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Abstract. Recently, it has been shown that ontologies with large
datasets can be efficiently materialized by a so-called abstraction refine-
ment technique. The technique consists of the abstraction phase, which
partitions individuals into equivalence classes, and the refinement phase,
which re-partitions individuals based on entailments for the representa-
tive individual of each equivalence class. In this paper, we present an
abstraction-based approach for materialization in DL-Lite, i.e. we show
that materialization for DL-Lite does not require the refinement phase.
We further show that the approach is sound and complete even when
adding disjunctions and nominals to the language. The proposed tech-
nique allows not only for faster materialization and classification of the
ontologies, but also for efficient consistency checking; a step that is often
omitted by practical approaches based on query rewriting. A preliminary
empirical evaluation on both real-life and benchmark ontologies demon-
strates that the approach can handle ontologies with large datasets effi-
ciently.

1 Introduction

Over many years, Description Logics (DLs) have been very popular languages
for knowledge representation and reasoning. Among the various fragments of
Description Logics, DL-Lite [1,3] is a family of languages specifically designed
for ontology-based data access (OBDA). In this setting, an ontology with back-
ground knowledge (a TBox) can be seen as a conceptual view over data reposito-
ries (ABoxes), and data can be accessed via query answering services. Common
techniques for query answering in DL-Lite are (pure) rewriting [3] and com-
bined approaches [5,6,13]. In the rewriting approaches, OBDA systems exploit
the background knowledge and rewrite the input query so that the rewritten
queries are sufficient to retrieve the complete query answer when evaluated over
the unmodified data. As the rewritten queries can be very large or complex [12],
several optimization techniques have been proposed with the aim of reducing or
simplifying the rewritten queries [2,9,16,17]. Combined approaches complement
the pure rewriting approaches; they also work for DL fragments that allow for
qualified existential quantification. In contrast to pure rewriting, the combined
approaches not only rewrite the input query, but also partially or completely
expand the data taking the ontology/schema into account. The latter opera-
tion is called data completion or ontology materialization. It plays an important
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role in the overall performance of the combined approaches, given the fact that
the data is often very large in the OBDA applications. In addition, performing
ontology materialization only, OBDA systems are already able to provide the
complete answers for instance queries. In this paper, we investigate the appli-
cation of the novel materialization technique via abstraction refinement [7] for
DL-Lite ontologies.

The existing abstraction refinement approach consists of two phases: the
abstraction phase and the refinement phase. In the abstraction phase, individu-
als in the ABox are partitioned into equivalence classes, which are then used to
construct a so-called abstract ABox. Entailments of the abstract ABox are trans-
formed to entailments for the original ABox, which might result in some individ-
uals no longer belonging to the same equivalence class. Therefore, the previous
steps are repeated in the refinement phase, e.g. individuals are re-partitioned,
until, eventually, the fixed-point is reached. The approach presented in this paper
can be regarded as an enhancement of the existing abstraction refinement app-
roach tailored towards ontologies in DL-Lite and beyond. We make the following
contributions:

– We present an abstraction-based approach for materialization for DL-LiteH�
core,

an extension of DL-Litecore with role inclusions and disjunctions. The limited
form of existential restrictions in DL-Lite enables an efficient way to transform
entailments from the abstract ABox to the original ABox. In addition, the
presented approach does not require the refinement phase. This allows not
only for faster materialization but also for efficient consistency checking of the
ontologies. Query answering only makes sense if the ontology is consistent.
Therefore, checking consistency is necessary, but this step is often omitted in
many query rewriting systems.1

– We show that the presented approach is also sound and complete when adding
nominals. Moreover, it can be extended to ontology classification, a non-trivial
reasoning task in the presence of nominals.

– We evaluate our approach on both real-life and benchmark ontologies. The
empirical results demonstrate that the size of the ABoxes can be reduced by
orders of magnitude and, as a result, reasoning via abstraction is often much
faster than reasoning over the original ontology.

2 Preliminaries

The syntax of DL-LiteHO�
core is defined using a vocabulary consisting of countably

infinite disjoint sets NC of atomic concepts, NO of nominals, NR of atomic roles,
and NI of individuals. A role is either atomic or an inverse role r−, r ∈ NR. We
define the inverse R− of a role R by R− := r− if R = r and R− := r if R = r−.
Complex concepts and axioms are defined recursively in Table 1. An ABox is a
finite set of concept assertions of the form A(a) and role assertions of the form

1 If ⊥ is allowed in the language, consistency checking can be reduced to querying
instances of ⊥ but it also requires reasoning over the whole data.
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Table 1. The syntax and semantics of DL-LiteHO�
core

Syntax Semantics

Roles:

Atomic role R RI ⊆ ΔI × ΔI

Inverse role R− {〈e, d〉 | 〈d, e〉 ∈ RI}
Concepts:

Atomic concept A AI ⊆ ΔI

Nominal o oI ⊆ ΔI , ‖oI‖ = 1

Top � ΔI

Bottom ⊥ ∅
Negation ¬C ΔI\CI

conjunction C 
 D CI ∩ DI

Disjunction C � D CI ∪ DI

Existential restriction ∃R {d | ∃e ∈ ΔI : 〈d, e〉 ∈ RI}
Axioms:

