
Validating Ontologies Against OWL 2
Profiles with the SPARQL Template

Transformation Language

Olivier Corby(B), Catherine Faron-Zucker(B), and Raphaël Gazzotti

Université Côte d’Azur, Inria, CNRS, I3S, Nice, France
olivier.corby@inria.fr, faron@unice.fr, gazzotti@i3s.unice.fr

Abstract. In this paper we address the general research question of How
can we express constraints on RDF data and how can we check that an
RDF graph satisfies some given constraints? and we focus on expressing
constraints defining OWL 2 profiles and checking these constraints for
OWL validation. We propose an approach based on the SPARQL Tem-
plate Transformation language (STTL). An STTL template is a trans-
formation rule that applies to a given RDF graph and the recursive call
of a set of STTL templates on an RDF graph outputs some textual data
resulting from the transformation of this graph. We show that STTL can
be used as a constraint language for RDF and we use it to implement
the semantics of OWL 2 profiles: each profile is represented by a set of
STTL templates that a valid ontology must satisfy.

1 Introduction

OWL 2 profiles [6] can be seen as restrictions of OWL 2 statements and the
validation of ontologies against OWL 2 profiles as the checking of syntactic
constraints on OWL 2 axiom declarations. In this paper we address the general
research question of How can we express constraints on RDF data and how can
we check that an RDF graph satisfies some given constraints? and we focus on
expressing constraints defining OWL 2 profiles and checking these constraints
for OWL validation.

We propose an approach based on the SPARQL Template Transformation
language (STTL), which we originally designed in order to enable the transfor-
mation of RDF data into any data format. An STTL template can be viewed as a
transformation rule that applies to a given RDF graph just like an XSL template
applies to an XML tree, and the recursive call of a set of STTL templates on a
whole RDF graph outputs some textual data resulting from the transformation
of this graph.

We show that STTL can be used as a constraint language for RDF: each
STTL template is viewed as representing a constraint and an RDF graph is
checked against a set of constraints by applying the set of STTL templates
representing these constraints on the RDF graph. The output of the application
of a set of STTL templates can be a simple boolean value or a convenient textual
c© Springer International Publishing Switzerland 2016
M. Ortiz and S. Schlobach (Eds.): RR 2016, LNCS 9898, pp. 39–45, 2016.
DOI: 10.1007/978-3-319-45276-0 4

40 O. Corby et al.

view of the data, where for instance, the subgraphs violating the constraints are
highlighted. This is done by defining a “Visitor” design patten associated to the
set of STTL templates in order to collect illegal RDF sub-graphs, and a generic
design pattern to display the result to the user.

As a result, we apply our approach to implement the semantics of OWL 2
profiles, each viewed as a set of constraints to be validated: we defined an STTL
transformation to represent each of the three OWL 2 profiles (OWL RL, OWL
QL and OWL EL). The application of one of these STTL transformations to an
ontology (expressed in RDF) enables to validate it against the OWL 2 profile
this transformation represents.

The paper is organized as follows. Section 2 provides an overview of the STTL
language. Section 3 presents the STTL transformation implementing the seman-
tics of the OWL 2 profiles. Section 4 shows how an additional STTL transfor-
mation enables to provide the user with a visual presentation of the results of
the OWL validation results. Section 5 describes our experiments conducted on
several OWL ontologies of the Linked Data. Section 6 concludes.

2 SPARQL Template Transformation Language (STTL)

STTL is a generic transformation rule language for RDF which relies on two
extensions of SPARQL: an additional template query form to express trans-
formation rules and extension functions to recursively call the processing of a
template from another one. A template query is made of a standard where
clause and a template clause. The where clause is the condition part of a rule,
specifying the nodes in the RDF graph to be selected for the transformation.
The template clause is the presentation part of the rule, specifying the output
of the transformation performed on the solution sequence of the where part.
For instance, let us consider the OWL axiom stating that the class of parents
is equivalent to the class of individuals having a person as child. Here are its
expressions in Functional syntax and in Turtle:

EquivalentClasses(a:Parent
ObjectSomeValuesFrom(a:hasChild a:Person))

a:Parent a owl:Class ; owl:equivalentClass
[a owl:Restriction ; owl:onProperty a:hasChild ;

owl:someValuesFrom a:Person]

The template below enables to transform the above equivalentClass statement
from RDF into Functional syntax:

TEMPLATE { FORMAT {"EquivalentClasses(%s %s)"
st:apply-templates(?in) st:apply-templates(?c) }}

WHERE { ?in owl:equivalentClass ?c }

The value matching variable ?in is a:Parent which is expected in the transfor-
mation output (the Functional syntax of the OWL 2 statement), while the value

Validating Ontologies Against OWL 2 Profiles with the SPARQL 41

matching variable ?c is a blank node whose property values are used to build
the expected output. This is defined in another template to be applied on this
focus node. The st:apply-templates extension function enables this recursive
call of templates, where st is the prefix of STTL namespace1.

