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Chapter 14
Cardiac Resynchronization Therapy

Michael Glikson and Stefan Bogdan

�Introduction

Since for the first case by Cazeau in 1994 showing the beneficial effects of 
four-chamber pacing in a 54-year old dilated cardiomyopathy patient [1], cardiac 
resynchronization therapy (CRT) has come a long way. Targeting cardiac 
dyssynchrony correction, it has become a well-established treatment for symptomatic 
heart failure patients with severe left ventricular systolic dysfunction and wide QRS 
(>120 ms). Evidence from large randomized trials have shown the clinical (symptoms 
improvement; mortality reduction) as well as structural (left ventricular reverse 
remodeling with ejection fraction increase and mitral regurgitation reduction) ben-
efits of CRT and represent the basis for current guidelines [2]. Unfortunately, not all 
patients with LV dysfunction and wide QRS respond to CRT. Understanding nonre-
sponse and predicting response has to do with understanding the interrelationship 
between electrical and mechanical dyssynchrony. Current efforts focus on better 
patient selection and improving CRT delivery using clinical, electrocardiographic 
and imaging techniques.
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�Pathophysiology of Cardiac Dyssynchrony. Dyssynchrony 
Assessment

Cardiac mechanical dyssynchrony refers to a difference in the contraction/relax-
ation timing (lack of synchrony) between different areas of the heart, that usually 
occurs in the setting of electrical conduction disease (electrical dyssynchrony). 
Large differences in contraction timing can result in reduced cardiac efficiency and 
are correlated to heart failure [3]. Cardiac imaging and advanced echocardiography 
in particular play an important role in mechanical dyssynchrony assessment. Other 
imaging techniques, including cardiac magnetic resonance and radionuclide imag-
ing, are under development for cardiac dyssynchrony evaluation.

There are three main types of dyssynchrony that can be corrected by CRT: atrio-
ventricular, interventricular and intraventricular (Table 14.1).

Atrioventricular dyssynchrony occurs because of a loss of timing between atrial 
and ventricular contractions, in the presence of prolonged PR interval, QRS 
widening or both [4]. The hemodynamic consequence is an impairment of the left 
ventricular (LV) filling secondary to a shortening of the diastole. Using pulsed-wave 
Doppler echocardiography, atrioventricular dyssynchrony can be evaluated by 
measuring the LV filling time from transmitral flow recordings. In the presence of 
prolonged atrioventricular interval, the early (E wave) and late (A wave) diastolic 
waves are fused with a shortening of the ventricular filling time. A ratio of the LV 
filling time (ms)/ RR interval (ms) <40 % indicates atrioventricular dyssynchrony 
[4]. An opposite type of AV dyssynchrony may occur following pacemaker implan-
tation, after programming a too short AV delay so that the atrial systole is truncated 
(resulting into one wave) [5, 6].

Inter-ventricular dyssynchrony occurs because of a delay between right ventricu-
lar and left ventricular contractions, in the setting of wide QRS. This delay affects 
cardiac output by creating paradoxical septal motion that reduces contraction effi-
cacy. One of the first indexes used to assess inter-ventricular dyssynchrony was the 
inter-ventricular mechanical delay (IVMD), obtained by calculating the difference 
between aortic and pulmonary pre-ejection intervals (time from QRS onset to flow 
onset) with pulsed-wave Doppler echocardiography [4]. Using a cut-off value 
>40 ms for defining inter-ventricular dyssynchrony, the CARE-HF trial showed a 
correlation between IVMD and response to CRT [7].

Table 14.1  Cardiac dyssynchrony: types, setting, consequence

Dyssynchrony Electric disease Consequence

Atrioventricular Prolonged PR and/or wide 
QRS

Diastolic impairment

Inter-ventricular Wide QRS Systolic impairment
Intra-ventricular LV Wide QRS Systolic and diastolic impairment

Mitral regurgitation

Wide QRS QRS duration >120 ms, LV left ventricle
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Intra-ventricular dyssynchrony of the left ventricle (LV dyssynchrony) occurs 
because of delayed contraction of certain LV segments (usually the postero-lateral 
wall that is last to contract while the inter-ventricular septum contracts first). This 
phenomenon is associated but not limited to the setting of prolonged QRS dura-
tion – typically left bundle branch block (LBBB). The difference in activation tim-
ing results in contraction delay, loss of contraction efficiency and reduced stroke 
volume. In the setting of prolonged LV contraction, while the atria relax and atrial 
pressure falls, the LV pressure might exceed the atrial pressure resulting in diastolic 
mitral regurgitation. Dis-coordinated papillary muscle function can also cause or 
further aggravate the mitral regurgitation. These dyssynchrony related changes pro-
mote adverse LV remodeling [8].

