties ˚
may satisfy (monotonicity, divisibility, etc.) in the obvious way.

Given any p ¤ 0, the p-radial sum A QCpB is defined by the relation

rp
A QCpB

.x/ D rpA.x/C rpB.x/

for all x 2 Rn. For p D 1 we set A QC1B D A [ B, and for p D �1 we set
A QC�1B D A \ B.

In [3], Gardner, Hug and Weil proved a characterization theorem for p-radial
sums of star-shaped bodies, as well as characterization theorems for p-sums of
convex bodies. However, in their work a different set of properties was needed in
each case. For convex bodies, the main property assumed was projection covariance,
i.e.

ProjV.A ˚ B/ D ProjV.A/˚ ProjV.B/
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for all subspaces V . This property holds for p-additions of convex sets, but not for
p-polar additions or for p-radial additions of star shaped sets. Hence for p-radial
additions a different property was needed, which is section covariance:

.A ˚ V/ \ E D .A \ V/˚ .B \ V/

for all subspaces V .
In our case, we have the following perfect analogue of Theorem 1:

Theorem 3 Let ˚ W Sn
0 �Sn

0 ! Sn
0 be a monotone addition operation. Assume that

there exists a function f W N ! .0;1/ such that mˇA D f .m/A for all A 2 Sn
0 and

m 2 N.

1. If f is not the constant function 1, then there exists p ¤ 0 such that A˚B D A QCpB
for every A;B 2 Sn

0 .
2. If f � 1 and the identity element of ˚ is f0g, then A ˚ B D A QC1B for every

A;B 2 Sn
0 . Similarly, if the identity element is R

n then A ˚ B D A QC�1B.

For Theorem 2, the situation is slightly more complicated, as the conditions in this
theorem do not suffice to characterize the p-radial sum. Intuitively, the reason for
this is that there is no condition “relating the different directions”. Hence we may
fix our favorite function p W Sn�1 ! .0;1/, where Sn�1 denotes the unit sphere in
Rn, and define an addition ˚ W Sn

0 � Sn
0 ! Sn

0 by the relation

rA˚B .�/ D �
rA.�/

p.�/ C rB.�/
p.�/
�1=p.�/

for all � 2 Sn�1 (this example appears already in [3]). It is easy to check that ˚
satisfies all properties of Theorem 2, without being a p-radial sum.

Therefore, in order to relate the different directions, we add the following
assumption: For every convex set A 2 Kn

0 � Sn
0 , and for every m 2 N, the set

m ˇ A is also convex. We therefore have

Theorem 4 Assume n � 2. Let ˚ W Sn
0 � Sn

0 ! Sn
0 be an addition operation with

f0g as identity element. Assume that ˚ is strongly monotone, divisible, subspace
preserving, and that m ˇ A is convex for every convex A and every m 2 N. Then
there exists a p > 0 such that A ˚ B D A QCpB for all A;B 2 Sn

0 .

In fact, we will see in the proof that it is enough to assume that mˇH is convex for
any half-spaces H, and not for arbitrary convex bodies.

In the next section we will prove a main lemma, crucial for the proof of both
theorems. In Sect. 3 we will prove both Theorems 3 and 4 using the lemma. Finally,
in Sect. 4 we will briefly discuss polynomiality of volume with respect our additions.
The proofs of the main theorems are similar, and in some sense “dual”, to the
proofs of [7]. For the reader’s convenience we give self-contained proofs for all
new theorems.
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2 The Main Lemma

In this section we prove a main lemma that will be used in the proof of both
Theorems 3 and 4. For � 2 Sn�1 and c 2 Œ0;1�, let us denote by R�;c 2 Sn

0 the
set with radial function

rR�:c.�/ D
(
c � D �

1 otherwise:

Notice that R�;c is just a complement of a ray, and that R�;1 D Rn. We will also
write R� D R�;0.

Our main lemma then reads:

Lemma 1 Let ˚ W Sn
0 � Sn

0 ! Sn
0 be a monotone addition operation with identity

element f0g. Assume that there exists a function f W N ! .0;1/ such that m ˇ
R�;c D R�;f .m/c for all � 2 Sn�1, c 2 .0;1/ and m 2 N. Then ˚ D QCp for some
0 < p < 1.

We will now prove the main lemma, by a sequence of claims.

Claim There exists 0 < q < 1 such that f .m/ D mq.

Proof First, we prove that f is monotone increasing. Write S D R�;1 for some fixed
� 2 Sn�1. Notice that for any m we have

f .m C 1/S D .m C 1/ˇ S D .m ˇ S/˚ S � .m ˇ S/˚ f0g D m ˇ S D f .m/S:

By comparing radial functions in the direction � it follows that indeed f .m C 1/ �
f .m/.

Next, we prove that f is multiplicative: For all integers m and k we have

f .mk/S D .mk/ˇ S D m ˇ .k ˇ S/ D m ˇ . f .k/S/ D f .m/f .k/S;

so again by comparing radial functions f .mk/ D f .m/f .k/.
However, it is known that every increasing and multiplicative function must be

of the form f .m/ D mq, so we are done. See [4] for a simple proof of this fact (in
fact, a much more general theorem is true and is due to Erdős—see [1]).

From now on we will write p D 1
q , and prove that ˚ D QCp. For brevity we write

Mp.a; b/ D .ap C bp/
1
p

for every 0 < p < 1 and 0 
 a; b 
 1.

Claim For every � 2 Sn�1 and every 0 
 c; d 
 1 we have R�;c ˚R�;d D R�;Mp.c;d/
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Proof First assume that cp D m
k and dp D s

t are positive rationals, then

R�;c ˚ R�;d D
�
mq

kq
R�;1

�
˚
�
sq

tq
R�;1

�

D
�
.mt/ˇ

�
1

kqtq
R�;1

��
˚
�
.sk/ˇ

�
1

kqtq
R�;1

��

D .mt C sk/ˇ
�
1

kqtq
R�;1

�
D
�
mt C sk

kt

�q

R�;1

D
	m
k

C s

t


q
R�;1 D .cp C dp/

1
p R�;1 D R�;Mp.c;d/:

Since the rationals are dense in Œ0;1�, all the remaining cases can be proven by
approximation, using the monotonicity of ˚.

Claim For every A 2 Sn
0 we have A ˚ R� D R� ˚ A D R�;rA.�/.

Proof We will only prove that A ˚ R� D R�;rA.�/, as the second equality is
completely analogous.

For one inclusion, notice that A˚R� � A˚f0g D A, and similarly A˚R� � R� .
Hence

A ˚ R� � A [ R� D R�;rA.�/:

For the opposite inclusion we obviously have A � R�;rA.�/, so by monotonicity

A ˚ R� � R�;hA.�/ ˚ R�;0 D R�;Mp.rA.�/;0/ D R�;rA.�/

Claim We have ˚ D QCp.

Proof Fix A;B 2 Sn
0 and � 2 Sn�1. Our goal is to prove that

rA˚B .�/ D Mp .rA.�/; rB.�// : (1)

On the one hand, using the previous claim, we know that

.A ˚ B/˚ R� D R�;rA˚B.�/:

On the other hand, we have

.A ˚ B/˚ R� D .A ˚ B/˚ .R� ˚ R� / D A ˚ .B ˚ R� /˚ R�

D A ˚ .R� ˚ B/˚ R� D .A ˚ R� /˚ .B ˚ R� / D R�;rA.�/ ˚ R�;rB.�/

D R�;Mp.rA.�/;rB.�//:

Comparing both expressions we obtain (1), so the proof of claim, and main lemma,
is complete.
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3 Proving the Main Theorems

Proof (Proof of Theorem 3) First assume that f .2/ > 1. We claim that f0g is the
identity element with respect to ˚.

Indeed, denote the identity element by S. If S ¤ f0g there exists 0 ¤ a 2 S, and
then by the star property Œ0; a� � S. But then we get from monotonicity that

Œ0; a� D Œ0; a�˚ S � Œ0; a�˚ Œ0; a� D f .2/ Œ0; a� D Œ0; f .2/ � a� :

Since f .2/ > 1, this is obviously a contradiction. It follows that ˚ satisfies all the
assumptions of Lemma 1, so ˚ D QCp for some p > 0.

Next, assume that f .2/ < 1. For a star-shaped set A 2 Sn
0 , define its “star polar”

A� 2 Sn
0 by the relation rA�.�/ D rA.�/�1 for every direction � 2 Sn�1. Define a

new addition � W Sn
0 � Sn

0 ! Sn
0 by

A � B D �
A� ˚ B��� :

Notice that � is indeed an addition operation in the sense of Definition 1—if K is
the identity element of ˚ then K� is the identity element of �. It is easy to check
that � is monotone. Finally, for every A 2 Sn

0 and m 2 N we have

m � A D A � A � � � � � A„ ƒ‚ …
m times

D
0
@A� ˚ A� ˚ � � � ˚ A�„ ƒ‚ …

m times

1
A

�

D �
f .m/A��� D 1

f .m/
A;

so � satisfy the homothety property with homothety function g.m/ D 1
f .m/ . In

particular g.2/ D 1
f .2/ > 1, so by the previous case we have � D QCp for some

p > 0. But then for every A;B 2 Sn
0 we have

A ˚ B D �
A� � B��� D �

A� QCpB
��� D A QC�pB;

so the theorem is proved in this case as well.
Finally, assume f .2/ D 1, so f � 1. If the identity element of ˚ is f0g, then we

have

A ˚ B � A ˚ f0g D A

A ˚ B � f0g ˚ B D B;

so A ˚ B � A [ B D A QC1B. But the opposite inclusion is also true, since

A ˚ B � �
A QC1B

�˚ �
A QC1B

� D A QC1B;
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so we indeed have ˚ D QC1. If the identity element of ˚ is Rn, an almost identical
argument proves that ˚ D QC�1. This finished the proof of the theorem.

Next, we want to prove Theorem 4. We assume the conditions of the theorem
holds, and prove several claims reducing the theorem to the situation of Lemma 1.

Claim For every A;B 2 Sn
0 and every integer m we have mˇ .A \ B/ D .m ˇ A/\

.m ˇ B/.

