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MAVS Mitochondrial antiviral-signaling protein
MDA5 Melanoma differentiation-associated protein 5
NK Natural killer cells
NKT Natural killer T cells
PBMC Peripheral blood mononuclear cells
ROS Reactive oxygen species
TLR Toll-like receptors

1  Plasmodium Infection and Disease

Malaria infection starts when an infected Anopheles mosquito injects Plasmodium 
sporozoites into the skin of the vertebrate host. After traversing the dermis, the para-
sites enter the circulation and home to the liver, initiating the hepatic stage of infec-
tion. Within the liver, hepatocyte traversal precedes parasite invasion and replication 
in the host cell, ultimately maturing into erythrocyte-infectious merozoites [1]. 
These are later released into the lumen of liver sinusoids [2] invading, developing, 
and multiplying inside erythrocytes, the blood stage of infection, associated with 
the establishment of disease and all its complications.

The blood stage of malaria is characterized by high cyclical fevers and elevated 
levels of inflammatory mediators in the circulation. Excessive and persistent inflam-
mation during P. falciparum infections contributes to severe pathology and to the 
development of associated complications such as cerebral malaria and severe malar-
ial anemia [3].

Acute malaria is always characterized by high fevers, but it is known that differ-
ent species of Plasmodium need to reach higher parasitemias to induce inflamma-
tory responses in the host. Although the mechanisms underlying this effect are not 
clear, it seems apparent that P. vivax is more effective at inducing inflammation and 
therefore needs lower parasitemias to induce a high fever response compared to  
P. falciparum [4]. This difference has also been observed in the levels of TNF com-
pared to parasitemia in patients, where P. vivax or P. ovale induce much higher 
levels of inflammation per infected erythrocyte compared to P. falciparum [5, 6], 
although this observation has been recently challenged [7, 8].

2  Parasite- and Host-Derived Inflammatory Molecules

The asymptomatic nature of the liver stage, the first step of Plasmodium infection in 
the mammalian host, has led to the long-lasting view that the parasite can establish 
and replicate within the host hepatocyte without being detected [1]. However, such 
notion has been challenged by the presence of inflammatory cell foci in the liver 
during exoerythrocytic parasite development [9–12], as well as by the mounting of 
a strong inflammatory reaction aiming at controlling Plasmodium hepatic burden, 
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as is the case of the rate-limiting enzyme of heme catabolism heme oxygenase 1 [9]. 
Taken together, these findings suggest that the host is able to sense Plasmodium 
hepatocyte infection and respond to it.

In contrast, the inflammatory nature of the blood stage of infection has long been 
recognized. As described by Golgi [13], the synchronized rupture of infected eryth-
rocytes in the peripheral circulation is followed by a peak of fever in malaria patients. 
This observation led to the hypothesis that the high levels of inflammation in malaria 
during the blood stage of infection were caused by molecules released from infected 
erythrocytes during parasite egress, including merozoites and erythrocyte cellular 
contents. The search for these molecules for the past century has led to the identifi-
cation of several pro-inflammatory molecules that are either derived directly from 
Plasmodium or generated as a result of infection from erythrocyte components.

Among the molecules generated by the parasite, glycosylphosphatidylinositol 
(GPI) anchors were identified early as inflammatory mediators [14]. These glyco-
lipid structures anchor parasite proteins to the plasma membrane in the merozoite 
[15] and activate toll-like receptors (TLR), preferentially TLR-2/TLR-6 and TLR-2/
TLR-1 heterodimers, but also TLR-4 homodimers [16]. Although purified GPI 
anchors induce an inflammatory response in mice [14], in vitro this response is 
downregulated in the presence of other P. falciparum lipids [17], which may explain 
why in vitro inflammatory responses do not require TLR-2 or TLR-4 [18]. The 
association of TLR-4 [19], TLR-2, TLR-1, and TLR-6 [20, 21] polymorphisms with 
malaria severity may be compatible with a role for GPI anchors in malaria inflam-
mation, but this association may also be caused by other Plasmodium-derived 
inflammatory mediators. The role of GPI in malaria-induced inflammation in 
patients remains unclear.