�Imaging in Cardiac Resynchronization Therapy

Imaging in CRT is crucial and serves several roles – to select patients with predicted 
response, to help define the location for the LV lead at the best area of LV in order 
to maximize response, and to follow the response. Lead location is the most com-
plex element, which combines identification of the latest contracting segment as 
well as localization of scars that should be avoided as pacing in a scar area is associ-
ated with poor response [9].

It is mainly LV dyssynchrony that has been shown in several milestone studies to 
be an independent predictor of response to CRT in HF patients following CRT. Many 
years ago Pitzalis et al. introduced a reliable, easy-to-use and reproducible M-mode 
echocardiography parameter for LV dyssynchrony measurement [10]. Using para-
sternal short-axis LV view, the operator measures the time difference between the 
maximal systolic inward movement of the septum and posterior wall resulting in the 
septal-to-posterior-wall-motion-delay (SPWMD). A SPWMD ≥130  ms is corre-
lated with significant LV dyssynchrony [10]. This initial approach was limited due 
to the non-uniform pattern of contraction in different segments of the LV, and the 
limited imaging by M-mode. Several other echocardiographic parameters have 
since been used for LV dyssynchrony evaluation besides M-mode, including tissue 
Doppler imaging, speckle tracking that is commonly used as it is considered supe-
rior to conventional echo Doppler techniques [11] and more recently 3D echocar-
diography (Table 14.2). It is conceivable that a technique that includes scar imaging 
in addition to dyssynchrony in the same test has an advantage in site selection of the 
LV lead.

Special attention has been given recently to the assessment of rotational dyssyn-
chrony. Left ventricular fibers have a helical configuration: right-hand orientation 
from the base toward the apex in the endocardial layers and left-hand orientation in 
the epicardial layers [20]. This spiral architecture of the cardiac fibers causes the LV 
to make a wringing motion as a result of the opposite rotation of the LV apex and 
base (counterclockwise and clockwise, respectively, when viewed from the LV 
apex) [21]. Twist, that is the difference in rotation between apex and base, contributes 
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to LV systolic function [22] and in patients with heart failure it has been shown to 
be reduced [23]. Two-dimensional speckle tracking can assess the LV rotational 
motion and has demonstrated that twist can be affected by right ventricular pacing 
(the experimental model of LBBB) [24, 25]. While LV twist is the net difference at 
isochronal time points between apex and base in the rotation angle along LV longi-
tudinal axis, LV torsion represents the LV twist indexed to the distance between the 
LV apex and the LV base (LV length) [20, 21]. LV torsion can be assessed in a 
standardized way by using three-dimensional speckle tracking echocardiography 
[26]. The use of two-dimensional speckle tracking echocardiography has proven its 
clinical utility in the field of CRT [27].

With the advent of cardiac magnetic resonance (CMR), several CMR derived 
dyssynchrony parameters [28]  – such as regional vector variance (RVV), cross-
correlation delay, uniformity of strain, time to maximum strain and standard devia-
tion of time to maximum strain, have been analyzed in the setting of HF with low 
left ventricular ejection fraction (LVEF) and wide QRS. Some, such as RVV, may 
provide an additive value for the prediction of response to CRT [29]. Cardiac mag-
netic resonance has the potential to become an alternative to echocardiography for 
assessing cardiac dyssynchrony. Image acquisition is less operator dependent and it 
has the advantages of high spatial resolution, highly reproducible wall motion 
tracking and the capability to assess LV scar, volumes, systolic function, velocity, 

Table 14.2  Echocardiographic measurement of intra-ventricular LV dyssynchrony

Parameter Echo technique Cut-off

Septal to posterior wall motion delay [10] M-mode ≥130 ms
Septal flash M-mode Non quantifiablea