Proof One inclusion is immediate from monotonicity: A \ B � A implies m ˇ
.A \ B/ � m ˇ A. Similarly m ˇ .A \ B/ � m ˇ B, so we see that indeed

m ˇ .A \ B/ � .m ˇ A/\ .m ˇ B/ :

For the second inclusion, by divisibility there exists C 2 Sn
0 such that

m ˇ C D .m ˇ A/\ .m ˇ B/ :

Since m ˇ C � m ˇ A, the strong monotonicity implies that C � A. Similarly
C � B, and then C � A \ B so

.m ˇ A/\ .m ˇ B/ D m ˇ C � m ˇ .A \ B/:

This completes the proof.

For � 2 Sn�1 and c 2 Œ0;1�, let us write

H�;c D fx 2 R
n W hx; �i 
 cg 2 Sn

0 :

Claim For every m 2 N there exists a number f .m/ � 1 such that

m ˇ H�;c D f .m/H�;c D H�;f .m/c

for all � 2 Sn�1 and c 2 .0;1/.

Proof Note that by monotonicity we have

m ˇ H�;c � Œ.m � 1/ˇ f0g�˚ H�;c D H�;c;

and since m ˇ H�;c is assumed to be convex it follows that m ˇ H�;c D H�;	c for
some 	 � 1. Our goal is to prove that 	 is independent of � and c.

So, assume that m ˇ H�;c D H�;	c and m ˇ H�;d D H�;
d . Our goal is to prove
that 	 D 
, and we may assume that � ¤ �. This means that we can find a point
x0 2 Rn such that hx0; �i D c and hx0; �i D d. If we define A D .�1; x0� to be the
ray emanating from x0 and passing through the origin, then

A D H�;c \ Rx0 D H�;d \ Rx0:
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Now we apply the previous claim to H�;c and Rx0 and see that

mˇA D mˇ.H�;c \ Rx0/ D .m ˇ H�;c/\.m ˇ Rx0/ D H�;	c\Rx0 D .�1; 	x0�:

Notice that we used that fact that ˚ preserves subspaces to deduce that m ˇ Rx0 D
Rx0.

But exactly the same reasoning shows us that

mˇA D mˇ�H�;d \ Rx0
� D �

m ˇ H�;d
�\.m ˇ Rx0/ D H�;
d\Rx0 D .�1; 
x0�

This shows that 	 D 
 as we wanted.

Claim For every m 2 N we have

m ˇ R�;c D f .m/R�;c D R�;f .m/c;

where f .m/ is the same constant from Claim 3.

Proof Since m ˇ R�;c � R�;c, we must have m ˇ R�;c D R�;d for some d � c. All
we need to show is that d D f .m/c.

On the one hand H�;c � R�;c, so by monotonicity

R�;d D m ˇ R�;c � m ˇ H�;c D H�;f .m/c:

Comparing radial functions in direction � , we see that d � f .m/c.
On the other hand, for every " > 0 we know that H�;cC" 6� R�;c, and so by strong

monotonicity

H�;f .m/.cC"/ D m ˇ H�;c 6� m ˇ R�;c D R�;d:

This means that for some direction � 2 Sn�1 we must have rH�;f .m/.cC"/
.�/ > rR�;d.�/.

But rR�;d.�/ D 1 for all � ¤ � , so we must have � D � and

f .m/ � .c C "/ D rH�;f .m/.cC"/
.�/ > rR�;d.�/ D d:

Sending " ! 0 we see that d 
 f .m/c, which completes the proof.

Proof (Proof of Theorem 4) All assumptions of Lemma 1 holds, as the only
assumption of the lemma that wasn’t assumed in the theorem is exactly Claim 3.
Hence ˚ D QCp for some p > 0 like we wanted.

4 Polynomiality of Volume

Remember the Minkowski addition has remarkable property, not shared by other
p-additions when p > 1. For A 2 Sn

0 (and in particular A 2 Kn
0) let us denote by

jAj 2 Œ0;1� the Lebesgue volume of A. Minkowski’s theorem then states that for
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every convex bodies K1;K2; : : : ;Km 2 Kn
0 the function f W .0;1/m ! R defined by

f .	1; 	2; : : : ; 	m/ D j	1K1 C 	2K2 C � � � C 	mKmj

is an homogeneous polynomial of degree n, with non-negative coefficients. This
theorem allows the introduction of mixed volumes, a fundamental notion in
convexity which will not be needed here.

Inspired by Minkowski’s theorem, we define:

Definition 3 An additional ˚ on Kn
0 (resp. Sn

0 ) is polynomial if for every A;B 2 Kn
0

(resp. A;B 2 Sn
0 ), the function

f .m; k/ D j.m ˇ A/˚ .k ˇ B/j

is a polynomial on N
2.

Notice that the polynomiality property is weaker then Minkowski’s theorem, as
there are only two bodies and the polynomial is not assumed to be homogeneous.
Still, it is not difficult to check that the p-addition is not polynomial for any
1 < p < 1, and so the following corollary of Theorem 2 was proved in [7]:

Corollary 1 Let ˚ be a polynomial addition on Kn
0 satisfying all properties of

Theorem 2. Then ˚ D C1 or ˚ D C1.

Notice that the case p D 1 is somewhat degenerate: we have m �1 A D A for all
A 2 Kn

0 and m 2 N, so the function j.m ˇ A/˚ .k ˇ B/j is a constant function,
which is a polynomial.

For star bodies, however, the situation is different. By integration in polar
coordinates, we have the formula

jAj D !n �
Z
Sn�1

rA.�/
nd�.�/;

where !n is the volume of the unit Euclidean ball, and � is the Haar probability
measure on Sn�1. It follows that for every A;B 2 Sn

0 , every m; k 2 N and every
p > 0 one has

ˇ̌�
mQ�pA

� QCp
�
kQ�pB

�ˇ̌ D !n �
Z
Sn�1

.m � rA.�/p C k � rB.�/p/ np d�.�/;

and this expression is a polynomial in m and k whenever n
p is an integer. In fact, in

this case the polynomial is an homogeneous polynomial of degree n
p .

By taking A to be the unit ball and B D f0g we see that the condition that n
p

is an integer is also a necessary condition for polynomiality. We summarize the
discussion in the following corollary:
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Corollary 2 Assume˚ W Sn
0�Sn

0 ! Sn
0 is polynomial, and satisfy all the conditions

of Theorem 4. Then there exists k 2 N such that ˚ is the n
k -radial sum, and for every

A;B 2 Sn
0 the function

f .m; k/ D j.m ˇ A/˚ .k ˇ B/j

is an homogeneous polynomial of degree k with non-negative coefficients.
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On Mimicking Rademacher Sums in Tail Spaces

Krzysztof Oleszkiewicz

Abstract We establish upper and lower bounds for the L1 distance from a
Rademacher sum to the mth tail space on the discrete cube. The bounds are tight, up
to the value of multiplicative constants.

2010 Mathematics Subject Classification. Primary: 60E15, 42C10

1 Introduction

Throughout the paper, n > m � 2 will be integers, and we will use the
standard notation Œn� WD f1; 2; : : : ; ng. We will equip the discrete cube f�1; 1gn
with the normalized counting (equivalently, uniform probability) measure 
n D
. 1
2
ı�1 C 1

2
ı1/

˝n. Let E denote the expectation with respect to this measure, and let
r1; r2; : : : ; rn be the standard Rademacher functions on the discrete cube, i.e. the
coordinate projections rj.x/ D xj for x 2 f�1; 1gn and j 2 Œn�. Furthermore, for
A � Œn�, we define the Walsh functions by wA D Q

j2A rj, with w; � 1.
The Walsh functions .wA/A
Œn� form a complete orthonormal system in

L2 .f�1; 1gn; 
n/. Thus, every f W f�1; 1gn ! R admits a unique Walsh-
Fourier expansion f D P

A
Œn� Of .A/wA; with coefficients given by Of .A/ D
h f ;wAi D EŒ f � wA�: For m � 2, we will denote by T>m D T>mf�1;1gn the
linear span of .wA/A
Œn�WjAj>m, which is called the mth tail space on the discrete
cube. For f W f�1; 1gn ! R we consider its L1 distance to the mth tail space,

distL1
	
f ;T>mf�1;1gn



WD infg2T>m Ejf � gj. By T�m D T�m

f�1;1gn we will denote the

space of Walsh-Fourier chaoses of order not exceeding m, i.e. the linear span of
.wA/A
Œn�WjAj�m.
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2 Main Result

The following theorem provides an answer to a question of Robert Bogucki, Piotr
Nayar, and Michał Wojciechowski (2013, personal communication).

Theorem 2.1 For a1 � a2 � : : : � an � anC1 D 0, let S W f�1; 1gn ! R be

defined by S D a1r1 C a2r2 C : : : C anrn: Furthermore, let ˛ D ˛
	
.aj/njD1;m



be

given by ˛ WD mink2Œn�
	
.
Pk

jD1 a2j /1=2 C makC1


. Then

1

37
� ˛ 
 distL1

	
S;T>mf�1;1gn




 8

�
� ˛:

In particular, distL1
	Pn

jD1 rj;T>mf�1;1gn



' min.m;
p
n/, which is the case

Bogucki, Nayar, and Wojciechowski were originally interested in.
We will need the following discrete cube dual counterpart to the classical

Bernstein inequality.

Lemma 2.2 For any integers n > m � 2 and any real numbers a1; a2; : : : ; an,
there is a function f W f�1; 1gn ! R with

Ej f j 
 8m

�
� max
j2Œn�

jajj

and such that Of .fjg/ D aj for j 2 Œn�, and Of .A/ D 0 for all A � f1; 2; : : : ; ng of
cardinality 0; 2; 3; 4; : : : ;m.

