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Chapter 3
Malignant Transforming Mechanisms 
of Human Papillomavirus

H. Astudillo-de la Vega, E. Ruiz-Garcia, C. Lopez-Camarillo,  
Jaime G. de la Garza-Salazar, A. Meneses-Garcia, and L. Benitez-Bribiesca

Abstract HPVs transforming activities represent the viral replication strategy that is 
driven to replicate viral genomes and to establish long-term maintenance in a tissue. 
High-risk-HPV-infected cells and carcinogenesis progression are terminal events, 
since cancer cells contain integrated HPV genomes and do produce viral progeny. 
High-risk HPV (HR-HPV) genome integration indeed represents a consequence of 
HPV E6/E7- induced genomic instability. HR-HPV E6 and E7 proteins critically 
contribute to viral life cycle and transforming activity. HR-HPV E7 proteins bind to 
pRB and decreased efficiency. HR-HPV E6 proteins efficiently interact with TP53 
and promote for TP53 degradation. High-risk HPVs can frequently persist for 
decades in an infected host cell at a low number of copies. One of the events of HPV-
induced carcinogenesis is the HPV genome integration into a host chromosome, and 
it is probably a failed viral mechanism. High Risk-HPV E6 proteins and E7 contrib-
ute to immortalization of primary human epithelial cells by induction of telomerase 
activity. Data evidences suggest that microbial dysbiosis is associated with malignant 

H. Astudillo-de la Vega, MD MSc PhD (*) 
Laboratorio de Investigación Traslacional y Terapia Celular, Hospital de Oncología, Centro 
Médico Nacional “Siglo XXI”, IMSS, Av. Cuauhtemoc 330, Col. Doctores, CP 06720 
México DF, Mexico
e-mail: hastud2@gmail.com 

E. Ruiz-Garcia, MD MSc • A. Meneses-Garcia, MD PhD 
Laboratorio de Medicina Traslacional, Instituto Nacional de Cancerología, SS,  
México DF, Mexico 

C. Lopez-Camarillo, PhD 
Posgrado en Ciencias Genomicas, Universidad Autonoma de la Ciudad de Mexico,  
México DF, Mexico 

J.G. de la Garza-Salazar, MD 
Departamento de Oncología Médica, Instituto Nacional de Cancerología, SS,  
México DF, Mexico 

L. Benitez-Bribiesca, MD 
Deparmento of investigation at Instituto Mexicano del Seguro Social (IMSS),  
Instituto Nacional de Cancerología, Mexico City, Mexico

mailto:hastud2@gmail.com


36

transformation, but future discussion and direction for microbiome in cancer research 
(oncobioma) and particularly in HPV-associated human cancer could be evaluated as 
causative causes that modulate initiation, progression, or cancer metastasis.

Keywords HPV • High risk-HPV • Neoplastic transformation • HPV genome inte-
gration • C-myc • E6 • pRb • E7 • p53 • Telomerase • Tumor metabolome • Dysbiosis 
• Oncobioma

3.1  HPV Generalities, Life Cycle and Genome

“To avoid criticism, do nothing, say nothing, be nothing” Elbert Hubbard (writer)

Human papillomaviruses (HPVs) are members of the papovaviridae family. The 
viral structure consists of a 72-capsomere capsid; capsomeres are two structural 
proteins: 57 kD late protein L1 (80% of the viral particle) and 43–53 kD minor 
capsid protein L2 [1]. The HPV absence of envelope makes them stable and let them 
remain infectious for months in hostile environments [2]. The HPVs are present in 
higher vertebrates, however, they show a species-specificity pattern but the horizon-
tal transmission from non-primates to humans has not been reported. HPV causes a 
local infection in the stratified epithelia and induces a productive replication with 
differentiation in a non-acute one, but produces a chronic disease where viral spread 
and/or viremia do not occur. The life cycle of HPV is associated with the differentia-
tion program of epithelial cells. In normal epithelial cells, the only actively dividing 
cells are present in the basal layers of the stratified epithelium, which is basically 
formed by “transit amplifying cells” (TAC) and stem cells. Cells that are proliferat-
ing and can terminally differentiate are TAC and cells, which have the potential to 
proliferate indefinitely, are stem cells, although they divide infrequently in order to 
replenish the TAC pool [3]. After viral infection, HPVs deposit their double strand 
DNA genome into nuclei of infected cells and establishes as extra-chromosomal 
plasmids or episomes [4]. HPV gains entry to cells in the basal layer of the epithe-
lium that becomes exposed through micro-abrasions [4]. The HPV genome has 
three genomic regions E and L genes, which are numbered according to the size: 
4-kb early (E) region that encodes nonstructural proteins, 3-kb late (L) region that 
encodes two capsid proteins (L1, L2 genes), and 1-kb noncoding long control region 
(LCR) that regulates viral replication and gene expression (Fig. 3.1). Papillomavirus 
life cycle is linked to the differentiation program of infected epithelium cells and 
infects basal epithelial cells in the sole cell layer in the epithelium actively dividing. 
Although integrin-6 has been related, HPV receptor(s) has not been characterized 
[5]. Viral HPV-DNA is in the nuclei of infected host cells in a low copy number and 
lately undergoes differentiation moving toward the epithelium surface. The mecha-
nism changes when the HPV-DNA is present in terminally differentiated cells; the 
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virus replicates in a high number of copies, late genes are expressed, and progeny 
virus is produced [6]. The HPVs are not lytic viruses and the progeny virus is shed 
into the environment as a cargo within epithelial squamae. This review discusses the 
various mechanisms of transformation and the roles HPV plays in cervical 
carcinogenesis.

