
Inference of Delayed Biological Regulatory
Networks from Time Series Data

Emna Ben Abdallah1(B), Tony Ribeiro1, Morgan Magnin1,2, Olivier Roux1,
and Katsumi Inoue3

1 Institut de Recherche en Communications et Cybernétique de Nantes, LUNAM
Université, École Centrale de Nantes, IRCCyN UMR CNRS 6597,

1 rue de la Noë, 44321 Nantes, France
{emna.ben-abdallah,olivier.roux}@irccyn.ec-nantes.fr

2 National Institute of Informatics,
2-1-2, Hitotsubashi, Chiyoda-ku, Tokyo 101-8430, Japan

3 Department of Computer Science, Tokyo Institute of Technology,
2-12-1 Oookayama, Meguro-ku, Tokyo 152-8552, Japan

Abstract. The modeling of Biological Regulatory Networks (BRNs)
relies on background knowledge, deriving either from literature and/or
the analysis of biological observations. But with the development of high-
throughput data, there is a growing need for methods that automatically
generate admissible models. Our research aim is to provide a logical app-
roach to infer BRNs based on given time series data and known influ-
ences among genes. In this paper, we propose a new methodology for
models expressed through a timed extension of the Automata Networks
[22] (well suited for biological systems). The main purpose is to have a
resulting network as consistent as possible with the observed datasets.
The originality of our work consists in the integration of quantitative
time delays directly in our learning approach. We show the benefits of
such automatic approach on dynamical biological models, the DREAM4
datasets, a popular reverse-engineering challenge, in order to discuss the
precision and the computational performances of our algorithm.

Keywords: Inference model · Dynamic modeling · Delayed biological
regulatory networks · Automata network · Time series data

1 Introduction

With both the spread of numerical tools in every part of daily life and the
development of NGS methods (New Generation Sequencing methods), like DNA
microarrays in biology, a large amount of time series data is now produced [6,8,
18]. This means that the produced data from the experiments led on a biological
system grows drastically. The newly produced data - as long as the associated
noise does not raise an issue with regard to the precision and relevance of the
corresponding information - can give us some new insights on the behavior of a
system. This justifies the urge to design efficient methods for inference.
c© Springer International Publishing AG 2016
E. Bartocci et al. (Eds.): CMSB 2016, LNBI 9859, pp. 30–48, 2016.
DOI: 10.1007/978-3-319-45177-0 3

Inference of DBRNs from Time Series Data 31

Reverse engineering of gene regulatory networks from expression data have
been handled by various approaches [14,16,29,34]. Most of them are only sta-
tic. However, other researchers are rather focusing on incorporating temporal
aspects in inference algorithms. The relevance of these various algorithms have
been recently assessed in [15]. The authors of [17] tackled the inference prob-
lem of time-delayed gene regulatory networks through Bayesian networks. As this
is a complex problem, in [33], the authors propose a Time-Window-Extension
Technique based on time series segmentation in different successive phases. These
approaches take gene expression data into account as input and generate the
associated regulations. But the discrete approaches that simplify this problem by
abstractions, need to determine the relevant thresholds of each gene to define its
active and inactive state. Various approches have been designed to tackle the dis-
cretization problem. We can cite for example [33], in which the authors have pro-
posed an alternative methodology that considers not a concentration level, but
the way the concentration changes (in other words: the derivative of the function
giving the concentration w.r.t time) in the presence/absence of one regulator. On
the other hand, the major problem for modeling lies on the quality of the expres-
sion data. Indeed, noisy data may be the main origin of the errors in the inference
process. Thus, the pre-processing of the biological data is crucial pertinence of the
inferred relations between components. In this work, the input data is considered
to be pre-processed and the result is reliable discretized time series data.

In this paper, we aim to provide a logical approach to tackle the learning of
qualitative models of biological dynamic systems, like gene regulatory networks.
In our context, we assume the set of interacting components as fixed and we
consider the learning of the interactions between those components. As in [3], in
which the authors targeted the completion of stationary Boolean networks, we
suppose that the topology of the network is given, providing us the influences
among each gene as background knowledge. From time series data of the evo-
lution of the system, given its topology, we learn the dynamics of the system.
The main originality of our work is that we address this problem in a timed
setting, with quantitative delays potentially occurring between the moment an
interaction activated and the moment its effect is visible.

During the past decade, there has been a growing interest for the hybrid
modeling of gene regulatory networks with delays. These hybrid approaches con-
sider various modeling frameworks. In [19], the authors hybridize Petri Nets: the
advantage of hybrid with regard to discrete modeling lies in the possibility of
capturing biological factors, e.g., the delay for the transcription of RNA poly-
merase. The merits of other hybrid formalisms in biology have been studied, for
instance timed automata [28], hybrid automata [2] and boolean representation
[21]. Finally, in [7], the authors investigate a direct extension of the discrete
René Thomas’ modeling approach by introducing quantitative delays. These
delays represent the compulsory time for a gene to turn from a discrete quali-
tative level to the next (or previous) one. They exhibit the advantage of such a
framework for the analysis of mucus production in the bacterium Pseudomonas
aeruginosa. The approach we propose in this paper inherits from this idea that
some models need to capture these timing features.

32 E. Ben Abdallah et al.

2 Background

The definition and semantics of automata networks is presented in Sect. 2.1.
The enrichment of the automata networks with delays and the corresponding
new semantics is presented in Sect. 3.

2.1 Automata Network

Definition 1 introduces the Automata Network (AN) [22–24] as a model of finite-
state machines having transitions between their local state conditioned by the
state of other automata in the network. A local state of an automaton is noted
by ai, where a is the automaton identifier, and i is the expression level within
a. At any time, each automaton has exactly one active local state, and the set
of active local states is called the global state of the network.

The concurrent interactions between automata are defined by a set of local
transitions. Each local transition has this form τ = ai

�→aj , with ai, aj being
local states of an automaton a called respectively origin and destination of t
and � is a (possibly empty) set of local states of automata other than a (with at
most one local state per automaton).

Notation: Given a finite state A, ℘(A) is the power set of A. Given a network
N , state(N, t) is the state of N at a time step t ∈ N.

Definition 1 (Automata Network). An Automata Network is a triple
(Σ,S, T) where:

– Σ = {a, b, . . . } is the finite set of automata identifiers;
– For each a ∈ Σ, S(a) = {ai, . . . , aj}, is the finite set of local states of automa-

ton a; S =
∏

a∈Σ S(a) is the finite set of global states;
LS = ∪a∈ΣS(a) denotes the set of all the local states.