More generally, function st:apply-templates can be used in the template
clause of any template t1 to execute another template t2 that can itself execute
a template t3, etc. Hence, templates call themselves one another, in a series of
calls, enabling a hierarchical processing of templates and a recursive traversing
of the target RDF graph. The STTL interpreter keeps track of templates and
focus nodes in order to prevent loops as RDF graphs may have cycles. Similarly,
function st:call-template can be used to recursively call named templates.

STTL is compiled into standard SPARQL. The compilation keeps the where
clause, the solution modifiers and the values clause of the template unchanged
and the template clause is compiled into a select clause.

A complete description of STTL language is provided in [1]. We implemented
the STTL language and transformer engine within the Corese Semantic Web
Factory [3] which now comprises an STTL RESTful Web service to process STTL
transformations and output the result of transforming an RDF dataset. This
implementation is described in [2].

3 Validating OWL 2 Profiles with STTL Transformations

OWL 2 profiles are logic fragments, or sublanguages, trading expressive rep-
resentation power for efficient reasoning capabilities. There are three profiles
predefined in the recommendation: EL, QL and RL. As stated in the W3C
recommendation, each OWL 2 profile is defined as a set of restrictions on the
structure of OWL 2 statements, i.e. syntactic constraints on OWL 2 axioms def-
initions2. Each profile is defined as (1) a set of restrictions on the type of class
expressions that can be used in axioms and on the place in which they can be
used, (2) the set of OWL axioms supported when restricted to the allowed set
of class expressions, (3) the set of OWL constructs which are not supported. For
example, in OWL 2 RL, the constructs in the subclass and superclass expressions
in SubClassOf axioms must follow some usage patterns and OWL 2 RL axioms
are undirectly constrained by these restrictions.

We defined an STTL transformation to represent each of the three OWL 2
profiles defined in the W3C recommendation. Each STTL template participating
to these transformations enables to check a specific OWL 2 model constraint
and returns a boolean, the value of which depends on whether the constraint is
verified or not. When traversing the RDF graph representing the ontology to be
validated against a given OWL 2 profile, the boolean results of the templates
applied to the graph nodes are aggregated by using a conjunction instead of a
concatenation, so that the final result is a boolean value indicating whether type
checking succeeds or fails.
1 http://ns.inria.fr/sparql-template/.
2 https://www.w3.org/TR/owl2-profiles/.

http://ns.inria.fr/sparql-template/
https://www.w3.org/TR/owl2-profiles/

42 O. Corby et al.

Considering that each OWL 2 profile is defined by a set of constraints for the
declaration of axioms (some axioms are not supported, some are supported with
restrictions) and a set of constraints on class expressions, we defined modular
STTL transformations to represent OWL 2 profiles. Basically, each one consists
in a single template calling a transformation gathering templates representing
constraints on axioms and these transformations call several other transforma-
tions gathering templates representing constraints on class expressions.

Let us focus on the st:owlrl3 transformation which comprises 36 STTL
templates representing the constraints defining the OWL 2 RL profile. It con-
sists of a start template calling the st:axiom transformation whose templates
themselves call the st:subexp, st:superexp, and st:equivexp transforma-
tions. Transformation st:axiom comprises 10 templates representing restric-
tions on class axioms to use the appropriate form of class expressions, restric-
tions on property domain and range axioms to only use class expressions of
type superClassExpression, restriction on positive assertions to only use class
expressions of type superClassExpression and restrictions on keys to only use
subClassExpression.