Another parasite-derived molecule with inflammatory effects is hemozoin, a 
crystal polymer of heme that Plasmodium generates after degradation of hemoglo-
bin within infected erythrocytes. Hemozoin is generated in the parasite’s food vacu-
ole and is released after erythrocyte rupture and merozoites egress. It is important to 
consider than the inflammatory properties of crystals, such as hemozoin, depend on 
the size, charge, and association with protein, lipids, or other elements of the crystal 
[22]. Different groups have found conflicting results regarding the inflammatory 
effects of hemozoin, which are probably due to the variations in the protocols used 
to obtain hemozoin that would result in crystals with different inflammatory charac-
teristics. When synthetic hemozoin, or also hemozoin purified from infected eryth-
rocytes and stripped of any binding molecules, was used as starting material, 
activation and binding to TLR-9 [23, 24] was observed. Inflammatory pathways 
dependent on nitric oxide and NF-kB [25], as well as activation of the NLRP3 
inflammasome [26, 27], were also identified.

It is likely that hemozoin obtained from cultured parasites that naturally rupture 
and release their contents would more accurately resemble the characteristics of the 
hemozoin generated during disease. This kind of hemozoin was used in studies that 
found parasite and host components bound to it, including Plasmodium DNA [28] 
and host fibrinogen [29]. The bound materials DNA and fibrinogen, not the hemo-
zoin per se, were found to mediate the inflammatory response observed in vitro 
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through the activation of TLR-9 and TLR-4 or the integrin CD11b/CD18, respec-
tively [28, 30]. Indeed, the inflammatory activity of hemozoin was lost after 
 treatment to remove associated proteins or DNA, probably because the proteins 
provide a link to bind DNA to the hemozoin crystal [31]. These results indicate that 
hemozoin could act as a “carrier” for other molecules, increasing their inflammatory 
potential. Another effect of hemozoin, also caused by other crystals, is the destabi-
lization of the phagosome [32], which results in the release of hemozoin and DNA 
to the cytosol of the phagocytic cell and in the activation of the AIM2 and NLRP3 
inflammasomes, respectively [31]. Accordingly, synthetic hemozoin is being devel-
oped as a vaccine adjuvant for other diseases [33, 34].

The “carrier” effect was also proposed for Plasmodium histones, which are bound 
to parasite DNA and mediate inflammation in vitro [35]. Additionally, immune com-
plexes formed by DNA and anti-DNA antibodies, which are found in high concen-
trations in the sera of malaria patients, were found to induce cytokine secretion from 
immune cells in vitro [36], suggesting that another Plasmodium DNA-carrier com-
plex is also contributing to the inflammatory pathway. Plasmodium DNA can acti-
vate not only TLR-9, which recognizes CpG motifs, but also an alternative 
inflammatory pathway that recognizes AT-rich hairpin motifs, involves STING/
TBK1/IRF3 signaling, and results in the production of type I interferon [37].

Interestingly, whole lysates of P. falciparum-infected erythrocytes injected into 
mice are more immunogenic in wt compared to TLR-9-deficient mice, indepen-
dently of Plasmodium DNA [24]; however, infection of TLR-9-deficient mice with 
P. berghei did not show a reduction in inflammatory cytokine response [38, 39]. 
Studies in malaria patients have found an association of TLR-9 polymorphisms with 
malaria susceptibility and development of anemia [40, 41], but not with malaria 
severity [19, 40, 42]. The role of hemozoin and Plasmodium DNA in the inflamma-
tory response in malaria patients is still not well defined.

