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Abstract. In the setting of ontology-mediated query answering, a query
is evaluated over a knowledge base consisting of a database instance and
an ontology. While most work in the area focuses on conjunctive queries,
navigational queries are gaining increasing attention. In this paper, we
investigate the complexity of evaluating the standard form of naviga-
tional queries, namely two-way regular path queries, over knowledge
bases whose ontology is expressed by means of linear existential rules.
More specifically, we show how to extend an approach developed for DL-
LiteR to obtain an exponential-time decision procedure for linear rules.
We prove that this algorithm achieves optimal worst-case complexity by
establishing a matching ExpTime lower bound.

1 Introduction

Ontology-mediated query answering (OMQA) has generated a lot of interest in
the last years as a promising way of facilitating access to data (see [4] for a
recent survey). In the OMQA approach, the ontology serves to define a con-
ceptual view of an application domain, introducing a convenient vocabulary
for query formulation and providing background knowledge that is exploited at
query time to obtain the complete set of answers. So far, the vast majority of
research on OMQA has considered user queries in the form of conjunctive queries
(CQs), which are a standard query language for relational databases. However,
in numerous application scenarios, data can naturally be seen as graphs, in which
case so-called navigational queries are considered more suitable. The basic navi-
gational query language is regular path queries (RPQs) [11], which allow one to
find paths whose labels conform to a given regular language.

In recent years, the problem of answering navigational queries in the setting
of OMQA has begun to be explored, first for ontologies formulated in highly
expressive description logics (DLs) of the Z family [8–10], then for rich Horn
DLs like Horn-SROIQ [18], and more recently, for lightweight DLs like DL-
LiteR and EL [5,19]. The latter DLs, which underlie the OWL 2 QL and EL
profiles, are the most relevant for OMQA due to their favourable computational
properties. In addition to plain RPQs, this line of work has also considered
richer navigational languages like conjunctive RPQs (which extend both RPQs
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and CQs) and extensions with nesting and/or negation [3,6,15]. Although much
work remains to be done in developing and implementing efficient algorithms,
the complexity landscape for answering various forms of path queries over DL
knowledge bases is now rather well understood. The same cannot be said for
ontologies formulated by means of decidable classes of existential rules (like lin-
ear and guarded rulesets), which constitute another important class of ontology
languages [1,7]. A key feature that distinguishes existential rules from DLs is
the possibility of using predicates of arity greater than two. Since regular path
queries are defined only with respect to unary and binary predicates, one might
wonder whether they make sense in higher arity settings. We argue however that
unary and binary predicates form the backbone of real-world ontologies (irre-
spective of the choice of ontology language), and it is desirable to be able to
use some higher-arity predicates without losing any expressivity in the query
language.

In this paper, we take a step towards a better understanding of the com-
bination of navigational query languages and existential rules by studying the
complexity of answering two-way RPQs in the presence of linear rules, a well-
studied class of existential rules that are a natural generalization of the DL-Lite
description logics. After introducing the necessary background, we show how to
adapt the RPQ algorithm for DL-Lite proposed in [5] to the setting of linear
rules. Unfortunately, our adaptation incurs an exponential blow-up with respect
to the maximum predicate arity. We can nevertheless show that the obtained
algorithm is worst-case optimal, as RPQ answering is ExpTime-complete in
combined complexity.

2 Preliminaries

We adopt the notation of [13]. The notions of constants, function symbols and
predicate symbols are standard. Each function or predicate symbol is associ-
ated with a nonnegative integer arity. Variables, terms, substitutions, atoms,
first-order formulae, sentences, interpretations (i.e., structures), and models are
defined as usual. By a slight abuse of notation, we often identify a conjunction
with the set of its conjuncts. Furthermore, we often abbreviate a vector of terms
t1, . . . , tn as t, and define |t| = n. By ϕσ we denote the result of applying a
substitution σ to ϕ. A term, atom, or formula is ground if it does not contain
variables; a fact is a ground atom. A term t′ is a subterm of a term t if t′ = t
or t = f(s) where f is a function and t′ is a subterm of some si ∈ s. A term
s is contained in an atom p(t) is s ∈ t, and s occurs in p(t) if s is a subterm
of some term ti ∈ t; thus, if s is contained in p(t), s occurs in p(t), but the
converse may not hold. A term s is contained (resp. occurs) in a set of atoms I
if s is contained (resp. occurs) in some atom in I. Let T = {t1, . . . , tn} be a set
of terms. A term t is generated by T if (i) t ∈ T or (ii) t = f(x1, . . . , xk) and
all the xk are generated by T . An instance is a finite set of function-free facts.
The terms appearing in an instance (resp. atom) are denoted by terms(I) (resp.
terms(α)).



On the Complexity of Evaluating Regular Path Queries 3

Existential Rules. An existential rule (or just rule) takes the form:

∀x∀z.[ϕ(x, z) → ∃y.ψ(x,y)],

where ϕ(x, z) and ψ(x,y) are non-empty conjunctions of function-free atoms,
and tuples of variables x,y and z are pairwise disjoint. We call ϕ the body and
ψ the head of the rule. For brevity, quantifiers are often omitted.