Apical rocking 2D apical 4 chambers Non quantifiableb

Basal septal to lateral Ts delay [12] Tissue Dopple imaging ≥60 ms
Max delay in Ts in 4 basal LV segments [13] Tissue Doppler imaging >65 ms
SD of Ts of 6 basal LV segments [14] Tissue Doppler imaging ≥34.4 ms
Max delay in Ts in 12 basal and mid LV 
segments [15]

Tissue Doppler imaging ≥100 ms

SD of Ts in 12 basal and mid LV segments 
(Dyssynchrony Index; Yu index) [16]

Tissue Doppler imaging ≥32.6 ms

SD of time-to peak longitudinal strain in 12 
basal and mid LV segments [17]

Tissue Doppler imaging >60 ms

Antero-septal to posterior time to peak strain 
difference (radial strain) [18]

2D speckle tracking ≥130 ms

SD of time to minimum systolic volume of 16 
LV segments (systolic dyssynchrony index) [19]

3D echocardiography >5.6 %

Ts time-to-peak systolic velocity, SD standard deviation, LV left ventricular, 2D two dimensional, 
3D three dimensional
aSeptal flash = early septal systolic thickening and thinning resulting in a short inward motion of 
the septum
bApical rocking = the initial septal systolic thickening that causes the apex to move septally is fol-
lowed by delayed activation of lateral wall that pulls the apex laterally while stretching the septum, 
resulting in a typical motion pattern of the apex defined as “apical rocking”
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strain, and torsion [30]. Current limitation is the fact that MRI derived dyssyn-
chrony parameters have been investigated only in small sample size population and 
cutoff values for derived indices have yet to be established. Also its use in patients 
with existing devices is limited by safety issues as well as by the quality of imaging 
that may be distorted by the device.

Phase analysis of gated single-photon emission computed tomography (SPECT) 
myocardial perfusion imaging (MPI) has been used for evaluating LV dyssynchrony 
using radionuclide imaging [31]. Phase analysis is based on the partial volume 
effect, which indicates that LV regional maximal counts in SPECT MPI images are 
proportional to the regional wall thickness. Phase analysis approximates the varia-
tion of regional maximal counts over the cardiac cycle with the first Fourier har-
monic function to measure the onset of mechanical contraction [31]. Quantitative 
gated SPECT-derived phased analysis on gated myocardial perfusion SPECT was 
able to detect left ventricular dyssynchrony (strong correlation with tissue Doppler 
imaging dyssynchrony parameters) and was able to accurately predict response to 
CRT [32]. Phase analysis of SPECT MPI has several advantages over other imaging 
techniques such as automated calculation, better reproducibility, and the ability to 
simultaneously assess myocardial scar location and severity for CRT optimization. 
The limitations include reduced availability and the small number of centers with 
clinical experience on relatively small sample size populations [30].

�Clinical Evidence in Cardiac Resynchronization Therapy 
and Current Guidelines.

Randomized multi-center trials have provided solid evidence concerning the bene-
fits of CRT in heart failure treatment.

The initial trials including limited numbers of severe HF failure patients (NYHA 
III-IV; QRS duration ≥150 ms; LVEF ≤35 %) only showed symptomatic benefit 
[33, 34]. In 2004, COMPANION was the first randomized trial to show a survival 
benefit following CRT in HF patients [35]. It included 1520 HF patients, NYHA 
class III-IV with QRS ≥ 120 ms and LVEF ≤35 %, that were randomized to either 
CRT or optimal medical treatment (OMT). Patients with pacemaker CRT (CRT-P) 
had the risk of combined end point of death or hospitalization for HF reduced by 
34  % (p  <  0.002), while in those with defibrillator CRT (CRT-D) the risk was 
reduced by 40  % (p  <  0.001). These results were confirmed a year later by the 
CARE-HF trial [7].

The COMPANION and CARE-HF trials were followed by three cornerstone tri-
als addressing less severe HF patients (NYHA class I-II), with low LVEF and wide 
QRS: the REVERSE [36], RAFT [37] and MADIT-CRT trials [38].