– T = {a �→ Ta | a ∈ Σ}, where ∀a ∈ Σ, Ta ⊂ S(a) × ℘(LS \ S(a)) × S(a) with
(ai, �, aj) ∈ Ta ⇒ ai 	= aj, is the mapping from automata to their finite set of
local transitions.

Example 1. The Fig. 1 represents an Automata Network, AN = (Σ,S, T) with
4 automata (Σ = {a, b, c, d}) such that S(a) = {a0, a1}, S(b) = {b0, b1}, S(c) =
{c0, c1, c2}, S(d) = {d0, d1, d2} and 5 local transitions,

T = { b0
{a1}−→b1, a1

{b1,d2}−→ a0, c2
{a1}−→c1, d2

{a0}−→d1, b1
{a1,c2}−→ b0, }.

A global state of a given AN consists in a set of all active local states of each
automaton in the network. The active local state of a given automaton a ∈ Σ
in a state ζ ∈ S is noted ζ[a]. For any given local state ai we also note, ai ∈ ζ if
and only if ζ[a] = ai. For each automaton, it cannot have more than one active
local state at one global state.

Definition 2 (Playable Local Transition). Let AN = (Σ,S, T) be an
Automata Network and ζ ∈ S, with ζ = state(AN , t). We note Pt the set of
playable local transitions in AN at time step t by:
Pt = { ai

�→aj ∈ T | � ⊆ ζ ∧ ai ∈ ζ with state(AN , t) = ζ}.

Inference of DBRNs from Time Series Data 33

a

0

1

b

0

1

c

0

1

2

d

0

1

2

b1, d2 a1

a1 a0

a1, c2

Fig. 1. Example of Automata Network with 4 automata: a, b, c and d presented by
labeled boxes and their local states are presented by circles (for instance a is either
at level 0 or 1). A local transition is a labeled directed edge between two local states
within the same automaton: its label stands for the set of necessary conditions local
states of the automata to play the transition. The grayed circles stand for the global
state: 〈a1, b0, c2, d2〉.

The dynamics of the AN is performed thanks to the global transitions. Indeed,
the transition from one state ζ1 to its successor ζ2 is satisfied by a set of the
playable local transitions (Definition 2) at ζ1.

Definition 3 (Global Transitions). Let AN = (Σ,S, T) be an Automata
Network and ζ1, ζ2 ∈ S, with ζ1 = state(AN , t) and ζ2 = state(AN , t + 1). Let
Pt be the set of playable local transitions at t. We note Gt the power set of global
transitions at t:

Gt := ℘(Pt)

In the semantics that we are based on, parallel application of local transitions
in different automata is permitted but it is not enforced. Thus the set of global
transitions is a power set of all the playable local transitions (also empty set).

3 Timed Automata Networks

In some dynamics it is crucial to have information about the delays between two
events (two states of a AN). The discrete transition, described above, cannot
exhibit this information: we just process chronological information, that the state
ζ2 will be after ζ1 in the next step but it is not possible to know chronometry,
i.e., how much time this transition takes to occur and whether it blocks some
transitions during this time. In fact some local transitions could not be played
any more because of concurrency about shared resources (necessary components
to play the transition) between them. We thus need to restrain the general
dynamics to capture more realistic behavior w.r.t biology. So we propose in
this section to add the delays in the local transitions attributes and give the
associated semantics that we based on to infer biological networks.

Definition 4 (Timed Automata Network (T-AN)). Timed Automata
Network is a triple (Σ,S, T) where:

34 E. Ben Abdallah et al.

– Σ = {a, b, . . . } is the finite set of automata identifiers;
– For each a ∈ Σ, S(a) = {ai, . . . , aj}, is the finite set of local states of automa-

ton a; S =
∏

a∈Σ S(a) is the finite set of global states;
LS = ∪a∈ΣS(a) denotes the set of all the local states.

– T = {a �→ Ta | a ∈ Σ}, where ∀a ∈ Σ, Ta ⊂ S(a) × ℘(LS \ S(a)) × S(a) × N

with (ai, �, aj , δ) ∈ Ta ⇒ ai 	= aj, is the mapping from automata to their finite
set of timed local transitions.

To model biological networks where quantitative time plays a major role, we
will use T-AN (Timed Automata Network). This formalism enriches AN with
timed local transitions: ai

�→
δ

aj . In the latter, δ is called a delay and represents

the time needed for the transition to be performed. When modeling a regulation
phenomenon, this allows to capture the delay between the activation order of
the production of the protein and its effective synthesis. and the synthesis of the
product.

We note ai
�→
δ

aj ∈ T ⇔ (ai, �, aj , δ) ∈ T (a) and ai
�→ aj ∈ T ⇔ ∃δ ∈

N, ai
�→
δ

aj ∈ T . Given τ = ai → aj ∈ T , orig(τ) = ai, dest(τ) = aj . Definition 2

also applies to timed local transitions.
Considering delays in the evolution of timed automata networks creates con-

currency between the timed local transitions. This concurrency is mainly justified
by the shared resources between local transitions. Indeed, transitions that have
the same origins and/or destinations could not be fired synchronously. Besides,
during the delay of the execution of a transition τ1, it is possible that another
transition τ2 could be activated. Then we need to take care of the following
possible conflicts between resources: transition τ2 may change the local states
of the automata participating in τ1. We make the following assumptions, that
is similar to the one adapted in [12]: we consider τ2 needs to be blocked until
the current transition τ1 finishes. Nevertheless, we allow the resources of τ1 to
participate to other transitions. In addition we do not forbid the process involved
in orig(τ1) to participate to other transition τ2 if and only if that the remaining
delay(τ1) is greater than delay(τ2) (see Definition 5). Those considerations lead
to the followings definitions.

Definition 5 (Blocked Timed Local Transition). Let AN = (Σ,S, T) be
a T-AN and t ∈ N. Let P be a set of pairs T × N. The set of blocked timed
local transitions of AN by P at t is defined as follows:

B(AN , P, t) := {ai
�→
δ

aj ∈ T | ∃(bk
�′
→
δ′

bl, t
′) ∈ P such that (a = b) ∨(ai ∈

�′ ∧ δ′ > t′ − (t + δ)) ∨(bk ∈ � ∧ δ′ < t′ − (t + δ))}

In Definition 5, if P is the set of currently ongoing timed local transition, it
allows us to prevent the execution of transitions that would alternate the resources
currently being used or that would rely on resources that will be modified before
the end of those transitions. Let t1 be a transition such that τ1 = ai

�→
δ

aj is fired

at time step t. So t + δ is the ending time of τ1 and (t′ − (t + δ)) is the interval

Inference of DBRNs from Time Series Data 35

of time between the ending of the transition τ2 = bk
�→ bl
δ′

and the beginning of

transition τ1 with t′ > t. According to the Definition 5, τ2 is blocked if ai (resp.
bk) is a necessary resource for τ2 (resp. τ1) and the τ1 (resp. τ2) finishes before τ2
(resp. τ1): δ′ > t′ − (t + δ) (resp. δ′ < t′ − (t + δ)) i.e. ai (resp. bk) is not available
to participate in the transition τ2 (resp. τ1) during δ′ (δ).