We frequently use Skolemisation to interpret rules in Herbrand interpreta-
tions, which are defined as possibly infinite sets of facts. In particular, for each
rule ρ and each variable yi ∈ y, let f i

ρ be a function symbol globally unique
for ρ and yi of arity |x|; furthermore, let θsk be the substitution such that
θsk(yi) = f i

ρ(x) for each yi ∈ y. Then, the Skolemisation sk(ρ) of ρ is the follow-
ing rule: ϕ(x, z) → ψ(x,y)θsk.

A linear rule is an existential rule whose body is restricted to a single atom.
For ease of presentation, we will consider only rules without any constants. As
usual, we also assume that rules have only a single atom in the head. This can
be done without loss of generality.

Skolem Chase. The chase [14,16] (or canonical model) is a classical tool in
OMQA. In this paper, we use the Skolem chase variant [17]. Let ρ = ϕ → ψ be
a Skolemised rule, and let I be a set of facts. A set of facts S is a consequence
of ρ on I if a substitution σ exists that maps the variables in ρ to the terms
occurring in I (denoted by terms(I)) such that ϕσ ⊆ I and S ⊆ ψσ. The result
of applying ρ to I, written ρ(I), is the union of all consequences of ρ on I. If Ω is
a set of Skolemised rules, we set Ω(I) =

⋃
ρ∈Ω ρ(I). Let I be a finite set of facts,

let R be a set of rules, let R′ = sk(R), and let R′
f and R′

n be the subsets of
R′ containing rules with and without function symbols, respectively. The chase
sequence for I and R is a sequence of sets of facts I0R, I1R, . . . , where I0R = I and
for each i > 0, set Ii

R is defined as follows:

– if R′
n(Ii−1

R ) �⊆ Ii−1
R , then Ii

R = Ii−1
R ∪ R′

n(Ii−1
R )

– otherwise Ii
R = Ii−1

R ∪ R′
f (Ii−1

R )

The chase of I and R, written chase(I,R), is defined as
⋃

i Ii
R; note that

chase(I,R) can be infinite. However, the chase has a simple structure when
linear rules are considered: each atom can be “chased” independently.

Property 1 (Decomposition of the Chase). Let R be a set of linear rules and I
be an instance. It holds that:

chase(I,R) = ∪α∈I chase({α},R)

Regular Languages. A regular language can be represented either by a regular
expression or by a non-deterministic finite automaton (NFA). Let Σ be a finite
set of symbols. A regular expression over Σ is defined by the grammar: E → ε |
a | E · E | E +E | E∗, where a ∈ Σ and ε denotes the empty word. We use L(E) to
denote the language defined by E . An NFA over Σ is a tuple A = (S,Σ, δ, s0, F ),



4 M. Bienvenu and M. Thomazo

where S is a finite set of states, δ ⊆ S × Σ × S is the transition relation, s0 ∈ S
is the initial state and F ⊆ S is the set of final states. If A is an automaton and
s and s′ are two states of A, we denote by LA(s, s′) the set of words w for which
there is path from s to s′ in A labeled by w.

Regular Path Queries. Let P be a set of predicates. Let us define P±
2 = P2∪{r− |

r ∈ P2} and Pr = P±
2 ∪ P1, where Pi (i ∈ {1, 2}) denotes the predicates of arity

i. A two-way regular path query (RPQ1) is a query of the form q(x, x′) = E(x, x′),
where E is a regular expression defining a language over Pr.

Given an interpretation I, a path from a0 to an in I is a sequence
a0r1a1r2 . . . rnan such that for any i such that 1 ≤ i ≤ n, ai is an element
of the domain ΔI of I, every ri is a symbol from Pr and:

– if ri = a ∈ P1, then ai = ai−1 ∈ aI ;
– if ri ∈ P2, then (ai−1, ai) ∈ rI

i ;
– if ri = r− with r ∈ P2, then (ai, ai−1) ∈ rI .

The label λ(p) of path p = a0r1a1r2 . . . rnan is the word r1r2 . . . rn. For any
language L over Pr, the semantics of L with respect to an interpretation I is
defined by:

LI = {(a0, an) | there is some path p from a0 to an such that λ(p) ∈ L}.

A match for an RPQ q(x, x′) = E(x, x′) in an interpretation I is a mapping π
from the variables of q to elements of ΔI such that (π(x), π(x′)) ∈ L(E)I .

A certain answer to q(x1, x2) with respect to (I,R) is a pair of constants
(a1, a2) such that for every model I of (I,R), there is a match π for q such that
π(x1) = aI

1 and π(x2) = aI
2 . As matches are preserved under homomorphisms,

it holds that (a1, a2) is a certain answer to q(x1, x2) w.r.t. (I,R) if and only if
there is a match for (aI

1 , aI
2 ) in I = chase(I,R). The RPQ Answering problem

asks, given an RPQ q(x1, x2), an instance I, a set of existential rules R, and two
constants (a1, a2) ∈ terms(I)× terms(I), whether (a1, a2) is a certain answer to
q(x1, x2).

Computational Complexity and Turing Machines. We assume the reader to be
familiar with standard complexity classes. In particular, we will consider P,
NP, PSpace, APSpace (alternating PSpace), and ExpTime. We recall that
APSpace = ExpTime.

To fix notations, we recall that an alternating Turing machine (TM) is given
by a 5-tuple M = (Q,Γ, δ, q0, g) where:

– Q is the finite set of states;
– Γ is the finite tape alphabet;
– δ : Q × Γ → (Q × Γ × {L,R})2 is the transition function;
– q0 ∈ Q is the initial state;
– g : Q → {∧,∨, accept, reject} specifies the type of each state.