The REVERSE trial demonstrated in 610 patients with NYHA class I or II HF, 
wide QRS ≥ 120 ms and low LVEF ≤40 %, that CRT in combination with OMT 
(±defibrillator) reduces the risk for HF hospitalization and improves ventricular struc-
ture (LV end systolic volume reduction), with no effect however on mortality [36].
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The RAFT trial randomized 1798 patients suffering from NYHA class II-III HF 
with wide or paced QRS and LVEF ≤30 %, to CRT with defibrillator (CRT-D) versus 
implantable cardioverter defibrillator alone (ICD). The trial showed a significant mor-
tality reduction of 25 % (p = 0.003) and a reduction of 32 % for HF hospitalization 
(p < 0.001) in the CRT group, at the cost of more peri-procedural adverse events [37].

The MADIT-CRT trial included 1820 patients with NYHA class I-II HF, wide 
QRS ≥ 130 ms and reduced LVEF ≤ 30 %, that were randomized into CRT-D ver-
sus ICD alone. The initial results, published in 2009, showed, after an average fol-
low-up of 2.4 years, a significant 41 % reduction in the risk of HF events (p = 0.001), 
a finding primarily evident in a pre-specified subgroup of patients with a QRS ≥ 
150 ms. CRT was also associated with a significant reduction in LV volumes and 
LVEF improvement, with no influence however on mortality [38].

Recently, in 2014, the long-term follow-up of the MADIT-CRT trial has been 
published. At 7 years of follow-up, among the 1818 patients enrolled in the post-
trial registries, CRT-D was associated with significant mortality reduction in LBBB 
patients (hazard ratio (HR): 0.59; 95  % confidence interval (CI) 0.43–0.80; 
p < 0.001). In contrast, CRT-D was not associated with any clinical benefit, and 
proved potentially harmful in patients without LBBB (HR: 1.57; 95% CI 1.03–2.39; 
p = 0.04) (Fig. 14.1) [39].

While all the main randomized trials addressed the issue of mechanical dyssyn-
chrony correction in the presence of electrical dyssynchrony (defined mainly as 
wide QRS of at least 120 ms), the EchoCRT trial looked into the potential benefit of 
CRT in HF patients with narrow QRS. The trial enrolled 809 patients suffering for 
NYHA class III-IV HF, with narrow QRS <130 ms and low LVEF ≤ 35 %, in whom 
there was echocardiographic evidence of LV dyssynchrony (defined using color-
coded tissue Doppler imaging as an opposing-wall delay in the peak systolic veloc-
ity of 80 ms or more in apical four-chamber or apical long-axis views, or by means 
of speckle-tracking radial strain as a delay in the anteroseptal-to-posterior wall of 
130 ms or more in the mid-left ventricular short-axis view). All patients had a CRT 
device implanted and were randomized to have CRT capability turned on or off. 
After a mean follow-up of 19 months, the trial was prematurely stopped because of 
increased mortality in the CRT ON group (11.1 % vs. 6.4 %; HR: 1.81; 95 % CI 
1.11–2.93; p = 0.02) [40].

The EchoCRT trial demonstrated that in HF patients with narrow QRS <130 ms, 
CRT does not reduce the rate of death or HF hospitalization and may increase 
mortality.

All the major evidence regarding CRT have been integrated into recently updated 
guidelines, where CRT is recommended in HF patients (NYHA class II-IV) with 
wide QRS ≥ 130 ms and reduced LVEF ≤ 35 % (Table 14.3) [41]. The American 
Guidelines dating 2012 are similar to the European ones from 2013, still retaining a 

Fig. 14.1  Kaplan–Meier Estimates of the Cumulative Probability of Death from Any Cause 
among Patients with and Those without Left Bundle-Branch Block. CRT-D denotes cardiac-
resynchronization therapy with defibrillator, ICD implantable cardioverter–defibrillator. The insets 
show the same data on an enlarged y axis (Goldenberg et al. from the long term follow-up of the 
MADIT-CRT trial [39])
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Patients with Left Bundle-Branch Block
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CRT indication for QRS between 120 and 130  ms, with only a class IIa 
recommendation for LBBB 120–149  ms (as opposed to class I in the European 
guidelines) [2, 42].

Right ventricular apical pacing has been shown to have deleterious effects on LV 
systolic function, as it is associated with a delayed electrical LV activation, with 
consequences similar (but not identical) to that seen with LBBB (LV dyssynchrony 
with reduced LVEF and mitral regurgitation). Clinical consequences include 
increased risk for atrial fibrillation, HF hospitalization and death [43–45], especially 
in the setting of pre-existing HF and LV systolic dysfunction (below 40 %) [45].