3.2  Transforming Mechanisms of HPV Viral Oncoproteins

HPVs potential to promote malignant transformation is the key for the low- and 
high-risk classification created from observations of HPV types found in cancers as 
high-risk (HR-HPV) and the ones found in benign lesions as low-risk (LR-HPV), 
and by experimental evidence that demonstrated their abilities to modify prolifera-
tion and genome stability. The general molecular aspects and functions of human 
papillomavirus proteins are shown in Table 3.1. The most important oncogenic pro-
teins are E6 and E7, because of their immortalizing and transforming high potential, 
both in animal models and ‘in vitro’ models. The hallmarks of dysplasia lesions 
(low and high grade) as precursor of cervical cancer are the expression of HR-HPV 
E6/E7 genes; the expression of both genes contributes to genomic stability and 
malignant progression [7]. HPV E6 is a 150-amino acid protein containing two 
metal binding motifs (PDZ protein-binding motif), which acts as molecular orga-
nizing center for cellular signal transduction pathways [8]. There is a cellular 
defense mechanism that induces synthesis of aberrant and/or viral DNA into dif-
ferentiated keratinocytes, which eliminates cells by selective and type-specific 
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transcript transcribed from a single strand of DNA. The Upstream Regulatory Region (URR) is in 
the non-coding region and regulates viral transcription and replication. HPV genes are regulated 
during differentiation by the virus early promoter (P97), the differentiation late-dependent pro-
moter (P742), and tow Polyadenylation signals (PolyA). E6 and E7 are oncogenes responsible of 
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processes such as apoptosis, differentiation and senescence; the name of such mech-
anism is “trophic sentinel response” (TSR) [8]. One of the molecular mechanisms 
of E6 protein to promote malignancy in epithelial cells is the induction of TP53 
ubiquitination and proteasome degradation by retargeting E6-AP [9]. A consider-
able number of cellular proteins have been reported to associate with E6 (see 
Table  3.1). HR-HPV E6 proteins eliminate the TSR triggered by E7 expression 
through inactivation of TP53 [10]. The HPV16 E6/E7 ORF cassette is regulated by 
the epidermal growth factor (EGF) pathway; there is a natural gradient of EGF and 
EGFR expression in the stratified epithelium, and it is the reason to assume that 
EGF modulates E6/E7 splicing during the viral life cycle and transformation [11]. 
HPV E7 is a low-molecular-weight protein of approximately 100 amino acids with-
out intrinsic enzymatic activities. HPV-16 E7 oncoprotein has an amino-terminal 
37-amino-acid residue similar to sequences of CR1 and to CR2 of Adenovirus E1A 
protein (Ad E1A). CR1 sequences are responsible for the retinoblastoma tumor sup-
pressor protein (pRB) degradation and cellular transformation; CR2 sequences are 
the pRB-binding site (LXCXE), necessary for cellular transformation. E7 carboxyl 
terminus contains a metal binding motif for association with host cellular proteins, 
which include histone-modifying enzymes, in order to contribute toward malignant 
transformation. Such as AdE1A and SV40 T antigen, the HPV E7 protein interacts 
with several host cellular proteins (see Table 3.1). The ability of HPV E7, Ad E1A, 
and SV40 T antigen to associate with pRB is basic for the viral genome replication. 
HR-HPV-derived E7 proteins interact with pRB more efficiently than the E7 pro-
teins encoded by LR-HPVs [12]. E7-interacting proteins, including transcription 
factors, cell cycle regulators, and metabolic enzymes, appear to associate with 
carboxyl- terminal E7 sequences [13]. The HPV E7 amino-terminal pRB binding 
site protein has been implicated in histone deacetylase binding, a necessary event 
for the HPV viral life cycle [14]. HPV-16 E6 and E7 oncoproteins over-regulate the 
TGF-beta1 promoter in cervical tumor cells [15]. The HPV oncoproteins E6 and E7 
have been implicated in the regulation of the Wnt/β-catenin pathway [16].