Concept inclusion C � D CI ⊆ DI

Role inclusion R � S RI ⊆ SI

Concept assertion A(a) aI ∈ AI

Role assertion R(a, b) 〈aI , bI〉 ∈ RI

R(a, b) with A ∈ NC , R ∈ NR ∪ {r− | r ∈ NR}, and a, b ∈ NI . A TBox is a finite
set of role and concept inclusions. An ontology O, written as O = A∪T , consists
of an ABox A and a TBox T . W.l.o.g. we do not distinguish between the axioms
R(a, b) and R−(b, a) as well as R � S and R− � S−. We use con(O), rol(O),
ind(O), nom(O) for the sets of atomic concepts, atomic roles, individuals, and
nominals occurring in O, respectively. By DL-LiteH�

core we denote the fragment
of DL-LiteHO�

core that disallows nominals.
An interpretation I = (ΔI , ·I) consists of a non-empty set ΔI , the domain

of I, and an interpretation function ·I , that assigns to each A ∈ NC a subset
AI ⊆ ΔI , to each o ∈ NO a singleton subset oI ⊆ ΔI , ‖oI‖ = 1, to each r ∈ NR

a binary relation rI ⊆ ΔI × ΔI , and to each a ∈ NI an element aI ∈ ΔI . This
assignment is extended to roles and to complex concepts as shown in Table 1.
An interpretation I satisfies an axiom α (written I |= α) if the corresponding
condition in Table 1 holds. Given an ontology O, I is a model of O (written
I |= O) if I |= α for all axioms α ∈ O; O is consistent if O has a model; and O
entails an axiom α (written O |= α), if every model of O satisfies α.

For an ontology O, we say that O is concept-materialized if O |= A(a) implies
A(a) ∈ O for each A ∈ con(O) and a ∈ ind(O); O is role-materialized if
O |= r(a, b) implies r(a, b) ∈ O for each r ∈ rol(O) and a, b ∈ ind(O); O is
(fully) materialized if it is both concept and role materialized. The concept-,
role-, and/or (full) materialization of an ontology O is the smallest super-set of
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O that is concept-, role-, and/or fully materialized respectively. Given an ontol-
ogy, traditional reasoning tasks include ontology materialization: computing the
materialization of the ontology, ontology classification: computing all entailed
concept inclusions between atomic concepts in the ontology, and consistency
checking : checking if the ontology is consistent.

3 Reasoning by Abstraction

The general idea of reasoning via abstraction is to reduce reasoning over a large
ABox to reasoning over a smaller one. Specifically, one first builds a suitable
abstraction of the original ontology; performs reasoning over the abstraction;
and then transfers entailments of the abstraction to corresponding entailments
of the original ontology. Correctness of the reduction is based on homomorphisms
between ABoxes.

Definition 1. Let A and B be ABoxes. A mapping h : ind(B) → ind(A) is called
a homomorphism (from B to A) if, for every assertion α ∈ B, we have h(α) ∈ A,
where h(C(a)) := C(h(a)) and h(R(a, b)) := R(h(a), h(b)).

Example 1. Consider the ABoxes A = {A(a), A(b), R(a, b)}, B1 = {A(u)}, and
B2 = {A(v), R(v, v)} visualized in Fig. 1. Then the mappings h1 = {u �→ a} and
h2 = {u �→ b} are homomorphisms from B1 to A; and the mapping h3 = {a �→
v, b �→ v} is a homomorphism from A to B2.

The following property of homomorphisms allows us to establish the relation
between entailments of one ontology and those of the other.

Lemma 1. Let A and B be ABoxes, and h : ind(B) → ind(A) a homomorphism
from B to A. Then, for every TBox T and every axiom α, B ∪ T |= α implies
A ∪ T |= h(α).

a
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v
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h1 h2

h3 h3
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B1 B2

Fig. 1. Visualization of
the ABoxes and homo-
morphisms in Example 1
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Fig. 2. Visualization of the ABoxes A from Example 4
and its abstraction B from Example 5, where the dotted
lines show the homomorphism from B to A induced by
the abstraction
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Note that Lemma 1 is not restricted to DL-LiteHO�
core and it holds for any DL with

(classical) set-theoretic semantics, e.g. SROIQ [10]. The following two corol-
laries illustrate aspects of homomorphisms that are of particular relevance for
our approach, namely that consistency and (concept) entailments are preserved
under homomorphisms.

Corollary 1. Let A and B be ABoxes, h : ind(B) → ind(A) a homomorphism
from B to A, a ∈ ind(A) and b ∈ ind(B) such that h(b) = a. Then, for every
TBox T and concept C, B ∪ T |= C(b) implies A ∪ T |= C(a).

Corollary 2. Let A and B be ABoxes. If there exists a homomorphism from B
to A then, for every TBox T , A ∪ T is consistent implies B ∪ T is consistent.

The abstraction is obtained by partitioning individuals in the original ABox
into equivalence classes and by using just one representative individual for each
equivalence class. Entailments of the representatives are then transferred to the
corresponding entailments for individuals in the equivalence classes.

If we use the individual u in Example 1 as the representative for a and b,
then, for any TBox T , one can transfer any newly entailed concept assertion for
u to the corresponding assertions for a and b by Corollary 1. However, not all
entailments for a and b can necessarily be computed this way.