Proof By the homogeneity, we assume that maxj2Œn� jajj D 1. For m D 2 it suffices
to consider f D 1

2

Qn
jD1.1 C ajrj/ � 1

2

Qn
jD1.1 � ajrj/. Indeed, by the triangle

inequality, Ej f j 
 1 < 16=� . Note that Ej1C ajrjj D EŒ1C ajrj� D 1.
For general m � 2, let us consider a Fejér type function

 m.x/ D
mX

kD1
k sin kx C

m�1X
kD1
.m � k/ sin ..m C k/x/ ;

or, equivalently,

 m.x/ D
2m�1X
kD1

min.k; 2m � k/
eikx � e�ikx

2i
D
 

m�1X
lD�mC1

eilx=2

!2
eimx � e�imx

2i

D
�

eimx=2 � e�imx=2

eix=2 � e�ix=2

�2
sinmx D sinmx � sin2.mx=2/= sin2.x=2/:
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Since, clearly, j m.x/j 
 Pm
kD1 k CPm�1

kD1 .m � k/ D m2,

Z �

��
j m.x/j dx 


Z 2=m

�2=m
m2 dx C 2

Z �

2=m

dx

sin2.x=2/
D 4m C 4 cot.1=m/ 
 8m:

Using the orthogonality in L2.Œ��; ��; dx/, we have
R �

��  m.x/ sin x dx D � ,R �
��  m.x/ dx D 0, and

R �
��  m.x/ sink x dx D 0 for 2 
 k 
 m. For even k’s

the last equality is trivial since  m is an odd function, and for odd k’s, by the

binomial formula, sink x D
	

eix�e�ix

2i


k
can be expressed as a linear combination

ˇk;1 sin x C ˇk;3 sin 3x C : : :C ˇk;k sin kx. Thus,

1

�

Z �

��
 m.x/ sink x dx D ˇk;1 C 3ˇk;3 C : : :C kˇk;k

D d

dx
.ˇk;1 sin x C ˇk;3 sin 3x C : : :C ˇk;k sin kx/

ˇ̌
ˇ
xD0 D d sink x

dx

ˇ̌
ˇ
xD0 D 0:

Choosing f defined by

f D 1

�

Z �

��
 m.x/

nY
jD1
.1C ajrj sin x/ dx

D
X
A
Œn�

Q
j2A aj
�

Z �

��
 m.x/ sinjAj x dx � wA 2

nX
jD1

ajrj C T>mf�1;1gn ;

we finish the proof. Indeed, Ej f j 
 1
�

R �
�� j m.x/j dx 
 8m=� – recall that

maxj jajj 
 1, so that, for every x 2 Œ��; ��, the independent random variables
.1C ajrj sin x/njD1 are nonnegative and have mean 1. ut
Proof of Theorem 2.1 The upper bound easily follows from Lemma 2.2. Indeed, for
k < n, by the lemma, applied to the cube f�1; 1gn�k instead of f�1; 1gn, we may
find a Walsh-Fourier polynomial f in rkC1, rkC2; : : : ; rn such that f �Pn

jDkC1 ajrj 2
T>mf�1;1gn and Ej f j 
 8m

�
maxkC1� j�n jajj D 8

�
� makC1. Thus

distL1
	
S;T>mf�1;1gn




 E

ˇ̌
ˇ̌
ˇ̌S �

0
@ nX

jDkC1
ajrj � f

1
A
ˇ̌
ˇ̌
ˇ̌ D E

ˇ̌
ˇ̌
ˇ̌

kX
jD1

ajrj C f

ˇ̌
ˇ̌
ˇ̌


 E

ˇ̌
ˇ̌
ˇ̌

kX
jD1

ajrj

ˇ̌
ˇ̌
ˇ̌C Ej f j 


������
kX

jD1
ajrj

������
L2

C 8

�
makC1

D
0
@ kX

jD1
a2j

1
A
1=2

C 8

�
makC1:
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For k D n, we simply note that

distL1
	
S;T>mf�1;1gn




 EjS � 0j 
 kSkL2 D

0
@ nX

jD1
a2j

1
A
1=2

:

Taking the minimum over k 2 Œn�, we deduce the upper bound.

To prove the lower bound, we introduce the following auxiliary functions:

Wm.t/ D
b m�1

2 cX
lD0

.�1/lt2lC1
.2l C 1/Š

; Rm.t/ D
1X

lDb mC1
2 c

.�1/lt2lC1
.2l C 1/Š

:

Obviously, Wm.t/C Rm.t/ D sin t and for t 2 Œ�m=6;m=6� we have

jRm.t/j 

1X

lDb mC1
2 c
.e=6/2lC1 
 2�m;

since kŠ � .k=e/k. Hence jWm.t/j 
 2 for t 2 Œ�m=6;m=6�.
Let f D S � g for some g 2 T>mf�1;1gn . If a1 � ma2, then

Ej f j � EŒ fr1� D a1 � 1

2

�
.a21/

1=2 C ma2
� � ˛=2:

If a1 < ma2, then let � denote the largest k 2 Œn�1� for which
Pk

jD1 a2j < m2a2kC1
(note that

Pk
jD1 a2j � m2a2kC1 increases in k), so that

P�
jD1 a2j < m2a2�C1, and thus

� < m2, and

�C1X
jD1

a2j � m2a2�C2: (1)

Note that
P�

jD1 aj 
 p
�
	P�

jD1 a2j

1=2

< m
	P�

jD1 a2j

1=2

. For l 2 Œ��, let bl D
al
6

	P�
jD1 a2j


�1=2
, so that

ˇ̌
ˇP�

jD1 bjrj
ˇ̌
ˇ 
 P�

jD1 bj 
 m=6. Also,
P�

jD1 b2j D 1=36, so
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that, for all j 2 Œ��, we have bj 2 Œ0; 1=6�, and thus cos bj � e�b2j , and, for all l 2 Œ��,

Erl sin

0
@ �X

jD1
bjrj

1
A D ImErlei

P�
jD1 bjrj D Im

0
@EŒrleiblrl � �

Y
j2Œ��nflg

EŒeibjrj �

1
A

D sin bl �
Y

j2Œ��nflg
cos bj D tan bl �

Y
j2Œ��

cos bj � bl e
�P�

jD1 b
2
j

D e�1=36 � bl:

Now we are in a position to finish the proof of the lower bound. We have

2Ej f j � Ef Wm

0
@ �X

jD1
bjrj

1
A D E.S � g/Wm

0
@ �X

jD1
bjrj

1
A

D E

 
�X

lD1
alrl

!
Wm

0
@ �X

jD1
bjrj

1
A D

�X
lD1

al � ErlWm

0
@ �X

jD1
bjrj

1
A :

The second equality follows from the fact that both g and
Pn

jD�C1 ajrj are

orthogonal to Wm

	P�
jD1 bjrj



in L2 .f�1; 1gn; 
n/. Indeed, degWm 
 m, so that

Wm

	P�
jD1 bjrj



is a Walsh-Fourier chaos of order not exceeding m in variables

r1; r2; : : : ; r� . Since

ErlWm.

�X
jD1

bjrj/ D Erl sin.
�X

jD1
bjrj/ � ErlRm.

�X
jD1

bjrj/ � e�1=36bl � 2�m;

we arrive at

2Ej f j � e�1=36
�X

lD1
albl � 2�m

�X
lD1

al D e�1=36

6

 
�X

lD1
a2l

!1=2
� 2�m

�X
lD1

al

�
�

e�1=36

6
� m � 2�m

� �X
lD1

a2l

!1=2
:

We have e�1=36

6
� 20 � 2�20 > 2=13, so that, for m � 20, Ej f j � 1

13

�P�
lD1 a2l

�1=2
.

Finally, recall that ˛ 

	P�C1

lD1 a2l


1=2 C ma�C2 and, by (1), the last expression

can be bounded from above by 2
	P�C1

lD1 a2l


1=2 
 2
�
2
P�

lD1 a2l
�1=2

, so that Ej f j �
˛

13�2p2
� ˛=37, for m � 20.
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The remaining case, 2 
 m < 20, is much easier:

˛ 
 a1 C ma2 
 .m C 1/a1 D .m C 1/EŒ fr1� 
 20Ej f j 
 37Ej f j: �

Certainly, with some additional effort, the numerical constants can be improved,
at the cost of clarity.

Unfortunately, the outlined method does not seem to extend to a more general
situation. Even for a chaos f of order 2, it does not seem to yield bounds for

distL1
	
f ;T>mf�1;1gn



.

3 Gaussian Counterpart

Motivated by a question of the referee, we will briefly discuss a Gaussian counter-
part of the main result. Let �n denote the standard Gaussian probability measure
on Rn; i.e. d�n.x/ D .2�/�n=2e�jxj2=2dx. On the real line, the Hermite polyno-
mials .Hc/

1
cD0 form a natural orthogonal basis of the Hilbert space L2.R; �1/.

In L2.Rn; �n/, the same role is played by their tensor products .Hc/c2f0;1;2;:::gn ,
where Hc.x/ D Qn

jD1Hcj.xj/, for x D .x1; x2; : : : ; xn/ 2 Rn. For a multi-index
c D .c1; c2; : : : ; cn/, let jcj D Pn

jD1 cj: For a positive integer m, it is natural to

express L2.Rn; �n/ as T�m
.Rn;�n/

˚ T>m.Rn;�n/
, where T�m

.Rn;�n/
is a finite-dimensional (thus

closed) linear span of .Hc/jcj�m, identical with fP 2 RŒx1; x2; : : : ; xn� W degP 
 mg,
and T>m.Rn;�n/

is the L2.Rn; �n/-closure of the linear span of .Hc/jcj>m. This decom-
position is closely related to the one we discussed on the discrete cube (see
section “Introduction”). In fact, it may be obtained from it by a CLT-type limit
transition. Also, for every nonnegative integer k, the linear span of .Hc/jcjDk is the
eigenspace associated with the eigenvalue k for the standard (Ornstein-Uhlenbeck)
heat semigroup generator on L2.Rn; �n/, just as the linear span of .wA/jAjDk is
the eigenspace associated with the eigenvalue k for the standard heat semigroup
generator on the discrete cube. Therefore, it seems interesting that, in contrast to
Theorem 2.1, we have the following proposition.

Proposition 3.1 For all positive integers n and m, and every f 2 L2.Rn; �n/ withR
Rn f d�n D 0, for every " > 0, there is a polynomial Q belonging to the linear span

of .Hc/jcj>m such that
R
Rn jf .x/�Q.x/j d�n.x/ < ". Thus, distL1.Rn;�n/

	
f ;T>m.Rn;�n/



D

0, in particular for f .x/ D Pn
jD1 ajxj, where a1; a2; : : : ; an are arbitrary real

numbers.