Plasmodium RNA is probably also an inflammatory activator during the blood 
stage of infection, since TLR-7, which recognizes ssRNA, was found to be essential 
for cytokine production in mice [39]. Since TLR-7 and 9, which recognize ssRNA 
and dsDNA, respectively, are not found in the plasma membrane of immune cells, 
the “carrier” effect is thought to facilitate phagocytosis of the nucleic acids, allow-
ing the contact with the endosomes in the phagolysosome. In the liver stage, how-
ever, it is established that Plasmodium dsRNA is sensed by the host hepatocyte by a 
mechanism involving the intracellular RIG-I-like receptor melanoma differentiation- 
associated protein 5 (MDA5 also known as IFIH1), its adaptor protein mitochon-
drial antiviral-signaling protein (MAVS), and the transcription factors IRF3 and 
IRF7. Notwithstanding, the ensuing immune response is partially MDA5 indepen-
dent, supporting the idea that several parallel mechanisms could contribute to 
Plasmodium recognition by the host during the liver stage of infection [43]. The 
question remains, however, on how Plasmodium spp. dsRNA becomes accessible to 
the host cytosolic receptors. Several hypotheses can be put forward including: (1) 
the active transport of this ligand across the parasitophorous vacuole, (2) passive 
release of dsRNA through vacuolar membrane pores, (3) leakage of dsRNA into the 
cytosol from nonviable parasites, and/or (4) vesicular transfer of parasite dsRNA 
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from infected cells to liver-resident immune cells, such as Kupffer cells. Overall, we 
cannot exclude that several of these mechanisms operate simultaneously to trigger 
the immune response against Plasmodium during the liver stage of infection.

Another pro-inflammatory mediator that could contribute to the inflammatory 
response to Plasmodium infection is precipitated uric acid. Plasmodium-infected 
erythrocytes import hypoxanthine, which is the precursor of uric acid, for the syn-
thesis of nucleic acids required during parasite replication. After requirements for 
hypoxanthine decrease at the end of the replication cycle, hypoxanthine accumu-
lates in the infected erythrocyte [44, 45]. Precipitates of uric acid are also observed 
in the cytoplasm of the Plasmodium parasitophorous vacuole [46]. Upon rupture of 
infected erythrocytes, precipitates of uric acid and soluble hypoxanthine, which 
would be degraded into uric acid in the tissues, are released and can become inflam-
matory [44–46]. Indeed, activation of the NLRP3 inflammasome by uric acid pre-
cipitates is well characterized [47], and activation of both NLRP3 and NLRP12 
inflammasomes has been observed in infected mice and malaria patients [48], pos-
sibly caused by hemozoin and/or uric acid crystals. Uric acid was also found to 
mediate the activation of mast cells in a mouse model of malaria, leading to the 
regulation of a subset of dendritic cells, which then activate pathogenic CD8+ T cell 
responses directed against the parasite [49]. Interestingly, treatment of malaria 
patients with an inhibitor of xanthine oxidase, an enzyme that produces uric acid, 
results in a more rapid decrease of the inflammatory response [50], suggesting that 
uric acid may be involved in the inflammatory response in patients.

Microvesicles are shed by almost all cell types in response to different stimuli, 
such as activation or response to environmental stress [51]. Microvesicles derived 
from Plasmodium-infected erythrocytes, induced probably in response to oxidative 
stress during infection [52], can activate macrophages and trigger the secretion of 
inflammatory cytokines in vitro through the activation of TLR-4 [53, 54]. Endothelial 
microvesicles can also induce the proliferation of T cells [55]. In malaria patients, 
increased levels of circulating microvesicles are derived preferentially from unin-
fected erythrocytes, but also infected erythrocytes, lymphocytes, platelets, and 
endothelial cells [52, 56, 57]. Correlations of microvesicle levels with inflammatory 
markers or disease severity has been observed in malaria patients. Microvesicle 
levels correlate with TNF in cerebral malaria patients [58], erythrocyte [52] and 
endothelial [57] microvesicles correlate with the severity of P. falciparum malaria, 
and platelet microvesicles also correlate with fever in P. vivax infections [56]. It is 
still not clear whether microvesicles are causing inflammation and malaria severe 
pathology in patients or their formation is induced as a consequence of the high 
inflammation [59], which is characteristic of severe malaria.

Although Plasmodium converts heme derived from hemoglobin degradation into 
nontoxic hemozoin, which in itself can be inflammatory (see below), up to 40 % of 
the hemoglobin of an infected red blood cell can be released and oxidized. This 
leads to the formation of toxic heme in the circulation of infected individuals [60]. 
In vitro and in vivo experiments suggest that heme induces apoptosis of brain vas-
cular endothelial cells, which affects the stability of the blood-brain barrier in exper-
imental cerebral malaria [61, 62]. Heme-induced apoptosis of brain vascular 
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endothelial cells or endothelial progenitor cells was shown to be mediated by the 
transcription factor STAT3 [61, 62], the tumor protein p73 [63], or TLR-4-induced 
CXCL10 [64].

