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Abstract. The emotional state of an individual is continuously affected by daily
events. Stressful periods can be coped with by support from a person’s social
environment. Support can for example reduce stress and social disengagement.
Before improvements on the process of support are however made, it is essential
to understand the actual real world process. In this paper a computational model
of a network for mutual support is presented. The dynamic model quantifies the
change in the network over time of stressors and support. The model predicts
that more support is provided when more stress is experienced and when more
people are capable of support. Moreover, the model is able to distinguish per-
sonal characteristics. The model behaves according to predictions and is eval-
uated by simulation experiments and mathematical analysis. The proposed
model can be important in development of a software agent which aims to
improve coping with stress through social connections.

Keywords: Stress � Coping � Mutual support � Network � Computational
model

1 Introduction

It is a fact that the emotional state of an individual is continuously influenced by events
from the environment. A loved one passing away might have a negative influence
while a wedding might have a positive influence on the emotional state. All these
events combined can be considered the basis for an individual’s overall stress level.
Too many stressful life events could lead to depression [13]. Therefore, the reduction of
the overall stress level can lead to many health benefits [8].

Mutual support networks are social networks in which its members provide psy-
chological and material support to each other in order to help such individuals to cope
with stress [2]. In this scenario, stress responses would be perceived via, for example,
things said in a conversation between friends in such a network. Regarding to the
relation between stress and social networks, there is the concept of stress buffering.
This concept is originated from the hypothesis formulated by John Cassel and Sidney
Cobb [1] by which they argued that people with strong social ties, i.e. close friends,
parents and sons, brothers and sisters, etc. could be protected from the negative effects
related to negative life stressful events. As what is stated in [12], better social inte-
gration (doing social activities, etc.) leads to better resilience to post traumatic stress.
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Therefore, in this work, we consider stress buffering as the capacity of facing stressful
events without getting into a stressed state of mind. Besides that, here in this work we
are typically dealing with conversation, via a social network, between people with
strong social ties as a type of social integration in order to help people to cope with
stress. The advantages of social support for stress buffering is already known in the
literature; e.g., [8, 11, 12, 14]. A dynamic model could be used to develop a tool (a
software agent) that would help people in coping with stress by their social connections
with people with strong social ties, since the goals of such a tool could be, for example:
to select automatically a set of a given member’s friends or relatives who can provide
better support, to monitor who are seeking support in a given period due to, for
example, a case of death in his or her family, etc.

In this paper, a dynamic model is presented for a mutual support network
addressing the process of providing and receiving support. Such a model deals with the
timing of positive and negative life events, and induced stress levels. To this model we
pass, as input, values representing the intensity of positive and negative life events
faced by the users of the network as well as the period of time they last. The model then
returns, as output, values over time representing the amount of: the stress faced by the
users, the support they receive and provide from and to each other, the perception that
each of them have about the stress levels of their friends and the capacity they have to
provide support. Note that the term dynamic came from the fact that through such a
model we are able to represent the change of its states values over time. The com-
putational model proposed here can be used as an ingredient to develop human-aware
or socially aware computing applications; e.g. [9, 10, 15]. More specifically, in [5, 15]
it is shown how such applications can be designed with knowledge of human and/or
social processes as a main ingredient represented by a computational model of these
processes which is embedded within the application. As an example, in [6, 7] this
design approach is illustrated to obtain a human-aware software agent supporting
professionals in attention-demanding tasks, based on an embedded dynamical
numerical model for attention. The computational model for mutual support proposed
here can be used in a similar way to design a human-aware or socially aware software
agent to support persons suffering from stress effects.

This document is organized as follows; Sect. 2 formally describes our proposed
model and shows the mathematical details of it. Section 3 shows the model working in
order to describe some behavioral characteristics of it. In Sect. 4 the tuning process of
our model is shown in order to make clear how we adjusted our model to keep it as
close as possible to reality. Finally, Sect. 4 concludes our paper.