1 As we only consider the two-way variant, we will use the abbreviation RPQ instead
of the more traditional 2RPQ.
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Note that without loss of generality, we consider TMs having the following prop-
erties:

– for every universal (∧) or existential (∨) configuration, there exist exactly two
applicable transitions;

– the machine directly accepts any configuration whose state s is such that
g(s) = accept;

– the TM never tries to go to the left of the initial position.

We say M is polynomially space-bounded (M is a PSpace TM) if there exists
a polynomial p such that on input x, M visits only the first p(|x|) tape cells.
We assume w.l.o.g. that the alternating PSpace TMs we consider terminate on
every input.

3 Evaluating Regular Path Queries over Linear Rules

We consider the problem of computing the certain answers to a regular path
query and show how to adapt the construction in [5] to the case of linear rules.
There are two main ingredients in the original algorithm for DL-Lite:

– a path in the chase is guessed step by step, keeping in memory only the current
constant of the instance and current state of the automaton;

– when a path goes through the Skolem part of the chase, these constants are
not guessed, but the state in which the automaton is when the path returns
to constants of the instance is guessed, thanks to a precomputed table.

3.1 Additional Challenges with Linear Rules

There are two main differences between DL-Lite and linear rules that need to
be handled. First, in DL-Lite, it is enough to know the predicate of the atom in
which an constant has been created during the chase and the position at which
it appeared in that atom to determine all the atoms that contain that constant
in the chase. This is not true if we consider general linear rules, as illustrated by
the following example:

Example 1 (More Complex Types are Needed). Let us consider the following rules:

h(x, y, z) → h(z, x, y) h(x, x, y) → q(y)

and instance I = {h(a, b, b), h(c, d, e)}. Observe that while a and c occur in the
same position of atoms with the same predicate, q(a) is in chase(I,R), while q(c)
is not.

Second, the following looping property is central to the algorithm from [5].

Definition 1 (Looping Property). An ontology R fulfills the looping property
if it holds that for any instance I, for any path a0r1a1 . . . rnan in chase(I,R)
such that (i) ai and ai+1 are Skolem terms, (ii) ai is a subterm of ai+1, and
(iii) a1 and an are original constants, there exists k ≥ i such that ak = ai.
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Indeed, DL-LiteR fulfills the looping property (as do many other DLs). How-
ever, linear rules do not, as is witnessed by Example 2.

Example 2 (Failure of Looping Property). Consider the instance Ie = {t(a, b)}
and the ruleset Re consisting of the following rules:

t(x, y) → r(y, z) q(x, y, z) → p(y, z)
r(x, y) → q(x, y, z) q(x, y, z) → p(z, x)

The chase for Ie and Re contains the following atoms:

r(b, f1(b)) q(b, f1(b), f2(b, f1(b))) p(f1(b), f2(b, f1(b))) p(f2(b, f1(b)), b)

There is thus a path b r f1(b) p f2(b, f1(b)) p b going from the initial constant b
to b, that passes by f1(b) but does not return via f1(b).

3.2 Adapting the DL-LiteR Algorithm

To take care of the first difficulty, we utilize a finer notion of type, which has
similar properties to the one used in [5].

Definition 2 (Type). A type is a pair (r,P) where r is a predicate of arity k
and P is a partition of {1, . . . , k}.

With each atom, we can associate a type, representing the way terms are
repeated in the atom.

Definition 3 (Type of an Atom). Let α be an atom, whose arity is k. The
type of α is the pair (r,P) where p is the predicate of α and P is the partition of
{1, . . . , k} such that i and j belong to the same partition iff the ith and the jth

arguments of α are equal.

Note that if two atoms α1 and α2 are of same type, there exists an injective
substitution θ12 such that α2 = α1θ12.

Property 2. Let I be an instance, and R be a set of linear rules. Let α1 and α2

be two atoms of I of same type and θ12 such that α2 = α1θ12. Then for every
atom β such that β ∈ chase({α1},R), βθ12 ∈ chase({α2},R).

Let us define for any atom α ∈ chase(I,R), the restriction of chase(I,R) to
α, denoted chase(I,R)|α, as the subset of chase(I,R) consisting of those atoms
whose terms are generated by terms(α). Observe that by the preceding property,
if type(α) = type(β), then chase(I,R)|α is isomorphic to chase({β},R).

We can overcome the second difficulty by generalizing the Loop table intro-
duced in [5], which keeps track of the paths that occur ‘below’ a given type.
Intuitively, a type T is in the cell indexed by (si, j, s

′
i, j

′) if and only if below any
atom of type T , there is a path going from the term in position j to the term in
position j′ labeled by a word that takes A from state si to state s′

i.
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Definition 4 (Loop). Let R be a set of linear rules and A be an NFA. A Loop

table has cells indexed by tuples (si, j, si′ , j′) such that si and si′ are states of
A and j and j′ are integers between 1 and w, where w is the maximum arity
appearing in the ruleset. Cells contain types. A Loop table is:

– sound if for every T ∈ (si, j, si′ , j′) it holds that for every atom α of type T
appearing in some chase({α′},R) (with the predicate of α′ appearing in R),
there is a path p in the restriction of chase(I,R) to α that goes from argument
j of α to argument j′ of α such that λ(p) ∈ LA(si, si′).