Another source of inflammation in malaria appears to be oxidative stress that is 
generated during infection. Malaria patients exhibit high levels of oxidative stress, 
as measured by lipid peroxidation, and at the same time lower anti-oxidative factors 
compared to healthy controls [65–68]. The source of increased reactive oxygen spe-
cies (ROS) leading to oxidative stress has been subject of speculation. While some 
reports suggest that ROS might be produced by the parasite [69–71], others indicate 
that the human host can be a potent source of ROS to combat Plasmodium, most 
notably through the oxidative burst of phagocytes [72, 73] and ROS-producing 
enzymes like xanthine oxidase [74]. This implicates that ROS production by the 
host might be an important inflammatory response to control parasitemia; however, 
elevated levels of oxidative stress also correlate with increased disease severity dur-
ing the infection [75, 76], suggesting a role in pathology. It is not clear whether 
oxidative stress is a cause or consequence of inflammation during malaria. Given 
the severe nature of complications often leaving traces of oxidative damage like 
impaired memory after cerebral malaria, the use of antioxidants as adjunctive ther-
apy has been discussed. Although of great potential benefit, antioxidants could 
increase parasite survival by interfering with the host inflammatory response or the 
action of antimalarial drugs (reviewed in [77]).

All the parasite and host components described above are able to induce inflam-
matory reactions in vitro and/or when injected in mice, but their relative importance 
in the inflammation observed in malaria patients remains unclear. Assessing their 
real contribution during disease has not been possible because of the difficulties in 
specifically inhibiting each of them in vivo; therefore, most of the available evi-
dence comes from correlations of inflammatory parameters in the blood of malaria 
patients that cannot establish a causative relation. In vitro inhibition of DNA and/or 
uric acid is possible using P. falciparum lysates or merozoites treated with DNAse 
and/or uricase, which suggest an important role for these molecules in the activation 
of human dendritic cells [18, 46]. The role of hemozoin in the inflammatory response 
in vivo may now be tested in mice using P. berghei parasites that produce very low 
levels of hemozoin [78]. Inhibition of uric acid formation in vivo is possible by 
treatment of malaria patients with allopurinol, an inhibitor of the enzyme that pro-
duces uric acid. In this case, a more rapid decrease of the inflammatory response 
was observed in treated patients [50].

There is an unsolved paradox in the study of the innate immune response to 
malaria blood stage, where patients present all signs of an intense inflammatory 
response, including high fevers and circulating inflammatory cytokines, but innate 
immune cells in vitro respond weakly to the parasite when incubated together. 
When naïve peripheral blood mononuclear cells (PBMCs), isolated dendritic cells, 
or macrophages are incubated with P. falciparum-infected red blood cells in vitro, 
the levels of inflammatory cytokines released, such as TNF, are undetectable or 
substantially lower than responses triggered by well-characterized activators (LPS, 
CpG, or β-hematin [79, 80]) or inflammasome activators (uric acid). Conversely, 
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cells from infected individuals were much more responsive to parasite stimuli in the 
secretion of cytokines [81, 82] when compared to cells from healthy individuals or 
recovered patients. These results suggest that there still may be components of the 
innate immune response to blood-stage Plasmodium infection that have not been 
identified yet and play an important role during infection.

