
Agent-Based Approach for Ship Damage Control

Eugénio Oliveira(B) and Paulo Martins

LIACC, DEI / Faculdade de Engenharia, Universidade do Porto,
R. Dr. Roberto Frias, 4200-465 Porto, Portugal

eco@fe.up.pt

Abstract. We here introduce a Multi-Agent System (MAS) approach
for solving the crew resources assignment problem whenever a ship, under
attack, suffers several damages and, thus, priorities must be assigned in
order for it to survive. In the designed system, the ship is the MAS envi-
ronment and the attacker, equipment, crew and officers (these last ones
seen as decision makers) are represented through agents. Decisions on
resources assignment are taken after a negotiation process and using an
utility-based selection process. Agent-based system design was accom-
plished by following a systematic Agent Oriented Software Engineering
approach, called PORTO, leading to the specification and the implemen-
tation of the system.

1 Introduction

A ship is a complex system, where the crew interacts with equipment and aux-
iliary systems, within a closed space which is subjected to internal and external
factors, such as environmental conditions, damage originated by equipment mal-
function (e.g. fire or flooding on board), or by external agents (e.g. an aircraft
launching a missile towards the ship; or another ship that collides with it).
Either way, crew on board must act to prevent the total loss of the ship. This
is a subject that must not be neglected during the ship design process, while
defining its complement (crew numbers) and the allocation of compartment and
equipment. Crew effectiveness when dealing with damage is dependent upon
crew element numbers, crew technological knowledge and upon ships arrange-
ment (compartments and equipment allocation within the physical boundaries
of the ship). This work deals with the first problem, how to decide what to do
in case of damage, how to prioritize when several damages occur at the same
time, and how to allocate different crew elements taking account their ability
to perform the required tasks. The other problems have already been addressed
[5]. We are here dealing with a multi-criteria decision problem on how to dis-
tribute limited resources without previously knowing all possible alternatives.
Therefore, since alternatives are not known in advance, classical multi-attribute
methods cannot be used (e.g. trade-off analysis), and multi-objective genera-
tion methods (e.g. multi-objective genetic algorithms) would probably require
a considerable amount of time to find viable solutions and would provide a set
of different pareto efficient solutions instead of a single one. Moreover, none
c© Springer International Publishing Switzerland 2016
N.T. Nguyen et al. (Eds.): ICCCI 2016, Part II, LNAI 9876, pp. 3–13, 2016.
DOI: 10.1007/978-3-319-45246-3 1



4 E. Oliveira and P. Martins

of these techniques would be able to represent the natural interaction between
the different actors in the decision process. Multi-Agents Systems (MAS), on
the other hand, provides a natural way of representing the different actors by
autonomous computing entities (agents) that perform different tasks (actions),
within an environment (ship). Through interacting and, possibly cooperating
with each other, the agents will be able to change the state of the environment
with an overall objective: ship survivability. Other authors have already used
the MAS paradigm for dealing with kind of disastrous situations [6]. Our MAS
architecture includes different kinds of agents ranging from simple ones, reactive
agents perceiving the environment (the ship) to those who represent decision
makers like XO Officer and the Commander who will decide upon several alter-
native actions taking the best utility into account. All along the system design,
we followed an Agent-Oriented software engineering methodology, PORTO [3,4]
going through all its steps: (i) requirements analysis; (ii) analysis; (iii) archi-
tectural design; (iv) detailed design; (v) Implementation; and (vi) testing and
validation.

Next section goes through the state of the art on this particular subject,
Sect. 3 formulates the problem followed by the requirement analysis and the
system analysis (Sects. 4 and 5). Sections 6, 7 and 8 briefly specify the system
organization, architecture and design. Last sections introduce implementation,
testing and conclusions.