– complete if for every atom α of type T (whose predicate appears in R), if
there is path p from argument j to argument j′ of α in chase({α},R) such
that λ(p) ∈ LA(si, si′), then T ∈ (si, j, si′ , j′).

It is direct from the definition that there exists a unique sound and complete
Loop table, and in what follows, we use Loop to denote this table.

The table Loop can be constructed using Algorithm 1. Line 5 initializes the
table by stating than one can go from a position to the same position without
reading any word (and thus not moving in the automaton). Lines 8 and 10
correspond to going through a single edge, reading its label either as an r or an
r−, in the case where both terms are distinct. Lines 13 to 16 do the same thing
when both arguments are equal. Line 19 deals with unary predicates. Finally,
Lines 23 and 26 saturate the table through respectively transitive closure and
propagation of paths from a child to its parent.

Property 3. Let R be a set of linear rules, I be an instance and α ∈ I. The
following are equivalent:

1. type(α) ∈ Loop(s, i, s′, j)
2. there is a path p = a0r1a1 . . . rnan in chase(I,R)|α with a0 appearing at

position i in α, an appearing at position j in α, and λ(p) ∈ LA(s, s′).

Proof. (⇒) We prove, by induction on the order of addition of types that when-
ever a type is added to a cell in Loop(s, i, s′, j), the second condition is fulfilled
as well. If type(α) is added to Loop(si, j, si, j) at Line 5, the empty word defines
a trivial path from any position existing in α to itself, and takes the automaton
from any state to itself. If type(α) is added to Loop(s1, 1, s2, 2) at Line 8, α is
a binary atom of the form r(e1, e2), and there is indeed a path from e1 to e2
labeled r. Moreover, there is a transition in A from s1 to s2 labeled by r, which
concludes this case. The reasoning is similar for types added via Line 10 and
Lines 13 to 16. If type(α) is added at Line 23, it must have already been added
to Loop(s1, j1, s2, j2) and Loop(s2, j2, s3, j3). By the induction assumption, there
is a word w1 (resp. w2) in LA(s1, s2) (resp. LA(s2, s3)) that labels a path from
the position j1 (resp. j2) of an atom α of type T to the position j2 (resp. j3).
Thus w1·w2 labels a path from position j1 in α to position j3 in α and belongs to
LA(s1, s3). Finally, let us assume that type(α) is added to Loop(s1, iα′ , s2, jα′)
at Line 26. By assumption, there is a rule α′ → β′ in R such that α and α′

have the same type, type(β′) is in Loop(s1, iβ′ , s2, jβ′), and the same variable
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Algorithm 1. Creating the Loop table
Data: A set of linear rules R
Result: A sound and complete Loop table
/* Initialization step */

1 foreach arity k do
2 foreach type T of predicate of arity k do
3 for j ∈ {1, . . . , k} do
4 for si ∈ Q(A) do
5 Loop(si, j, si, j) ← Loop(si, j, sj , j) ∪ {T};

6 for type T based on r(x, y) do
7 if s2 ∈ δ(s1, r) then
8 Loop(s1, 1, s2, 2) ← Loop(s1, 1, s2, 2) ∪ {T};
9 if s2 ∈ δ(s1, r

−) then
10 Loop(s1, 2, s2, 1) ← Loop(s1, 2, s2, 1) ∪ {T};
11 for type T based on r(x, x) do
12 if s2 ∈ δ(s1, r) ∪ δ(s1, r

−) then
13 Loop(s1, 1, s2, 1) ← Loop(s1, 1, s2, 1) ∪ {T};
14 Loop(s1, 1, s2, 2) ← Loop(s1, 1, s2, 2) ∪ {T};
15 Loop(s1, 2, s2, 1) ← Loop(s1, 2, s2, 1) ∪ {T};
16 Loop(s1, 2, s2, 2) ← Loop(s1, 2, s2, 2) ∪ {T};
17 for type T based on a(x) do
18 if s2 ∈ δ(s1, a) then
19 Loop(s1, 1, s2, 1) ← Loop(s1, 1, s2, 1) ∪ {T};

/* Saturation step */

20 while something added do
21 for T a type do
22 if T ∈ Loop(s1, j1, s2, j2) ∩ Loop(s2, j2, s3, j3) then
23 Loop(s1, j1, s3, j3) ← Loop(s1, j1, s3, j3) ∪ {T};
24 for α → β ∈ R, of respective types Tα, Tβ do
25 if the same variable appears in α at iα and β at iβ (resp. jα and jβ),

Tβ ∈ Loop(s1, iβ , s2, jβ) then
26 Loop(s1, iα, s2, jα) ← Loop(s1, iα, s2, jα) ∪ {Tα};

appears at position iα′ (resp. jα′) in α′ and iβ′ (res. jβ′) in β′. By the induction
assumption, there is a word w ∈ LA(s1, s2) that labels a path from iβ′ to jβ′ .
Now, let us observe that any two terms that are at positions iα′ and jα′ of the
same atom of type type(α′) are also at position iβ′ and jβ′ of an atom of type
type(β′) in chase(D,R)|α because it is a model of α′ → β′. Thus, w is also the
label of a path from the term at position i′α to the term at position j′

α, which
concludes the proof.