3  Cellular Responses During Malaria

3.1  Hepatocytes

Within hepatocytes, Plasmodium parasites settle inside a parasitophorous vacuole 
where it undergoes a remarkable transformation differentiating into highly meta-
bolically active merozoites. By the end of the liver stage, as the vacuole expands, a 
single parasite generates thousands of merozoites. During this process plasmodial 
dsRNA gains access to the host cell cytosol and activates the MDA5/MAVS/IRF3/7 
cytosolic signaling pathway leading to the release of type I interferon (IFN) into the 
extracellular environment. The initial signal is consequently propagated in an auto-
crine and paracrine manner through the activation of the interferon alpha receptor 
(Ifnar) in neighboring hepatocytes via the production of interferon-stimulated genes 
(ISGs). This type I IFN-mediated response enables the host to control hepatic para-
site burden. However such control does not seem to be mediated directly by hepato-
cytes but rather relies on the recruitment of accessory immune cells [43, 83]. In fact, 
liver-stage infection results in the recruitment of natural killer T (NKT) cells in an 
IFNAR-dependent manner, that through an IFNγ-mediated mechanism are respon-
sible for the control of Plasmodium liver infection [83]. Although IFNγ has been 
shown to directly kill liver-stage parasites [84, 85], it is possible that an IFNγ- 
independent killing mechanism within the hepatocyte could also take place.

3.2  Granulocytes

The levels of circulating neutrophils during malaria are significantly increased [86] 
and correlate with inflammation and severe disease [87, 88]. Adoptive transfer of 
neutrophils from infected rats provided partial protection against infection, suggest-
ing that they play a role in protection against malaria [89]. However, the chemokine 
CXCL10 that is secreted by neutrophils during P. berghei infection in mice inhibits 
the control of blood-stage parasitemia and is required for the development of exper-
imental cerebral malaria [90], although depletion of neutrophils did not prevent the 
development of this pathology [91]. Interestingly, activated neutrophils correlate 
with cerebral malaria vasculopathy, which presents with higher cytoadhesion levels 
of infected erythrocytes to endothelial cells in the brain [92], suggesting a role for 
neutrophils in P. falciparum malaria-induced pathology. In P. vivax infections 
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expression of type I interferon in neutrophils was correlated with liver damage [93]; 
however, neutrophils present an atypical activation profile since phagocytic activity 
and superoxide production were increased but molecular markers of activation and 
secretion of cytokines are very low in response to stimulation [94].

Mast cells contribute to parasite clearance and TNF production in rodent malaria 
[95] and appear to have a role in promoting innate immune activation since they 
produce Flt3 ligand during malaria in mice, which, in turn, induces proliferation of 
a subpopulation of dendritic cells. Both Flt3 ligand and this subpopulation of den-
dritic cells are also elevated in malaria patients [49].

3.3  Monocytes and Macrophages

Macrophages are essential for clearance of infected erythrocytes as observed in 
mouse models of infection [96, 97]. Macrophages efficiently phagocytose infected 
erythrocytes, as early as ring stage [98], which are subsequently degraded in acidic 
phagosomes [99]. Non-opsonic phagocytosis is mediated by binding of infected 
erythrocytes to CD36 [100], while opsonic phagocytosis is mediated by comple-
ment receptor-1 [101, 102] and Fc-γ receptors [103].

3.4  Dendritic Cells

Dendritic cells (DCs) are crucial for the initiation of the adaptive immune responses 
and regulate both innate and adaptive immunity to infections. DCs activate, or 
mature, in response to different pathogen signals, enabling their capacity as antigen- 
presenting cells that efficiently activate naïve T cells [104]. In vitro studies incubat-
ing DCs with Plasmodium showed efficient phagocytosis and phagosomal 
maturation of infected erythrocytes [99], but demonstrate that there is a dose-depen-
dent inhibition of DC maturation [105] that takes place only at high concentrations 
of infected erythrocytes, where DCs do not upregulate co-stimulatory molecules 
[106]. Studies using isolated human DCs and Plasmodium lysates have found 
upregulation of classical co-stimulatory molecules in DCs [46, 79]. Also, plasmacy-
toid DCs are activated through TLR-9 by infected erythrocytes [79]. During early 
infection [107] and in asymptomatic patients [108], the level of expression of sur-
face HLA-DR in circulating DCs maintains normal levels, but during the acute 
phase of disease, these levels are reduced [49, 109, 110]. The decreased levels of 
HLA-DR could affect antigen presentation and T cell activation during disease, 
although their role in malaria immune response remains unclear.

The dendritic cell cytokine response to Plasmodium in vitro was found to be low 
for common cytokines such as IL-12, IL-8, IL-6, IL-1β, IL-10, and TNF [80, 105], 
with the exception of IFN-α that is secreted by plasmacytoid DCs [79]. However, 
other authors found upregulation of inflammatory cytokines upon incubation with 
infected erythrocytes [111, 112].