3.3  Genomic Integration of HPV and Host Genomic 
Instability Induction as Basic Steps toward Malignant 
Transformation by HPV

Cellular signal transduction pathways are dysfunctional in human solid tumors [17], 
and it has been proposed the minimally oncogenic steps necessary to generate ‘in 
vitro’ transformed human epithelial cells. The expression of simian virus 40 (SV40) 
large tumor antigen (T), SV40 small tumor antigen (t), inactivates TP53 and pRb 
tumor suppressors, just like the HPV E6 and E7 oncoproteins work; the catalytic 
subunit of human telomerase (hTERT) which HPV E6 can activate transcriptionally, 
and the activated H-Ras oncogene are required to transform primary human epithe-
lial cells [18]. Hence, the expression of HR-HPV E6/E7 oncogenes provides the 
minimal carcinogenic hits for primary human epithelial cells transformation [19]. 
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HPV infects differentiated squamous epithelial cells (growth arrested) incompetent 
to support genome synthesis, but the HPV genome encodes functions that create 
and/or maintain a genome replication competence in differentiated keratinocytes. 
During the HPV life cycle, it is established a mechanism of long-term viral persis-
tence into the squamous epithelia. HR-HPVs have evolved specific molecular mech-
anisms to maintain the host immune evasion and escape to guaranty viral progeny 
and not to induce an oncogenic process, which is not the natural function of the HPV 
infection. One of the events of HPV-induced carcinogenesis is the HPV genome 
integration into a host chromosome, and it is probably a failed viral mechanism. The 
HPV genome integration occurs into common fragile sites of the human genome 
[20], but there are not apparent hot spots for integration and no evidence for inser-
tional mutagenesis [21]. Papillomavirus E1 and E2 proteins play a role in viral rep-
lication. The papillomavirus E2 protein works: (i) as a DNA binding transcription 
factor interacting with specific motifs (ACCN6GGT) in the LCR region [22]; (ii) as 
a transcriptional activator or transcriptional repressor in keratinocytes [23]; (iii) 
associated with viral DNA helicase E1 to modulate viral gene expression, in order to 
increase the recognition of the origin and the viral genome replication [24]; (iv) 
playing a role in viral genome segregation during cell division by tethering viral 
genomes to mitotic chromosomes [25]; (v) in association with mitotic chromosomes 
by interaction with the human bromo-domain protein Brd4 [26]. HPV genome inte-
gration to host genome follows a major specific pattern regarding the HPV genome 
function, and the consequence is the consistently maintained expression of the viral 
E6 and E7 genes, whereas other DNA viral genome regions (such as E2 region) are 
deleted and/or their expression is disturbed [27]. The E2 loss expression is signifi-
cant and results in deregulated E6 and E7 expression; when it happens with HPV-16 
an increased E6/E7 expression and stability after genome integration occurs [28], 
and host cellular specific alterations of gene expression appears [29]. Infected cells 
with integrated HPV genome that expresses E6/E7 have a selective growth advan-
tage in comparison with infected cells harboring episomal HPV genome. The con-
tinued E6/E7 expression in cervical cancer cells is an obligated process for 
transformed phenotype maintenance [30]. HPV 16 and 18 integrations in high-grade 
lesions are accompanied by chromosomal abnormalities [31]. HR-HPV genomes 
are integrated into the host genome in the most invasive cancers, an increased ability 
of HR-HPV types to integrate into host DNA compared to those with low-risk types 
[32]. Extra-chromosomal HPV DNA is found in benign and low-grade lesions and 
HPV integration can be found in premalignant lesions grade 2/3 such as cervical 
intraepithelial neoplasia (CIN2/3). LR-HPV types are rarely found integrated in 
tumors, which was demonstrated by the absence of full-length E2 transcripts studies 
of tissue specimens from patients with a history of benign early-onset recurrent 
respiratory papillomatosis developing laryngeal cancer [33]. HPV integration dis-
rupts the E2 gene [34], so determination of absent amplification of E2 sequences has 
been considered a molecular marker of integration or progression in cervical cancer; 
unfortunately, the results obtained are ambiguous. Detection of early gene tran-
scripts by reverse-transcription PCR is more sensitive in cancers as well as in benign 
or dysplastic cervical samples, in which the presence of integrated genomes 
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correlates with the severity of the disease, especially for HPV 18 [35]. HPV genomes 
integration is a failed step that affects both viral and host gene expression. Increased 
E7 protein synthesis correlate with viral DNA integration where integrated viral 
DNA confers growth advantages and phenotypic cellular changes with high-grade 
neoplasia compared to extrachromosomal viral DNA cells. The disruption pattern in 
the viral genome does not occur in the host genome, in contrast, HPV DNA 
sequences integration uses preferential sites of human chromosomes and suggests a 
non-random pattern of integration, for example, in cervical carcinomas it has been 