(⇐) We suppose that the second statement holds and reason by induction
on the length n of the path p = a0r1a1 . . . rnan.
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Base case, path of length 0: both states and database constants are thus
equal, and the type is added by the initialization in Line 5.

Base case, path of length 1: α′ = r1(a0, a1) belongs to chase(I,R)|α, and
r1 ∈ LA(s, s′). If a0 �= a1, then type(α′) is added to the cells (s, 1, s′, 2) and
(s, 1, s′, 2) in Lines 8 and 10. If a0 = a1, then type(α′) is added to the four cells
(s, i′, s′, j′) with i′, j′ ∈ {1, 2} (Lines 13–16). As α′ belongs to chase(I,R)|α,
there exists a finite sequence of atoms α = α0, . . . , αm = α′ such that αi+1

belongs to ρi(αi) for some rule ρi ∈ R. By using m applications of Line 26, we
obtain type(α) ∈ Loop(s, i, s′, j).

Induction step: let us assume that the result holds for any path of length
up to n − 1, n ≥ 2, and consider the path p = a0r1a1 . . . rnan. First consider
the case in which ak is contained in α for some 1 ≤ k < n, and let l be a
position of ak in α. There exists a path from a0 to ak of length strictly smaller
than n, and similarly from ak to an. By the induction assumption, type(α) is
in both Loop(s, i, s′′, l) and Loop(s′′, l, s′, j) for some state s′′. An application
of Line 23 yields type(α) ∈ Loop(s, i, s′, j). Next suppose there is no ak (1 ≤
k < n) that occurs in α, and let β be the atom in which a1 is created (at
position k′). This atom is well defined as we consider rules with atomic head.
We know that a0 (resp. an) must occur in β, let us say at position i′ (resp.
j′). Indeed, if it was not the case, α should contain a term among a1, . . . , an−1

which contradicts our earlier assumption. By the induction hypothesis, type(β)
belongs to Loop(s, i′, s′′, k′) and to Loop(s′′, k′, s′, j′) for some state s′′. Hence,
by Line 23, type(β) is in the cell Loop(s, i′, s′, j′). By (repeated) application of
Line 26, type(α) is in the cell Loop(s, i, s′, j), which concludes the proof. ��
Property 4. Algorithm 1 runs in exponential time, and in polynomial time if the
predicate arity is bounded.

Proof. There are polynomially many cells in the table, each of which can contain
at most all types. The number nt of distinct types is single exponential (and
polynomial for bounded-arity predicates). The first for loop runs in O(nt), the
next two run in polynomial time, and the while loop is performed at most nt

times. ��
The remainder of the decision procedure is very close to the original algo-

rithm for DL-LiteR, but we recall it here (Algorithm 2) in the interest of self-
containment. The idea is as follows: starting from a constant a and the initial
state of A, we guess the next constant in I on a path from a to b and the state
of A after taking this step (Line 7). We then check that this choice is valid, i.e.,
there is indeed a path from a to the guessed constant which takes the automaton
from the initial state to the current guessed state. This can be done either by a
checking that a corresponding unary or binary atom is entailed (Lines 9 and 10),
or by checking that a path going through the Skolem part of the chase allows us
to reach the next constant in the required state, using the Loop table (Lines 12
to 14). We repeat this procedure until we reach the constant b in a final state,
or hit the maximal path length. Note that at Line 12, α is uniquely defined if
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Algorithm 2. RPQ answering over linear rules
Input: An NFA A, an instance I, a set of linear rules R,

(a, b) ∈ terms(I) × terms(I)
Output: Yes if and only if (a, b) is a certain answer to the query q defined by A

1 if (I, R) is not satisfiable then
2 return Yes

3 current = (a, s0);
4 count = 0, max = |A| × |I|;
5 while count < max and current �∈ {(b, sf ) | sf ∈ F} do
6 Define (c, s) = current;
7 Guess (d, s′) together with (s, σ, s′) ∈ δ or T, ic, id such that

T ∈ Loop(s, ic, s
′, id);

8 if (s, σ, s′) was guessed then
9 if σ ∈ P±

2 ∧ (I, R �|= σ(c, d)) then return No;
10 if σ = A ∧ (c �= d ∨ I, R �|= A(c)) then return No;

11 if T, ic, id was guessed then
12 Let α be of type T such that c is at position ic and d is at position id;

other terms are set to fresh variables
13 if α does not exist then return No;
14 if I, R �|= α then return No;

15 current = (d, s′), count = count +1;

16 if current= (b, sf ) for some sf ∈ F then return Yes else return No;

it exists (it may not exist e.g., if c and d are different but are at positions that
should have identical terms according to T ).

The following property will be used to establish correctness of the algorithm.

Property 5. At the beginning of each iteration of the while loop of Algorithm 2,
it holds that there is a path from a to the first element of current that takes the
NFA A from the initial state s0 to the state in the second argument of current.

Proof. At the beginning of the first iteration of the while loop, current is equal
to (a, s0). Thus, the path a, whose label is ε, goes from a to a and ε ∈ LA(s0, s0).

