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Abstract. We consider networks of finite-state machines having local
transitions conditioned by the current state of other automata. In this
paper, we introduce a reduction procedure tailored for reachability prop-
erties of the form “from global state s, there exists a sequence of transi-
tions leading to a state where an automaton g is in a local state �”. By
analysing the causality of transitions within the individual automata,
the reduction identifies local transitions which can be removed while
preserving all the minimal traces satisfying the reachability property.
The complexity of the procedure is polynomial with the total number
of local transitions, and exponential with the maximal number of local
states within an automaton. Applied to Boolean and multi-valued net-
works modelling dynamics of biological systems, the reduction can shrink
down significantly the reachable state space, enhancing the tractability
of the model-checking of large networks.

1 Introduction

Automata networks model dynamical systems resulting from simple interactions
between entities. Each entity is typically represented by an automaton with
few internal states which evolve subject to the state of a narrow range of other
entities in the network. Richness of emerging dynamics arises from several factors
including the topology of the interactions, the presence of feedback loop, and the
concurrency of transitions.

Automata networks, which subsume Boolean and multi-valued networks, are
notably used to model dynamics of biological systems, including signalling net-
works or gene regulatory networks (e.g., [1,10,15,21,31–33,38]). The resulting
models can then be confronted with biological knowledge, for instance by check-
ing if some time series data can be reproduced by the computational model. In
the case of models of signalling or gene regulatory networks, such data typically
refer to the possible activation of a transcription factor, or a gene, from a par-
ticular state of the system, which reflects both the environment and potential
perturbations. Automata networks have also been used to infer targets to control
the behaviour of the system. For instance, in [1,32], the author use Boolean net-
works to find combinations of signals or combinations of mutations that should
alter the cellular behaviour.

From a formal point of view, numerous biological properties can be expressed
in computation models as reachability properties: from an initial state, or set
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of states, the existence of a sequence of transitions which leads to a desired
state, or set of states. For instance, an initial state can represent a combination
of signals/perturbations of a signalling network; and the desired states the set of
states where the concerned transcription factor is active. One can then verify the
(im)possibility of such an activation, possibly by taking into account mutations,
which can be modelled, for instance, as the freezing of some automata to some
fixed states, or by the removal of some transitions.

Due to the increasing precision of biological knowledge, models of networks
become larger and larger and can gather hundreds to thousands of interact-
ing entities making the formal analysis of their dynamics a challenging task:
the reachability problem in automata networks/bounded Petri nets is PSPACE-
complete [7], which limits its scalability.

Facing a model too large for a raw exhaustive analysis, a natural app-
roach is to reduce its dynamics while preserving important properties. Multiple
approaches, often complementary, have been explored since decades to address
such a challenge in dynamical and concurrent systems [22,24,36]. In the scope of
rule-based models of biological networks, efficient static analysis methods have
been developed to lump numerous global states of the systems based on the frag-
mentation of interacting components [14]; and to a posteriori compress simulated
traces to obtain compact witnesses of dynamical properties [12]. Reductions pre-
serving the attractors of dynamics (long-term/steady-state behaviour) have also
been proposed for chemical reaction networks [25] and Boolean networks [26].
The latter approach applies to formalisms close to automata networks but does
not preserve reachability properties. On Petri nets, different structural reduc-
tions have been proposed to reduce the size of the model specification while
preserving bisimulation [34], or liveness and LTL properties [4,17]. Procedures
such as the cone of influence reduction [5] or relevant subnet computation [37]
allow to identify variables/transitions which have no influence on a given dynam-
ical property. Our work has a motivation similar to the two latter approaches.

Contribution. We introduce a reduction of automata networks which identifies
transitions that do not contribute to a given reachability property and hence
can be ignored. The considered automata networks are finite sets of finite-state
machines where transitions between their local states are conditioned by the
state of other automata in the network. We use a general concurrent semantics
where any number of automata can apply one transition within one step. We
call a trace a sequential interleaved execution of steps.