Definition 6 (Fireable Timed Local Transition). Let AN = (Σ,S, T) be
a T-AN, ζ ∈ S the state of AN at t ∈ N. Let P be a set of pairs T × N and
B(AN , P, t) be the set of blocked timed local transitions of AN by P at t. The
set of fireable local transitions of AN in ζ w.r.t. P at t is defined as follows:

F (AN , ζ, P, t) := {ai
�→aj ∈ T \ B(AN , P, t) | � ⊆ ζ, ai ∈ ζ}

Definition 6 extends the notion of playable transition by considering con-
curencies with the currently ongoing transition of P .

Definition 7 (Set of Fireable Sets of Timed Local Transition). Let
AN = (Σ,S, T) be a T-AN, ζ ∈ S the state of AN at t ∈ N. Let P be a set of
pairs T × N and F (AN , ζ, P, t) the set of fireable local transitions of AN in ζ
w.r.t. P at t. The set of firable sets of timed local transition of AN in ζ w.r.t.
P at t is defined as:

SFS(AN , ζ, P, t) := {FS ⊆ F (AN , ζ, P, t) |

(∀τ = (bk
�→
δ

bl) ∈ FS, �(bk
�′
→
δ′

bl′) ∈ FS, bl 	= bl′ , τ 	∈ B(AN , FS \ {τ}, t)}

Definition 7 prevents the execution of two transitions that would affect the
same automaton.

Definition 8 (Active Timed Local Transitions). Let AN = (Σ,S, T) be
a T-AN, ζ ∈ S the state of AN at t ∈ N. Let SFS(AN , ζ, P, t) be the set of
firable sets of timed local transition. The set of active timed local transitions of
AN at t is:

A(AN , t) :=

⎧
⎪⎨

⎪⎩

{(τ ∈ FS, t) | FS ∈ SFS(AN , ζ, ∅, t)} if t = 0
{(τ ∈ FS, t) | FS ∈ SFS(AN , ζ, A(AN , t − 1), t)}
∪{(bk

�′
→
δ′

bl, t
′) ∈ A(AN , t − 1) | t − t′ < δ} if t > 0

Definition 8 provides us the evolution of the possible set of ongoing actions.
Supposing that in the initial state of a trajectory (at t = 0) no transition is
blocked and all playable timed transitions are fireable. Then, when t > 0, at each
time step it should be verified that a playable timed transition is also fireable,
in other words that it is not blocked by the active timed local transitions fired
in previous steps. Furthermore the timed local transitions fired at the same time
should not block each other.

36 E. Ben Abdallah et al.

Delays of local transitions can now be represented in an Automata Network
thanks to timed local transitions. Note that if all delays of local transitions are
set to 0 it is equivalent to an AN without delays (original AN). The way these
new local transitions should be used is described as follows.

At any time, each automaton has one and only one local state, forming
the global state of the network. Choosing arbitrary ordering between automata
identifiers, the set of global states of the network is referred to as S with
S =

∏
a∈Σ S(a). Given a global state ζ ∈ S, ζ(a) is the local state of automaton

a in ζ, i.e., the a-th coordinate of ζ. We write also ai ∈ ζ ⇔ ζ(a) = ai; and for
any ls ∈ LS, ls ⊂ ζ ⇔ ∀ai ∈ ζ, ζ(a) = ai. In this paper, we allow, but do not
force, applying in parallel transitions in different automata such in Definition 3
but adding delays in the local transitions and considering concurrency between
transitions require further study of the semantics of the model (Definition 9).

Definition 9 (Semantics of Timed Automata Network). Let AN =
(Σ,S, T) be a T-AN and t ∈ N. The set of timed local transition fired at t is:
FS := {(ai

�→
δ

aj) | ((ai
�→
δ

aj), t) ∈ A(AN , t)} then

(ai
�→
δ

aj) ∈ FS =⇒ ζ(a) = aj with ζ = state(AN , t + δ).

The state of AN at t + 1 is denoted ζt+1 = state(AN , t + 1) and defined
according to the set of timed local transitions that finished at t + 1:

Ft+1 := {(bk
�′
→
δ′

bl) | ((bk
�′
→
δ′

bl), t′) ∈ A(AN , t), t + 1 − t′ = δ}

then ∀c ∈ Σ, such that �(ck
�′′
→
δ′′

cl) ∈ Ft+1 =⇒ ζt+1(c) = ζt(c) with ζt =

state(AN , t) and ζt+1 = state(AN , t + 1).

We note that at any time step t such that ζ = state(AN , t) and P the set of
ongoing transitions, we have: FS ∈ F (AN , ζ, P, t) ∈ T \ B(AN , P, t).

Where synchronous biological regulatory networks have been studied, little
has been done on the asynchronous counterpart [31], although there is evidence
that most living systems are governed by synchronous and asynchronous updat-
ing. According to Harvey and Bossomaier [13], asynchronous systems are biolog-
ically more plausible for many phenomena than their synchronous counterpart
and observed global synchronous behavior in nature usually simply arises from
the local asynchronous behavior. In this paper, we defend these assumptions
and we consider an asynchronous behavior for each automata in one hand and
a synchronous behavior in the global network.

The assumptions in the synchronous model that all components could change
at the same time and take an equivalent amount of time in changing their expres-
sion levels, is biologically unrealistic. But there is seldom enough informations to
be able to discern the precise order and duration of state transitions. The timed
extension of Automata Network we propose in this paper allows both asynchro-
nous and synchronous behavior by proposing a non-deterministic application of

Inference of DBRNs from Time Series Data 37

the timed local transitions. Figure 2 shows a trajectory of a Timed Automata
Network when we choose to apply timed local transition in a synchronous maner.

We presented above the semantics of the T-AN that we are based on to
modeling BRNs from experimental data. Even if it already exists a few hybrid
formalisms like time Petri Nets, hybrid automata, etc., we propose this extension
of the AN framework for several reasons. First, AN is a general framework that,
although it was mainly used for biological networks [9,23], allows to represent
any kind of dynamical models, and converters to several other representations
are available. Indeed, a T-AN is a subclass of time Petri nets [10]. Finally, the
particular form of the timed local transition in a AN model allows to easily
represent them in Answer Set Programming (ASP), with one fact per timed
local transition, as described in this work [1]. Later we propose a new approach
to resolve the generation problem of T-AN models from time series data.