Example 2 (Example 1 continued). Consider a TBox T = {A � C,∃R− � B}.
We have B1 ∪ T |= C(u). By Corollary 1, we obtain C(a), C(b) entailed by
A ∪ T . We are, however, not able to obtain B(b) via homomorphisms from B1

to A, although B(b) is entailed by A ∪ T .

Also in Example 1, since there is a homomorphism from A to B2, for any TBox
T , if B2 ∪ T is consistent then A ∪ T is consistent by Corollary 2. Furthermore,
if we use the individual v as the representative for a and b (ignoring that there
is no homomorphism from B2 to A), then we can compute all entailments for a
and b based on the entailments of v. However, we might transfer facts that are
not entailed by A ∪ T .

Example 3 (Example 2 continued). We have B2 ∪ T |= {B(v), C(v)}. If we take
v as representative of both a and b, then we obtain B(a), B(b), C(a), C(b).
However, B(a) is not entailed by A ∪ T .

As demonstrated in Examples 2 and 3, it is often easy to obtain either sound
or complete results but it is challenging to obtain both. The SHER approach [4]
addresses this issue by computing complete but possibly unsound entailments of
the ontology using a compressed, so-called summary ABox and by using jus-
tification techniques [11] to refine the summary. The abstraction refinement
approach [7] computes sound but possibly incomplete entailments. To ensure
completeness further refinement steps are employed based on the newly derived
entailments. In the next section, we present an enhancement of the existing
abstraction refinement approach that is only based on the abstraction. We show
that indeed no refinement is needed to obtain both sound and complete entail-
ments for DL-LiteHO�

core ontologies. To simplify presentation, we first present the
solution for DL-LiteH�

core and then discuss the extensions for DL-LiteHO�
core .
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4 Abstraction for DL-LiteH�
core

To construct the abstraction of the original ABox, we partition individuals in the
original ABox into equivalence classes and use just one representative individual
for each equivalence class. The equivalence classes are characterized by the type
of individuals, which can be syntactically computed from the original ABox.

Definition 2. Let A be an ABox and a an individual. The type of a (w.r.t. A)
is a pair τ(a) = 〈τC(a), τR(a)〉 where τC(a) = {A | A(a) ∈ A} and τR(a) = {R |
∃b : R(a, b) ∈ A}.

Example 4. Let A = {A(a), A(b), R(a, b)} be as in Example 1 (cf. Fig. 1). Then,
we have τ(a) = 〈{A}, {R}〉 and τ(b) = 〈{A}, {R−}〉.

The abstract ABox is then constructed by introducing one representative and
the respective assertions for each type.

Definition 3. The abstraction of an ABox A is an ABox B =
⋃

a∈ind(A) Bτ(a),
where, for each type τ(a) = 〈τC , τR〉, Bτ(a) = {A(vτ(a)) | A ∈ τC} ∪
{R(vτ(a), w

R
τ(a)) | R ∈ τR}, where vτ(a) and wR

τ(a) are fresh, distinguished
abstract individuals for each type τ(a).

Example 5. The abstraction for A in Example 4 is the ABox B = Bτ(a) ∪ Bτ(b),
where Bτ(a) = {A(vτ(a)), R(vτ(a), w

R
τ(a))}, Bτ(b) = {A(vτ(b)), R−(vτ(b), w

R−
τ(b))}

(cf. Fig. 2).

Note that the size of the abstraction of a small ABox may be larger than the
size of the original ABox, but for ontologies with a large ABox, many individuals
have the same type and, hence, abstractions are small.

Intuitively, the abstraction of an ABox is a disjoint union of small ABoxes
witnessing each individual type realized in the ABox. There always exist homo-
morphisms from the abstraction to the original Abox.

Definition 4. Let A be an ABox and B its abstraction as in Definition 3. The
abstraction B induces a mapping h : ind(B) → ind(A) such that:

h(vτ ) ∈ {a ∈ ind(A) | τ(a) = τ},

h(wR
τ ) ∈ {b ∈ ind(A) | R(h(vτ ), b) ∈ A}.

Lemma 2. Let A be an ABox and B the abstraction of A. Then, for every
mapping h induced by B, h is a homomorphism from B to A.

Proof. The mapping h is a homomorphism from B to A since, for every
C(vτ ) ∈ B, we have h(C(vτ )) = C(a) ∈ A and, for every R(vτ , wR

τ ) ∈ B,
we have h(R(vτ , wR

τ )) = R(a, b) ∈ A for some a, b. �
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Once the abstract ABox B of the original ABox A has been constructed,
instead of performing reasoning over A, we perform reasoning over B and transfer
entailments from the abstraction back to the original ABox using Corollary 1.
Intuitively, for each type τ , the abstract individual vτ is the representative for
all individuals of this type. Therefore, for every TBox T and each A(vτ ) entailed
by B ∪ T , we obtain A(a), where τ(a) = τ , is entailed by A ∪ T . This gives rise
to a procedure for computing the concept materialization of an ontology, which
we present in Algorithm 1.