Our reduction preserves all the minimal traces satisfying reachability prop-
erties of the form “from state s there exist successive steps that lead to a state
where a given automaton g is in local state g�”. A trace is minimal if no step
nor transition can be removed from it and resulting in a sub-trace that sat-
isfies the concerned reachability property. The complexity of the procedure is
polynomial in the number of local transitions, and exponential in the maximal
size of automata. Therefore, the reduction is scalable for networks of multiple
automata, where each have a few local states.
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The identification of the transitions that are not part of any minimal trace
is performed by a static analysis of the causality of transitions within automata.
It extends previous static analysis of reachability properties by abstract inter-
pretation [28,29]. In [29], necessary or sufficient conditions for reachability are
derived, but they do not allow to capture all the (minimal) traces towards a
reachability goal. In [28], the static analysis extracts local states, referred to as
cut-sets, which are necessarily reached prior to a given reachability goal. The
results presented here are orthogonal: we identify transitions that are never part
of a minimal trace for the given reachability property. It allows us to output
a reduced model where all such transitions are removed while preserving all
the minimal traces for reachability. Hence, whereas [28] focuses on identifying
necessary conditions for reachability, this article focuses on preserving sufficient
conditions for reachability.

The effectiveness of our goal-oriented reduction is experimented on actual
models of biological networks and show significant shrinkage of the dynamics
of the automata networks, enhancing the tractability of a concrete verification.
Compared to other model reductions, our goal is similar to the cone of influ-
ence reduction [5] or relevant subnet computation [37] mentioned above, which
identify variables/transitions that do not impact a given property. Here, our app-
roach offers a much more fine-grained analysis in order to identify the sufficient
transitions and values of variables that contribute to the property, which leads
to stronger reductions.

Outline. Section 2 sets up the definition and semantics of the automata networks
considered in this paper, together with the local causality analysis for reachabil-
ity properties, based on prior work. Section 3 first depicts a necessary condition
using local causality analysis for satisfying a reachability property and then intro-
duce the goal-oriented reduction with the proof of minimal traces preservation.
Section 4 shows the efficiency of the reduction on a range of biological networks.
Finally, Sect. 5 discusses the results and motivates further work.

Notations. Integer ranges are noted [m;n] Δ= {m,m + 1, · · · , n}. Given a finite
set A, |A| is the cardinality of A; 2A is the power set of A. Given n ∈ N,
x = (xi)i∈[1;n] is a sequence of elements indexed by i ∈ [1;n]; |x| = n; xm..n is
the subsequence (xi)i∈[m;n]; x ::e is the sequence x with an additional element e
at the end; ε is the empty sequence.

2 Automata Networks and Local Causality

2.1 Automata Networks

We declare an Automata Network (AN) with a finite set of finite-state machines
having transitions between their local states conditioned by the state of other
automata in the network. An AN is defined by a triple (Σ,S, T ) (Definition 1)
where Σ is the set of automata identifiers; S associates to each automaton a
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finite set of local states: if a ∈ Σ, S(a) refers to the set of local states of a; and
T associates to each automaton its local transitions. Each local state is written
of the form ai, where a ∈ Σ is the automaton in which the state belongs to, and
i is a unique identifier; therefore given ai, aj ∈ S(a), ai = aj if and only if ai and
aj refer to the same local state of the automaton a. For each automaton a ∈ Σ,

T (a) refers to the set of transitions of the form t = ai
�−→ aj with ai, aj ∈ S(a),

ai �= aj , and � the enabling condition of t, formed by a (possibly empty) set
of local states of automata different than a and containing at most one local
state of each automaton. The pre-condition of transition t, noted •t, is the set
composed of ai and of the local states in �; the post-condition, noted t• is the
set composed of aj and of the local states in �.