Let (ai, si) be the content of current at the beginning of the ith iteration
of the while loop. Let wi be the label of a path from a0 to ai such that wi ∈
LA(s0, si). If there is an (i + 1)th iteration, either (s, σ, s′) or (T, ic, id) has been
guessed, and the corresponding check was successful. Let us consider each case:

– if (s, σ, s′) has been guessed and checked, we have two cases:
• σ ∈ P±

2 , and there is a path from ai to ai+1 in chase(I,R) labeled by
σ. Moreover, σ labels an edge from s to s′ in A. We can thus define
wi+1 = wi.σ

• σ = A, and I,R |= A(c). As c = d, we can again define wi+1 = wi.σ
– if (T, ic, id) has been guessed, it means that T belongs to Loop(si, ic, si+1, id).

By the definition of Loop, there is a path p (in the Skolem part) from any
term at position ic of an atom of type T to the position id of an atom of type
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T such that λ(p) ∈ LA(s, s′). Let α be as defined Line 12. As I,R |= α, where
type(α) = T , ai appears at position ic of α, and ai+1 appears at position id
of α, there is such a path from ai to ai+1. We can thus set wi+1 = wi.p. ��

Property 6. There is an execution of Algorithm 2 that outputs Yes iff the RPQ
given by A is entailed from (I,R).

Proof. (⇒) If the algorithm outputs Yes, the while loop has been exited with
current equal to (b, sf ), with sf a final state of A. By Property 5, this means
that there is a path from a to b whose label takes A from s0 to sf , hence is
accepted by A. This show that whenever Algorithm 2 accepts, (a, b) is a certain
answer to the RPQ given by A.

(⇐) If (a, b) is a certain answer to the RPQ based upon A, then there is path
of minimal length p = a′

0r1a
′
1 . . . rna′

n from a = a′
0 to b = a′

n in chase(I,R) such
that λ(p) = r1 . . . rn ∈ LA(s0, sf ) for some final state sf . Let s′

0s
′
1 . . . s′

n be a
sequence of states of A such that s′

n is a final state of A and for every 1 ≤ i ≤ n,
(si−1, ri, si) ∈ δ. Since p is of minimal length, there is no pair (i, j) with i �= j
such that (ai, si) = (aj , sj). Let us consider the sequence p′ = ((ai, si))i such
that:

– for any i, ai is the ith constant, say a′
ki

, in p belonging to terms(I);
– for any i, si = s′

ki
.

Moreover, for any i, if ki+1 = ki +1, we define auxi = (si, ri+1, si+1). Otherwise,
let auxi = (type(α), ic, id),where:

– α is such that α ∈ I and type(α) ∈ Loop(si, ic, si+1, id);
– aki

appears at position ic of α and aki+1 appears at position id of α.

In the second case, it is possible to define auxi in such a way, as the path ps =
a′

ki
rki+1 . . . a′

ki+1
goes from aki

to aki+1 and belongs to LA(si, si+1) by definition
of si. We show that the sequence of guesses (ai, si, auxi) leads Algorithm 2 to
accept. Since p is minimal, the length of p′ is less than |A|×|I|. Moreover, an = b
and sf is a final state. Thus, the only way for Algorithm 2 to reject with this
sequence of guesses is to reject during checks, i.e., one of the checks performed
at Lines 9, 10, 12 or 14 fails. Let (ai, si, auxi) be the guess at one of the steps. If
auxi is of the form (si, ri+1, si+1), then aki

and aki+1 are consecutive elements
in p, and there is an atom ri+1(aki

, aki+1) in chase(I,R). Thus, ri+1(aki
, aki+1)

is entailed by I and R, and the check at Line 9 or 10 (depending on ri+1 being
a binary or unary atom) is successful. If auxi is of the form (type(α), ic, id),
then there is α ∈ I such that type(α) ∈ Loop(si, ic, si+1, id), and with aki

(resp.
aki+1) appearing at position ic (resp. id) of α. The atom α fulfills the conditions
of Lines 12 and 14. Thus the defined sequence never triggers a rejection from
Algorithm 2, which concludes the proof. ��
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Theorem 1. RPQ Answering in the presence of linear existential rules is:

– in NL in data complexity
– in PTime in combined complexity with bounded arity
– in ExpTime in combined complexity with unbounded arity

Proof. Algorithm 2 is a non-deterministic algorithm that needs to keep in mem-
ory the current state, the current constant, and the number of iterations done so
far. It performs two types of operations: entailment checks and accessing the con-
tents of the Loop table (more precisely, deciding whether T ∈ Loop(s, ic, s′, id)).
Hence, it can be seen as an NL algorithm making oracle calls whenever an entail-
ment check is performed or a cell of Loop is retrieved. Entailment checks are in
NL in data complexity, and Loop is independent from the data: the overall algo-
rithm thus runs in NL in data complexity. In combined complexity with bounded
arity, entailment checks can be performed in PTime, while Loop can be com-
puted in polynomial time: the overall algorithm is thus in PTime with bounded
arity. In the unbounded arity case, the entailment checks can be performed in
PSpace, while the Loop table can be computed in ExpTime: the algorithm thus
runs in ExpTime. ��

4 Lower Bound

It is already known that the data complexity (resp. combined complexity) of
RPQs under linear rules (resp. linear rules with bounded arity) is NL-hard (resp.
PTime-hard) [5], which matches the upper bounds obtained in the preceding
section. We thus focus on providing a matching ExpTime lower bound for the
combined complexity of evaluating RPQs under linear rules of unbounded arity.
The proof is done by simulating an alternating PSpace TM. It is already known
that PSpace TMs can be simulated by means of linear rules [12]. In the following,
we explain how to adapt this construction to simulate alternating TMs. Note
that in this section, we will use rules with multiple atoms in the head: this is
done to simplify the presentation, and a classical transformation allows us to get
the same lower bound for rules with atomic heads.