A. Götz et al.



11

When DCs were extracted from malaria patients, they show an impaired capacity 
to mature, capture, and present antigens to T cells. They also undergo high levels of 
apoptosis probably as a result of increased IL-10 during infection [113, 114]. It 
appears that malaria, despite the high levels of inflammation, does not induce clas-
sical activation of DCs. However, studies in patients are limited to circulating DCs, 
and it is possible that effective, mature DCs are migrating into tissues and lymphatic 
organs and are not being detected in the studies.

During severe malaria, the numbers of BDCA3 DCs, which are a minor subset of 
myeloid DCs, are increased in peripheral blood [115] and correlate with high levels 
of Flt3L, a factor that induces expansion of DCs. Other DC populations, BDCA1 
and plasmacytoid DCs (BDCA2), were not increased in malaria patients [49]. 
Conversely, in early uncomplicated human malaria infections, the frequency of 
BDCA3 DCs was not increased, but plasmacytoid DCs were [116], suggesting that 
the DC response may vary at different stages of infection.

3.5  NK Cells

In vitro studies show that incubation of PBMC with P. falciparum-infected erythro-
cytes results in the rapid activation of natural killer (NK) cells to secrete IFN-γ 
[117]. This activation requires the help of cytokines such as IL-2, IL-12, and IL-18 
[117–119] from T cells but also contact-dependent signals from monocytes and 
dendritic cells [120]. In mice, NK cells are important for the control of parasitemia 
during early infection probably through the production of IFN-γ [121, 122]. Also in 
human malaria infections, restimulation of PBMCs show that NK cells contribute 
moderately to the production of IFN-γ [107].

3.6  γδ T Cells

γδ T cells are a minor population of T cells in the peripheral circulation that recog-
nize self and non-self antigens without the restriction of MHC antigen presentation. 
γδ T cells expand during malaria to constitute a high percentage of circulating  
T cells in humans infected with P. falciparum [123, 124]. They get activated by 
parasite phosphoantigens produced by Plasmodium apicoplast [125] and release 
cytotoxic granules containing granulysin that are effective against merozoites [126]. 
γδ T cells proliferate and produce IFNγ and TNF after in vitro stimulation with 
P. falciparum- infected red blood cells which is dependent on IL-2 or autologous 
irradiated PBMC [127–131]. γδ T cells are the main producers of IFNγ in response 
to P. falciparum in vitro [127] and upon in vitro restimulation of PBMCs from 
humans infected with P. falciparum [107]. In mice, γδ T cells contribute to parasite 
clearance [132–134], probably due to the high production of IFNγ and their role in 
activation of dendritic cells [132].
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In human malaria patients, γδ T cells are important contributors to inflammatory 
cytokines and have been associated with severe malaria [129]. When single experi-
mental P. falciparum infections were analyzed, both γδ T cells and NK cells showed 
an enhanced IFNγ response upon restimulation with P. falciparum-infected red 
blood cells, even several weeks after the parasite clearance, indicating a memory- 
like activation [107, 135]. However, when patients with repeated exposure to malaria 
in endemic areas were analyzed, loss and dysfunction of γδ T cells was observed in 
the most exposed patients, which is associated with reduced symptoms and clinical 
tolerance upon reinfection [136]. This suggests that γδ T cells have roles in both 
clearance of the parasite as well as pathology.

4  Cytokine Responses in Malaria

The inflammatory response during acute malaria is often described as a “cytokine 
storm” to convey that there are high levels of a broad range of cytokines in the cir-
culation. Earlier studies already correlated the levels of IFN-α and IFN-γ with levels 
of parasite [137, 138] that were followed up by the confirmation that plasma levels 
of inflammatory cytokines—IFN-γ, TNF, IL1β, and IL-6—are elevated in patients 
with malaria and directly correlate with disease severity in P. falciparum and  
P. vivax infections [139–150]. Gene expression profiles also confirm high levels of 
inflammatory cytokines in peripheral blood mononuclear cells [148] and in tissues 
such as the brain of cerebral malaria patients [151, 152]. The use of mice models of 
malaria has allowed the continued evaluation of cytokine production during a self- 
resolving infection, where it was observed that there is an early production of pro- 
inflammatory cytokines that start decreasing before the parasitemia [153].