Proof Assume that the main assertion is not true, i.e., for some positive integers
m and n, there exist " > 0 and a square-integrable mean-zero f such that U WD
fg 2 L2.Rn; �n/ W R

Rn jf � gj d�n < "g is disjoint with the linear span of .Hc/jcj>m.
One easily checks that U is an open convex subset of L2.Rn; �n/, so that, by
the geometric Hahn-Banach (Mazur’s) theorem and by the Riesz representation
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theorem, there exists a function P 2 L2.Rn; �n/ such that
R
Rn P.x/Hc.x/ d�n.x/ D 0,

for every c with jcj > m, and
R
Rn P.x/g.x/ d�n.x/ > 0 for every g 2 U. Since P is

orthogonal to the span of .Hc/jcj>m, it is also orthogonal to its L2-closure, T>m.Rn;�n/
,

and thus belongs to its orthogonal complement, T�m
.Rn;�n/

. We have proved that P
is a polynomial of degree not exceeding m. Since f 2 U and

R
Rn f d�n D 0, we

know that P cannot be a constant polynomial and thus is unbounded on Rn. For
M > 0, let AM D fx 2 Rn W jP.x/j > Mg. Let hM.x/ D "

2�n.AM/
sgn.P.x//1AM.x/,

so that gM D f � hM belongs to U. Therefore,
R
Rn P.x/gM.x/ d�n.x/ is positive, andR

Rn P.x/f .x/ d�n.x/ >
R
Rn P.x/hM.x/ d�n.x/ � "M=2. By letting M tend to infinity,

we obtain a contradiction.

Remark 3.2 In Proposition 3.1, the assumption f 2 L2.Rn; �n/ can be easily
weakened to f 2 L1.Rn; �n/. It suffices to note that every mean-zero function is
an L1-limit of mean-zero square-integrable functions.
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Stability for Borell-Brascamp-Lieb Inequalities

Andrea Rossi and Paolo Salani

Abstract We study stability issues for the so-called Borell-Brascamp-Lieb inequal-
ities, proving that when near equality is realized, the involved functions must be
L1-close to be p-concave and to coincide up to homotheties of their graphs.

1 Introduction

The aim of this paper is to study the stability of the so-called Borell-Brascamp-Lieb
inequality (BBL inequality below), which we recall hereafter.

Proposition 1.1 (BBL Inequality) Let 0 < 	 < 1;� 1
n 6 p 6 C1, 0 6 f ; g; h 2

L1.Rn/ and assume the following holds

h..1 � 	/x C 	y/ > Mp. f .x/; g.y/I	/ (1)

for every x; y 2 Rn. Then

Z
Rn
h dx > M p

npC1

�Z
Rn

f dx;
Z
Rn

g dx I	
�
: (2)

Here the number p=.npC1/ has to be interpreted in the obvious way in the extremal
cases (i.e. it is equal to �1 when p D �1=n and to 1=n when p D C1) and
the quantity Mq.a; bI	/ represents the (	-weighted) q-mean of two nonnegative
numbers a and b, that is Mq.a; bI	/ D 0 if ab D 0 for every q 2 R [ f˙1g and

Mq.a; bI	/ D

8̂
ˆ̂<
ˆ̂̂:

maxfa; bg q D C1 ;

Œ.1 � 	/aq C 	bq�
1
q 0 ¤ q 2 R ;

a1�	b	 q D 0 ;

minfa; bg q D �1 ;

if ab > 0 : (3)
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The BBL inequality was first proved (in a slightly different form) for p > 0 by
Henstock and Macbeath (with n D 1) in [22] and by Dinghas in [11]. Then it was
generalized by Brascamp and Lieb in [6] and by Borell in [4]. The case p D 0

is usually known as Prékopa-Leindler inequality, as it was previously proved by
Prékopa [25] and Leindler [24] (later rediscovered by Brascamp and Lieb in [5]).

In this paper we deal only with the case p > 0 and are particularly interested in
the equality conditions of BBL, that are discussed in [13] (see Theoreme 12 therein).
To avoid triviality, if not otherwise explicitly declared, we will assume throughout
the paper that f ; g 2 L1.Rn/ are nonnegative compactly supported functions [with
supports supp . f / and supp .g/] such that

F D
Z
Rn

f dx > 0 and G D
Z
Rn

g dx > 0 :

Let us restate a version of the BBL inequality including its equality condition in
the case

p D 1

s
> 0 ;

adopting a slightly different notation.

Proposition 1.2 Let s > 0 and f ; g be as said above. Let 	 2 .0; 1/ and h be a
nonnegative function belonging to L1.Rn/ such that

h..1 � 	/x C 	y/ >
�
.1 � 	/f .x/1=s C 	g.y/1=s

�s
(4)

for every x 2 supp . f /, y 2 supp .g/.
Then

Z
Rn

h dx > M 1
nCs

.F;GI	/ : (5)

Moreover equality holds in (5) if and only if there exists a nonnegative concave
function ' such that

'.x/s D a1 f .b1x � Nx1/ D a2 g.b2x � Nx2/ D a3 h.b3x � Nx3/ a.e. x 2 R
n ; (6)

for some Nx1; Nx2; Nx3 2 Rn and suitable ai; bi > 0 for i D 1; 2; 3.

Notice that, given f and g, the smallest function satisfying (4) (hence the smallest
function to which Proposition 1.2 possibly applies to) is their p-Minkowksi sum (or
. p; 	/-supremal convolution), defined as follows (for p D 1

s )

hs;	.z/ D sup
n�
.1� 	/f .x/1=s C 	g.y/1=s

�s W z D .1 � 	/x C 	y
o

(7)

for z 2 .1 � 	/ supp . f / C 	 supp .g/ and hs;	.z/ D 0 if z … .1 � 	/ supp . f / C
	 supp .g/.
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When dealing with a rigid inequality, a natural question arises about the stability
of the equality case; here the question at hand is the following: if we are close to
equality in (5), must the functions f ; g and h be close (in some suitable sense) to
satisfy (6)?

The investigation of stability issues in the case p D 0 was started by Ball and
Böröczky in [2, 3] and new related results are in [7]. The general case p > 0 has
been very recently faced in [19]. But the results of [19], as well as the quoted results
for p D 0, hold only in the restricted class of p-concave functions, hence answering
only a half of the question. Let us recall here the definition of p-concave function: a
nonnegative function u is p-concave for some p 2 R [ f˙1g if

u..1� 	/x C 	y/ > Mp.u.x/; u.y/I	/ for every x; y 2 R
n and every 	 2 .0; 1/ :

Roughly speaking, u is p-concave if it has convex support � and: (1) up is concave
in� for p > 0; (2) log u is concave in � for p D 0; (3) up is convex in � for p < 0;
(4) u is quasi-concave, i.e. all its superlevel sets are convex, for p D �1; (5) u is a
positive constant in �, for p D C1.

Here we want to remove this restriction, proving that near equality in (5) is
possible if and only if the involved functions are close to coincide up to homotheties
of their graphs and they are also nearly p-concave, in a suitable sense. But before
stating our main result in detail, we need to introduce some notation: for s > 0, we
say that two functions v; Ov W Rn ! Œ0;C1/ are s-equivalent if there exist 
v > 0

and Nx 2 Rn such that

Ov.x/ D 
s
v v

�
x � Nx

v

�
a.e. x 2 R

n: (8)

Now we are ready to state our main result, which regards the case s D 1=p 2 N.
Later (see Sect. 4) we will extend the result to the case 0 < s 2 Q in Corollary 4.3
and finally (see Corollary 5.1 in Sect. 5) we will give a slightly weaker version, valid
for every s > 0.

Theorem 1.3 Let f ; g; h as in Proposition 1.2 with

0 < s 2 N :

Assume that
Z
Rn

h dx 6 M 1
nCs

.F;G I	/C " (9)

for some " > 0 small enough.
Then there exist a 1

s -concave function u W Rn �! Œ0;C1/ and two functions Of
and Og, s-equivalent to f and g in the sense of (8) [with suitable 
f and 
g given
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in (46)] such that the following hold:

u > Of u > Og ; (10)

Z
Rn
.u � Of / dx C

Z
Rn
.u � Og/ dx 6 CnCs

 
"

M 1
nCs

.F;G I	/

!
; (11)

where CnCs.�/ is an infinitesimal function for � �! 0 [whose explicit expression is
given later, see (15)].

Notice that the function u is bounded, hence as a byproduct of the proof we obtain
that the functions f and g have to be bounded as well (see Remark 3.1).

The proof of the above theorem is based on a proof of the BBL inequality
due to Klartag [23], which directly connects the BBL inequality to the Brunn-
Minkowski inequality, and the consequent application of a recent stability result
for the Brunn-Minkowski inequality by Figalli and Jerison [15], which does not
require any convexity assumption of the involved sets. Indeed [15] is the first
paper, at our knowledge, investigating on stability issues for the Brunn-Minkowski
inequality outside the realm of convex bodies. Noticeably, Figalli and Jerison ask
therein for a functional counterpart of their result, pointing out that “at the moment
some stability estimates are known for the Prékopa-Leindler inequality only in one
dimension or for some special class of functions [2, 3], and a general stability result
would be an important direction of future investigations.” Since BBL inequality is
the functional counterpart of the Brunn-Minkowksi inequality (for any p > 0 as
much as for p D 0), this paper can be considered a first answer to the question by
Figalli and Jerison.

The paper is organized as follows. The Brunn-Minkowski inequality and the
stability result of [15] are recalled in Sect. 2, where we also discuss the equivalence
between the Brunn-Minkowski and the BBL inequality. In Sect. 3 we prove
Theorem 1.3. Finally Sect. 4 contains the already mentioned generalization to the
case of rational s, namely Corollary 4.3, while Sect. 5 is devoted to Corollary 5.1,
where we prove a stability for every s > 0 under a suitable normalization for

R
f

and
R
g. The paper ends with an Appendix where we give the proofs of some easy

technical lemmas for the reader’s convenience.

2 Preliminaries

2.1 Notation

Throughout the paper the symbol j � j is used to denote different things and we hope
this is not going to cause confusion. In particular: for a real number a we denote by
jaj its absolute value, as usual; for a vector x D .x1; : : : ; xm/ 2 Rm we denote by jxj
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its euclidean norm, that is jxj D
q
x21 C � � � C x2m; for a set A � Rm we denote by jAj

its (m-dimensional) Lebesgue measure or, sometimes, its outer measure if A is not
measurable.

The support set of a nonnegative function f W Rm ! Œ0;C1/ is denoted by
supp . f /, that is supp . f / D fx 2 Rm W f .x/ > 0g.