Since materializing an inconsistent ontology would extend the ABox with all
possible assertions for the atomic concepts and roles, and individuals used in
the ontology, we can furthermore observe that B ∪ T can also be used to check
consistency of A∪T . We use this to devise a procedure for checking consistency
of an ontology in Algorithm2. In practice the steps performed by this algorithm
can also be directly integrated into Algorithm1.

Algorithm 1. Procedure for computing the concept materialization of an
ontology
Input: An ontology O = A ∪ T
Output: Returns the concept materialized ontology O
1: Compute the abstraction B of A according to Definition 3
2: Compute the concept materialization B′ ∪ T of B ∪ T
3: ΔB = {A(vτ ) ∈ B′ | A(vτ ) /∈ B}
4: for all A(vτ ) ∈ ΔB do
5: for all a ∈ ind(A) s.t. τ(a) = τ do
6: A = A ∪ {A(a)}
7: end for
8: end for
9: return A ∪ T

Algorithm 2. Procedure for checking consistency of an ontology
Input: An ontology O = A ∪ T
Output: Returns true if O is consistent and false otherwise
1: Compute the abstraction B of A according to Definition 3
2: if B ∪ T is inconsistent then
3: return false
4: else
5: return true
6: end if

Soundness of the algorithms follows directly from our previously shown
results.

Lemma 3 (Soundness). Let A be an ABox, B its abstraction, and T a TBox.
Then, we have:
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(1) B ∪ T is inconsistent implies A ∪ T is inconsistent;
(2) for every type τ and every concept C, B ∪T |= C(vτ ) implies A∪T |= C(a),

where a ∈ ind(A) s.t. τ(a) = τ .

Proof. The lemma is a straightforward consequence of the fact that the abstrac-
tion induces homomorphisms to the original ABox according to Lemma 2. Apply-
ing the contrapositive of Corollaries 2 and 1 yields the desired result and, hence,
soundness of the algorithms. �
Example 6. Consider O = A ∪ T with T = {A � C,∃R− � B} from Example 2
and A from Example 1 as input for Algorithm1. Figure 2 visualizes A and its
abstraction B. By materializing B ∪ T , we obtain ΔB = {C(vτ(a)), C(vτ(b)),
B(vτ(b))} in Line 3. Note that while B(wR

τ(a)) is in the materialized abstraction
B′, it is not part of ΔB. By updating A using ΔB (Lines 4 to 8), we obtain
A = A ∪ {C(a), C(b), B(b)}, where all added concept assertions are entailed by
the original ontology.

The procedure in Algorithm 1 differs from the abstraction refinement proce-
dure in the existing approach for Horn ALCHOI [7] in that, for each type τ , only
assertions of vτ are used to update the original ABox. As demonstrated in Exam-
ple 6, although B(wR

τ(a)) ∈ B′, it is not in ΔB and, hence, it is not used for extend-
ing A. In addition, unlike the algorithm in the existing approach, Algorithm1
incorporates no refinement step, i.e. there is no repetition of Lines 1–8 until no
new assertions can be added to the original ABox A. Such a repetition is required
to obtain completeness for the Horn ALCHOI procedure. We next show that the
current procedure is nevertheless complete for DL-LiteH�

core, that is, the resulting
ontology is (concept) materialized when the procedure terminates.

We can immediately show soundness of the algorithms as there always exist
homomorphisms from the abstraction B to the corresponding original ABox A as
in Definition 4. But we do not have a similar property for completeness, i.e. there
might exist no homomorphism from A to B. To show completeness, we construct
an extension of B such that there exists a homomorphism from A to the exten-
sion that maps a to vτ(a) for each individual a ∈ ind(A); and we show that the
abstraction entails exactly the same concept assertions as its extension does.

Example 7 (Example 6 continued). Let B+ be an ABox obtained from B
in Example 6 by adding the role assertion R(vτ(a), vτ(b)), and h a map-
ping from A to B+ defined as h(a) = vτ(a), h(b) = vτ(b). Since h(A) =
{A(vτ(a)), A(vτ(b)), R(vτ(a), vτ(b))} ⊆ B+, h is a homomorphism from A to B+.
Therefore, using Corollary 1, we can obtain all entailed assertions of a and b based
on entailed assertions of vτ(a) and vτ(b) w.r.t. B+ ∪T . Furthermore, B+ ∪T and
B ∪ T entail the same set of concept assertions. Hence, the abstraction B is suf-
ficient for obtaining all entailed assertions of A ∪ T . Indeed, the ABox A after
updating already contains all entailed concept assertions.

As demonstrated in Example 7, for this particular TBox and ABox, the abstrac-
tion is sufficient to obtain all entailed concept assertions of the original ontology.
In the following lemma, we show that the same property holds for any TBox
and ABox.
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Lemma 4. Let O = A ∪ T be a DL-LiteH�
core ontology, B the abstraction of A,

and B+ = B ∪ {R(vτ(a), vτ(b)) | R(a, b) ∈ A}. Then, we have:

(1) B ∪ T is consistent implies B+ ∪ T is consistent;
(2) for every atomic concept A and individual v, B+∪T |= A(v) implies B∪T |=

A(v).