2 The Computational Model

There are a few requirements for the model that have been identified previously during
the review of the literature about people coping with stress and social network models:

• A person should be supported more when there are more resources available by the
others;

• The users of such a social network typically have strong social ties with each other;
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• More help should be given when more help is needed;
• More support from people inside this network should lead to lower stress levels

rather than receiving no support at all;
• Individual personal characteristics can be represented by different strengths of

connections within persons;
• Social network characteristics can be represented by different strengths of con-

nections between persons.

Simulations to test these requirements will be shown in the next section. The
mutual support social network that will be analysed will consist of a number of persons.

The computational model has been designed using the temporal-causal network
modelling approach described in [16]. According to this general dynamic modeling
approach, a model is designed at a conceptual level, for example, in the form of a
graphical conceptual representation or a conceptual matrix representation. A graphical
conceptual representation displays nodes for states S and arrows for connections
indicating causal impacts (shown by the nodes and arrows in Fig. 1) from one state to
another like, for example, when the occurrence of a negative life event leads to the
growth of an individual’s stress level, and includes some additional information in the
form of:

• For each connection from a state X to a state Y, a connection weight ωX,Y (for the
strength of the impact, i.e. the impact of a state X in a state Y is directly proportional
to the value ωX,Y when it is positive or inversely proportional when such a value is
negative);
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Fig. 1. Conceptual representation of the model
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• For each state Y a speed factor ηY (which represents how fast the effect will take
place somehow that it controls if the impact of the effect will be slow or quick);

• For each state Y the type of combination function cY(..) used (to aggregate multiple
impacts on a state).

Regarding the states of the model, for a given person X, neX and peX are the
negative and positive life events for this individual, sX represents his or her stress level,
rX is the amount of resources available for this person, supX,Y is the support provided by
X to Y (another person), and oosX is the overall stress level within the part of the
network observed by X. These states are depicted as nodes in Fig. 1 for three particular
persons a, b and c. In Table 1 the different connections are summarized with their
weights, which are also depicted as labels of the arrows in Fig. 1. For the sake of
simplicity in Fig. 1 such a network of only three persons is shown. The three coloured
boxes represent the different persons that are involved in this model. All of them use
the same states and architecture. At the core of each social network member stands the
individual experienced stress level of such a person, represented by state sX. The
perceived stress of the other persons in the social network is the observed overall stress
state oosX. This state is a perception of how much stress the other persons in the
network are experiencing and is therefore directly affected by the stress levels of the
other persons. In our model, users could perceive stressed friends by the things they are
telling in the social network via posts or direct messages. For sure a given user could
hide your stressed state of mind, but we are not dealing with this situation; this could
be, perhaps, studied in more details during a future work.

This observed stress of the others is used by each person to form a perception of the
overall amount of support that would be needed. Besides the perception of experienced
stress of the others, state rx indicates the resource (in terms of emotion, energy, time) a
person has. It is important to mention that emotion is important for the resources
because we expect that a person feeling sad, stressed, etc. is not indicated to provide
support. If a person has no resources, no support can be given. Giving support drains
these resources since it costs energy, time and it can change the emotional state of the
support provider due to empathy: an individual can be sad because one of his best
friends is facing a stressful situation. The relationship between giving support and
available resource is therefore reciprocal.