Let 	 2 .0; 1/, the Minkowski convex combination (of coefficient 	) of two
nonempty sets A;B � Rn is given by

.1 � 	/A C 	B D f.1 � 	/a C 	b W a 2 A; b 2 Bg :

2.2 About the Brunn-Minkowski Inequality

The classical form of the Brunn-Minkowski inequality (BM in the following)
regards only convex bodies and it is at the core of the related theory (see [26]).
Its validity has been extended later to the class of measurable sets and we refer to
the beautiful paper by Gardner [18] for a throughout presentation of BM inequality,
its history and its intriguing relationships with many other important geometric and
analytic inequalities. Let us now recall it (in its general form).

Proposition 2.1 (Brunn-Minkowski Inequality) Given 	 2 .0; 1/, let A;B � Rn

be nonempty measurable sets. Then

j.1 � 	/A C 	Bj1=n > .1 � 	/ jAj1=n C 	 jBj1=n (12)

(where j � j possibly means outer measure if .1 � 	/A C 	B is not measurable).
In addition, if jAj ; jBj > 0, then equality in (12) holds if and only if there exist a

convex set K � Rn, v1; v2 2 Rn and 	1; 	2 > 0 such that

	1A C v1 � K; 	2B C v2 � K; jK n .	1A C v1/j D jK n .	2B C v2/j D 0:

(13)

We remark that equality holds in (12) if and only if the involved sets are convex (up
to a null measure set) and homothetic.

The stability of BM inequality was first investigated only in the class of convex
sets, see for instance [12, 14, 16, 17, 20, 27]. Very recently Christ [9, 10] started the
investigation without convexity assumptions, and its qualitative results have been
made quantitative and sharpened by Figalli and Jerison in [15]; here is their result,
for n > 2.

Proposition 2.2 Let n > 2; and A;B � Rn be measurable sets with jAj D jBj D 1.
Let 	 2 .0; 1/, set � D min f	; 1 � 	g and S D .1 � 	/A C 	B. If

jSj 6 1C ı (14)
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for some ı 6 e�Mn.�/, then there exists a convex K � Rn such that, up to a
translation,

A;B � K and jK n Aj C jK n Bj 6 ��Nnı�n.�/:

The constant Nn can be explicitly computed and we can take

Mn.�/ D 23
nC2

n3
n jlog � j3n
�3

n ; �n.�/ D �3
n

23
nC1n3n jlog � j3n :

Remark 2.3 As already said, the proof of our main result is based on Proposition 2.2
and now we can give the explicit expression of the infinitesimal function CnCs of
Theorem 1.3:

CnCs.�/ D ��nCs.�/

!s �NnCs ;
; (15)

where !s denotes the measure of the unit ball in Rs.

Next, for further use, we rewrite Proposition 2.2 without the normalization
constraint about the measures of the involved sets A and B.

Corollary 2.4 Let n > 2 and A;B � Rn be measurable sets with jAj ; jBj 2
.0;C1/. Let 	 2 .0; 1/, set � D min f	; 1 � 	g and S D .1 � 	/A C 	B. If

jSj �
h
.1 � 	/ jAj1=n C 	 jBj1=n

in
h
.1 � 	/ jAj1=n C 	 jBj1=n

in 6 ı (16)

for some ı 6 e�Mn.�/, then there exist a convex K � Rn and two homothetic copies
QA and QB of A and B such that

QA; QB � K and
ˇ̌
K n QAˇ̌C ˇ̌

K n QBˇ̌ 6 ��Nnı�n.�/:

Proof The proof is standard and we give it just for the sake of completeness. First
we set

QA D A

jAj1=n ;
QB D B

jBj1=n

so that j QAj D j QBj D 1. Then we define

QS WD 
 QA C .1 � 
/ QB with 
 D .1 � 	/ jAj1=n
.1 � 	/ jAj1=n C 	 jBj1=n ;
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and observe that jQSj > 1 by the Brunn-Minkowski inequality. It is easily seen that

QS D S

.1 � 	/ jAj1=n C 	 jBj1=n :

Now we see that the hypothesis (14) holds for QA; QB; QS, indeed

ˇ̌QSˇ̌� 1 D
jSj �

h
.1 � 	/ jAj1=n C 	 jBj1=n

in
h
.1 � 	/ jAj1=n C 	 jBj1=n

in 6 ı;

by (16). Finally Proposition 2.2 applied to QA; QB and QS implies the result and this
concludes the proof. ut

2.3 The Equivalence Between BBL and BM Inequalities

The equivalence between the two inequalities is well known and it becomes
apparent as soon as one notices that the . p; 	/-supremal convolution defined in (7)
corresponds to the Minkowski linear combinations of the graphs of f p and gp. In
particular, for p D 1, (2) coincides with (12) where A D f.x; t/ 2 RnC1 W 0 6 t 6
f .x/g and B D f.x; t/ 2 RnC1 W 0 6 t 6 g.x/g.

To be precise, that Proposition 1.1 implies (12) is easily seen by applying (2) to
the case f D �A, g D �B, h D �.1�	/AC	B, p D C1. The opposite implication can
be proved in several ways; hereafter we present a proof due to Klartag [23], which
is particularly useful for our goals.

To begin, given two integers n; s > 0, let f W Rn �! Œ0;C1/ be an integrable
function with nonempty support (to avoid the trivial case in which f is identically
zero). Following Klartag’s notations and ideas [23] (see also [1]), we associate with
f the nonempty measurable set

Kf ;s D ˚
.x; y/ 2 R

nCs D R
n � R

s W x 2 supp . f /; jyj 6 f .x/1=s

; (17)

where obviously x 2 Rn and y 2 Rs. In other words, Kf ;s is the subset of RnCs

obtained as union of the s-dimensional closed balls of center .x; 0/ and radius
f .x/1=s, for x belonging to the support of f , or, if you prefer, the set in RnCs obtained
by rotating with respect to y D 0 the .n C 1/-dimensional set f.x; y/ 2 RnCs W 0 6
y1 6 f .x/1=s; y2 D � � � D ys D 0g.

We observe that Kf ;s is convex if and only if f is .1=s/-concave [that is for us a
function f having compact convex support such that f 1=s is concave on supp . f /]. If
supp . f / is compact, then Kf ;s is bounded if and only if f is bounded.



346 A. Rossi and P. Salani

Moreover, thanks to Fubini’s Theorem, it holds

ˇ̌
Kf ;s

ˇ̌ D
Z

supp . f /
!s � � f .x/1=s�s dx D !s

Z
Rn

f .x/ dx: (18)

In this way, the integral of f coincides, up to the constant!s, with the volume of Kf ;s.
Now we will use this simple identity to prove Proposition 1.2 as a direct application
of the BM inequality.

Although of course the set Kf ;s depends heavily on s, for simplicity from now on
we will remove the subindex s and just write Kf for Kf ;s.

Let us start with the simplest case, when p D 1=s with s positive integer.

Proposition 2.5 (BBL, Case 1=p D s 2 N) Let n; s be positive integers, 	 2 .0; 1/
and f ; g; h W Rn �! Œ0;C1/ be integrable functions, with

R
f > 0 and

R
g > 0.

Assume that for any x0 2 supp. f /; x1 2 supp.g/

h ..1 � 	/x0 C 	x1/ >
�
.1 � 	/f .x0/

1=s C 	g.x1/
1=s
�s
: (19)

Then

�Z
Rn

h dx

� 1
nCs

> .1 � 	/

�Z
Rn

f dx

� 1
nCs

C 	

�Z
Rn

g dx

� 1
nCs

: (20)

Proof Since the integrals of f and g are positive, the sets Kf and Kg have positive
measure. Let �	 be the Minkowski convex combination (with coefficient 	) of
�0 D supp . f / and �1 D supp .g/. Now consider the function hs;	 as defined
by (7); to simplify the notation, we will denote hs;	 by h	 from now on. First notice
that the support of h	 is �	. Then it is easily seen that

Kh	 D .1 � 	/Kf C 	Kg : (21)

Moreover, since h > h	 by assumption (19), we have

Kh � Kh	 : (22)

By applying Proposition 2.1 to Kh	 ;Kf ;Kg we get

jKhj 1
nCs > jKh	 j

1
nCs > .1 � 	/

ˇ̌
Kf

ˇ̌ 1
nCs C 	

ˇ̌
Kg

ˇ̌ 1
nCs ; (23)

where jKh	 j possibly means the outer measure of the set Kh	 .
Finally (18) yields

jKhj D !s

Z
Rn

h dx;
ˇ̌
Kf

ˇ̌ D !s

Z
Rn

f dx;
ˇ̌
Kg

ˇ̌ D !s

Z
Rn

g dx;

thus dividing (23) by !
1

nCs
s we get (20). ut
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Next we show how it is possible to generalize Proposition 2.5 to a positive
rational index s. The idea is to apply again the Brunn-Minkowski inequality to sets
that generalize those of the type (17). What follows is a slight variant of the proof
of Theorem 2.1 in [23].

The case of a positive rational index s requires the following definition. Given
f W Rn �! Œ0;C1/ integrable and a positive integer q (it will be the denominator
of the rational s) we consider the auxiliary function Qf W Rnq �! Œ0;C1/ defined as

Qf .x/ D Qf .x1; : : : ; xq/ D
qY

jD1
f .xj/; (24)

where x D .x1; : : : ; xq/ 2 .Rn/q. We observe that, by construction,

Z
Rnq

Qf dx D
�Z

Rn
f dx

�q

I (25)

moreover supp Qf D .supp f / � : : : � .supp f / D .supp f /q :
As just done, from now on we write Aq to indicate the Cartesian product of q

copies of a set A.

Remark 2.6 Let A;B be nonempty sets, q > 0 be an integer, 
 a real. Clearly

.A C B/q D Aq C Bq; .
A/q D 
Aq:

To compare products of real numbers of the type (24) the following lemma is
useful. It’s a consequence of Hölder’s inequality (see [21], Theorem 10) for families
of real numbers (in our case for two sets of q positive numbers).

Lemma 2.7 Given an integer q > 0, let
˚
a1; : : : ; aq


;
˚
b1; : : : ; bq


be two sets of

q real numbers. Then

ˇ̌
ˇ̌
ˇ̌

qY
jD1

aj

ˇ̌
ˇ̌
ˇ̌C

ˇ̌
ˇ̌
ˇ̌

qY
jD1

bj

ˇ̌
ˇ̌
ˇ̌ 6

2
4 qY

jD1

�ˇ̌
aj
ˇ̌q C ˇ̌

bj
ˇ̌q�
3
5
1=q

:

From this lemma we deduce the following.