Proof. If B ∪T is inconsistent, then the lemma trivially holds. We assume B ∪T
is consistent and let I be an arbitrary model of B∪T . Next, we construct a model
J of B+ ∪ T such that J |= A(v) implies I |= A(v) for every atomic concept
A and individual v. Then it follows that B+ ∪ T is consistent, i.e. Claim (1)
holds, and B+ ∪ T |= A(v) implies J |= A(v), which implies I |= A(v). Since I
is arbitrary, we obtain B ∪ T |= A(v), i.e. Claim (2) holds. Such a model J is
obtained from I by setting ΔJ = ΔI and defining the interpretation function
as follows:

vJ = vI for every individual v

AJ = AI for every atomic concept A

rJ = rI ∪ {〈vI
τ(a), v

I
τ(b)〉 | R(vτ(a), vτ(b)) ∈ B+ and O |= R � r}

∪ {〈vI
τ(b), v

I
τ(a)〉 | R(vτ(a), vτ(b)) ∈ B+ and O |= R � r−}

for every atomic role r

We will show J |= B+∪T by showing that it entails every axiom in B+∪T . Since
I |= B ∪ T and the interpretation of atomic concepts and individuals remains
the same in J , we have J entails every concept assertion in B+. And, clearly,
from the definition of J , it follows that J entails every role assertion in B+.

We now show by induction that, for every DL-LiteH�
core concept C, we have

CJ = CI . Then, for every concept inclusion C � D ∈ T , we have CJ = CI ⊆
DI = DJ , i.e. J |= C � D.

– Cases C = A | ¬A | � | ⊥ are trivial as the interpretation of atomic concepts
in I and in J are identical.

– Case C = ∃r, where r ∈ NR; the case ∃r− is symmetric. We have d ∈ (∃r)J

iff there exists e ∈ ΔJ s.t. 〈d, e〉 ∈ rJ . If 〈d, e〉 ∈ rI , then d ∈ (∃r)I . Other-
wise, from the definition of J , 〈d, e〉 results from one of the cases in the role
extension. We consider the case d = vI

τ(a), e = vI
τ(b) for some individuals a

and b, where R(vτ(a), vτ(b)) ∈ B+,O |= R � r,O �|= R � r−; other cases are
analogous. By definition of B+, we have R(vτ(a), vτ(b)) ∈ B+ iff R(a, b) ∈ A.
This is the case iff R(vτ(a), w

R
τ(a)) ∈ B by Definition 3. Since O |= R � r and

I |= B, we obtain 〈vI
τ(a), (w

R
τ(a))

I〉 ∈ rI , i.e. d = vI
τ(a) ∈ (∃r)I . Since d is

arbitrary, we have (∃r)J = (∃r)I .
– Case C = ¬D. By induction hypothesis DJ = DI and since ΔJ = ΔI , we

have (¬D)J = ΔJ \DJ = ΔI\DI = (¬D)I , i.e. CJ = CI .
– Cases C = C1  C2 and C = C1 � C2. By induction hypothesis, we have

CJ
1 = CI

1 and CJ
2 = CI

2 . Therefore, (C1  C2)J = CJ
1 ∪ CJ

2 = CI
1 ∪ CI

2 =
(C1  C2)I . Similarly, we obtain (C1 � C2)J = (C1 � C2)I .
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For every role inclusion R � S ∈ T , by the definition of J and from I |= R � S,
we have J |= R � S, which proves J |= B+ ∪ T and, hence, finishes this proof. �

Using Lemma 4, we can establish completeness of Algorithms 1 and 2.

Lemma 5 (Completeness). Let A be an ABox, B its abstraction, and T a
DL-LiteH�

core TBox, then we have:

(1) B ∪ T is consistent implies A ∪ T is consistent;
(2) for every atomic concept A and individual a, A ∪ T |= A(a) implies B ∪ T |=

A(vτ(a)).

Proof. Let B+ be the ABox in Lemma 4 and h a mapping from A to B+ s.t.
h(a) = vτ(a), for every a ∈ ind(A). By the definitions of B and of B+, for
each A(a) ∈ A, we have A(vτ(a)) ∈ B, which implies A(vτ(a)) ∈ B+. By the
definition of B+, for each R(a, b) ∈ A, we have R(vτ(a), vτ(b)) ∈ B+. Hence, h
is a homomorphism from A to B+. By Claim (1) of Lemma 4 and Corollary 2,
consistency of B ∪T implies consistency of B+ ∪T , which implies consistency of
A ∪ T , i.e. Claim (1) holds. Similarly, by Corollary 1 and Claim (2) of Lemma 4,
we have, for each atomic concept A and individual a, A ∪ T |= A(a) implies
B+ ∪T |= h(A(a)). Since h(A(a)) = A(vτ(a)), this implies B ∪T |= A(vτ(a)) and
Claim (2) holds. �

5 Implementation and Evaluation

We have implemented a prototype system Orar2 for reasoning in DL-LiteH�
core.

To evaluate the feasibility of our approach, we tested Orar on several real-life
and benchmark ontologies and compared the performance of Orar with that of
the other popular reasoners. The empirical evaluation results show the approach
can reduce the size of the ABoxes significantly (by orders of magnitude), which
results in great performance improvements.