The BLOCK-HF trial randomized 691 patients with NYHA class I  – III HF, 
LVEF ≤ 50 % and an indication for bradycardia pacing to standard right ventricular 
pacing or biventricular pacing. The study has shown that patients receiving biven-
tricular pacing had a lower incidence of primary outcome (urgent care visit for HF; 
death from any cause; progression of HF, defined as significant increase of left 
ventricular end-systolic volume index). The BLOCK-HF trial supports the use of 
CRT over standard right ventricular pacing in HF patients with LV systolic dysfunc-
tion and atrioventricular block requiring ventricular pacing [46].

Therefore, for patients with an indication for bradycardia pacing, in whom the 
percentage of ventricular pacing is expected to be high, in the presence of reduced 
LVEF (although debatable – usually below 40 %), de novo CRT implantation should 
be considered. In patients with ventricular pacing who develop HF and left ventricu-
lar systolic dysfunction (LVEF < 35 %), upgrade to CRT is indicated, as the benefit 
has been demonstrated by us and other studies [41, 47].

Table 14.3  The 2016 updated indications for cardiac resynchronization therapy in HF  
patients [41]

Patients characteristics Rhythm QRS morph. QRS dur. (ms) Class Evid.

Ambulatory NYHA II-IV
LVEF ≤ 35 %

Sinus LBBB >150 ms I A
130–150 ms I B

Non-LBBB >150 ms IIa B
130–150 ms IIb B

HF patients Sinus Regardless <130 ms III A
HF patients (regardless NYHA)
High degree AV block
Reduced LVEFa

Sinus/AF Regardless Regardless I A

Worsening HF
Previous PM/ICD
High proportion of RV pacing
Reduced LVEFa

Sinus/AF RV pacing (Wide) IIb B

NYHA III-IV
LVEF≤35 %

AF Regardless ≥130 IIa B

AF atrial fibrillation, HF heart failure, ICD implantable cardioverter defibrillator, LVEF left ven-
tricular ejection fraction, LBBB left bundle branch block, NYHA New York Heart Association heart 
failure class, PM pacemaker
aThe 2016 guidelines do not define a clear cut-off for reduced LVEF in this scenario (usually con-
sidered <40 %)

M. Glikson and S. Bogdan



301

Most patients included in large CRT randomized trials were in sinus rhythm. In 
one prospective study for HF patients with permanent AF, reduced LVEF ≤ 35 % and 
wide QRS > 120 ms, the per-protocol analysis including patients with biventricular 
pacing percentage >85 % showed a slight but significant symptomatic improvement 
at 6 months and 1 year follow-up [48]. A meta-analysis by Wilton et al. that included 
7495 CRT recipients, 25 % with atrial fibrillation, from 23 observational studies, 
with a mean follow-up of 33 months, demonstrated an attenuated improvement of 
symptoms and LV end systolic volume, in the presence of AF, but not for the LVEF 
[49]. Current guidelines recommend CRT for AF patients with ambulatory NYHA 
class III-IV, wide QRS ≥ 130 ms and reduced LVEF ≤ 35 %, provided a high per-
centage a biventricular pacing (ideally 100 %) can be achieved – a target for which 
atrioventricular junction ablation should be taken into consideration [41].

�Response to CRT: Patient Selection and Improving CRT 
Delivery

Response to CRT can be evaluated from a clinical and structural perspective (Table 14.4), 
using individual or composite parameters (such as “functional response” [50]).

Depending upon the definition of response, the rate of non-response to CRT var-
ies between 20 and 40 % [51]. Patient’s characteristics (underlying heart disease, 
comorbidities and arrhythmias; type and severity of conduction disorder; presence 
and degree of dyssynchrony; presence and extent of scar tissue; functional myocar-
dial reserve) as well as CRT related aspects (electrical and anatomical positioning 
of LV lead; programming mode and percentage of effective bi-ventricular pacing) 
have been shown to influence the response to CRT [9, 51–54].

Diagnosing dyssynchrony is crucial for patient selection in view of successful 
cardiac resynchronization therapy. Despite remarkable cardiac imaging advance-
ments in the evaluation and understanding of mechanical dyssynchrony, electrical 
dyssynchrony (i.e.: wide QRS) remains the guidelines criterion for CRT 
recommendation.