Taking the following timed automata network as an example, we generate a
possible trajectory of the network starting from a known initial state.

Example 2. Let AN = (Σ,S, T)) be a timed automata extended with delays

from Example 1. Such that T = {τ1 = b0
{a1}−→
2

b1, τ2 = a1
{b1,d2}−→

3
a0, τ3 = c2

{a1}−→
5

c1, τ4 = d2
{a0}−→
2

d1, τ5 = b1
{a1,c2}−→

2
b0, }.

T 0 1 2 3 4 5 6 7
B(AN , P, t) ∅ {τ1, τ2,

τ3}
{τ2, τ3} {τ2, τ3} {τ2, τ3,

τ5}
∅ {τ4} ∅

F (AN , ζ, P, t) {τ1, τ3} ∅ {τ2, τ5} ∅ ∅ {τ4} ∅ ∅
SF S(AN , ζ, P, t){∅, {τ1}, {τ3},

{τ1, τ3}}
{∅} {∅, {τ2},

{τ5}}
{∅} {∅} {∅, {τ4}} {∅} {∅}

F S {τ1, τ3} ∅ {τ2} ∅ ∅ {τ4} ∅ ∅
A(AN , t) {(τ1, 0),

(τ3, 0)}
{(τ1, 0),
(τ3, 0)}

{(τ3, 0),
(τ2, 2)}

{(τ3, 0),
(τ2, 2),
(τ5, 3)}

{(τ3, 0),
(τ2, 2),
(τ5, 3)}

{(τ4, } {(τ4, 5)} ∅

state(AN , T) < a1, b0, < a1, b0, < a1, b1, < a1, b1, < a1, b1, < a0, b0, < a0, b0, < a0, b0,
c2, d2 > c2, d2 > c2, d2 > c2, d2 > c2, d2 > c1, d2 > c1, d2 > c1, d1 >

Fig. 2. Example of a trajectory of the timed automata network of Example 2 starting
from an initial state <a1, b0, c2, d2> (at t = 0) to a stable state < a0, b1, c1, d1 > (at
t = 10). With P = A(AN, t − 1) as in Definition 8.

4 Learning Timed Automata Networks

This algorithm takes as input a model expressed as a Timed Automata Network,
which the set of local transitions is empty, and time series data capturing the
dynamics of the studied system. Given the influences between the components
(or assuming all possible influences if no background knowledge is available),
this algorithm generates the timed local transitions that could result in the the
same changes of the model than the ones observed through the observation data.

38 E. Ben Abdallah et al.

4.1 Algorithm

In this section we propose an algorithm to build Timed Automata Networks
from time series data. We assume that the latter data observations are provided
as a chronogram of size T : the value of each variable is given for each time point
t, 0 ≤ t ≤ T , through a time interval discretization (see Definition 10 below).

Definition 10 (Chronogram). A chronogram is a discretization of the time
series data for each component of a biological regulatory network. It is presented
by the following function Γ ,

Γ : [0, T] ⊂ N+ −→ {0, ..., n}

t �−→ i

with T is the maximum time point regarding the time series data called the size
of the chronogram and n is the maximum level of discretization.

We note Γa a chronogram of the time series data for a component a.
Algorithm 1, MoT-AN (Modeling Timed Automata networks) shows the

pseudo code of our implemented algorithm. It will generate all possible timed
local transitions that can realize each observed change. Because of the delays
and the non-determinism of the semantics, it is not possible to decide whether a
timed local transition is absolutly correct or not. But we can output the minimal
sets of time local transitions necessary to realize all the changes.

Theorem 1 (Completeness). Let AN = (Σ,S, T) be a Timed Automata
Network, Γ be a chronogram of the components of AN , i ∈ N and R ∈ T
be the set of timed local transitions that realized the chronogram Γ such that
(ai, l, aj , δ) ∈ R =⇒ |l| ≤ i. Let χ be the regulation influences of all a ∈ Σ.
Let AN ′ = (Σ,S, ∅) be a Timed Automata Network. Given AN ′, Γ , χ and i as
input, Algorithm1 is complete: it will output a set of Timed Automata Networks
φ, such that ∃AN ′′ = (Σ,S, ϕ′) ∈ φ with R ⊆ ϕ′.
Proof is given in appendix.

Theorem 2 (Complexity). Let AN = (Σ,S, T) be a Timed Automata Net-
work, |Σ| be the number of automata of AN and η be the total number of
local states of an automaton of AN . Let Γ be a chronogram of the compo-
nents of AN over τ units of time, such that c is the number of changes
of Γ . The memory use of Algorithm1 belongs to O(τ · i|Σ|+1 · 2τ ·i|Σ|+1) that
is bounded by O(τ · |Σ|T ·|Σ||Σ|+1

). The complexity of learning AN by generating
timed local transitions from the observations of Γ with Algorithm1 belongs to
O(c · i|Σ|+1 + 22·τ ·i|Σ|+1

+c·2τ ·i|Σ|+1
), that is bounded by O(τ · 23·τ ·|Σ||Σ|+1

).
Proof is given in appendix.

Inference of DBRNs from Time Series Data 39

4.2 Case Study

In this section we show how this method generates a T-AN model consistent
with the set of biological regulatory time series data. First, the method uses
discretized observations as an input (i.e. chronogram), thus it is necessary to
treat first the time series data with another method in order to discretize it.

Our method may be summarized as follows:

– Detect biological components changes;
– Compute the candidate timed local transitions responsible for the network

changes;
– Generate minimal subset of candidate timed local transitions that can realize

all changes.