2 General Characteristics of the Problem’s Class

Many sophisticated problems we usually address can be classified as belonging
to the so called 3D class of problems. They reflect a reality that simultaneously
is of a Distributed, Decentralized as well as Dynamic nature. This means that,
besides input data and output actions being disperse (Distributed) at different
nodes, also, and most important, decision-making can be, at least partially, taken
at different nodes of the (Decentralized) system. Moreover, the system trying to
solve the overall problem at stake, has to deal with a changing, evolving reality
(Dynamic). Although Agent Oriented Programming has been pointed out as
a natural paradigm to cope with such situations, and because of the intrinsic
autonomous property of Agents, it is up to those agents to find out in run-time,
according to the current situation, how to interrelate in order to reach their
own intended goals. Finally, and most important, for the same purpose, how
to coordinate joint work or reach mutual agreements together with the other
agents?

3 Related Work

The problem we intend to tackle has two main aspects. First, crew motion simula-
tion and how it should act upon the equipment (e.g. propulsion, radars, weapons)
and ship auxiliary systems (e.g. pipes, electrical distribution system); second, the
multi-criteria decision process of crew limited resources distribution. The first



Agent-Based Approach for Ship Damage Control 5

aspect is not the object of our study. We will focus on the decision making
problem on a ship under damage.

As far as we know, the problem was first addressed in reference [7] introduc-
ing SINGRAR, a decision support system that has been in use with success in
the Portuguese Navy. Its main component is a fuzzy expert system that assists
the command (decision making) during battle, for keeping equipment and aux-
iliary systems operational while the ship is under attacks/damages. The system
integrates the information gathered at different locations along the ship and it
proposes repair priorities and resources assignment under the scope of logistics
activities. The system is not now in use since it is considered too dependent
upon human interaction and its decision process is based upon utility functions
depending on predetermined weights that may lead to non-efficient decisions.

The use of multi agent systems in similar problems may be found in sev-
eral references in the literature, such as references [3,4]. This last reference, in
particular, deals with how to manage disruptions in airline operations, such as
the ones caused by bad weather, malfunctions and crew absenteeism. In order
to solve this problem the reference presents a new negotiation protocol entitled
Generic Q-Negotiation (GQN), which includes the Q-learning algorithm.

As far as the methodological approaches for the development of software
based on agents we will follow the PORTO methodology [3,4], which has its
groundings in GAIA methodology [8], which will also be further mentioned in
the text.

4 Specific Problem Formulation

The command activities of most war ships include two officers, the commanding
officer and the executive-officer, which are advised by other officers with different
technical knowledge and expertise, such as the weapons-officer, the engineering-
officer, and the tactical-officer. Further, the crew is made off different petty-
officers and unlisted men, all of them with their own expertise from the cook to
the radar controller, and from the nurse to the electrician. In case of damage, or
combat, the ultimate decision maker is the commanding officer; the responsible
for the crew is the executive-officer; the other officers are the ones who decide
on how to act in order to achieve the goals established by the commanding
officer. We aim to develop a system that may be used in design of new ships to
assess the platform independently of how good the crew is, so it should always
select the best decision possible taking into account the ship and the scenario
(environment). The system must be able to reflect the decision making process of
the commanding officer, as far as prioritizing the internal battle space actions and
crew resources assignment. For this paper we selected a simple scenario where an
aircraft attacks the ship and it hits six times the same compartments/ equipment.
As a consequence, there are three damaged equipment (radar, propulsion and
weapon) and a fire in the engines room.



6 E. Oliveira and P. Martins

Fig. 1. Actors and Goals diagram

5 Requirement Analysis

As mentioned in introduction, we are going to follow the PORTO methodol-
ogy that is described in reference [4]. This methodology proposes to start the
procedure by goal-oriented early requirements analysis as in the methodology
TROPOS [2]. After having selected the different actors and goals, we have built
up the actors and goals diagram (Fig. 1), where interactions are presented, and
several potential queries have been identified, namely: (1) “Query any crew”
meaning that an actor requires intervention from crew members and it asks if
there are any crew members available; (2) “Query equipment state” meaning
that an actor requires knowing state of equipment; (3) “Query crew required”
meaning that an actor requires knowing from equipment or another actor, who
is required either to repair equipment or extinguish a fire in a compartment; (4)
“Query available crew members” meaning an actor requires knowing the avail-
able crew members for the needed repair tasks; (5) “Query priorities” meaning
that an actor requires knowing priorities other actor has established; (6) “Query
which equipment” meaning that an actor requires knowing to which repair task
he was assigned to.