Table 1. Connections and respective weights

from weight +/– to from weight +/– to

peX ω1X + rX peX ω2X – sX
neX ω3X – neX ω4X +
sX ω5X – supY,X ω9Y,X –

supX,Y ω8X,Y – rX ω6X,Y + supX,Y
sY ω11Y,X + oosX oosX ω7X,Y +

sY ω10Y,X +
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Resources are also affected by the experienced stress level of the person. When a lot
of stress is experienced this will negatively influence the amount of resources a person
will have. The amounts of negative and positive events (indicated by peX and neX) have
an influence on both the experienced stress and the available resources. The positive
and negative events do not have the same values for the different persons because a real
world process is modelled where persons are living their own lives. An event taking
place in one person’s life does not mean that a different person experiences this event as
well. Finally a reciprocal connection exists between person X giving support to another
person Y and this effect of this support by decreasing stress levels in person Y due to
their strong social tie. A graphical conceptual representation of the model is shown in
more detail in Fig. 1. Note that some of the arrows are bidirectional, where each
direction has its own connection weight. The states peX and neX indicate the positive
and negative events encountered by person X in his or her environment over time. Note
that these events could be detected via emotions shared by things the users can tell in
posts or direct messages, i.e. the same case of the state oosX. For specific scenarios
these are given as input for the persons.

In Table 1 for each state (in the ‘to’column) it is indicated which impacts from other
states (in the ‘from’column) it gets, with which weights, and with which sign +/– indi-
cating whether the weight value is positive (strengthening) or negative (suppressing). In
Fig. 1 these weights are depicted as labels for the arrows. Note that as the nodes represent
states, the processes happen between these states, as indicated by the arrows representing
causal impact.

The conceptual representation of the model as shown in Fig. 1 and the tables can be
transformed in a systematic or even automated manner into a numerical representation
of the model as follows [16]:

• at each time point t each state Y in the model has a real number value in the interval
[0, 1], denoted by Y(t)

• at each time point t each state X connected to state Y has an impact on Y defined as
impactX,Y(t) = ωX,YX(t) where ωX,Y is the weight of the connection from X to Y

• The aggregated impact of multiple states Xi on Y at t is determined using a com-
bination function cY(..):

aggimpactY (t) ¼ cY (impactX1;Y (t); . . .; impactXk ;Y (t))
¼ cY (xX1;YX1 tð Þ; . . .;xXk ;YXk tð Þ)

where Xi are the states with connections to state Y
• The effect of aggimpactY(t) on Y is exerted over time gradually, depending on

speed factor ηY:

YðtþDtÞ ¼ YðtÞþ gY ½aggimpactY (t)� Y (t)�Dt
or dY (t)=dt ¼ gY ½aggimpactY (t)� Y (t)�

• Thus, the following difference and differential equation for Y are obtained:
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YðtþDtÞ ¼ Y(t)þ gY ½cY (xX1;YX1(t); . . .;xXk ;YXk(t))� Y(t)�Dt
dY tð Þ=dt ¼ gY ½cY (xX1;YX1(t); . . .;xXk ;YXk(t))� Y (t)�

As an example, according to the pattern described above the difference and dif-
ferential equation for the resource state rY for person Y providing support to persons X1,
…, Xk are as follows:

rY ðtþDtÞ ¼ rY (t) þ
grY ½crX (x1YpeY ðtÞ;x3YneY (t);x5Y sY (t);x8Y ;X1 supY ;X1

(t); . . .;x8Y ;Xk supY ;Xk
(t))� rY (t)�Dt

drY (t)=dt ¼
grY ½crY (x1YpeY (t);x3YneY (t);x5YsY (t);x8Y ;X1 supY ;X1

(t); . . .;x8Y ;Xk supY ;Xk
(t))� rY ðtÞ�

So, for any set of values for the connection weights, speed factors and any choice
for combination functions, each state of the model (as shown in Sect. 2) gets a dif-
ference and differential equation assigned, except the positive and negative events,
which are used as input. For the model considered here this makes a set of 4 coupled
difference or differential equations per person, that together, are 12 equations that in
mutual interaction describe the model’s behaviour. Note that the speed factors enable to
obtain a realistic timing of the different states in the model, for example, to tune the
model to the timing of processes in the real world. An often used combination function
[16] is the advanced logistic sum function alogisticσ,τ(…):

cY (V1; . . .Vk) ¼ alogisticr;s(V1; . . .;Vk) ¼ (
1

1þ e�r V1 þ ...þVk�sð Þ �
1

1þ ers
Þ ð1þ e�rsÞ

Here σ and τ are steepness and threshold parameters. This function is symmetric in
its arguments: its result is independent of the order of the arguments. Moreover, the
function is monotonic for its arguments, maps activation levels 0 to 0 and keeps values
below1. For all states except the support states supX,Y the advanced logistic sum
function was used. For example for the resource state rY:

crY (V1; V2; V3; V4; V5) ¼ alogisticr;s(V1; V2; V3; V4; V5)