Table 14.4  Response to cardiac resynchronization therapy evaluation

Clinical Structural

Parameter Responder Parameter Responder
NYHA Reduction ≥1 class LVEF Absolute increase ≥5–6 %
6MWT Increase ≥10–20 % LVESV Decrease ≥10–15 %
VO2 max Increase ≥10–15 % Mitral regurgitation reduction
Hospitalization rate Decrease >25–30 %
QOL Decrease ≥8–10 points

6MWT 6-minute walk test, LVEF left ventricular ejection fraction, LVESV left ventricular end-
systolic volume, NYHA New York Heart Association heart failure class, QOL quality of life ques-
tionnaire, VO2 max maximal oxygen consumption

14  Cardiac Resynchronization Therapy



302

The role of LV dyssynchrony assessment to predict response in CRT patients 
remains controversial to date. The PROSPECT trial investigated the predictive 
value of several echocardiographic dyssynchrony parameters (Doppler, M-mode, 
tissue Doppler imaging and delayed longitudinal contraction) on LV reverse remod-
eling and a composite clinical score. The conclusion was that given the modest 
sensitivity and specificity in this multicenter setting despite training and central 
analysis, no single echocardiographic measure of dyssynchrony may be recom-
mended to improve patient selection for CRT beyond current guidelines [53]. More 
recently, the EchoCRT trial has shown that mechanical dyssynchrony detected by 
echocardiography is not a good target for CRT correction, in the absence of electri-
cal dyssynchrony (i.e.: QRS < 130 ms) [40]. Still, other trials have shown that the 
amount of LV dyssynchrony at baseline and the remainder of LV dyssynchrony 
following CRT are correlated with clinical outcomes and response to CRT [10, 55].

Interestingly, the recently published PREDICT-CRT trial by Stankovic et al. has 
shown that the presence of apical rocking and septal flash – two subjectively mea-
sured echocardiographic dyssynchrony parameters (Table 14.2), is associated with 
more favorable long-term survival after CRT. Both apical rocking and septal flash 
were also indicators of an effective therapy [56]. Current guidelines recommend the 
use of echocardiography only for CRT optimization in case of non-response, but the 
results of PREDICT-CRT may impact the use of echo for patient selection in the 
future.

The type of electric disease is important for CRT response. LBBB morphology 
and a QRS duration >150  ms are associated with the best response following 
CRT.  The question remains in patients with wide QRS of right bundle branch 
(RBBB) or intraventricular conduction delay (IVCD) morphology. The long-term 
MADIT-CRT follow-up has shown the absence of mortality benefit of CRT-D ver-
sus ICD alone in mild-to-moderate HF with reduced LVEF ≤ 30 %, who presented 
with RBBB or IVCD at baseline [39] (Fig. 14.1, Section B). Specific subgroup 
analysis from MADIT-CRT demonstrated that the use of CRT-D in non-LBBB 
patients with prolonged PR ≥230 ms was associated with a significant 73 % reduc-
tion in the risk of HF/death (HE: 0.27; 95 % CI 0.13–0.57; P < 0.001) and 81 % 
reduction in the risk of all-cause-mortality (HR: 0.19; 95 % CI 0.13–0.57; P < 0.001). 
At the same time, CRT-D use in non-LBBB patients with normal PR <230 ms was 
associated with increased risk of HF/death [57]. In the absence of prolonged PR, 
pure RBBB morphology should probably disqualify a patient for CRT. The Canadian 
Guidelines already consider RBBB with 120–150 ms duration not to be an indica-
tion for CRT [58], while European guidelines are more permissive, giving it a IIb 
recommendation [2].