Corollary 2.8 Let 	 2 .0; 1/; s D p
q with integers p; q > 0.

Given f ; g W Rn �! Œ0;C1/; x1; : : : ; xq; x0
1; : : : ; x

0
q 2 Rn; it holds

.1 � 	/

qY
jD1

f .xj/
1=p C 	

qY
jD1

g.x0
j/
1=p 6

qY
jD1

�
.1 � 	/f .xj/

1=s C 	g.x0
j/
1=s
�1=q

:
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Proof Observing that

.1 � 	/

qY
jD1

f .xj/
1=p C 	

qY
jD1

g.x0
j/
1=p D

qY
jD1
.1 � 	/1=qf .xj/1=p C

qY
jD1
	1=qg.x0

j/
1=p;

the result follows directly from Lemma 2.7 applied to
˚
a1; : : : ; aq


;
˚
b1; : : : ; bq


with

aj D .1 � 	/1=qf .xj/
1=p; bj D 	1=qg.x0

j/
1=p; j D 1; : : : ; q:

ut
Let

s D p

q

with integers p; q > 0 that we can assume are coprime.
Given an integrable function f W Rn �! Œ0;C1/ not identically zero, we define

the nonempty measurable subset of RnqCp

Wf ;s D KQf ;p D ˚
.x; y/ 2 .Rn/q � R

p W x 2 supp .Qf /; jyj 6 Qf .x/1=p (26)

D
8<
:.x1; : : : ; xq; y/ 2 .Rn/q � R

p W xj 2 supp . f / 8 j D 1; : : : ; q; jyj 6
qY

jD1

f .xj/
1=p

9=
; :

We notice that this definition naturally generalizes (17), since in the case of an
integer s > 0 it holds s D p; q D 1, so in this case Qf D f and Wf ;s D Kf :

As for Kf ;s, for simplicity we will remove systematically the subindex s and write
Wf in place of Wf ;s if there is no possibility of confusion. Clearly

ˇ̌
Wf

ˇ̌ D
Z

supp .Qf/
!p � �Qf .x/1=p�p dx D !p

Z
Rnq

Qf .x/ dx D !p

�Z
Rn

f .x/ dx

�q

(27)

where the last equality is given by (25).
Moreover we see that Wf is convex if and only if Qf is 1

p -concave (that is, if and

only if f is 1
s -concave, see Lemma 4.1 later on). Next we set

W D .1� 	/Wf C 	Wg : (28)

Finally, we notice that, by (21), we have

W D KQhp;	;p ;
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where Qhp;	 is the .1=p; 	/-supremal convolution of Qf and Qg as defined in (7). In
other words, W is the set made by the elements .z; y/ 2 .Rn/q � Rp such that z 2
.1 � 	/ supp .Qf /C 	 supp .Qg/ and

jyj 6 sup
˚
.1 � 	/Qf .x/1=p C 	Qg.x0/1=p W

z D .1 � 	/x C 	x0; x 2 supp . Qf /; x0 2 supp .Qg/: (29)

Lemma 2.9 With the notations introduced above, it holds

W � Wh	 � Wh ;

where h	 is the .1=s; 	/-supremal convolution of f ,g, and h is as in Proposition 1.2.

Proof The second inclusion is obvious, since h > h	 by assumption (4). Regarding
the other inclusion, first we notice that (26) and Remark 2.6 yield

Wh	 D ˚
.z; y/ 2 .Rn/q � R

p W z 2 supp .eh	/; jyj 6 eh	.z/1=p

D ˚
.z; y/ 2 .Rn/q � R

p W z 2 ..1 � 	/ supp . f /C 	 supp .g//q ; jyj 6 eh	.z/1=p

D ˚
.z; y/ 2 .Rn/q � R

p W z 2 .1 � 	/ supp .Qf /C 	 supp .Qg/; jyj 6 eh	.z/1=p ;
where eh	 is the function associated to h	 by (24). To conclude it is sufficient to
compare this with the condition given by (29).

For every z 2 .1 � 	/ supp .Qf /C 	 supp .Qg/ consider

sup
˚
.1� 	/Qf .x/1=p C 	Qg.x0/1=p

 D sup

8<
:.1 � 	/

qY
jD1

f .xj/
1=p C 	

qY
jD1

g.x0
j/
1=p

9=
; ;

where the supremum is made with respect to x 2 supp .Qf /; x0 2 supp .Qg/ such that
z D .1 � 	/x C 	x0. Corollary 2.8 then implies

sup
˚
.1 � 	/Qf .x/1=p C 	Qg.x0/1=p


6 sup

8<
:

qY
jD1

�
.1 � 	/f .xj/1=s C 	g.x0

j/
1=s
�1=q

9=
;

6
qY

jD1

n
sup

�
.1 � 	/f .xj/

1=s C 	g.x0
j/
1=s
�1=qo

D
qY

jD1

n
h	
�
.1 � 	/xj C 	x0

j

�1=qso

D eh	 �.1 � 	/x C 	x0�1=p D eh	.z/1=p;
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having used the definition (24) in the penultimate equality. Therefore if

jyj 6 sup
˚
.1 � 	/Qf .x/1=p C 	Qg.x0/1=p


;

that is if .z; y/ 2 W by (29), then

jyj 6 eh	.z/1=p ;
i.e. .z; y/ 2 Wh	 . This concludes the proof. ut

We are ready to prove the following version of the Borell-Brascamp-Lieb
inequality, which holds for any positive real index s (and in fact also for s D 0).

Proposition 2.10 (BBL for p > 0) Let s > 0; 	 2 .0; 1/, let n > 0 be integer.
Given f ; g; h W Rn �! Œ0;C1/ integrable such that

R
f > 0 and

R
g > 0, assume

that for any x0 2 supp. f /; x1 2 supp.g/

h ..1 � 	/x0 C 	x1/ >
�
.1 � 	/f .x0/

1=s C 	g.x1/
1=s
�s
: (30)

Then

�Z
Rn

h dx

� 1
nCs

> .1 � 	/

�Z
Rn

f dx

� 1
nCs

C 	

�Z
Rn

g dx

� 1
nCs

: (31)

Proof Assume first that s > 0 is rational and let s D p
q with p; q coprime positive

integers. Thanks to (28) we can apply Proposition 2.1 to Wf ; Wg (that are nonempty
measurable subsets of RnqCp), so

jWj 1
nqCp > .1 � 	/ ˇ̌Wf

ˇ̌ 1
nqCp C 	

ˇ̌
Wg

ˇ̌ 1
nqCp ;

where jWj possibly means the outer measure of the set W. On the other hand
Lemma 2.9 implies jWhj > jWj, thus

jWhj 1
nqCp > .1 � 	/ ˇ̌Wf

ˇ̌ 1
nqCp C 	

ˇ̌
Wg

ˇ̌ 1
nqCp :

Finally the latter inequality with the identity (27) is equivalent to

!
1

nqCp
p

�Z
Rn

h dx

� q
nqCp

> !
1

nqCp
p

"
.1 � 	/

�Z
Rn

f dx

� q
nqCp

C 	

�Z
Rn

g dx

� q
nqCp

#
:
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Dividing by !
1

nqCp
p we get (31), since

q

nq C p
D q

q.n C s/
D 1

n C s

is exactly the required index. The case of a real s > 0 (and also s D 0) follows by a
standard approximation argument. ut

3 The Proof of Theorem 1.3

The idea is to apply the result of Figalli-Jerison, more precisely Corollary 2.4, to the
sets Kh	 ;Kf ;Kg, and then translate the result in terms of the involved functions. We
remember that with h	 we denote the function hs;	 given by (7).

We also recall that we set F D R
f and G D R

g.
Thanks to (18), assumption (9) is equivalent to

!�1
s jKhj 6 !�1

s

h
.1 � 	/ ˇ̌Kf

ˇ̌ 1
nCs C 	

ˇ̌
Kg

ˇ̌ 1
nCs

inCs

C " ;

which, by (22), implies

jKh	 j 6
h
.1 � 	/

ˇ̌
Kf

ˇ̌ 1
nCs C 	

ˇ̌
Kg

ˇ̌ 1
nCs

inCs

C "!s: (32)

If " is small enough, by virtue of (21) we can apply Corollary 2.4 to the sets
Kh	 ;Kf ;Kg and from (32) we obtain that they satisfy assumption (16) with

ı D "!s

M 1
nCs
.
ˇ̌
Kf

ˇ̌
;
ˇ̌
Kg

ˇ̌ I	/ D "

M 1
nCs
.F;GI	/ : (33)

Then, if ı 6 e�MnCs.�/, there exist a convexK � RnCs and two homothetic copies
OKf and OKg of Kf and Kg such that j OKf j D j OKgj D 1 and

	 OKf [ OKg



� K (34)

and

ˇ̌
ˇK n OKf

ˇ̌
ˇC

ˇ̌
ˇK n OKg

ˇ̌
ˇ 6 ��NnCs

 
"

M 1
nCs
.F;GI	/

!�nCs.�/

: (35)

Remark 3.1 Since j OKf j D j OKgj D 1, (35) implies that the convex set K has
finite positive measure. Then it is bounded (since convex), whence (34) yields the
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boundedness of Kf and Kg which in turn implies the boundedness of the functions f
and g. For simplicity, we can assume the convexK is compact (possibly substituting
it with its closure).