Then:

drY ðtÞ=dt ¼ grY ½alogisticr;s(x1YpeY ðtÞ; x3YneY ðtÞ; x5YsY ðtÞ; x8Y ;X1 supY ;X1
ðtÞ; . . .;x8Y ;Xk

supY ;Xk
ðtÞ)� rY ðtÞ�

Similarly for the states oosX and sX. For the support state supY,X from Y to X the
following combination function is used:

csupY ;X (V1; V2; V3) ¼ min V1;V2ð ÞV3=V2 if V2 [ 0; else 0

where V1 refers to impact impactrY ;supY ;X ðtÞ from the resource state rY, V2 to impact
impactoosY ;supY ;X ðtÞ from the observed overall stress state oosY, and V3 to impact
impactsX ;supY ;X ðtÞ from the other person’s own stress state sX. Note that this combination
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function makes the provided support (when needed) proportional to the own resource
level and also proportional to the fraction of the other person’s stress level from the
overall stress level. Moreover, note that in contrast to the other combination function,
this function is not symmetric in its arguments. For example, based on the above,
assuming oosY(t) > 0, the difference and differential equation for supY,X are as follows:

supY ;XðtþDtÞ ¼ supY ;XðtÞþ
gsupY ;X ½min(x6Y ;X rY ðtÞ; x7Y ;X oosY ðtÞÞx10Y ;X sXðtÞ=ðx7Y ;X oosY ðtÞÞ � supY ;XðtÞ�Dt

dsupY;XðtÞ=dt ¼
gsupY ;X ½min(x6Y ;X rY ðtÞ; x7Y ;X oosY ðtÞÞx10Y ;X sXðtÞ=ðx7Y ;X oosY ðtÞÞ � supY ;XðtÞ�

3 Verification of the Model

In this section it is described whether the proposed model acts according to what was
expected. To find this out, both a mathematical and experimental analysis have been
performed.

3.1 Mathematical Analysis

To verify (the implementation of) the model, a mathematical analysis was performed of
the equilibria of the model. A state Y has a stationary point at t if dY(t)/dt = 0. The
model is in equilibrium at t if every state Y of the model has a stationary point at t. See
Fig. 2 for an example of an equilibrium state that is reached. From the specific format
of the differential or difference equations it follows that state Y has a stationary point at
t if and only if

YðtÞ ¼ cY (xX1;YX1ðtÞ; . . .;xXk ;YXkðtÞ)

where Xi are the states with connections to state Y, and cXi(…) is the combination
function for Y. If the values of the states for an equilibrium are indicated by Xi then for
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a community of three persons being in an equilibrium state is equivalent to a set of 12
equilibrium equations for the 12 states Xi of the model:

Xi ¼ cXi (xX1;XiX1; . . .;xXk ;XiXk)

Most states have the advanced logistic sum function as combination function. For
example, for state rY the equilibrium equation is:

rY tð Þ ¼ alogisticr;s(x1Y peY ; x3Y neY ; x5Y sY ; x8Y ;X1 supY ;X1
; ; x8Y ;X2 supY ;X2

)