observed HPV integration into and around the hTERT gene, which resulted in an 
increase in hTERT expression [36], or HPV 18 DNA has been found integrated in 
the proximity of c-myc gene in several cervical cancers, but surprisingly not up-
regulation of endogenous proto-oncogene expression was observed [37]. HPV 16 
and 18 DNA sequences have been found integrated in particular chromosomal loci 
known as common fragile sites in cervical cancers [37]. An association between the 
loss of fragile histidine tetrads (FHIT) expression and progression of HPV 16-posi-
tive CIN has been demonstrated [38]. Invasive cervical cancers expressing HR-HPV 
E6 and E7 transcripts contain normal FHIT transcription, while low amount of viral 
transcripts were detected when FHIT was abnormally expressed, which suggests 
that E6 and E7 could be repressed in the presence of FHIT aberrations [39]. An 
intensive review of HPV integration sites in cervical dysplasia and cancer concluded 
that integration is randomly distributed over the whole host genome with genomic 
fragile sites predilection [40]. Modification of host cell genes that interfere with the 
expression or function of viral genes will eventually contribute to immune evasion; 
the tumor progression and invasion are an important event for malignant cellular 
transformation [41]. We have to continue looking for the physical and functional 
relevance of viral and cellular genes in the HPV-mediated transforming mecha-
nisms, since experimental evidence could be an indication that the major function of 
HPV integration is the conservation and stabilization of HPV gene expression. 
Human carcinogenesis is considered a genomic instability disease [42]. Human 
solid tumors display aneuploidy, however; transformed human cells generated ‘in 
vitro’ maintain their genome stability [43]. Therefore, genomic instability is not a 
generic manifestation of oncogenic transformation but represents a tumor cell char-
acteristic to acquire genetic alterations necessary for the survival and clonal expan-
sion within the emergent neoplasia changing microenvironment [44]. Recently, it 
has been demonstrated that beyond HPV- induced immortalization, the chromosomal 
aberrations are inversely related to the HPV type immortalization capacity, which 
means that HR-HPV types with reduced immortalization capacity, needs more 
genetic host cell aberrations to facilitate immortalization and these could explain the 
differences in HPV-type prevalence in cervical cancers [45]. The combined expres-
sion of HR-HPV E6 and E7 proteins in cervical cancer cells causes inactivation of 
p53 and pRb tumor suppressor pathways and induces telomerase activation; these 
signal transduction pathways are disrupted in the majority of human solid tumors 
and they constitute a minimal subset of oncogenic hits to generate transformed ‘in 
vitro’ human cells [17]; complementary oncogenic events as E6/E7 expression are 
necessary to ‘in vivo’ and ‘in vitro’ transformation. Cervical carcinomas show 
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chromosomal abnormalities [41], such as a specific gain at chromosome 3q for tran-
sition from HR-HPV-associated severe dysplasia to invasive carcinoma [46]. HPV-
16 E7 oncoprotein contributes to genomic instability by the induction of centrosome 
duplication errors and generation of mitotic defects and aneuploidy in normal human 
epithelial cells, and also the characteristic multipolar mitoses in cervical lesions 
[47]. Centrosomic abnormalities emerge as a consequence of cytokinesis and/or cell 
division defects, thus occurring mostly in cells that have also accumulated nuclear 
abnormalities [48], also associated mitotic defects are present in cells that express 
episomal HPV-16 at a low number of copies, similarly to low-grade HPV-associated 
lesions [49], but the incidence of these alterations increases in cells when HPV 
genome is integrated to the host genome [50]. HPV E7 expression induces primary 
centrosome and centriole duplication errors in normal diploid cells but the mecha-
nism remains absent of an explanation [51]. HPV E7 expression has the ability to 
target pRB family members, and it can explain the reason why the expression of 
HPV-16 E7 causes an increased incidence of centrosome abnormalities in mouse 
embryo fibroblasts that lack of pRB, p107, and p130 expression [48]. Centrosome 
abnormalities have also been detected in cervical lesions [49]. HPV-16 E7 expres-
sion works as mitotic mutator due to increased mitotic errors each round of cell 
division, inducing the genomic plasticity for the acquisition of cellular mutations 
that contribute to malignant progression [50]. The presence of double-strand DNA 
breaks in HPV-16 E6/E7- expressing cells is a mechanistic rationalization of what is 
facilitating HPV genome integration and why it is accompanying malignant pro-
gression [52]. However, integration of oncogenic HPV genomes in cervical lesions 
is a consequence rather than the cause of chromosomal instability induced by dereg-
ulated HR-HPV E6-E7 oncogene expression [53], and there is a gain of human 
telomerase gene TERC as important associated genetic event during the progression 
of dysplasia to cervical cancer [54].