The result of each template is a boolean value that represents the confor-
mance of the axiom arguments. For instance, the following template repre-
sents the restriction on subClassOf axioms to use a class expression of type
superClassExpression (respectively subClassExpression) for the superclass
(respectively the subclass). These two types of class expressions are each defined
by another STTL transformation which is recursively called in the where clause
of the template. More precisely, a subClassOf axiom is represented by an RDF
triple whose property is rdfs:subClassOf, whose subject ?in is passed as argu-
ment to transformation st:subClassExpression and whose object ?y is passed
as argument to transformation st:superClassExpression. Both transforma-
tions return a boolean whose value corresponds to the conformance of the class
expressions. The template returns the conjunction of these two booleans. In addi-
tion, a “Visitor” design pattern is used to report axioms which are not conform
to the profile.

TEMPLATE { ?suc }
WHERE {

?in rdfs:subClassOf ?y
BIND (
st:call-template-with(st:subexp, st:subClassExpression, ?in) &&
st:call-template-with(st:superexp, st:superClassExpression, ?y)

AS ?suc)
FILTER st:alreadyVisited(?in,"subClass", ?suc) }

In addition, st:axiom comprises one template representing the disallowance of
the DisjointUnion axiom and of reflexive properties. This template returns
false if such an axiom or property occurs in the ontology.

3 http://ns.inria.fr/sparql-template/owlrl/owlrl.

http://ns.inria.fr/sparql-template/owlrl/owlrl

Validating Ontologies Against OWL 2 Profiles with the SPARQL 43

TEMPLATE { false }
WHERE {

{?in owl:disjointUnionOf ?y} UNION {?in a owl:ReflexiveProperty}
FILTER (st:alreadyVisited(?in,"fail", false)) } LIMIT 1

We defined an STTL transformation for each of the three types of class
expressions in OWL 2 RL: subClassExpression, superClassExpression and
equivClassExpression. For instance, let us consider the st:subexp transfor-
mation representing the subClassExpression type of class expressions, that
can occur as subclass expressions in SubClassOf axioms. In this transformation,
the following named template st:subClassExpression calls for all the other
templates in the transformation. It enables to checks whether the argument is
a URI, in which case it must not be owl:Thing; otherwise it checks whether
all the templates matching the argument return true. In addition, a “Visitor”
design pattern is used to report expressions that do not conform.

TEMPLATE st:subClassExpression(?x) { ?suc }
WHERE {

BIND (
IF (isURI(?x), ?x != owl:Thing, st:apply-templates-all(?x))

AS ?suc)
BIND (st:visit(st:sub, ?x, ?suc) as ?b) }

4 Validation Result Presentation

In order to provide the user with a visualization of the result of the validation,
we wrote an STTL transformation to present in a HTML document the RDF
graph (in the Turtle syntax) representing the ontology to be validated, where
non valid triples are highlighted. For instance, Fig. 1 shows the visualization of
an ontology represented in Turtle and tested against the OWL 2 RL profile with
owl:complementOf in red since OWL 2 RL does not allow this within a class
intersection inside a class equivalence.

During the traversal of the RDF graph representing the tested ontology, a vis-
itor records the subjects of RDF triples corresponding to failing statements. After
type check resumes, the visitor is given to an STTL transformation RDF2Turtle
which enables to pretty-print RDF graphs in Turtle. The template below is the
key of the STTL transformation. It uses the st:visited(?in) extension func-
tion which returns true if the node has been visited (and hence represents a failing
statement). When processing a node of the RDF graph representing the vocab-
ulary to be validated, in case this node represents a failing OWL statement, the
STTL template generates a ... HTML ele-
ment to embed the transformation of the node, i.e. its pretty-print in Turtle
embeded in HTML. A CSS stylesheet associates a specific presentation format
to the fail class, e.g. a red font color.

44 O. Corby et al.

Fig. 1. Visualizing the validation result of an ontology against OWL 2 RL

TEMPLATE { FORMAT {
if (st:visited(?in),"[%s].","[%s].")
ibox { st:call-template(st:type, ?in)

st:call-template(st:value, ?in) } }}
WHERE { ?in ?p ?y FILTER isBlank(?in) } LIMIT 1

5 Implementation and Experiments

We have written an STTL transformation for the three OWL profiles defined in
the W3C recommendation: OWL RL (36 templates), OWL QL (24 templates)
and OWL EL (20 templates)4. These transformations, like any other STTL
transformations, can be applied to an OWL ontology to be validated by using
the Corese Semantic Web Factory which comprises an STTL engine. This is an
open-source development that can be freely downloaded5. We also wrote and
deployed a dedicated Web service that can validate an OWL ontology against
OWL 2 profiles given the URL of the ontology as an argument in the HTTP
request (in RDF)6. We also have tested the STTL transformations on a propri-
etary ontology in the e-Education domain, owned by the Educlever company. It
comprises 57,174 triples and its validation took 0.5 s on a laptop (HP EliteBook
840 G2, 2.6 GHz, 16 GB RAM). Finally, we have tested the STTL constraint
checking transformations on the open source Foundational Model of Anatomy
(FMA) ontology7. It comprises 1,743,162 triples and its validation against OWL
RL takes 3.3 s, against OWL QL 4.8 s, and against OWL EL 4.6 s.