The test ontologies are from popular benchmarks and also used in the eval-
uations of other approaches. NPD3 is an ontology about petroleum activities,
DBPedia+4 is an extension of the DBPedia ontology, and IMDb5 consists of the
Movie ontology and the dataset extracted from the IMDb website. While NPD,
DBPedia+, and IMDb contain real-life data, LUBM and UOBM are popu-
lar benchmarks with synthetic data of the university domain. The datasets in
LUBM and UOBM can be generated in arbitrary sizes, indicated by the num-
ber of universities. We use LUBMn and UOBM n to denote the datasets for n
universities of LUBM and UOBM, respectively. We extracted the relevant DL
fragment from those ontologies, i.e. we eliminated axioms not in DL-LiteH�

core.

2 https://github.com/kieen/OrarHSHOIF.
3 http://sws.ifi.uio.no/project/npd-v2.
4 https://www.cs.ox.ac.uk/isg/tools/PAGOdA.
5 https://sites.google.com/site/ontopiswc13/home/imdb-mo.

https://github.com/kieen/OrarHSHOIF
http://sws.ifi.uio.no/project/npd-v2
https://www.cs.ox.ac.uk/isg/tools/PAGOdA
https://sites.google.com/site/ontopiswc13/home/imdb-mo
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Table 2. Test ontologies with the number of TBox axioms (# ax.), atomic con-
cepts (# con.), roles (# rol.), individuals (# ind.), concept and role assertions (# ast.),
inferred assertions (# inferred ast.) by our system

Ontology # ax. # con. # rol. # indiv. # assert. # inferred assert.

NPD 354 208 90 785 656 1 392 196 1 517 844

DBPedia+ 1 748 442 806 3 822 351 27 094 909 30 239 281

IMDb 131 88 39 6 505 584 27 757 894 33 769 170

LUBM 10 80 43 25 207 426 850 433 1 086 472

LUBM 50 80 43 25 1 082 818 4 445 949 5 676 226

LUBM 100 80 43 25 2 179 766 8 954 615 11 434 996

LUBM 500 80 43 25 10 847 183 44 573 624 56 914 960

UOBM 10 110 69 35 242 491 1 926 897 2 324 962

UOBM 50 110 69 35 1 227 123 9 751 681 11 768 772

UOBM 100 110 69 35 2 461 347 19 571 755 23 617 264

UOBM 500 110 69 35 12 375 804 98 374 692 118 717 591

Table 2 presents detailed information about the test ontologies with the number
of TBox axioms, atomic concepts, roles, individuals, and (inferred) assertions.
NPD, IMDb, and LUBM are in DL-LiteH

core while DBPedia+ and UOBM are in
DL-LiteH�

core.
We used Orar to check consistency and compute the concept materialization

of the test ontologies and compared the reasoning time of Orar and of the other
well-known reasoners HermiT 1.3.8, JFact 5.0.0, Pellet 2.3.6, and Konclude 0.6.2.
All tests were run on an Intel Xeon E5-2660V3 2.60 GHz machine with 250 GB
heap size for the Java VM and with a timeout of five hours. Table 3 presents
information about the abstractions and the size of the abstract ABoxes in com-
parison with the size of the original ABoxes. In NPD, IMDb, and LUBM, many
individuals have the same types. For those ontologies, the size of the original
ABoxes are reduced by up to four orders of magnitude. Particularly, for LUBM
the abstract ABoxes are of nearly constant size regardless of the sizes of the
original ABoxes. This can be explained by the simple patterns used to generate
data in LUBM. The individuals in DBPedia+ and UOBM are more diverse. For
DBPedia+, the number of types is relatively large due to the large number of
concepts and roles; the size of the abstract ABox is approximately 10% of the
original one. For UOBM, the sizes of the abstract ABoxes are approximately 6%
and 1% of the sizes of the original ones for UOBM 10 and UOBM 500, respec-
tively. Table 4 shows the reasoning time of Orar (with Konclude as the internal
reasoner for the abstraction) in comparison with the reasoning time of the other
reasoners. In general, the reasoning time correlates with the size reduction of
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Table 3. Number of types, abstract individuals, assertions, and size of the abstract
ABox in comparison with the original ABox

Ontology Abstraction % of Original ABox

# types # indiv. # assert. % indiv. % assert.

NPD 1 005 15 580 18 244 1.983 1.310

DBPedia+ 226 530 1 775 630 2 770 261 46.454 10.224

IMDb 438 1 224 1 692 0.019 0.006

LUBM 10 29 154 158 0.074 0.019

LUBM 50 27 148 152 0.014 0.003

LUBM 100 27 148 152 0.007 0.002

LUBM 500 27 148 152 0.001 0.001

UOBM 10 11 391 97 944 124 661 40.391 6.470

UOBM 50 25 541 225 420 289 762 18.370 2.971

UOBM 100 34 872 310 513 400 938 12.616 2.049

UOBM 500 64 903 593 539 769 843 4.796 0.783

the ontologies. For concept materialization, Orar outperforms the other reason-
ers on all ontologies. For consistency checking, Konclude is faster than Orar for
IMDb and LUBM. The reason is that reasoning on those ontologies is even faster
than other operations required in Orar like computing types and generating the
abstract ABoxes. For the other ontologies, Orar outperforms all reasoners. Note
that the purpose of our evaluation was not to show the superiority of Orar, but
to demonstrate that our approach can improve the performance of any existing
reasoner when handling large data. Although we used Konclude inside Orar, it
can be replaced by any reasoner.