3.4  Telomerase Activation as Molecular Transformation 
and Immortalization Mechanisms by HPV

Telomere shortening is a cell-autonomous mechanism that restricts the proliferative 
capacity of normal somatic cells. The hTERT expression of the catalytic telomerase 
subunit, in primary human cells, causes life span extension and immortalization. 
Cell types that must undergo a large number of cell divisions such as stem cells, 
express telomerase, a ribonucleoprotein that prevents telomere erosion. Many 
human tumor cells express actively telomerase, suggesting that aberrant telomerase 
activity is critical for human tumorigenesis. hTERT expression is considered one of 
the obligatory components for the generation of human tumor-like cells ‘in vitro’ 
[55]. HR-HPV E6 proteins and E7 contribute to immortalization of primary human 
epithelial cells by induction of telomerase activity [56]. HPVs have been shown to 
integrate in the proximity of c-myc gene, which justifies the search for alterations of 
this proto-oncogene in HPV-associated lesions. Ocadiz et al. [57] described for the 
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first time the amplification of a human oncogene in samples of cervical cancers, 
such oncogene was c-myc. Recently, another group described it but compared it 
with benign and premalignant cervical lesions [58]. Moreover, a significant associa-
tion between c-myc amplification and HPV 16 infection was observed. Elevated 
levels of c-myc have been found in several HPV-positive cervical carcinoma cell 
lines [59]. However, the significance of these events in HPV-mediated transforma-
tion remains unclear. The involvement of the c-Myc protein in HPV-induced immor-
talization was recently addressed [60]. HR-HPV E6 was shown to associate with 
c-Myc complexes (Myc/Max) and activate the hTERT promoter. The specific c-Myc 
antagonist, Mad, represses E6-transactivation of hTERT.  HR-E6 proteins induce 
hTERT expression at a transcriptional level [61]. The minimal E6 responsive hTERT 
promoter fragment contains c-myc responsive E-boxes that contribute to E6-mediated 
transcriptional activation, but E6 does not markedly affect c-myc expression or the 
composition of c-Myc transcription factor complexes [62]. In HR-HPV expressing 
E6, the direct interaction with c-myc oncogene form, a c-Myc/E6 complex that acti-
vates hTERT expression [63]. An alternative hypothesis that tries to explain forward 
is that E6 relieves the telomerase promoter repression by inducing NFX1–91 degra-
dation, which is a transcriptional repressor [64]. In E6-positive cells the telomerase 
activity increases when they become immortalized, although E6 expression levels 
do not change [65], meaning that other factors are participating in telomerase acti-
vation. Other experiments have revealed the E6 immortalization potential in mam-
mary epithelial cells and keratinocytes by inactivation of TP53 [66]. Nowadays 
there is a scientific evidence that oncogenic types specifically activate the hTERT 
promoter (a limited set of viruses within the Alphapapillomavirus genus are onco-
genic), while non-oncogenic types do not, which that means activation of the hTERT 
promoter is associated with oncogenic types [67].