An exception is state supY,X; in that case the equilibrium equation is

sup
Y ;X

¼ minðx6Y ;X rY ; x7Y ;X oosYÞx6Y ;X rY x10Y ;X sX=x7Y ;X oosY

or

sup
Y ;X

x7Y ;X oosY ¼ minðx6Y ;X rY ; x7Y ;X oosYÞx6Y ;X rY x10Y ;X sX

The equilibrium equations cannot be solved in an explicit analytical manner, due to
the logistic functions. Therefore the verification approach as sometimes used, by first
solving the equations and then comparing the values to values found in simulations
does not work here. However, for the purpose of verification of the model, solving the
equations is actually not needed. The equations can also be used themselves for ver-
ification by just substituting the equilibrium values found in a simulation in them and
then checking whether they are fulfilled (and with which accuracy). This indeed has
been done and the equations turned out to always hold (with an accuracy < 10−6).

A second manner in which mathematical analysis was performed was by verifying
the requirements listed at the start of Sect. 2; in a more exact formulation they are:

(1) a person X should be supported by supY,X more when there are higher levels of
resources rY available by the others Y

(2) the connections in such a social network typically have high weights ω
(3) more help supY,X should be given to X when more help is needed due to a higher

stress level sX
(4) more support supY,X to a person X should result in a lower stress level sX since we

are assuming that Y and X have a strong social tie;
(5) individual personal characteristics can be represented by different strengths of

connections within persons
(6) social network characteristics can be represented by different strengths of con-

nections between persons

Requirement (2) was fulfilled in the considered scenarios. The last two require-
ments (5) and (6) indeed are fulfilled by the temporal-causal network modelling
approach followed. By choosing values for the weights different characteristics of
persons and network are obtained. Now consider requirement (1). Given the definition
of the combination function csupY ;X (…) it holds:
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aggimpactsupY ;X tð Þ ¼ csupY ;X (impactrY ;supY ;X ðtÞ; impactoosY ;supY ;X ðtÞ; impactsX ;supY ;X ðtÞ)
¼ min impactrY ;supY ;X ðtÞ; impactoosY ;supY ;X ðtÞ

� �
impactsX ;supY ;X ðtÞ =

impactoosY ;supY ;X ðtÞ if impactoosY ;supY ;X ðtÞ[ 0; else 0

From this formula it follows that when rY is higher, then impactrY ;supY ;X ðtÞ is higher
and therefore aggimpactsupY ;X ðtÞ will be higher, which results in a higher level for
support supY,X. Therefore requirement (1) is fulfilled. In a similar way it has been
verified that (3) is fulfilled: from the above formula it follows that when sX is higher,
then impactsX ;supY ;X ðtÞ is higher and therefore aggimpactsupY ;X ðtÞ will be higher, which
results in a higher level for support supY,X. Finally, for requirement (4) the combination
function for sX has to be considered. The weight of the connection from supY,X to sX is
negative, so for higher supY,X(t) the impact

impactsupY ;X ;sX ðtÞ ¼ x9Y ;XsupY ;XðtÞ

is lower (more negative). Now the combination function alogisticσ,τ(..) is monotonic
for its arguments, while impactsY ;X ;sX is one of its arguments in the formation of
aggimpactsxðtÞ. Therefore aggimpactsxðtÞ is lower when supY,X is higher, so also
requirement (4) is fulfilled. It turns out that the verification outcomes provide evidence
that the model does what is expected.

3.2 Results of Simulation Experiments

For the simulated scenarios discussed in this section, we assumed that the 3 users
involved are very close friends. We did not use real people facing real situations, but
we imagine that the events that occurred were announced by them via Facebook posts
and all of them could read it through the Facebook timeline. They provided support to
each other with conversations by direct messages via the Facebook messenger and,
finally, all of them did tell how they were feeling after each conversation session. The
proposed model can show a wide variety of possible behavioural outcomes according