We apply the Algorithm 1 on learning the timed local transition τ ∈ T of
a simple example of a network AN = (Σ,S, T) with 3 components (|Σ| = 3)
whose chronogram is detailed in Fig. 3:

The first change occurs at tmin = t1 = 2, denoted by change(2). It is the
gene z whose value changes from 0 to 1, thus the timed local transition that has
realized this change has this form z0

�→
δ

z1, where � can be any combination of

the values of the regulators at t1 − 1 of z.
Let χ = {b → z, a → z, a → a} be the set of regulation influences among the

components of the network. According to χ the set of genes having influence on z
is χz = {a, b}. It means that � = {a?, b?} or � = {a?} or � = {b?}. The expression

Algorithm 1. MoT-AN: Modeling Timed Automata Networks
INPUT:

- Timed Automata Network AN = (Σ, S, T) with T = ∅;
- a chronogram Γ =

⋃
a∈Σ Γa;

- the regulation influences χ =
⋃

a∈Σ χa and
- a maximal in-degree i ∈ N∗

OUTPUT: φ a set of Timed Automata Networks that realize the time series data.
– Let ϕ := ∅
– Step 1: According to the chronogram Γ , for each time step where a component a

changes its value from ai to aj , with ai, aj ∈ S(a):

- Let δ(b) < t be the last time step where b has changed with b ∈ χa

- For each l′ ∈ ℘(χa), |l′| ≤ i generates all timed local transitions:

τ := (ak, l, al, t − δ)

such that δ = δ(b′), b′ ∈ l′, �b′′ ∈ l′, δ(b′′) > δ(b′) and l = {bi ∈ ζ(δ) | b ∈ l′}
- Add all timed local transition τ in ϕ

– Step 2: Generate φ the set of all Timed Automata Networks AN ′ = (Σ, S, ϕ′) with
ϕ′ ⊆ ϕ a set of timed local transitions that can realize Γ such that ϕ′ is minimal:

∀AN ′ = (Σ, S, ϕ′) ∈ φ, 	 ∃ϕ′′ ⊆ ϕ, ϕ′′ ⊂ ϕ′, such that ϕ′can realize Γ

40 E. Ben Abdallah et al.

Fig. 3. Examples of the discretization of continous time series data into bi-valued
chronograms. Abscissa (resp. ordinate) represents time (resp. gene expression levels).
In this example, the expression level is discretized according to a threshold fixed to the
half of the maximum gene expression value. change(t) indicates that the expression
level of a biological component, here a gene, changes its value at a time point t.

level of the genes of χz when the researched candidate timed local transition (τi)
is ongoing, i.e. during the partial steady state between two successive changes
(ti and ti−1). This level is computed from the chronograms as follows:

- a ∈ χz: [a]t = 0 ∀t ∈ [0, 2] - b ∈ χz: [b]t = 1 ∀t ∈ [0, 2]

Thus �={a0, b1} or �={a0} or �={b1} and the set of candidate timed local transi-
tions is: Tchange(2) = {τ1 = z0

a0→
δ1

z1, τ2 = z0
b1→
δ2

z1, τ3 = z0
a0∧b1−→

δ3
z1}. Since

it is the first change, the delay of each timed local transition is the same:
δ1 = δ3 = δ3 = 2.

The second change occurs at t2 = 3 and denoted by change(3). Here it is the
gene a whose state changes from a0 to a1, thus the timed local transition that
realize this change has this form τ = a0

�→
δ

a1 where � can be any combination

of the regulators value at t1 of z. According to χ the genes influencing a are
χa = {a}. It means that � = {a?} and the expression level of a between t1 and
t2 is a0. So � = {a0}. Thus there is only one candidate timed local transition:

Tchange(3) = {τ = a0
∅→
1

a1}.

The third change occurs at t3 = 4, change(4). Here it is the gene b whose
value changes from b1 to b0, thus the timed local transition that realize this
change is of this form, τ = b1

�→
δ

b0 where � can be any combination of the

regulators value at t3 −1 of b. According to χ there is no gene that can influence
b, thus no timed local transition can realize this change.

The fourth change occurs at t4 = 5, change(5). Here it is a whose expression
decreases and changes from a1 to a0, thus the candidate timed local transition
that could realize this change has this form, τ = a1

�→
δ

a0 where � can be any

combination of the regulators value at t4−1 of a. According to χ the set of genes
having influences on a is χa = {a}. Again � = {a?} and since the expression level

Inference of DBRNs from Time Series Data 41

of a since its last change is a1. we have A = {a1} and there is only one candidate

timed local transition: Tchange(5) = {τ = a1
∅→
1

a0}.

The fifth change occurs at t5 = 6, change(6). Here it is z whose value changes
from z1 to z0, thus the time local transition that has realized this change has
the form of: τ = z1

�→
δ

z0 where � can be any combination of the regulators

value at t3 − 1 of b. Since χz = {a, b}, it means that � = {a?, b?} or � = {a?} or
� = {b?} The expression level of a and b at t5 − 1 is respectively a0 and b0. Thus
� = {a0, b1} or � = {a0} or � = {b0}. The candidate timed local states are:
Tchange(6) = {τ1 = z1

a0→
δ1

z0, τ2 = z1
b0→
δ2

z0, τ3 = z1
a0∧b0−→

δ3
z0}.

The last change of a is at t4 = 5 and the last change of b is at t3 = 4. Thus
δ1 = t5 − t4 = 1, δ2 = t5 − t3 = 2, δ3 = t5 − max(t4, t3) = 1.

After processing all changes, the set of timed local transitions that could real-
ize the chronograms are:
Tchange(2) = {τ1 = z0

a0→
2

z1, τ2 = z0
b1→
2

z1, τ3 = z0
a0∧b1−→

2
z1}

Tchange(3) = {τ4 = a0
∅→
1

a1}, Tchange(5) = {τ5 = a1
∅→
1

a0}

Tchange(6) = {τ6 = z1
a0→
1

z0, τ7 = z1
b0→
2

z0, τ8 = z1
a0∧b0−→

1
z0}.

Fig. 4. Left: influence graph modeling of the case study example (Fig. 3). Right, one
of the Timed Automata Networks generated by the Algorithm 1. The labels of each
local transition stands for the local states of the automata which make the transition
playable and its delay (time needed for the transition to be performed).

All timed local transitions learned are consistent with all observed time series
data and the regulation influences given as input. The used method ensures
completeness, we have the full set of timed local transitions that can explain
the observations. By generating all minimal subsets of this set of timed local
transitions, one of those subset will be the set who realized the observations
(Fig. 4).

42 E. Ben Abdallah et al.

5 Evaluation

In this section, we provide two evaluations of Algorithm 1. We evaluate the capac-
ity of our algorithm1 to construct models for prediction and the impact of the
quantity of observations on run time. Here we process chronograms obtained
from time series data of the DREAM4 challenge [25].

5.1 DREAM4

In this section, we assess the efficiency of our algorithm through case studies
coming from the DREAM4 challenge. DREAM challenges are annual reverse
engineering challenges that provide biological case studies. In this section, we
focus on the datasets coming from DREAM4. It provides data for systems of
different size (10 genes on one hand, 100 genes on the other hand), allowing us
to assess the scalability of our approach. The input data that we tackle here
consists of the following: 5 different systems each composed of 100 genes, all
coming from E. coli and yeast networks. For every such system, the available
data are the following: (i) 10 time series data with 21 time points and 1000 is
the duration of each time series; (ii) steady state for wild type; (iii) steady states
after knocking out each gene; (iv) steady states after knocking down each gene
(i.e. forcing its transcription rate at 50 %); (v) steady states after some random
multifactorial perturbations. We processed all the data. Here, we focus on the
management of time series data.