3.5  Metabolic Tumor Adaptations as HPV Transforming 
Mechanisms

Although long-term information is stored almost exclusively in the genome, the pro-
teome is crucial for short-term information storage; and the transcription factor- 
controlled information retrieval is strongly influenced by the state of the metabolome. 
The elementary building blocks in the proteome are proteins, but metabolomes are 
constituted by proteins and metabolites that form different interacting network called 
metabolic pathways [68, 69]. Nowadays is well knows that tumor cells metabolism 
(tumor metabolome) is characterized by a high concentration of glycolytic enzymes. 
About these scope there is an interesting report, where they characterized the metab-
olism of non-transformed rat kidney cells (NRK cells), showing a high glutamino-
lytic flux rate and a low (ATP  +  GTP):(CTP  +  UTP) ratio, whereas fructose 
1,6-biphosphate (FBP) levels and pyruvate kinase isoenzyme type M2 (M2-PK) 
activity was very low. When a stable oncogenic ras and HPV-16 E7 expression were 
stablish in the NRK cells, an FBP up-regulation and M2-PK activity was detected, 
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these results suggest, that oncogenic ras and E7 protein are the perfect conditions to 
create the ideal tumor metabolome as generally found in tumor cells [70–72]. Folic 
acid is necessary for the synthesis of S-adenosylmethionine, an elementary sustrate 
in the DNA methylation [73], but low folate levels increase the fragile sites on DNA 
which also decrease the DNA repair [74] and the DNA methylation process [75, 76], 
these conditions enhance the risk of DNA attacks by virus and carcinogens [77, 78], 
which also include HPV [79]. The global DNA methylation increase in the cervical 
tissue, increase the grade of cervical dysplasia, suggesting that the methylation status 
is an early event in the cervical transformation mechanisms. About genital HPV 
types, DNA methylation in the regulatory region, regulate ‘in vitro’ HR-HPV expres-
sion [80, 81]. One of these ‘in-vitro’ studies demonstrated that methylation of CpG 
sites in the HPV 18 enhancer region resulted in a down-regulation of transcriptional 
activity [80]. Other study demonstrates the methylation was found to be more at 
CpGs within E2 binding sites proximal to the P97 promoter, which means that the E2 
binding site methylation in presence of intact E2, cause to loss of E2 repressor activ-
ity [82]. The reactive oxygen species (ROS) and their down-regulation by anti-oxi-
dants is the other metabolic point that have relevance during the process of HPV 
infection. Activation of AP-1 (main transcription factor for the expression of E6 and 
E7 proteins of HR-HPVs) is down regulated by antioxidants in ‘in vitro’ models 
[83–85] and recently by other dietary molecules such as Curcumin (diferuloylmeth-
ane), which is an active component of the perennial herb turmeric and a potent anti-
oxidant and is well-known for its anti- inflammatory and anti-carcinogenic activity 
[86]. Experimental evidence demonstrated that pyrrolidine-dithiocarbamate (anti-
oxidant) selectively inhibit AP-1-induced by HPV 16 gene expression in immortal-
ized human keratinocytes, suggesting that redox potential manipulation could be a 
therapeutic approach to interfere with the HR-HPVs transformation mechanisms 
[87]. Surprisingly, other study demonstrates that using curcumin (diferuloylmeth-
ane) in HeLa cells culture it was possible to modulate the transcription of AP-1 and 
HPV [88, 89]. Retinoic acid indirectly reduces HPV mRNA levels by modification 
of AP-1 activity [90] and/or transforming growth factor β (TGFβ) expression [91]. 
The property of cell growth suppression by retinoic acid is lost in the latest stages of 
HPV 16-induced transformation in cervical tumor cell lines and keratinocytes, the 
mechanism includes loss of growth inhibition and TGF β sensitivity [92], continued 
growth stimulation [93, 94] and loss of retinoid receptor expression [95]. In the 
serum, All Trans Retinoic Acid (ATRA) level highly influences the progression of 
cervical lesions to invasive cancer [96]. The therapy with retinoic acid does not 
reduce recurrence rates of advanced cervical cancer [97–99] or the cervical intra-
neoplasia grade 3 (CIN3) regression [100], even when is combined with chemo-
therapy and immunotherapy [101]. All these data suggest that retinoic acid could be 
effective only in the early stages of cervical dysplasia lesions, modulating the clear-
ance and persistence of HPV. The sequence of events required for the establishment 
of the tumor metabolome in cervical cancer is presently unknown, but it is clear the 
participation of specific metabolic pathways, specific modulation of metabolites and 
the HPV infection event during the malignant transformation mechanisms of the 
cervical epithelium.
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3.6  Cervical Host Infections Patterns (Oncobioma) 
of Malignant Precursor Lesions and Tumor 
Microenvironment as Promoters and Enhancers of HPV 
Transforming Mechanisms