In what follows, we indicate with .x; y/ 2 Rn � Rs an element of RnCs. When
we say [see just before (34)] that OKf and OKg are homothetic copies of Kf and Kg, we
mean that there exist z0 D .x0; y0/ 2 RnCs and z1 D .x1; y1/ 2 RnCs such that

OKf D jKf j� 1
nCs

�
Kf � z0

�
and OKg D jKgj� 1

nCs
�
Kg � z1

�
: (36)

Clearly, without loss of generality we can take z0 D 0.
To conclude the proof, we want now to show that, up to a suitable symmetriza-

tion, we can take y1 D 0 (i.e. the translation of the homothetic copy OKg of Kg is
horizontal) and that the convex set K given by Figalli and Jerison can be taken of
the type Ku for some 1

s -concave function u.
For this, let us introduce the following Steiner type symmetrization in R

nCs with
respect to the n-dimensional hyperspace y D 0 (see for instance [8]). Let C be a
bounded measurable set in R

nCs, for every Nx 2 R
n we set

C.Nx/ D fy 2 R
s W .Nx; y/ 2 Cg

and

rC.Nx/ D �
!�1
s jC.Nx/j�1=s : (37)

Then we define the S-symmetrand of C as follows

S.C/ D ˚
.Nx; y/ 2 R

nCs W C \ fx D Nxg ¤ ;; jyj 6 rC.Nx/

; (38)

i.e. S.C/ is obtained as union of the s-dimensional closed balls of center .Nx; 0/ and
radius rC.Nx/, for Nx 2 Rn such that C \ fx D Nxg is nonempty. Thus, fixed Nx, the
(s-dimensional) measure of the corresponding section of S.C/ is

Hs.S.C/\ fx D Nxg/ D !srC.Nx/s D jC.Nx/j : (39)

We describe the main properties of S-symmetrization, for bounded measurable
subsets of RnCs:

(i) if C1 � C2 then S.C1/ � S.C2/ (obvious by definition);
(ii) jCj D jS.C/j (consequence of (39) and Fubini’s Theorem) so the S-

symmetrization is measure preserving;
(iii) if C is convex then S.C/ is convex (the proof is based on the BM inequality in

Rs and, for the sake of completeness, is given in the Appendix).
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Now we symmetrize K; OKf ; OKg [and then replace them with S.K/; S. OKf /; S. OKg/].
Clearly

S. OKf / D OKf ; (40)

S. OKg/ D S
	
jKgj� 1

nCs .Kg � .x1; y1//



D jKgj� 1
nCs .Kg � .x1; 0// : (41)

Moreover, (iii) implies that S.K/ is convex and by (i) and (34) we have

.S. OKf / [ S. OKg// � S.K/ : (42)

The latter, (35) and Fubini’s theorem imply

ˇ̌
ˇS.K/ n S. OKf /

ˇ̌
ˇC

ˇ̌
ˇS.K/ n S. OKg/

ˇ̌
ˇ 6 ��NnCs

 
"

M 1
nCs
.F;GI	/

!�nCs.�/

: (43)

Finally we notice that S.K/ is a compact convex set of the desired form.

Remark 3.2 Consider the set Ku associated to a function u W Rn ! Œ0;C1/ by (17)
and let Nx 2 Rn, Nz D .Nx; 0/ 2 RnCs; 
 > 0 and

H D 
 .Ku � Nz/ :

Then

H D Kv

[the set associated to v by (17)] where

v.x/ D 
su

�
x � Nx



�
: (44)

From the previous remarks, we see that the sets S. OKf / and S. OKg/ are in fact
associated via (17) to two functions Of and Og, such that

S. OKf / D KOf ; S. OKg/ D KOg ; (45)

and Of and Og are s-equivalent to f and g respectively, in the sense of (8) with


f D .!sF/
�1
nCs ; 
g D .!sG/

�1
nCs : (46)
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We notice that the support sets �0 and �1 of Of and Og are given by

�0 D fx 2 R
n W .x; 0/ 2 S. OKf /g ; �1 D fx 2 R

n W .x; 0/ 2 S. OKg/g

and that they are in fact homothetic copies of the support sets of the original
functions f and g.

Now we want to find a 1
s -concave function u such that S.K/ is associated to u

via (17). We define u W Rn �! Œ0;C1/ as follows

u.x/ D
(
rK.x/s if .x; 0/ 2 S.K/;

0 otherwise ;

and prove that

Ku D S.K/ : (47)

First notice that

supp .u/ D fx 2 R
n W .x; 0/ 2 S.K/g : (48)

Indeed we have fz 2 Rn W u.z/ > 0g � fx 2 Rn W .x; 0/ 2 S.K/g, whence
supp .u/ D fz 2 Rn W u.z/ > 0g � fx 2 Rn W .x; 0/ 2 S.K/g, since the latter is
closed. Vice versa let x such that .x; 0/ 2 S.K/.

If rK.x/ > 0 [see (37)] then x 2 supp .u/ obviously. Otherwise suppose rK.x/ D
0, then, by the convexity of S.K/ and the fact that S.K/ is not contained in fy D 0g,
evidently

Œ.U n fxg/ \ fz 2 R
n W rK.z/ > 0g� ¤ ;

for every neighborhood U of x, i.e. x 2 supp .u/:
By the definition of u and (17), using (48), we get

Ku D ˚
.x; y/ 2 R

n � R
s W x 2 supp .u/; jyj 6 u.x/1=s



D ˚
.x; y/ 2 R

n � R
s W .x; 0/ 2 S.K/; jyj 6 u.x/1=s


D f.x; y/ 2 R

n � R
s W .x; 0/ 2 S.K/; jyj 6 rK.x/g D S.K/ :

Therefore we have shown (47) and from the convexity of K follows that u is a 1
s -

concave function. Being Ku �
	
KOf [ KOg



, clearly

supp .u/ � .�0 [�1/ ; u > Of in �0; u > Og in �1 :
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The final estimate can be deduced from (43). Indeed, thanks to (18), we get

ˇ̌
ˇKu n KOf

ˇ̌
ˇ D jKuj �

ˇ̌
ˇKOf
ˇ̌
ˇ D !s

Z
Rn
.u � Of / dx;

and the same equality holds for
ˇ̌
Ku n KOg

ˇ̌
. So (43) becomes

Z
Rn
.u � Of / dx C

Z
Rn
.u � Og/ dx 6 !�1

s ��NnCs

 
"

M 1
nCs
.F;GI	/

!�nCs.�/

;

that is the desired result.

4 A Generalization to the Case s Positive Rational

We explain how Theorem 1.3 can be generalized to a positive rational index s. Given
f W R

n �! Œ0;C1/ and an integer q > 0, we consider the auxiliary function
Qf W Rnq �! Œ0;C1/ given by (24), i.e.

Qf .x/ D Qf .x1; : : : ; xq/ D
qY

jD1
f .xj/;

with x D .x1; : : : ; xq/ 2 .Rn/q. Clearly f is bounded if and only if Qf is bounded. We
study further properties of functions of type (24).

Lemma 4.1 Given an integer q > 0, and a real t > 0 let Qu W Rnq �! Œ0;C1/ be a
function of the type (24). Then Qu is t-concave if and only if the function u W Rn �!
Œ0;C1/ is .qt/-concave.

Proof Suppose first that Qut is concave. Fixed 	 2 .0; 1/; x; x0 2 R
n, we consider the

element of Rnq which has all the q components identical to .1 � 	/x C 	x0. From
hypothesis it holds

Qut �.1 � 	/x C 	x0; : : : ; .1 � 	/x C 	x0� > .1 � 	/Qut .x; : : : ; x/C 	Qut �x0; : : : ; x0� ;
i.e. [thanks to (24)]

uqt
�
.1 � 	/x C 	x0� > .1 � 	/uqt.x/C 	uqt.x0/:

Thus uqt is concave.
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Vice versa assume that uqt is concave, and fix 	 2 .0; 1/; x D .x1; : : : ; xq/; x0 D�
x0
1; : : : ; x

0
q

� 2 .Rn/q. We have

Qut �.1 � 	/x C 	x0� D
qY

jD1
ut
�
.1 � 	/xj C 	x0

j

� D
qY

jD1

�
uqt
�
.1 � 	/xj C 	x0

j

��1=q

>
qY

jD1

�
.1 � 	/uqt.xj/C 	uqt.x0

j/
�1=q >

qY
jD1
.1 � 	/1=qut.xj/

C
qY

jD1
	1=qut.x0

j/ D .1 � 	/
qY

jD1
ut.xj/C 	

qY
jD1

ut.x0
j/

D .1 � 	/Qut.x/C 	Qut.x0/;

where the first inequality holds by concavity of uqt, while in the second one we have
used Lemma 2.7 with aj D .1� 	/1=qut.xj/; bj D 	1=qut.x0

j/. Hence ut is concave.ut
Lemma 4.2 Let q > 0 integer and u > f > 0 in Rn. Then

Qu � Qf > Au � f :

Proof The proof is by induction on the integer q > 1. The case q D 1 is trivial,
because in such case Qu D u; Qf D f ; Au � f D u � f . For the inductive step assume

that the result is true until the index q, and denote with QQu; QQf ;AAu � f the respective
functions of index q C 1. By the definition (24)

	QQu � QQf


.x1; : : : ; xqC1/ D Qu.x1; : : : ; xq/u.xqC1/ � Qf .x1; : : : ; xq/f .xqC1/;

A

Au � f .x1; : : : ; xqC1/ DAu � f .x1; : : : ; xq/ � .u � f /.xqC1/:

These two equalities imply

	QQu � QQf


.x1; : : : ; xqC1/

DAAu � f .x1; : : : ; xqC1/ �Au � f .x1; : : : ; xq/ � �u.xqC1/� f .xqC1/
�

C Qu.x1; : : : ; xq/u.xqC1/ � Qf .x1; : : : ; xq/f .xqC1/

>AAu � f .x1; : : : ; xqC1/ � �Qu � Qf � .x1; : : : ; xq/ �u.xqC1/� f .xqC1/
�

C Qu.x1; : : : ; xq/u.xqC1/ � Qf .x1; : : : ; xq/f .xqC1/
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DAAu � f .x1; : : : ; xqC1/C f .xqC1/
�Qu.x1; : : : ; xq/� Qf .x1; : : : ; xq/

�
C Qf .x1; : : : ; xq/

�
u.xqC1/ � f .xqC1/

�

>AAu � f .x1; : : : ; xqC1/;

having used the inductive hypothesis and the assumption u > f > 0. ut
Corollary 4.3 Given an integer n > 0, 	 2 .0; 1/; s D p

q with p; q positive integers,

let f ; g 2 L1.Rn/ be nonnegative compactly supported functions such that

F D
Z
Rn

f dx > 0 and G D
Z
Rn

g dx > 0:

Let h W Rn �! Œ0;C1/ satisfy assumption (19) and suppose there exists " > 0

small enough such that

�Z
Rn

h dx

�q

6
h
M 1

nCs
.F;G I	/

iq C ": (49)

Then there exist a 1
p -concave function u0 W Rnq �! Œ0;C1/ and two functions

Of ; Og W Rnq �! Œ0;C1/, p-equivalent to Qf and Qg [given by (24)] in the sense of (8)
with


Qf D !
�1

nqCp
p F

�1
nCs ; 
Qg D !