Agent-Based Approach for Ship Damage Control 7

6 Analysis

This stage follows GAIA [5], an Agent-Oriented Software Engineering method,
and it includes five sub-phases that will be presented separately.

6.1 Subdividing the System into Sub-organizations

It primarily consists on looking to the problem trying to find sub-goals and
sub-organizations dedicated only to achieve those goals. There are three distinct
organizations, namely:

(1) Internal Battle state identification sub-organization;
(2) Decision making sub-organization;
(3) Crew distribution sub-organization.

6.2 Environment Model

We here distinguish between resources and active components. The first ones
are seen as variables or tuples made available to the agents. The second ones
are components and services capable of performing tasks with which agents
must interact. Here, resources are: Aircraft information, Ship information, Crew
information, Equipment information and Task requirements; Active components
are: Damage Manager and Crew manager.

6.3 Preliminary Role Model

Preliminary roles relate with functionality and competences required to achieve
the intended goals, independently of the organizational structure that will be fur-
ther selected. Accordingly, by analyzing the Actors and goals diagram (Fig. 1)
we identified the following roles: AttackAction, DamageMonitor, NeedsMoni-
tor, NeedsAuction (associated with Officers demands on needed personnel to
the Commander), CrewMonitor (monitoring which tasks the crew is assigned
to), AssignCrew (assigning roles to the crew), DecisionMonitor (associated with
Commanders decisions on assigning priorities and crew members to tasks),
ActionTasks.

6.4 Preliminary Interaction Model

It became then necessary to specify the needed interaction between roles,
their dependencies and relationships. To establish the communication protocols
we have used FIPA ACL (Agent Comunication Language) protocols. PORTO
methodology also indicates that we should build an Enviroment and preliminary
roles diagram presented in Fig. 2.



8 E. Oliveira and P. Martins

Fig. 2. Environments and preliminary roles diagram

6.5 Organizational Rules

The last task of this stage is to analyze the relationships between roles, as well
as between protocols and, also, between roles and protocols. According to the
followed methodology, the following constraints and relations must be taken
into account: (1) Liveness organizational rules explain how the dynamics of the
organization should evolve (relations); (2) Safety organizational rules state rules
that are independent of the evolution and always true (constraints). Table 1
shows those above mentioned kind of rules.

7 Architectural Design

The architectural design consists upon translating the previous work into a MAS
architecture. This will imply definite decisions about how the next phases will
be conducted. Some changes may occur due to implementation difficulties, as it
is the case of, due to using a specific ACL protocol, a single agent is replaced
by others simpler and more reliable agents. This phase includes: (i) defining
the organizational structure; (ii) completing the role and interaction model; (iii)
graphical representation using UML 2.0. In our case we will include the final
organizational structure and a combined representation of the model reached,
after the first two tasks.

7.1 Organizational Structure

The resulting organizational structure may be described by a set of rules mainly
derived from the previous analysis leading to three different sub-organizations:



Agent-Based Approach for Ship Damage Control 9

Table 1. Liveness and safety rules

Liveness Organizational Rules Description

reportattack (AttackAction(attack(x))) =⇒
reportsituation
(DamageMonitor(attack(x)))

The situation may only be reported after the
attack

1- reportsituation
(DamageMonitor(attack(x))) =⇒
reportcrew (CrewMonitor(attack(x)))

The crew report may only be done after
evaluating the new current situation

2- querycrew (CrewMonitor(attack(x)))
=⇒ requestcrew
(NeedsAuction(attack(x)))

The auction for crew ressources may only be
done after knowing the new needs for crew
resources

3- requestcrew (NeedsAuction(attack(x)))
=⇒ reportdecision
(DecisionMonitor(attack(x)))

The decision may only be done after the
requests by the different officers

4- reportdeci-
sion(DecisionMonitor(attack(x))) =⇒
reportallocation
(AssignCrew(attack(x)))

The allocation of crew resources may only be
done after the decision on how to do it has
been reported

4- Safety Organizational Rules Description

4- AttackAction1...n There will be n attacks by the aircraft

4- DecisionMonitor(Commander) The decision can only be done by the
Commander

“Internal Battle State” including roles “AttackAction”, “NeedsMonitor” and
“DamageMonitor”; “Decision Making” including the roles: “DecisionMoni-
tor”, “CrewMonitor” and “NeedsAuction”; “Crew Distribution” including roles:
“AssignCrew” and “AssignTasks”.