Each time series includes different perturbations that are maintained all time
along during the first 10 time points and applied to at most 30 % of the genes.
In this setting, a perturbation means a significant increase or decrease of the
gene expression. In the raw data of the time series, gene expression values are
given as real numbers between 0 and 1. To apply our approach, we chose to
discretize those data into two to six qualitative values. Increasing the number
of qualitatives values from 2 to 4 improves the precision, but then the score
decrease from 5, must likely because of overfitting: the relations learned become
too precised and can’t be applied on something else than the training data. The
best score we obtain were with 4 qualitatives values and are reported in Fig. 5.
Each gene is discretized in an independent manner, with respect to the following
procedure: we compute the average value of the gene expression among all data
of a time series, then the values between the average and the maximal/minimal
value are divided into as many levels. Discretizing the data according to the
average value of expression is expected to reduce the impact of perturbation on
the discretization and thus on the model learned.

The DREAM4 challenge offers two different problems, which consist in pre-
dicting (i) the structure of the gene interactions (in terms of an unsigned directed
graph); (ii) attractors in some given conditions. Our method is not designed to
tackle the first issue, indeed we need to know those influences. But the models
1 All programs, described in this article, for Timed Automata Network generation are

implemented in ASP and are available online at: http://www.irccyn.ec-nantes.fr/
∼benabdal/modeling-biological-regulatory-networks.zip.

http://www.irccyn.ec-nantes.fr/~benabdal/modeling-biological-regulatory-networks.zip
http://www.irccyn.ec-nantes.fr/~benabdal/modeling-biological-regulatory-networks.zip

Inference of DBRNs from Time Series Data 43

we learn can be applied to predict trajectories and thus attractors. Here we use
the influences graphs expected in the first problem as background knowledge
(given in appendix) to tackle the attractor prediction part of the challenge.

5.2 Results

For this evaluation, we are given an initial state and 5 different dual gene knock-
outs conditions. The goal is to predict the attractor in which the system will
fall from the initial state for each dual knockout. Here, we just choose the first
model that our algorithm output and use the biggest set of fireable timed local
transition at each time step to produce a trajectory until a cycle is detected.
The first state of this cycle is reverse discretized and proposed as the predicted
state. In the challenge, the quality of the prediction is evaluated by computing
the mean square error (MSE) between the predicted state and the expected one.
As shown in Fig. 5, the precision we achieved in those experiments is quite good
considering the results of the competitors of the DREAM4 challenge [1]. Their
results range between 0.010 and 0.075 for the same evaluation settings, which
we are comparable to (0.033 to 0.086) giving us encouraging results. Regarding
run time, learning and predicting the trajectories of the benchmarks of 10 genes
took less than 30 s and the same experiements for the benchmarks of 100 genes
took about 3 h and 20 min on one processor Intel Core2 Duo (P8400, 2.26 GHz).

Benchmark Number of genes MSE
insilico size10 1 10 0.086
insilico size10 2 10 0.080
insilico size10 3 10 0.076
insilico size10 4 10 0.039
insilico size10 5 10 0.076

Benchmark Number of genes MSE
insilico size100 1 100 0.052
insilico size100 2 100 0.042
insilico size100 3 100 0.033
insilico size100 4 100 0.033
insilico size100 5 100 0.052

Fig. 5. Evaluation of our method on learning and prediction of the evolution of gene
regulatory network benchmarks from the DREAM4 challenge through the Mean Square
Error (MSE): 10 variables benchmarks (left) and 100 variables benchmarks (right).

To achieve this score, we had to perform several tests by varying the discretiza-
tion precision and the complexity of the dynamics learned. Those tests also allows
us to assess the scalability of our approach in practice. Figure 6 shows the impact
of both timed local transition indegree and discretization level on run time.

In the results obtained from the experimentation of our algorithm on the
time series data of the DREAM4 we can see the exponential influence on the
run time of the indegree per local transition considered as well as the level of
discretization chosen for all the 5 different networks. But it also shows that in
practice our approach can tackle big network, here 100 genes.

5.3 Discussion

We propose a new method MoT-AN (Algorithm 1) to automatically infer models
that could explain the dynamic evolution of the biological system. We illus-
trated the merits of this method by applying it on a large real biological system

44 E. Ben Abdallah et al.

Fig. 6. Evolution of run time on processing different models inferred from time series
data of DREAM4 (100 variables benchmarks), varying indregree of local timed tran-
sitions and discretization levels. These tests were performed on a processor Intel Core
i7 (4700, 3 GHz) with 16 GB of RAM.

(DREAM4 challenge). As a result we obtain in few seconds models that are
proved to be relevant (this relevance is qualified in terms of mean square error
with gold standard network) This algorithm is implemented using Answer Set
Programming [4,5], thus provides the exhaustive enumeration of all models.

The main limit of the approach presented in this paper is the fact that topol-
ogy of the network is considered as granted. As discussed in the introduction of
the paper, there is a wide range of algorithms designed to address this issue. Fur-
thermore, such interaction graphs could be deduced from the available reliable
databases of biological networks. Some examples of data bases for human reg-
ulatory knowledge are: Pathways Interaction Database [20], Human Integrated
Pathway DB [32] and Causal Biological Network Database [30].

Various inference approaches [11,20,26] from time series data based on prior
knowledge about component interactions have been proposed. But they share a
common limit: they focus on static characterization of the interactions and they
do not allow to infer dynamic behaviors where delays are involved. The merits
of our contribution lie in the fact that we overcome such limits, and we infer
delays in a qualitative dynamic modeling of the network.

6 Conclusion and Perspectives

In this paper, we propose an approach takes a background knowledge under the
form of regulation graph and time series data as an input. The contribution
of our method lies in the fact that it identifies the set of interactions between
biological components by (1) concertizing the signs (negative or positive) (2)
providing thresholds and associating the quantitative time delays. As a result,
we have a set of Timed Automata networks that explain the biological network

Inference of DBRNs from Time Series Data 45

evolution. The Algorithm1 is implemented in ASP. We illustrated the applica-
bility and limits of the proposed method through benchmarks from DREAM4.
This opens the way to promising applications in the cooperation between biolo-
gists and computer scientists. Further works now consist in discussing the kind
of information one can get on Timed Automata Network by analyzing the asso-
ciated untimed model. We also plan to improve our implementation to make it
robust against noisy and scarse data as like in the DREAM8: Heritage-DREAM
breast cancer network inference challenge.