TNF is a pro-inflammatory cytokine produced early in mouse Plasmodium infec-
tion that is important in the clearance of parasites both in the liver and blood stages 
[154–157]. This protection is induced through the generation of nitric oxide [158]. 
Studies on malaria patients showed that TNF not only correlates with disease sever-
ity but was ten times as high in fatal cases of cerebral malaria [144]. Further studies 
confirmed the importance of TNF in malaria pathology showing that different 
alleles of the promoter region of TNF confer either decreased or increased suscep-
tibility to cerebral malaria and severe anemia in populations of children in endemic 
areas [159–163]. High levels of TNF are also correlated with a rapid parasitological 
cure in patients supporting the hypothesis that inflammatory cytokines were effec-
tive and necessary for clearance of the parasite, but could also lead to severe forms 
of the disease [143]. Based on the evidences for the strong association of TNF with 
malaria severity, a clinical trial for the use of anti-TNF antibodies as adjunctive 
treatment for cerebral malaria patients was performed. However, no improvement in 
survival was found in the patients [164], a finding that revealed the complexity of 
the antimalarial immune response and our limited knowledge in the mechanisms 
underlying immune-mediated pathology.

Another inflammatory cytokine that has been implicated in parasite clearance 
and is highly increased during acute malaria is IFN-γ, with the particularity that 
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increased levels of this cytokine during liver-stage infection were correlated with 
lack of blood-stage development in humans [165] and monkeys [166], suggesting 
that this cytokine may be important to inhibit progression of the disease, a finding 
that is specially relevant for vaccines targeting the liver stage. Studies in mice have 
shown that IFN-γ is key in the elimination of Plasmodium, since infected mice 
given exogenous IFN-γ showed lower parasitemias and delayed mortality, while 
mice deficient in the IFN-γ gene or treated with anti-IFN-γ monoclonal antibodies 
had higher parasitemia and increased mortality [153, 155, 156, 167–175].

Mouse studies on IL-12 and IL-18 have established that these cytokines contrib-
ute to parasite clearance [176]. The increased protection granted by these cytokines 
is probably mediated by the positive effect on IFN-γ production [175, 177, 178]. 
However, high IFN-γ levels can be dangerous, since experimental Plasmodium 
infections also induce liver injury mediated by IL-12-dependent IFN-γ production 
[179, 180].

Regulatory, or anti-inflammatory, cytokines such as IL-10 are also highly 
increased during malaria and correlate with severe disease [149, 181, 182]; although 
in fatal severe cases, low IL-10 was observed in late stages as death approached 
[183]. Since regulatory cytokines are probably elevated as a response to the high 
levels of pro-inflammatory cytokines, it is considered more informative to study the 
ratio between both types of cytokine responses rather than the absolute levels of 
each specific cytokine. Different studies have confirmed that, in general, high pro- 
inflammatory versus regulatory cytokine ratios are indicative of severe disease, with 
specific examples such as high ratios of IL-6/IL-10 or IFN-γ/IL-10 being associated 
with severe P. falciparum malaria [139, 183]. However, the ratios of TGF-β1/IL-12 
and IL-10/IL-12 were significantly higher in the severe malaria patients, suggesting 
that the generally considered pro-inflammatory cytokine IL-12 could have protec-
tive effects [184]. Further studies have shown that high IL-10/TNF ratios were 
found in children with uncomplicated malaria, while a low IL-10/TNF ratio is asso-
ciated with malarial anemia in falciparum patients [184–187]. The role of IL-10 in 
malaria anemia is also supported by the finding that different IL-10 promoter hap-
lotypes that result in low levels of IL-10 increase susceptibility to severe anemia in 
falciparum patients [188]. As observed before for inflammatory cytokines that con-
tribute to parasite clearance but can promote malaria-associated pathologies, high 
levels of regulatory cytokines appear to be protective against severe malaria compli-
cations but induce a less effective clearance of P. falciparum parasites [189, 190].
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