The intuition is as follows: the construction in [12] represents the configura-
tion of a TM M by a single atom of polynomial arity. The initial configuration
can thus be represented by an instance IM containing a single atom. Then, for
each transition of the TM, polynomially many linear rules are created, each one
representing the action of the transition on a cell at a given position. All these
rules are part of RM. The initial configuration of the TM is accepted if and only
if an atom encoding a configuration having an accepting state is entailed by IM
and RM.

We modify this construction in the following way to deal with alternating
Turing machines: to each atom, we add two positions, that will act as “input”
and “output” positions. Moreover, we will maintain the following property: there
is a path, whose edges are all labeled by the same predicate p, from the input
position of α to the output position of α entailed by chase(I{α},RM) if and
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only if the configuration represented by α is accepted by M. This is true in the
following cases:

– the state of the current configuration is accepting. It is then enough to add
a p-edge from ic to oc; this is possible as the Turing machine is assumed to
never leave an accepting state;

– the current state is existential and one of the two successor configurations is
accepting: we thus add p-edges from the input of the current configuration to
the input of the two children, and from the output of the two children to the
output of the current configuration;

– the current state is universal, and both successor configurations are accepting:
we thus add p-edges from the input of the current configuration to the input
of the first successor configuration, then from the output of that configuration
to the input of the other successor, and lastly from the output of the second
successor to the output of the current configuration.

We now formalize the construction sketched above, staying as close as possible
to the notations in [12].

Turing Machine. Given an alternating PSpace TM and an input x, we can rep-
resent a configuration c reached during the computation by storing the content
of the first p(|x|) cells, as well as the position of the head of the tape and the
current state of the TM. Adding input and output positions, this can be encoded
by a predicate conf of arity 2p(|x|) + 3:

conf(ic, state, cell1, cur1, cell2, cur2, . . . , cellp(|x|), curp(|x|), oc),

where state contains the state identifier, celli represents the content of the ith

cell, curi is equal to 1 if the head of the Turing machine is on cell i and 0
otherwise, and ic and oc are the input and output terms of this atom. We say
that the above atom represents configuration c. Given an atom α, the term at
its input (resp. output) position is denoted by i(α) (resp. o(α)). We denote by
IM,x the instance containing a single atom representing the initial configuration
of M on input x.

For every state qf with g(qf ) = accept, we create the following rule:

conf(ic, qf , . . . , oc) → p(ic, oc). (1)

For each transition δ(q, γ) = {(q′, γ′, L), (q′′, γ′′, L)} such that g(q) = ∨, we
create the rule

conf(ic, q, cell1, cur1, . . . , celli−1, 0, γ, 1, . . . , oc) →
∃ic′ , oc′ , ic′′ , oc′′ conf(ic′ , q′, cell1, cur1, . . . , celli−1, 1, γ′, 0, . . . , oc′),

conf(ic′′ , q′′, cell1, cur1, . . . , celli−1, 1, γ′, 0, . . . , oc′′),
p(ic, ic′), p(oc′ , oc), p(ic, ic′′), p(oc′′ , oc). (2)

for each position i on the tape, and similarly when the head is moving to the
right.



14 M. Bienvenu and M. Thomazo

When g(q) = ∧, we associate with each transition δ(q, γ) = {(q′, γ′, L),
(q′′, γ′′, L)} the following rule:

conf(ic, q, cell1, cur1, . . . , celli, 0, γ, 1, . . . , oc) →
∃ic′ , oc′ , ic′′ , oc′′ conf(ic′ , q′, cell1, cur1, . . . , celli, 1, γ′, 0, . . . , oc′),

conf(ic′′ , q′′, cell1, cur1, . . . , celli, 1, γ′′, 0, . . . , oc′′),
p(ic, ic′), p(oc′ , ic′′), p(oc′′ , oc). (3)

Figure 1 illustrates the functioning of rules of types (2) and (3). We denote by
RM,x the set containing all the rules defined above2. The above rules (where
input and output positions are removed) simulate the run of a PSpace TM [12].

The following property formalizes the reduction and establishes its correct-
ness.

ic occelli
. . . . . .

ic′ oc′celli
. . . . . .

ic′′ oc′′celli
. . . . . .

ic occelli
. . . . . .

ic′ oc′celli
. . . . . .

ic′′ oc′′celli
. . . . . .

p
pp p p p

p

Fig. 1. Existential (left) and universal (right) gadgets

Property 7. Let M be an alternating PSpace Turing machine, and let α be an
atom of chase(IM,x,RM,x) representing a configuration c(α). Then c(α) is an
accepting configuration of M if and only if there is a path in chase(IM,x,RM,x)
from i(α) to o(α) whose label belongs to p∗.

Proof. (⇐) Let α ∈ chase(IM,x,RM,x) represent a configuration c(α), and let
Cα be the restriction of chase(IM,x,RM,x) to α. We show by induction on the
number of atoms of Cα that the required path exists. Note that the induction
is well-founded as the Skolem chase is finite (recall that the considered Turing
machines terminate).