Table 2. Inputs and equilibrium outcomes of the first simulation

Events (static)

peA = 0.8 peB = 0.2 peC = 0.2
neA = 0.2 neB = 0.9 neC = 0.7

Final equilibrium state values

sA = 0 sB = 0.743060 sC = 0.559141
oosA = 0.995380 oosB = 0.8314 oosC = 0.9279
rA = 0.320417 rB = 0 rC = 0
supA,B = 0.239196 supB,A = 0 supC,A = 0
supA,C = 0.17999 supB,C = 0 supC,B = 0
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to different inputs over time. Only two of them are discussed here. In both cases we
performed our model from time t = 0 until t = 40 with Δt = 0.02, and for all states
speed factor η = 0.5, steepness σ = 5 and threshold τ = 0.15. The first scenario con-
cerns static input from the world and was done for the analysis of equilibria. Table 2
describes the stimuli and the final values for all states for this simulation. Note that, in

Table 3. Inputs and outcomes per phase for the second scenario

Events from t = 0 to t = 10

peA = 0.8 peB = 0.8 peC = 0.8
neA = 0.5 neB = 0.5 neC = 0.5

State values at time t = 10

rA = 0.52 rB = 0.52 rC = 0.52

Events from t = 10 to t = 20

peA = 0.8 peB = 0.5 peC = 0.5
neA = 0.5 neB = 0.7 neC = 0.8

State values at time t = 20

sA = 0 sB = 0.189204 sC = 0.292407
oosA = 0.675918 oosB = 0.445901 oosC = 0.281336
rA = 0.23196 rB = 0.005085 rC = 0.003409
supA,B = 0.064991 supB,A = 0 supC,A = 0
supA,C = 0.102943 supB,C = 0.011371 supC,B = 0.010635

Events from t = 20 to t = 30

peA = 0.6 peA = 0.6 peA = 0.6
neA = 0.3 neA = 0.3 neA = 0.3

State values at time t = 30

sA = 0 sB = 0.001243 sC = 0.001921
oosA = 0.031166 oosB = 0.019070 oosC = 0.0122
rA = 0.470451 rB = 0.485435 rC = 0.489418
supA,B = 0.00306 supB,A = 0 supC,A = 0
supA,C = 0.008533 supB,C = 0.008062 supC,B = 0.005258

Events from t = 30 to t = 40

peA = 0.3 peA = 0.6 peA = 0.6
neA = 0.6 neA = 0.3 neA = 0.3

State values at time t = 40

sA = 0.116481 sB = 8.168*10−6 sC = 1.262 * 10−5

oosA = 0.000373 oosB = 0.202912 oosC = 0.202826
rA = 0.0030602 rB = 0.32747792 rC = 0.327735
supA,B = 7.746*10−5 supB,A = 0.116647 supC,A = 0.116647
supA,C = 0.000120 supB,C = 0.000117 supC,B = 7.58 * 10−5
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this case, person A only faces minor stress and substantially more positive events.
Because of that A has resources to provide support to the other persons.

Besides that, persons B and C both face relatively high amounts of stressful events,
B a bit more than C. That is the reason why B receives more support from A rather than
C. Figure 2 shows the evolution of the state values of all persons (A, B and C,
respectively) over time. Here the horizontal axis represents time and the vertical axis
the state values. By looking at such a chart it is clear that all state values reach an
equilibrium: after a sufficiently large amount of time point t the states do not change
over time anymore.

The second scenario chosen is much more challenging. For the same time interval
and step of the first scenario simulated, the positive and negative events were changed 3
times during the execution (each 500 time steps). These changing environmental
conditions starting at time points 0, 10, 20, and 30 are shown in Table 3, together with
the resulting state values after each period (see also Fig. 3). In the first period all three
can handle the stressful events themselves, so no mutual help is needed. All states get
level 0 except the resources that reach level 0.52 at time point 10. In the second period
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starting at time t = 10 person A starts to provide support to both persons B and C
respecting the following condition: supA,B < supA,C. That occurs because C has a
higher stress level than B: sB < sC. In the third period, starting at t = 20 the same
amounts of positive and negative events occur for all persons, respecting peX > neX.
From this moment on, the stress levels of persons B and C start to decrease consid-
erably until their values get close to 0. The same happens with the states supA,X.