A Appendixes

A.1 Proof of Theorem1

Theorem 3 (Completeness). Let AN = (Σ,S, T) be a Timed Automata
Network, Γ be a chronogram of the components of AN , i ∈ N and R ∈ T
be the set of timed local transitions that realized the chronogram Γ such that
(ai, l, aj , δ) ∈ R =⇒ |l| ≤ i. Let χ be the regulation influences of all a ∈ Σ.
Let AN ′ = (Σ,S, ∅) be a Timed Automata Network. Given AN ′, Γ , χ and i as
input, Algorithm1 is complete: it will output a set of Timed Automata Network
φ, such that ∃AN ′′ = (Σ,S, ϕ′) ∈ φ with R ⊆ ϕ′.

Proof. Let us suppose that the algorithm is not complete, then there is a timed
local transition h ∈ R that realized Γ and h 	∈ ϕ′. In Algorithm1, after step 1, ϕ
contains all timed local transitions that can realize each change of the chronogram
Γ . Here there is no timed local transition h ∈ R that realizes Γ which is not
generated by the algorithm, so h ∈ ϕ. Then it implies that at step 2, ∀ϕ′, h 	∈ ϕ′.
But since h realizes one of the change of Γ and h is generated at step 1, then it
will be present in one of the minimal subset of timed local transitions. Such that
h will be in one of the networks outputted by the algorithm. ��

A.2 Proof of Theorem2

Theorem 4 (Complexity). Let AN = (Σ,S, T) be a Timed Automata Net-
work, |Σ| be the number of automaton of AN and η be the total number
of local state of a automaton of AN . Let Γ be a chronogram of the compo-
nents of AN over τ units of time, such that c is the number of changes of
Γ . The memory use of Algorithm1 belongs to O(τ · i|Σ|+1 · 2τ ·i|Σ|+1) that is
bounded by O(τ · |Σ|T ·|Σ||Σ|+1

). The complexity of learning AN by generating
timed local transitions from the observations of Γ with Algorithm1 belongs to
O(c · i|Σ|+1 + 22·τ ·i|Σ|+1

+c·2τ ·i|Σ|+1
), that is bounded by O(τ · 23·τ ·|Σ||Σ|+1

).

Proof. Let i be the maximal indegree of a timed local transition in AN , 0 ≤
i ≤ |Σ|. Let p be an automaton local state of AN then |Σ| is maximal the
number of automaton that can influence p. There is i|Σ| possible combinations
of those regulators that can influences p at the same time forming a timed local
transition. There is at most τ possible delays, so that there are τ ·|Σ|·i|Σ| possibles

46 E. Ben Abdallah et al.

timed local transitions, thus in Algorithm1 at step 1, the memory is bounded by
O(τ · i|Σ|+1), which belongs to O(τ · |Σ||Σ|+1) since 0 ≤ i ≤ |Σ|. Generating all
minimal subsets of timed local transitions ϕ of AN that can realize Γ can require
to generate at most 2τ ·|Σ|·i|Σ|+1

set of rules. Thus, the memory of our algorithm
belongs to O(τ · i|Σ|+1 · 2τ ·i|Σ|+1

) and is bounded by O(τ · |Σ||Σ|+1 · 2τ ·|Σ||Σ|+1
).

The complexity of this algorithm belongs to O(c · i|Σ| + 1). Since 0 ≤ i ≤ |Σ|
and 0 ≤ c ≤ τ the complexity of Algorithm1 is bounded by O(τ · |Σ||Σ|+1)).

Generating all minimal subsets of timed local transitions ϕ of AN ′ that realize
Γ can require to generate at most 2τ ·i|Σ|+1

set of timed local transitions. Each set
has to be compared with the others to keep only the minimal ones, which costs
O(22·τ ·i|Σ|+1

). Furthermore, each set of timed local transitions has to realize each
change of Γ , it requires to check c changes and it costs O(c · 2τ ·i|Σ|+1

). Finally,
the total complexity of learning AN by generating timed local transitions from
the observations of Γ belongs to O(c · i|Σ|+1 + 22·τ ·i|Σ|+1

+ c · 2τ ·i|Σ|+1
). that is

bounded by O(3τ · 22·τ ·|Σ||Σ|+1
).

��

A.3 DREAM4: Influence Network

The Fig. 7 presents the regulatory graph that we are based on to identify the
signs (negative or positive), the thresholds and the quantitative time delays of
the learned transitions.

Fig. 7. The influence network of the DREAM4 challenge model (100 genes) given by
GeneNetWeaver (GNW) data generator [27]. Each node is a gene and each edge is an
influence from the source to the target gene.

Inference of DBRNs from Time Series Data 47

References

1. Ben Abdallah, E., Folschette, M., Roux, O., Magnin, M.: Exhaustive analysis
of dynamical properties of biological regulatory networks with answer set pro-
gramming. In: IEEE International Conference on Bioinformatics and Biomedicine
(BIBM), pp. 281–285. IEEE (2015)

2. Ahmad, J., Bernot, G., Comet, J.-P., Lime, D., Roux, O.: Hybrid modelling and
dynamical analysis of gene regulatory networks with delays. ComPlexUs 3(4), 231–
251 (2006)

3. Akutsu, T., Tamura, T., Horimoto, K.: Completing networks using observed data.
In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS, vol.
5809, pp. 126–140. Springer, Heidelberg (2009)

4. Anwar, S., Baral, C., Inoue, K.: Encoding higher level extensions of petri nets in
answer set programming. In: Cabalar, P., Son, T.C. (eds.) LPNMR 2013. LNCS,
vol. 8148, pp. 116–121. Springer, Heidelberg (2013)

5. Baral, C.: Knowledge representation, reasoning and declarative problem solving.
Cambridge University Press, New York (2003)

6. Callebaut, W.: Scientific perspectivism: a philosopher of sciences response to the
challenge of big data biology. Stud. Hist. Philos. Sci. Part C. Stud. Hist. Philos.
Biol. Biomed. Sci. 43(1), 69–80 (2012)

7. Comet, J.-P., Fromentin, J., Bernot, G., Roux, O.: A formal model for gene reg-
ulatory networks with time delays. In: Chan, J.H., Ong, Y.-S., Cho, S.-B. (eds.)
CSBio 2010. CCIS, vol. 115, pp. 1–13. Springer, Heidelberg (2010)