6 Extensions and Variations

In this section, we discuss the extension of the presented approach to DL-LiteHO�
core

and present a variation of the abstract ABox, which can also be used in our
approach.

6.1 Reasoning with Nominals

Since Lemma 1 even holds for the very expressive language SROIQ, Algorithms 1
and 2 are sound for DL-LiteHO�

core . Before we show that they are also complete for
DL-LiteHO�

core , we first illustrate the advantage of using the abstraction-based app-
roach for classification of DL-LiteHO�

core ontologies. This reasoning task has not been
covered so far as for DL-LiteH�

core classification requires reasoning only over the
TBox (after checking consistency of the ontology).
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Table 4. Reasoning time (without loading time) in seconds, where “−” stands for
timeout

Ontology Concept materialization Consistency checking

Orar Konclude Pellet HermiT JFact Orar Konclude Pellet HermiT JFact

NPD 5 11 39 579 − 3 8 27 284 −
DBPedia+ 163 176 631 2 029 − 48 148 417 292 −
IMDb 34 220 775 983 − 30 7 684 568 −
LUBM10 2 4 9 9 3 651 2 1 8 6 2 606

LUBM50 10 28 53 61 − 10 2 52 34 −
LUBM100 18 67 149 133 − 16 3 135 94 −
LUBM500 90 359 1 601 979 − 80 10 1 476 642 −
UOBM10 8 18 23 − − 3 16 16 47 3 073

UOBM50 25 106 148 − − 13 90 115 624 −
UOBM100 42 227 353 − − 23 187 274 1 421 −
UOBM500 160 1 636 3 846 − − 117 1 225 3 287 − −

Classification of an ontology containing nominals requires reasoning over
both TBox and ABox. This even holds for rather simple languages such as
DL-LiteHO�

core and even OWL 2 RL where nominals can only occur in a restricted
form (∃R.o) [14]. The following example demonstrates that class subsumption
between two concepts might depend on the existence of some assertions.

Example 8. Consider a TBox T = {A � o,∃R− � o,∃R− � B,C � ∃R}. We
observe that A � B holds depending on the existence of instances of the role R,
which can be enforced if C has some instances. Indeed, consider A = {C(a)},
we have A ∪ T |= A � B. In any interpretation I with AI = ∅ the subsumption
trivially holds. If, however, there is some element d ∈ AI , we show that d must
also be in BI . By A � o, we get d ∈ oI . Since C(a) ∈ A, C � ∃R ∈ T , and
aI ∈ CI , there is some d′ such that 〈aI , d′〉 ∈ RI . Since ∃R− � o,∃R− � B ∈ T ,
d′ ∈ oI ∩ BI and, since o is a nominal concept, we have d = d′ ∈ AI ∩ BI and
the subsumption also holds. It is easy to see, however, that ∅ ∪ T �|= A � B.

Since the abstractions are often smaller than the original ABoxes, classification
over the abstraction will be more efficient than classification over the original
ontology.

Lemma 6. Let A ∪ T be a DL-LiteHO�
core ontology and B the abstraction of A.

Then, for every atomic concepts A,B ∈ con(A ∪ T ), A ∪ T |= A � B iff
B ∪ T |= A � B.

By Lemmas 1 and 2, the “only-if” direction of Lemma6 holds. We now briefly
show the “if” direction of Lemma 6; and also show that Algorithms 1 and 2 are
complete for DL-LiteHO�

core . We rely on the following extension of Lemma4.

Lemma 7. Let O = A ∪ T be a DL-LiteHO�
core ontology, B the abstraction of A,

and B+ = B ∪ {R(vτ(a), vτ(b)) | R(a, b) ∈ A}. Then, we have:

(1) B ∪ T is consistent implies B+ ∪ T is consistent;
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(2) for every atomic concept A and individual v, B+∪T |= A(v) implies B∪T |=
A(v); and

(3) for every atomic concepts A and B, B+∪T |= A � B implies B∪T |= A � B.

Proof (Sketch). Intuitively, we follow similar steps as in the proof of Lemma4.
The only difference is to extend the interpretations to cover nominals. Reconsider
the interpretations I and J in the proof of Lemma4. We define J as before and
let the interpretations of nominals in J and in I be identical. Then, all claims
in the existing proof remain sound. Furthermore, since the interpretations of
atomic concepts in I and in J are identical, we have B+ ∪ T |= A � B implies
AJ ⊆ BJ , which implies AI ⊆ BI , i.e. I |= A � B. Since I is arbitrary, we
have B ∪ T |= A � B. �

As shown in the proof of Lemma 5, there exists a homomorphism h from A to
B+ that maps a to vτ(a) for each a ∈ ind(A). By Lemmas 7 and 1, it follows
that the “if” direction of the Lemma 6 holds and that Lemma 5 holds also for
DL-LiteHO�

core .

6.2 Alternative Abstraction

The key idea of the abstraction-based approach is to build a suitable, ideally
small abstract ABox, which can be used to obtain sound and complete entail-
ments of the input ontology. The abstract ABoxes from Definition 3 induce homo-
morphisms to the original ABox but not necessarily vice versa. This directly
guarantees soundness but not completeness. Completeness of the approach is
guaranteed by Lemmas 4 and 5, which show that the abstract ABox B entails
exactly the same assertions as its extension B+, to which there is a homomor-
phism from the original ABox. This suggests an alternative definition of abstrac-
tions similar to the extension B+ of B in Lemma 4.