Microbiome research has presented an unprecedented growth over the last decade, 
due to the great developments in the new DNA sequencing technologies such as 
Next Generation Sequencing (NGS) [102]. The human microbiome study has been 
focused on health and disease, the clinical interpretation; however, the ability to 
understand these studies in the context of disease is less straightforward. 
Pathological conditions such as cancer have seen an increase in research focused on 
the microbiome pathogenic role, but the clinical value to interpret and/or use these 
scientific findings are not still translated. The purpose of this chapter section is to 
provide an introduction for clinicians to learn about how microbiome research and 
HPV positive cervical cancer could be associated. Microbiota considers a wide 
variety of microorganisms (bacteria, viruses, protozoa, fungi, and archaea) and the 
eclectic ecosystem of every individual, creating a commensal, symbiotic, and 
pathobiont (microorganisms that normally behave in a symbiotic manner with their 
host but exhibit pathogenic potential based on changes in their abundance or envi-
ronmental conditions) relationship that has generated focus on its role in carcino-
genesis [103]. The new scientific research focused on the interplay between the 
human microbiome and cancer development, has been termed the ‘oncobiome’ (the 
intricate interplay and study of the human microbiome and its influence on cancer 
development) [103]. It is clear, that these preliminary studies have demonstrated 
associative relationships rather than causative ones. But the question of whether 
this emerging field of research is a ‘landscape’ without a clear picture yet or it rep-
resents a new paradigm for cancer research such as other authors and we refer 
[104]. We propose the scientific evidence to answer the question and to push the 
new paradigm forward to bring a new perspective to understand and treat cancer. 
The mechanisms proposed in which infectious agents are suggested as associated 
co-factors in HPV malignant transformation is by direct biological interactions, 
such as modification of HPV replication and transcription, and/or indirect effects, 
such as inflammation and damage to the epithelial barrier that protects against HPV 
infection to facilitate the virus access to target epithelial cells. In the 1970’s labora-
tory studies demonstrated the ability of Herpes simplex virus-1 (HSV-1) and Herpes 
simplex virus-2 (HSV-2) to transform hamster cells [105]. The inconsistent HSV 
DNA detection in human cervical cancer samples created the ‘hit and run’ hypoth-
eses, which means that a virus may be involved in the initiation or promotion of 
malignant transformation, but is not required for the maintenance of the trans-
formed phenotype [106]. HSV-2 is an infectious agent that has been studied as a 
potential co-factor for cervical cancer. Several studies have demonstrated an inter-
action between HSV-2 and HPV in ‘in vitro’ transformation [107]. HSV-2 can sup-
press HPV gene expression [108]. HSV induce tumorigenic clones in keratinocytes 
that had been immortalized by HPV [108]. HSV is a co-factor in HPV-associated 
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cervical transforming mechanisms, not an etiological agent. Thus, laboratory data 
and epidemiological data are not consistent with a possible interaction of HSV-2 in 
HPV-associated epithelial transformation. A study of 200 human cervical cancer 
specimens failed to detect HSV-2 sequences using sensitive PCR methods [110]. 
HSV infection downregulate the secretory leukocyte protease inhibitor (SLPI) lev-
els and may impart a greater susceptibility for HPV16 infection by the annexin A2 
heterotetramer cell receptor (A2t), providing a mechanism to explain the etiologi-
cal link between HSV and HPV-associated cancers [111]. Other herpesviruses are 
reported to infect the cervix and have been demonstrated to transform epithelial 
cells in ‘in vitro’ models, which include cytomegalovirus (CMV) [112], human 
herpesvirus 6 (HHV-6) [113] and Epstein-Barr virus (EBV) [114], the co-infection 
with herpesviruses, especially CMV and EBV, may be involved in the integration 
of the HPV-16 genome and may contribute to the development of cervical cancer 
[115], but unfortunately there is no strong evidence of the potential role of these 
viruses in the HPV transforming mechanisms. On the other hand, Adeno-associated 
virus (AAV) may have a protective effect against HPV-associated transforming 
mechanisms. AAV is a helper- dependent parvovirus that needs for its replication 
the co-infection with other DNA viruses, such as adenovirus [116]. In ‘in vitro’ 
models, AAV inhibits the transforming effect of HPV and furthermore, HPV can 
support replication of AAV, a finding that is consistent with possible HPV/AAV 
co-infection in nature [117]. Scientific reports found that AAV suppressed papillo-
mavirus replication by its protein Rep 78 (an AAV major non-structural regulatory 
protein), and interferes with transcription factors and HPV promoter activity [118]. 
Nevertheless, AAV high levels decreased HPV replication, low levels increased it, 
and certain conditions increase the HPV transforming capacity [117]. By direct 
interaction between AAV proteins and cellular genes, AAV induces tumor cell dif-
ferentiation, down-regulates c-Fos and c-Myc genes, inhibits cell proliferation and 
reduces carcinogen-induced mutagenicity [119–121]. Finally, extensive experi-
mental and limited epidemiological evidence suggests that adeno-associated 
viruses (AAV) may have anti-oncogenic activity and has also anti-neoplastic effects 
that are independent of its proposed biological interaction with HPV [122]. Cervical 
cancer is increased in women who have human immunodeficiency virus (HIV) 
[123]; HIV-positive patient biomarkers, such as, HIV RNA level and CD4+ T-cell 
count, are associated with HPV infection risk and cervical cancer. It has been dem-
onstrated by ‘in vitro’ models that epithelial cells can be infected by HIV [124, 
125], and also have shown that HIV TAT protein can co-activate HPV [126, 127]; 