The underlying heart condition and co-morbidities influence the overall prog-
nostic and response to CRT.  Although LV reverse remodeling after CRT is not 
affected by the duration of HF, clinical outcomes are better in patients implanted 
earlier in their disease course [59]. Atrial fibrillation, by comparison to sinus rhythm, 
is associated with increased risk of non-response to CRT (34.5 % vs 26.7 %; pooled 
relative risk 1.32; 95  % CI 1.12–1.55; P = 0.001), as demonstrated by Wilton’s 
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meta-analysis [49]. In ischemic heart disease the benefit of CRT exists but is attenu-
ated by comparison to non-ischemic heart disease, as shown in the MIRACLE trial 
[60]. Focal scar burden detected by late-Gadolinium enhancement on cardiac mag-
netic resonance was shown to correlate with poorer CRT response [61] as did lead 
localization in scar areas. Co-morbidities such as renal failure may also affect 
CRT.  Interestingly, we have recently shown that functional response to CRT at 
1 year did not differ significantly between patients with or without chronic kidney 
disease and was shown to be an independent predictor of improved long-term sur-
vival in patients with renal dysfunction (eGFR <60 ml/min/1.73m2) [50]. Although 
data regarding CRT response in severe renal failure patients is scarce, we have 
recently shown that dialysis does not significantly modify the adverse outcomes 
associated with severe renal dysfunction (eGFR < 30 ml/min/1.73 m2) following 
ICD/CRT-D implantation [62].

In order to ensure CRT response, optimal LV lead placement is essential. Ideally, 
it should be placed in the utmost late contracting segment of the left ventricle [63]. 
The area of delayed contraction can be previously detected by using echocardiogra-
phy (tissue Doppler imaging and two-dimensional speckle tracking being consid-
ered the most sensitive) [63, 64]. Cardiac magnetic resonance and SPECT MPI may 
also detect it, with the advantage of offering supplemental information concerning 
its viability.

Reaching the target area for the LV lead is largely dependent upon the venous 
anatomy. Non-invasive pre-procedural visualization of the cardiac venous system 
can be performed using 64-slice computed tomography, which may offer important 
information concerning the existence of a potential target vein [65].

Hybrid methods for defining venous and myocardial anatomy are under develop-
ment. Recently, a tool kit has been developed to reconstruct the three-dimensional 
LV venous anatomy from dual-view fluoroscopic venograms and to fuse it with LV 
epicardial surface on SPECT myocardial perfusion images. It is technically accu-
rate for guiding LV lead placement by the 17-segment model and is feasible for 
clinical use in the catheterization laboratory [66].

Sometimes the target vein is difficult to access due to tortuosity or stenosis. For 
overcoming anatomical obstacles, the operator has now several tools and techniques, 
including telescopic delivering systems [67], performing venoplasty and the use of 
Lasso snaring techniques [68]. Once the target vein has been reached, electrical 
problems can arise such as local high pacing thresholds or phrenic capture. Currently, 
the introduction of quadripolar LV leads has significantly reduced these issues (Fig. 
14.2) [69, 70]. Furthermore, the possibility to pace from multiple sites from the 
quadripolar LV lead has improved response to CRT [71]. When the target vein is 
unreachable or the patient has no target vein, the LV lead can still be implanted either 
using a transeptal approach [72] or surgically [73]. Finally, the LV lead should not 
be placed in an apical position but left in a basal or mid-ventricular segment [74].

Following implantation, in order to deliver optimal cardiac resynchronization 
therapy, the device has to be programmed in order to reach an ideal of 100 % 
biventricular pacing [75]. Further efforts should be performed in order to maxi-
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mize the percentage of biventricular pacing (very strict AF rate control – includ-
ing atrio-ventricular node ablation if needed; ventricular premature beats 
elimination [76]).

Thus, preventing non-response should include:

•	 Prior dyssynchrony documentation and myocardial scar burden assessment
•	 Optimal LV lead positioning (preferably quadripolar lead)
•	 Obtaining consistent biventricular pacing (as close to 100 % of the time as 

possible)

In case of non-response, a protocol-driven approach for CRT optimization 
involving HF physician, electrophysiologist, and focused echocardiography has 
been shown to improve response rates [77].

�Conclusion

Cardiac resynchronization therapy has become part of the standard of care for heart 
failure patients with reduced left ventricular ejection fraction and wide QRS. Despite 
its role in evaluating and understanding cardiac dyssynchrony, echocardiography 
was unable to top the classic ECG criteria (QRS morphology and duration) for 
patient selection. Future imaging techniques, such as cardiac magnetic resonance or 
SPECT myocardial perfusion imaging may provide better dyssynchrony assess-
ment. Improved technology and better knowledge concerning therapy optimization 
will most likely improve CRT response in the near future.

Fig. 14.2  A CRT-D 
system using a quadripolar 
LV lead
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