6 Conclusion

We have shown how to answer the problem of OWL 2 RL Profile confor-
mance checking by using the STTL language. We have designed an STTL
4 http://ns.inria.fr/sparql-template/.
5 http://wimmics.inria.fr/corese.
6 http://corese.inria.fr/.
7 http://sig.biostr.washington.edu/projects/fma/release/index.html.

http://ns.inria.fr/sparql-template/
http://wimmics.inria.fr/corese
http://corese.inria.fr/
http://sig.biostr.washington.edu/projects/fma/release/index.html

Validating Ontologies Against OWL 2 Profiles with the SPARQL 45

transformation for each of the OWL 2 profiles in the W3C recommendation.
The STTL engine as well as the STTL transformations are freely available and
open-source and a Web service enables to test our validators with any ontology
(in RDF). We have created a design pattern that enables transformations to
perform type checking by returning boolean values and pretty-print the result
of the validation. As future work, we will provide a comparison of our OWL
2 validator to the validator developed by the University of Manchester8 which
relies on the OWL API [5].

Our approach to represent OWL 2 profiles by STTL transformations is not
specific to the problem of OWL validation and STTL can be used to repre-
sent other kinds of constraints on RDF data. Therefore, as future work, we will
compare our approach to related works on RDF constraint checking, among
which [4]. Relatedly, the W3C hosts a RDF Data Shapes9 working group for
describing structural constraints and validate RDF data against those and we
are currently designing an STTL transformation implementing the current ver-
sion of W3C RDF Data Shapes.

References

1. Corby, O., Faron-Zucker, C.: STTL: a SPARQL-based transformation language for
RDF. In: 11th International Conference on Web Information Systems and Technolo-
gies, WEBIST 2015, Lisbon, Portugal, May 2015

2. Corby, O., Faron-Zucker, C., Gandon, F.: A generic RDF transformation software
and its application to an online translation service for common languages of linked
data. In: Arenas, M., et al. (eds.) ISWC 2015. LNCS, vol. 9367, pp. 150–165.
Springer, Heidelberg (2015)

3. Corby, O., Gaignard, A., Faron-Zucker, C., Montagnat, J.: KGRAM versatile data
graphs querying and inference engine. In: IEEE/WIC/ACM International Confer-
ence on Web Intelligence, Macau, China (2012)

4. Fischer, P.M., Lausen, G., Schätzle, A., Schmidt, M.: RDF constraint checking. In:
Proceedings of the Workshops of the EDBT/ICDT 2015 Joint Conference. CEUR
Workshop Proceedings, Brussels, Belgium, vol. 1330, pp. 205–212 (2015)

5. Horridge, M., Bechhofer, S.: The OWL API: a Java API for OWL ontologies. Seman-
tic Web J. 2, 11–21 (2011)

6. Motik, B., Grau, B.C., Horrocks, I., Zhe, W., Fokoue, A., Lutz, C.: OWL 2 Web
ontology language profiles. Recommendation, W3C (2012). http://www.w3.org/
TR/owl2-profiles/

8 http://mowl-power.cs.man.ac.uk:8080/validator/.
9 http://www.w3.org/2014/data-shapes/wiki/Main Page.

http://www.w3.org/TR/owl2-profiles/
http://www.w3.org/TR/owl2-profiles/
http://mowl-power.cs.man.ac.uk:8080/validator/
http://www.w3.org/2014/data-shapes/wiki/Main_Page

	Validating Ontologies Against OWL 2 Profiles with the SPARQL Template Transformation Language
	1 Introduction
	2 SPARQL Template Transformation Language (STTL)
	3 Validating OWL 2 Profiles with STTL Transformations
	4 Validation Result Presentation
	5 Implementation and Experiments
	6 Conclusion
	References