�1
nqCp
p G

�1
nCs ;

such that the following hold:

u0 > Of ; u0 > Og ;

and

Z
Rnq
.u0 � Of /dx C

Z
Rnq

�
u0 � Og� dx 6 CnqCp

 
"

M 1
nqCp

.Fq;Gq I	/

!
: (50)

Proof We can assume h D h	. Since f and g are nonnegative compactly sup-
ported functions belonging to L1.Rn/, thus by (24) Qf ; Qg are nonnegative compactly
supported functions belonging to L1.Rnq/. The assumption (49) is equivalent,
considering the corresponding functions Qf ; Qg; Qh W Rnq �! Œ0;C1/ and using (25),
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to

Z
Rnq

Qh dx 6
"
.1 � 	/

�Z
Rnq

Qf dx
� 1

nqCqs

C 	

�Z
Rnq

Qg dx
� 1

nqCqs

#nqCqs

C "

i.e.
Z
Rnq

Qh dx 6 M 1
nqCp

.Fq;Gq I	/C ": (51)

We notice that the index qs D p is integer, while nq is exactly the dimension of
the space in which Qf ; Qg; Qh are defined. To apply Theorem 1.3, we have to verify
that Qf ; Qg; Qh satisfy the corresponding inequality (19) of index qs. Given x1; : : : ; xq 2
supp. f /; x0

1; : : : ; x
0
q 2 supp.g/, let x D .x1; : : : ; xq/; x0 D .x0

1; : : : ; x
0
q/ 2 .Rn/q. By

hypothesis, we know that f ; g; h satisfy (19), in particular for every j D 1; : : : ; q

h
�
.1 � 	/xj C 	x0

j

�
>
�
.1 � 	/f .xj/

1=s C 	g.x0
j/
1=s
�s
:

This implies

qY
jD1

h
�
.1 � 	/xj C 	x0

j

�
>

2
4 qY

jD1

�
.1 � 	/f .xj/1=s C 	g.x0

j/
1=s
�
3
5

s

>

2
64.1 � 	/

0
@ qY

jD1
f .xj/

1
A
1=qs

C 	

0
@ qY

jD1
g.x0

j/

1
A
1=qs
3
75

qs

;

(52)

where the last inequality is due to Corollary 2.8. By definition of (24), (52) means
that for every x 2 supp.Qf /; x0 2 supp.Qg/ we have

Qh �.1 � 	/x C 	x0� >
�
.1� 	/Qf .x/1=qs C 	Qg.x0/1=qs

�qs
;

i.e. the functions Qf ; Qg; Qh W Rnq �! Œ0;C1/ satisfy the hypothesis (19) with the
required index qs. Therefore we can apply Theorem 1.3 and conclude that there exist
a 1

p -concave function u0 W Rnq �! Œ0;C1/ and two functions Of ; Og; p-equivalent to
Qf and Qg, with the required properties. The estimate (11), applied to (51), implies

Z
Rnq
.u0 � Of / dx C

Z
Rnq

�
u0 � Og� dx 6 CnqCp

 
"

M 1
nqCp

.Fq;Gq I	/

!
:

ut
Remark 4.4 Assume F D G and, for simplicity, suppose that Of D Qf ; Og D Qg in
Corollary 4.3 (as it is true up to a p-equivalence). Moreover assume that the 1

p -
concave function u0 W Rnq �! Œ0;C1/, given by Corollary 4.3, is of the type (24),



Stability for BBL Inequalities 359

i.e. u0 D Qu where u W Rn �! Œ0;C1/ has to be 1
s -concave by Lemma 4.1. In this

case Corollary 4.3 assumes a simpler statement, which naturally extends the result
of Theorem 1.3. Indeed (50), thanks to Lemma 4.2, becomes

Z
Rnq

Au � f dx C
Z
Rnq
Au � g dx 6 CnqCp

 
"

M 1
nqCp

.Fq;Gq I	/

!
; i.e.

�Z
Rn
.u � f / dx

�q
C
�Z

Rn
.u � g/ dx

�q
6 CnqCp

 
"

M 1
nqCp

.Fq;Gq I	/

!
:

(53)
Unfortunately the function u0 constructed in Theorem 1.3 is not necessarily of the
desired form, that is in general we can not find a function u W Rn �! Œ0;C1/ such
that u0 D Qu (a counterexample can be explicitly given). Then our proof can not be
easily extended to the general case s 2 Q to get (53).

5 A Stability for s > 0

To complete the paper, we give a (weaker) version of our main stability result
Theorem 1.3 which works for an arbitrary real index s > 0. For this, let us denote
by Œs� the integer part of s, i.e. the largest integer not greater than s. Obviously
Œs� C 1 > s > Œs�, whereby (by the monotonicity of p-means with respect to p, i.e.
Mp.a; bI	/ 6 Mq.a; bI	/ if p 6 q) for every a; b > 0; 	 2 .0; 1/

h
.1 � 	/a 1

s C 	b
1
s

is
>
h
.1 � 	/a

1
Œs�C1 C 	b

1
Œs�C1

iŒs�C1
; (54)

h
.1 � 	/a

1
nCs C 	b

1
nCs

inCs
>
h
.1 � 	/a 1

nCŒs�C1 C 	b
1

nCŒs�C1

inCŒs�C1
: (55)

We arrive to the following corollary for every index s > 0.

Corollary 5.1 Given s > 0; 	 2 .0; 1/; let f ; g W Rn �! Œ0;C1/ be integrable
functions such that

Z
Rn

f dx D
Z
Rn

g dx D 1 : (56)

Assume h W Rn �! Œ0;C1/ satisfies assumption (30) and there exists " > 0 small
enough such that

Z
Rn

h dx 6 1C ": (57)
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Then there exist a 1
Œs�C1 -concave function u W Rn �! Œ0;C1/ and two functions

Of and Og, .Œs� C 1/-equivalent to f and g in the sense of (44) (with 
f D 
g D�
!Œs�C1

� �1
nCŒs�C1 ) such that

u > Of ; u > Og;

and
Z
Rn
.u � Of / dx C

Z
Rn
.u � Og/ dx 6 CnCŒs�C1."/:

Proof We notice that the assumption (30) (i.e. the hypothesis of BBL of index 1
s ),

through (54), implies that for every x0 2 supp.f /; x1 2 supp.g/

h ..1 � 	/x0 C 	x1/ >
h
.1 � 	/f .x0/

1
Œs�C1 C 	g.x1/

1
Œs�C1

iŒs�C1
;

i.e. the corresponding hypothesis of BBL for the index 1
Œs�C1 . Therefore, thanks to

the assumptions (56) and (57), it holds
R
h 6 1C " D M 1

nCŒs�C1
.
R
f ;
R
gI	/C "; so

we can apply directly Theorem 1.3 using the integer Œs�C1 as index. This concludes
the proof. ut
Remark 5.2 If we don’t use the normalization (56) and want to write a result for
generic unrelated F D R

f and G D R
g, we can notice that assumption (57) should

be replaced by

Z
Rn

h dx 6 M 1
nCŒs�C1

.F;GI	/C " :

On the other hand, thanks to assumption (30), we can apply Proposition 2.10 and
obtain

Z
Rn

h dx > M 1
nCs
.F;GI	/:

Then we would have

M 1
nCs
.F;GI	/ 6 M 1

nCŒs�C1
.F;GI	/C " :

The latter inequality is possible only if F and G are close to each others, thanks to
the stability of the monotonicity property of p-means, which states

M 1
nCŒs�C1

.F;GI	/ 6 M 1
nCs
.F;GI	/;
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with equality if and only if F D G. In this sense the normalization (56) cannot be
completely avoided and the result obtained in Corollary 5.1 is weaker than what
desired. Indeed notice in particular that it does not coincide with Theorem 1.3 even
in the case when s is integer, since Œs�C 1 > s in that case as well.
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Appendix

Here we show that the S-symmetrization, introduced in Remark 3.1, preserves the
convexity of the involved set (that is the property (iii) therein).

We use the notations of Remark 3.1, in particular we refer to (37) and (38),
and remember that C is a bounded measurable set in RnCs. We need the following
preliminary result, based on the Brunn-Minkowski inequality in Rs.

Lemma 5.3 If C is a bounded convex set in RnCs, then for every t 2 .0; 1/ and
every x0; x1 2 Rn such that C.x0/ and C.x1/ are nonempty, it holds

.1 � t/rC.x0/C trC.x1/ 6 rC..1 � t/x0 C tx1/: (58)

Proof By definition of (37)

rC.x0/ D !s
�1=sjC.x0/j1=s; rC.x1/ D !s

�1=sjC.x1/j1=s;

thus

.1 � t/rC.x0/C trC.x1/ D !�1=s
s

�
.1 � t/jC.x0/j1=s C tjC.x1/j1=s

�
: (59)

Since C is convex, we notice that C.x0/;C.x1/ are (nonempty) convex sets in Rs

such that

.1 � t/C.x0/C tC.x1/ � C..1 � t/x0 C tx1/: (60)

Applying BM inequality (i.e. Proposition 2.1) to the sets C.x0/;C.x1/ � Rs, (59)
implies

.1 � t/rC.x0/C trC.x1/ 6 !�1=s
s j.1 � t/C.x0/C tC.x1/j1=s

6 !�1=s
s jC..1 � t/x0 C tx1/j1=s D rC..1 � t/x0 C tx1/;

where in the last inequality we use (60). ut
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Proposition 5.4 If C is convex then S.C/ is convex.

Proof Let t 2 .0; 1/, and let P D .x0; y0/;Q D .x1; y1/ be two distinct points
belonging to S.C/, i.e. C.x0/;C.x1/ are nonempty sets and

jy0j 6 rC.x0/; jy1j 6 rC.x1/: (61)

We prove that

.1 � t/P C tQ D ..1 � t/x0 C tx1; .1 � t/y0 C ty1/ 2 S.C/:

By assumptions and (60) the set C..1� t/x0 C tx1/ is nonempty. Furthermore by the
triangle inequality, (61) and Lemma 5.3 we obtain

j.1� t/y0 C ty1j 6 .1�t/ jy0jCt jy1j 6 .1�t/rC.x0/CtrC.x1/ 6 rC..1�t/x0Ctx1/:

Then .1 � t/P C tQ 2 S.C/, i.e. S.C/ is convex. ut
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