The resource levels of persons B and C start to increase as well. Such a behaviour
was again expected since, with higher levels of positive events rather than the negative
ones, lower stress levels are expected (both sX and oosX) which leads to less needs for
support, so low values for the states supX,Y can be expected. Finally, at t = 30 the
amounts of positive and negative events were changed again. Persons B and C have the
same configuration which respects the condition peX > neX. On the other hand, person
A encounters a more stressful period: peA < neA. From that moment on, it can be seen
that the state sA starts to increase as expected, leading to the growth of the values of the
states supX,A. Note that in all simulations it can be observed that the states supX,Y
always reduce the growth of sY.

Moreover, note that, due to abrupt changes on the environmental conditions, a
given person may give support to another one even though he or she is facing stressful
events. This situation occurs because it takes a while until such a negative event
consumes all the resources of this person: the person has a buffer for the encountered
stress. This indeed can happen in the real world and therefore the computational model
should also show such a behaviour.

4 Discussion

A dynamic computational model was presented to simulate a mutual support network
with persons that may face stress. In such a context, persons who are connected with
each other in a social network can provide support to their friends who are facing stress
and receive support as well when it is necessary. It is important to make clear that this
process might be seen as different from an emotion contagion process since, in our
case, the emotional states values of every individual tends to be different along time if
they are receiving different stimuli. According to what was found in the literature, it
was assumed that positive and negative events can affect a given person’s stress level,
leading to a stressful state of mind. However, receiving support from others, such as
friends, is a good help in coping with stress.

The model was designed based on the temporal-causal network modelling approach
described in [16]. The mathematical analysis as well as the results from the simulations
that were performed showed that the model acts as we expect: the social network
members feel the positive and negative effects of encountered events on their stress
levels and, additionally, they also are able to provide support to others when it is
necessary, leading to a reduction in other’s stress levels.

In the literature not much work can be found on computational models for mutual
support networks to handle stress. Some exceptions are [2–4]. Here [3, 4] have a
different scope in that they focus on more complex internal cognitive structures and
explicit interactions initiated by requesting actions for support.
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However, [3] is more related to the perspective followed here. In this work a global
configuration approach for support provision is followed, based on information for the
whole network on need for support and possibilities to give support for all members of
the network. Based on such an overall picture of all relevant information for the
network a configuration of support provision is determined in a sequential manner by a
kind of sequential generate and test (and backtrack) method. The approach proposed in
the current paper is different in that it works at a more local level, and not in a global
manner for the network as a whole. At each point in time each member of the network
determines in a dynamic and autonomous manner the support to be provided only for
his or her contacts, independent of other nonconnected members. Because this happens
in a dynamic manner, the process is emergent and highly adaptive; for example if, for a
given member support is provided by more members, this will contribute to effec-
tiveness, and therefore soon the level of support can be adapted.

The presented model can be a basis to develop a human-aware or socially aware
software agent application (e.g., [5, 9, 10, 15]) that can provide support in the social
interaction, for example, by including a smart social media application helping in
monitoring the states of the members of the network, and giving signals when some-
body’s stress levels are becoming too high. In other future work the aim is to study
more factors that could play some role on this process despite the ones described here.
For instance, can different types of connections between persons be incorporated?
Additionally, it could be interesting to expand the model to cope with a network
containing a significant number of members. Another future challenge is to find out
how to collect real data in order to see how the model would act in a real world
scenario. It is also important to state that two different individuals could need different
amount of support due to the same stressful situation, but we don’t take it into account
in our model as a matter of simplification. It could be implemented in a future work as
well. Finally, we believe that the simulated scenarios described could be executed using
human users facing real stressful events in an extension of this work.
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