Definition 5. The abstraction of an ABox A is an ABox C = {A(vτ(a)) |
A(a) ∈ A} ∪ {R(vτ(a), vτ(b)) | R(a, b) ∈ A}, where τ(a) and τ(b) are the types
of a and b, respectively, and vτ(a) and vτ(b) are a fresh, distinguished abstract
individuals.

Example 9. Consider the ABox A = {A(a), A(b), R(a, b)} as in Example 1.
The abstraction of A by Definition 5 is the ABox C = {A(vτ(a)), A(vτ(b)),
R(vτ(a), vτ(b))}.

In Example 9 there are homomorphisms both from A to C and from C to A;
C is just a copy under renaming of A. Therefore, it is easy to see that using
C as an abstract ABox, we obtain both sound and complete entailments for
A w.r.t. any TBox. In general, there is always a homomorphism from A to C,
e.g. the mapping h defined as h(a) = vτ(a), a ∈ ind(A), but not necessarily a
homomorphism from C to A. This immediately guarantees completeness of the
approach but not soundness. However, based on our previously shown results, we
can show that all results we obtained using C are sound. Let A be an ABox, C the
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abstraction of A by Definition 5, B the abstraction of A by Definition 3, and B+

the extension of B defined in Lemma 4. Since C ⊆ B+, by monotonicity, for every
concept A and individual vτ(a) ∈ ind(C), we obtain that C∪T |= A(vτ(a)) implies
B+ ∪ T |= A(vτ(a)), which implies B ∪ T |= A(vτ(a)) by Lemma 4. Furthermore,
by Lemma 3 we have B ∪ T |= A(vτ(a)) implies A ∪ T |= A(a). Therefore, we
have C ∪ T |= A(vτ(a)) implies A ∪ T |= A(a).

In Definition 5, the abstract ABox C uses just one individual vτ for each
type τ , and, therefore, it requires less individuals than the abstract ABox B in
Definition 3. However, for each type τ and each role R occurring in τ there is
exactly one role assertion, e.g. R(vτ , wR

τ ), in B, whereas vτ could have many
R-successors/predecessors in C. In our experiment with both types of abstract
ABoxes, the abstract ABoxes constructed according to Definition 5 are often
larger than the ones using Definition 3.

7 Related Work

Several ontology reasoning techniques have been proposed to handle large data.
The RDFox [15] and WebPIE [18] systems utilize parallel computing to perform
a rule-based materialization for OWL 2 RL. The PAGOdA system [20] approx-
imates the TBox and then performs OWL 2 RL rules to compute lower-bound
and upper-bound entailments, which help to determine entailments for individu-
als quickly. Wandelt and Möller propose a technique for instance retrieval based
on modularization [19]. A closely related work to our approaches is the SHER
approach [4]. It merges individuals to obtain a compressed, summary ABox,
which is then used for (refutation-based) consistency checking or query answer-
ing. Since merging is only based on concept assertions, the resulting summary
ABox is an over-approximation of the original ABox. Therefore, if the summary
ABox is consistent, then so is the original ABox, but not vice versa. In case the
summary ABox is inconsistent, explanation techniques [11] are used to repair
the summary. In contrast to the summary approach, the abstract ABox cre-
ated in the presented approach immediately allows for both sound and complete
results. Note that for DL-Lite ontologies, the previous abstraction refinement
approach [7] performs reasoning over the abstract ABox twice as it continues
doing refinement after transferring the entailments from the first abstraction to
the original ABox.

8 Conclusions

We have presented a scalable abstraction-based approach for reasoning in
DL-LiteH�

core and its extensions for DL-LiteHO�
core . For DL-LiteH�

core, we focus on
concept materialization and consistency checking of the ontology as computing
the role materialization can be done simply by expanding the existing role asser-
tions according to the role hierarchy; and computing the class hierarchy requires
only the TBox (after checking consistency of the ontology). For DL-LiteHO�

core , we
show that the presented approach for concept materialization and consistency
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checking remains sound and complete. Furthermore, it can be easily extended
to ontology classification, a non-trivial task in DL-LiteHO�

core . Computing the role
materialization of DL-LiteHO�

core ontologies is not as simple as in DL-LiteH�
core as

role assertions can be derived not only from the role hierarchy but also from
axioms of nominals. It is possible to use the abstraction to obtain also the role
assertions as presented in our recent work for Horn SHOIF [8].

The languages we consider in this paper do not make the Unique Name
Assumption (UNA), which is often adopted in DL-Lite. But the presented app-
roach also works for DL-LiteH�

core with UNA; for DL-LiteHO�
core , it does not make

sense to adopt UNA. As noted in the work about different dialects of the DL-Lite
family [1], we can construct a model for a DL-LiteH�

core ontology with UNA from a
model of that ontology without UNA by “cloning” the domain elements so that
different individuals are interpreted differently. Entailments are preserved in the
resulting model, therefore, the results for DL-LiteH�

core without UNA remain valid
in DL-LiteH�

core with UNA.
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