– If Cα contains one atom, then there can be no path in chase(IM,x,RM,x)
witnessing p∗(i(α), o(α)). Suppose then that Cα contains two atoms. In this
case, the only atom in Cα other than α must be p(i(α), o(α)). The only way to
derive such an atom is to apply a rule of the form (1), which is applied if and
only if c(α) is in an accepting state, hence c(α) is an accepting configuration
of M.

– Next assume that the result holds for any atom α such that Cα has less than
n atoms, and let α be an atom such that Cα contains n atoms. We distinguish
two cases:

2 Note that x is required to determine the arity of conf.
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• Case 1: the state of c(α) is existential. Then, since the rules of type (2)
must be satisfied, Cα contains atoms α1 and α2 representing the successor
configurations of c(α). The existence of a path from i(α) to o(α) implies
that there is either a path from i(α1) to o(α1) or a path from i(α2) to
o(α2). To see why, observe that every p-atom involving i(α) or o(α) is
added either by the same rule application as created α or by a rule of
type (2) applied to α. Only atoms of the second kind (refer to Fig. 1, left)
can belong to a shortest path from i(α) to o(α), as atoms of the first kind
have i(α) (resp. o(α)) as second (resp. first) argument. If we have a path
from i(α1) to o(α1), then we can apply the induction assumption to α1

to get that c(α1) is an accepting configuration, which implies that c(α)
is also accepting. We can proceed analogously if we have path from i(α2)
to o(α2).

• Case 2: the state of c(α) is universal. As the rules of type (3) must be
satisfied, the existence of a path from i(α) to o(α) implies the existence
of a path from i(α1) to o(α1) and a path from i(α2) to o(α2), where
α1 and α2 represent the successor configurations of c(α) (refer to Fig. 1,
right). By the induction assumption, c(α1) and c(α2) are both accepting
configurations, which means that c(α) is also accepting.

(⇒) We prove the other direction by induction on the number of transitions
that need to be performed to prove that c(α) is accepted by M.

– If no transitions are required, this means that c(α) is in an accepting state.
Thus, Rule (1) is applicable, and p(i(α), o(α)) is present in chase(IM,x,RM,x).

– Assume the result holds up to n required transitions. We distinguish two cases:
• Case 1: the state of c(α) is existential. As c(α) is accepting, this means

that one of its two successor configurations, say c(α1), is accepting.
Moreover, the number of transitions required to accept c(α1) is strictly
smaller than for c(α). By the induction assumption, p∗(i(α1), o(α1)) is
present in chase(IM,x,RM,x). As p(i(α), i(α1)) and p(o(α1), o(α)) are
also present (since the rules of the form (2) generate them), this proves
that p∗(i(α), o(α)) is present as well.

• Case 2: the state of c(α) is universal. As c(α) is accepting, this means
that its two successor configuration are also accepting. By the induc-
tion assumption, this means that p∗(i(α1), o(α1)) and p∗(i(α2), o(α2))
are present in chase(IM,x,RM,x). As the rules of the form (3) also gen-
erate p(i(α), i(α1)), p(o(α1), i(α2)), and p(o(α2), o(α)), this proves that
p∗(i(α), o(α)) is present in chase(IM,x,RM,x). ��

Now let M be an alternating PSpace Turing machine, x be an input to M,
and α be the unique atom in IM,x. Then by Property 7, c(α) is an accepting
configuration of M if and only if IM,x,RM,x |= p∗(i(α), o(α)). This, together
with known results, yields the following lower bounds:
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Theorem 2. RPQ Answering in the presence of linear existential rules is NL-
hard in data complexity, PTime-hard in combined complexity with bounded arity
and ExpTime-hard in combined complexity without arity bound, even for a fixed
RPQ.

Note that the preceding reduction can be easily adapted to show that atomic
query answering under rulesets containing linear rules and transitivity rules is
ExpTime-hard. Assuming ExpTime�=PSpace, this result is in contradiction
with Theorem 5 in [2], which purports to show a Pspace upper bound. Indeed,
after reexamining the proofs, the authors of the latter work have identified the
flaw, which occurs in the analysis of the combined complexity of their rewriting-
based decision procedure. It turns out that the procedure runs in exponential
time, rather than in polynomial space (the NL upper bound in data complexity
remains valid). Combining our lower bound with their procedure shows that the
problem is ExpTime-complete in combined complexity.

5 Conclusion and Future Work

In this paper, we have investigated the complexity of evaluating regular path
queries under linear existential rules. We have shown that it is NL-complete in
data complexity, PTime-complete in combined complexity when the predicate
arity is bounded, and ExpTime-complete otherwise. This behavior is somewhat
surprising with respect to prior work: indeed, for DL-LiteR, the combined com-
plexity of RPQ answering is lower than for CQs, whereas we observe just the
opposite in the linear case (recall CQ answering is PSpace-complete under linear
rules). The upper bound was shown by adapting an existing decision procedure
for DL-Lite, using a refined definition of type. The lower bound builds upon a
PSpace-hardness result for CQ answering under linear rules.

There are two natural ways to extend the present work: either investigate
more expressive forms of path queries (with conjunction and/or nesting) over
linear rules, or consider the effect of moving to more expressive decidable classes
of existential rules.
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