Roles included in each one of the sub-organizations although tightly interde-
pendent, can also be related with roles of other different sub-organization.

7.2 Graphical Representation

Finally, all previous work can be described in a single diagram where protocols
abstractions and role abstractions are added to the previous graphical represen-
tation. To understand Fig. 3, it is then necessary to take into account both

Fig. 3. Final role, interaction and enviroment diagram



10 E. Oliveira and P. Martins

protocol abstractions and role abstractions: Protocol abstractions represent
roles’ interactions as it is the case represented in Fig. 2. Role abstractions include
the attributes of the class, and the organizational rules seen as dependencies after
recognizing the above mentioned sub-structures. As an example, since Role Dam-
ageMonitor relies on information from Role AttackAction (they belong to the
same sub-organization, “Internal Battle Station”, this can also be seen in Fig. 3
(conAttackOn = true).

8 Detailed Design

Detailed design, according to PORTO methodology, is the stage where both the
agent model and service model are produced. The first model is concerned with
which agents are going to be implemented and the second is concerned with the
services required and who will implement them. We have made the correspon-
dence between agents and roles to the previously identified actors leading to the
following Agents Model (Fig. 4):

Fig. 4. Agent Model

8.1 Service Model

Now that we identified the agents and their roles, we can identify their services.
Following both PORTO and GAIA methodologies, it will be defined for each
service: (i) input; (ii) output; (iii) pre-condition; (iv) post condition. Due to lack
of space we are not able to show the figure displaying services used by the agents.

9 Implementation

This system was implemented using JADE [1] as support to build the different
agents. We here only describe one of the most significant agent: the Commander



Agent-Based Approach for Ship Damage Control 11

Agent. The commander is responsible for the decision process, which is incorpo-
rated in the role DecisionMonitor. To implement this we made use of a utility
function (U) where the proposal values (p) were multiplied by a set of weights
(w) set by the user, in such way that:

final proposali = wipi and U = Σ(i=1...4)wipi (1)

So the best final proposal will be accepted by the Commander, instead of the
best proposal. We intend to improve the decision process by making this decision
process adaptable by means of Q-learning algorithm that learns the best possible
weights for the intended outcome. At present, the Commander Agent is using
the JADE ContractNetInitiator behavior, which is a FIPA-compliant behavior
included in its library. Similarly to the ContractNetResponder, this behavior is
also defined by handles, namely the handleAllResponses which we had to change
in order to incorporate the weighted utility function.

10 Testing

We have tested the system through the analysis of the messages sequence
exchanged between agents and decide whether or not it was according to the
expected. In fact, after the event Aircraft attacks the Equipment/Compartment
and the respective message, all the operational process starts until all the com-
mander decisions on crew and resources assignment to tasks have been made.
Since the agents messages exchange graph is very complex and would not be
visible clearly enough, we list most of the relevant messages below:

1 Aircraft attacks Equipment/Compartment by sending a message reporting it;
2 Equipment/Compartment sends message with new state to the corresponding

Officer and updates the Environment state (equipment/compartment state);
3 Officers send a message to the Evaluation Agents (one per needed equipment)

containing the value to use as a proposal in the contract net (how many crew
members are required);

4 Commander initiates a FIPA Contract net protocol in which the Evalua-
tion Agents participate. Commander selects the best proposal multiplying
each one he receives by a “importance factor” (weights from 1 to 10 and∑

W = 10 given by the user);
5 The Evaluation Agent whose proposal was accepted sends a message to

XO Officer;
6 XO Officer sends message to JADE’s DF asking for specific services previously

registered by the Crew (fire, mechanical repair and electronics repair);
7 JADE’s DF assigns the service to one of three different agents: Fire-

fighter Agent; Engineer Agent; or Electronic Agent, previously registered;
8 After reply from DF, XO Officer sends a message to the corresponding Equip-

ment/ Compartment indicating crew members already assigned to it. The
agent updates its state by changing the number of people acting upon the
damage;



12 E. Oliveira and P. Martins

9 Next time Aircraft attacks the Equipment/Compartment upgrade their state
and the cycle re-initiates;

10 The Equipment/Compartment that has no more needs (specified in its state)
will send a message to the Officer who will send a message to the Evalua-
tion Agent saying its proposal is 0, i.e. it does not require any other personnel.
After that, when participating in the contract net protocol, this last agent
will refuse to send any proposal;

11 After four runs, there should be no more demand for personnel and all par-
ticipants in the contract net should be refusing the participation.