but unfortunately, there is not the same correlation when it is used an ‘in vivo’ 
infection model system [128–130]. The association between multiple HPV infec-
tion, low CD4 count and cytological abnormalities supports the interplay of viro-
logical and immunological factors in cervical cancer pathogenesis [131, 132]. HPV 
infection may predispose to HIV infection and facilitate its progression probably 
by interaction with HIV proteins enhancing effectiveness of HPV proteins, and 
perhaps contributing to cell cycle disruption [133]. At this time, it looks improbable 
that HPV-infected cervical epithelial cells could be co-infected with HIV, which 
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limits the idea that both viruses interact biologically at a molecular level. A micro-
bial agent that has been associated with HPV infected cervical cancer patients by 
epidemiological studies is Chlamydia trachomatis (C. trachomatis). Different pro-
posed mechanisms by which C. trachomatis increases the risk for cervical cancer 
have been described such as: (i) an anti- apoptotic effect, since infected cells are 
resistant to apoptosis by the C. trachomatis persistent infection [134, 135]. These 
anti-apoptotic effects result in an epithelial cells persistence and resistance that 
HPV co-infection follows the development of chromosomal abnormalities and 
increase the cervical dysplasia grade [136, 137]; (ii) its infection causes human 
cervical epithelial cells separate from each other due to the breakdown of the 
N-cadherin/β-catenin complex junctions in the epithelium and increases the basal 
cells exposure to HPV [138]; (iii) its infection is associated with squamous meta-
plasia and hypertrophic ectopy, which is a cervical neoplasia risk factor [139]; (iv) 
its persistent infection increases the HPV risk infection due to modulate immune 
factors like the inhibition of interferon (IFN) γ-inducible major histocompatibility 
complex (MHC) class II, as well as MHC class I expression [140, 141]; (v) by 
inhibition of NK cell function, decreasing the NK cells lytic capability, reducing 
TNFα and IFNγ production by NK cells and thereby decreasing antibody-depen-
dent cellular cytotoxicity [142]; (vi) its chronic infection is associated with a pre-
dominantly T-helper (Th2) (humoral immune) cytokine pattern, whereas Th1 
(cellular immune) cytokines participate in the control of intracellular microbes 
such as C. trachomatis and HPV [143]. A meta-analysis of HPV and C. thracomatis 
co-infection demonstrated that individuals infected with C. trachomatis have a 
higher risk of cervical cancer [144]. Based on this scientific evidence, it could be 
considered that it occurs an adaptive immune response to facilitate the HPV infec-
tion. MHC class I quantitative or qualitative alterations due to the presence of viral 
antigens can result in stimulation of natural killer (NK) cells that can kill a broad 
range of intracellular microbial infected cells without prior sensitization. During 
cervical inflammation, the immune response to microbial infection plays a role in 
HPV-associated tumorigenesis and explains the associations of precursor lesions 
and cervical cancer with a wide spectrum of pathogens, which include herpesvi-
ruses, C. trachomatis, Trichomonas vaginalis, Neisseria gonorrhoeae, Candida 
albicans and others [145]. The mechanisms by which inflammation might cause an 
increased risk for cervical cancer have been best described for C. trachomatis. 
Many of the cytokines that are secreted during C. trachomatis infection, including 
TNFα and IFNγ, could cause tissue damage by inducing apoptosis of uninfected 
cells; infiltrating macrophages releasing reactive oxygen species causes a mayor 
tissue damage [135, 145]. These effects result in partial disruption of the tissue bar-
rier and exposure of basal cells to HPV infection. Furthermore, the ROS released 
by infiltrating macrophages could cause host cell DNA damage and increase the 
risk for malignant precursor lesions and cervical cancer [146, 147], these proposed 
mechanisms have evolved from the association between inflammatory host 
responses and oxidative DNA damage [148]. There is no scientific evidence to have 
a direct effect of C. trachomatis on host DNA or on the transcription of HPV genes 
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though. A Korean group recently report that the predominance of A. vaginae, G. 
vaginalis and L. iners with a concomitant paucity of L. crispatus in the cervical 
microbiota was associated with CIN risk, suggesting that bacterial dysbiosis and its 
combination with oncogenic HPV may be a risk factor for cervical neoplasia [149]. 
The following is one of the last observations of the associated mechanisms of HPV 
multiple infections we want to refer to and what is the potential roles of the micro-
biome in cervicovaginal diseases. A few years ago, in our institutions we were 
evaluating an anti-HPV topical drug and using the most advanced methods, we had 
to detect the HPV pattern infection of these patients; we found a complex associa-
tion of multiple HR-HPV infections in patients according to the dysplasia grade, 
which means higher dysplasia grade higher number of HR-HPV types associated 
with the lesion [150]. We discuss the interpretation of the scientific evidence in a 
biological and clinical context, for analysis and future discussion and direction for 
microbiome in cancer research and particularly in human cancer associated to viral 
pathogens. The genomic medicine for the routine clinical use should be seen as a 
blueprint for the microbiome or better understood as ‘oncobioma’. These scientific 
evidences suggest that microbial dysbiosis (a biological state whereby host micro-
bial composition is unbalanced toward other micro- organisms compared to 
‘healthy’ host composition) is associated with malignant transformation. Whether 
these associations are causative and can therefore modulate initiation, progression, 
or cancer metastasis at this moment remains unclear.
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