8. Fan, J., Han, F., Liu, H.: Challenges of big data analysis. Nat. Sci. Rev. 1(2),
293–314 (2014)

9. Folschette, M., Paulevé, L., Inoue, K., Magnin, M., Roux, O.: Identification of
biological regulatory networks from process hitting models. Theoret. Comput. Sci.
568, 49–71 (2015)

10. Freedman, P.: Time, petri nets, and robotics. IEEE Trans. Robot. Autom. 7(4),
417–433 (1991)

11. Gallet, E., Manceny, M., Le Gall, P., Ballarini, P.: An LTL model checking approach
for biological parameter inference. In: Merz, S., Pang, J. (eds.) ICFEM 2014. LNCS,
vol. 8829, pp. 155–170. Springer, Heidelberg (2014)

12. Goldstein, Y.A.B., Bockmayr, A.: A lattice-theoretic framework for metabolic
pathway analysis. In: Gupta, A., Henzinger, T.A. (eds.) CMSB 2013. LNCS, vol.
8130, pp. 178–191. Springer, Heidelberg (2013)

13. Harvey, I., Bossomaier, T.: Time out of joint: attractors in asynchronous random
boolean networks. In: Proceedings of the Fourth European Conference on Artificial
Life, pp. 67–75. MIT Press, Cambridge (1997)

14. Kim, S.Y., Imoto, S., Miyano, S.: Inferring gene networks from time series microar-
ray data using dynamic bayesian networks. Briefings Bioinf. 4(3), 228–235 (2003)

15. Koh, C., Fang-Xiang, W., Selvaraj, G., Kusalik, A.J.: Using a state-space model
and location analysis to infer time-delayed regulatory networks. EURASIP J.
Bioinf. Syst. Biol. 2009(1), 1 (2009)

16. Koksal, A.S., Yewen, P., Srivastava, S., Bodik, R., Fisher, J., Piterman, N.: Syn-
thesis of biological models from mutation experiments. ACM SIGPLAN Not. 48,
469–482 (2013). ACM

17. Liu, T.-F., Sung, W.-K., Mittal, A.: Learning multi-time delay gene network using
bayesian network framework. In: 16th IEEE International Conference on Tools
with Artificial Intelligence, ICTAI 2004, pp. 640–645. IEEE (2004)

48 E. Ben Abdallah et al.

18. Marx, V.: Biology: the big challenges of big data. Nature 498(7453), 255–260
(2013)

19. Matsuno, H., doi, A., Nagasaki, M., Miyano, S.: Hybrid petri net representation
of gene regulatory network. In: Pacific Symposium on Biocomputing, vol. 5, p. 87.
World Scientific Press, Singapore (2000)

20. Ostrowski, M., Paulevé, L., Schaub, T., Siegel, A., Guziolowski, C.: Boolean net-
work identification from multiplex time series data. In: Roux, O., Bourdon, J. (eds.)
CMSB 2015. LNCS, vol. 9308, pp. 170–181. Springer, Heidelberg (2015)

21. Paoletti, N., Yordanov, B., Hamadi, Y., Wintersteiger, C.M., Kugler, H.: Analyzing
and synthesizing genomic logic functions. In: Biere, A., Bloem, R. (eds.) CAV 2014.
LNCS, vol. 8559, pp. 343–357. Springer, Heidelberg (2014)

22. Paulevé, L.: Goal-oriented reduction of automata networks. In: CMSB 2016–14th
Conference on Computational Methods for Systems Biology (2016)

23. Paulevé, L., Chancellor, C., Folschette, M., Magnin, M., Roux, O.: Logical Mod-
eling of Biological Systems, chapter Analyzing Large Network Dynamics with
Process Hitting, pp. 125–166. Wiley, Hoboken (2014)

24. Paulevé, L., Magnin, M., Roux, O.: Refining dynamics of gene regulatory networks
in a stochastic π-calculus framework. In: Priami, C., Back, R.-J., Petre, I., de Vink,
E. (eds.) Transactions on Computational Systems Biology XIII. LNCS, vol. 6575,
pp. 171–191. Springer, Heidelberg (2011)

25. Prill, R.J., Saez-Rodriguez, J., Alexopoulos, L.G., Sorger, P.K., Stolovitzky, G.:
Crowdsourcing network inference: the dream predictive signaling network chal-
lenge. Sci. Signal. 4(189), mr7 (2011)

26. Saez-Rodriguez, J., Alexopoulos, L.G., Epperlein, J., Samaga, R., Lauffenburger,
D.A., Klamt, S., Sorger, P.K.: Discrete logic modelling as a means to link protein
signalling networks with functional analysis of mammalian signal transduction.
Mol. Syst. Biol. 5(1), 331 (2009)

27. Schaffter, T., Marbach, D., Floreano, D.: Genenetweaver: in silico benchmark gen-
eration and performance profiling of network inference methods. Bioinformatics
27(16), 2263–2270 (2011)

28. Siebert, H., Bockmayr, A.: Temporal constraints in the logical analysis of regula-
tory networks. Theoret. Comput. Sci. 391(3), 258–275 (2008)

29. Sima, C., Hua, J., Jung, S.: Inference of gene regulatory networks using time-series
data: a survey. Curr. Genomics 10(6), 416–429 (2009)

30. Talikka, M., Boue, S., Schlage, W.K.: Causal biological network database: a com-
prehensive platform of causal biological network models focused on the pulmonary
and vascular systems. Comput. Syst. Toxicol. 2015, 65–93 (2015)

31. Thomas, R.: Regulatory networks seen as asynchronous automata: a logical descrip-
tion. J. Theoret. Biol. 153(1), 1–23 (1991)

32. Namhee, Y., Seo, J., Rho, K., Jang, Y., Park, J., Kim, W.K., Lee, S.: Hipathdb: a
human-integrated pathway database with facile visualization. Nucleic Acids Res.
40(D1), D797–D802 (2012)

33. Zhang, Z.-Y., Horimoto, K., Liu, Z.: Time series segmentation for gene regulatory
process with time-window-extension (2008)

34. Zhao, W., Serpedin, E., Dougherty, E.R.: Inferring gene regulatory networks from
time series data using the minimum description length principle. Bioinformatics
22(17), 2129–2135 (2006)

	Inference of Delayed Biological Regulatory Networks from Time Series Data
	1 Introduction
	2 Background
	2.1 Automata Network

	3 Timed Automata Networks
	4 Learning Timed Automata Networks
	4.1 Algorithm
	4.2 Case Study

	5 Evaluation
	5.1 DREAM4
	5.2 Results
	5.3 Discussion

	6 Conclusion and Perspectives
	A Appendixes
	A.1 Proof of Theorem1
	A.2 Proof of Theorem2
	A.3 DREAM4: Influence Network

	References