11 Future Work and Conclusions

We feel the need to a more adaptive capability to the changing environment, by
sensing exceptional situations in which the system has to immediately react even
before the chain of command does it. We also need to introduce some uncertainty
about the probability with which the ship, the compartments and the equipment
are really hit and damaged under each specific attack. In conclusion we want to
emphasize that this work approaches a complex problem which is adequate to
be solved by using multi-agent systems. A great effort was applied in analyzing
and formulating the problem, applying the agent-oriented software engineering
methodology PORTO, which is based on GAIA and TROPOS. As far as the
implementation is concerned, we followed FIPA guidelines, using ACL protocols,
and JADE. Although not all the intended goals were accomplished, we believe
that the following objectives were achieved:

First and very important is the fact that the system reflects a simplified
version of the existing organization on board and reflects the way limited crew
resources assignment should be dealt with;

Also relevant is that the system takes into account the different kinds of
knowledge of the crew and its respective limitations;

Finally, and decisive, the system is able to be, in an automatic way, close to
the decision making process of the commanding officer;

References

1. Bellifemine, F., Caire, G., Greenwood, D.: Developing Multi-Agent Systems with
JADE. John Wiley, Chichester (2007)

2. Bresciani, P., Perini, A., Georgini, P., Giunchiglia, F., Myloupoulos, J.: Tropos: An
agent-oriented software developemnt methodology. J. Auton. Agent. Multi Agent.
Syst. 8(4), 203–236 (2004)

3. Castro, A., Oliveira, E.: The rationale behind the development of an airline oper-
ations control centre using gaia based methodology. J. Am. Soc. Inf. Sci. Technol.
2(3), 350–377 (2008)

4. António, J., Castro, M., Rocha, A.P., Oliveira, E.: A New Approach for Disruption
Management in Airline Operations Control, vol. 562. Springer Verlag, Heidelberg
(2014). studies in computational intelligence



Agent-Based Approach for Ship Damage Control 13

5. Rossetti R., Brito Carvalho Martins, T.: Ship damage control action simulation
using hla. In: Proceedings of The International Conference on Harbour, Maritime
and Multimodal Logistics Modelling and Simulation, HMS, pp. 487–499. ACM Press
(2013)

6. Scafes, M., Badica, C.: Preliminary design of an agent-based system for human col-
laboration in chemical incidents response. In: Proceedings of the 7th International
Workshop on Modelling, Simulation, Verification and Validation of Enterprise Infor-
mation Systems, pp. 53–62. Scitepress (2009)

7. Marques, M.S., Pires, J.: Singrar â a fuzzy distributed expert system toassist com-
mand and control activities in naval environment. Europ. J. Oper. Res. 145, 343–362
(2003)

8. Zambonelli, F., Jennings, N., Wooldridge, M.: Developing multiagent systems: the
gaia methodology. ACM Trans. Softw. Eng. Method. 12(3), 317–370 (2003)


	Agent-Based Approach for Ship Damage Control
	1 Introduction
	2 General Characteristics of the Problem's Class
	3 Related Work
	4 Specific Problem Formulation
	5 Requirement Analysis
	6 Analysis
	6.1 Subdividing the System into Sub-organizations
	6.2 Environment Model
	6.3 Preliminary Role Model
	6.4 Preliminary Interaction Model
	6.5 Organizational Rules

	7 Architectural Design
	7.1 Organizational Structure
	7.2 Graphical Representation

	8 Detailed Design
	8.1 Service Model

	9 Implementation
	10 Testing
	11 Future Work and Conclusions
	References