Definition 1 (Automata Network (Σ,S, T )). An Automata Network (AN)
is defined by a tuple (Σ,S, T ) where

– Σ is the finite set of automata identifiers;
– For each a ∈ Σ, S(a) = {ai, . . . , aj} is the finite set of local states of automa-

ton a; S
Δ=

∏
a∈Σ S(a) is the finite set of global states;

LS Δ=
⋃

a∈Σ S(a) denotes the set of all the local states.
– T = {a �→ Ta | a ∈ Σ}, where ∀a ∈ Σ,Ta ⊆ S(a) × 2LS\S(a) × S(a) with

(ai, �, aj) ∈ Ta ⇒ ai �= aj and ∀b ∈ Σ, |� ∩ S(b)| ≤ 1, is the mapping from
automata to their finite set of local transitions.

We note ai
�−→ aj ∈ T

Δ⇔ (ai, �, aj) ∈ T (a) and ai → aj ∈ T
Δ⇔ ∃� ∈

2LS\S(a), ai
�−→ aj ∈ T . Given t = ai

�−→ aj ∈ T , orig(t) Δ= ai, dest(t) Δ= aj,

enab(t) Δ= �, •t Δ= {ai} ∪ �, and t• Δ= {aj} ∪ �.

At any time, each automaton is in one and only one local state, forming the
global state of the network. Assuming an arbitrary ordering between automata
identifiers, the set of global states of the network is referred to as S as a shortcut
for

∏
a∈Σ S(a). Given a global state s ∈ S, s(a) is the local state of automaton

a in s, i.e., the a-th coordinate of s. Moreover we write ai ∈ s
Δ⇔ s(a) = ai; and

for any ls ∈ 2LS, ls ⊆ s
Δ⇔ ∀ai ∈ ls, s(a) = ai.

In the scope of this paper, we allow, but do not enforce, the parallel appli-
cation of transitions in different automata. This leads to the definition of a step
as a set of transitions, with at most one transition per automaton (Definition 2).
For notational convenience, we allow empty steps. The pre-condition (resp. post-
condition) of a step τ , noted •τ (resp. τ•), extends the similar notions on transi-
tions: the pre-condition (resp. post-condition) is the union of the pre-conditions
(resp. post-conditions) of composing transitions. A step τ is playable in a state
s ∈ S if and only if •τ ⊆ s, i.e., all the local states in the pre-conditions of tran-
sitions are in s. If τ is playable in s, s · τ denotes the state after the applications
of all the transitions in τ , i.e., where for each transition ai

�−→ aj ∈ τ , the local
state of automaton a has been replaced with aj .
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Definition 2 (Step). Given an AN (Σ,S, T ), a step τ is a subset of local
transitions T such that for each automaton a ∈ Σ, there is at most one local
transition T (a) in τ (∀a ∈ Σ, |(τ ∩ T (a))| ≤ 1).
We note •τ Δ=

⋃
t∈τ

•t and τ• Δ=
⋃

t∈τ t• \ {orig(t) | t ∈ τ}.
Given a state s ∈ S where τ is playable (•τ ⊆ s), s · τ denotes the state where
∀a ∈ Σ, (s · τ)(a) = aj if ∃ai → aj ∈ τ , and (s · τ)(a) = s(a) otherwise.

Remark that τ• ⊆ s · τ and that this definition implicitly rules out steps
composed of incompatible transitions, i.e., where different local states of a same
automaton are in the pre-condition.

A trace (Definition 3) is a sequence of successively playable steps from a state
s ∈ S. The pre-condition •π of a trace π is the set of local states that are required
to be in s for applying π (•π ⊆ s); and the post-condition π• is the set of local
states that are present in the state after the full application of π (π• ⊆ s · π).

Definition 3 (Trace). Given an AN (Σ,S, T ) and a state s ∈ S, a trace π is
a sequence of steps such that ∀i ∈ [1; |π|], •πi ⊆ (s · π1 · · · · πi−1).
The pre-condition •π and the post-condition π• are defined as follows: for all
n ∈ [1; |π|], for all ai ∈ •πn, ai ∈ •π Δ⇔ ∀m ∈ [1;n−1], S(a)∩•πm = ∅; similarly,
for all n ∈ [1; |π|], for all aj ∈ πn•, aj ∈ π• Δ⇔ ∀m ∈ [n + 1;m], S(a) ∩ πm• = ∅.
If π is empty, •π = π• = ∅.
The set of transitions composing a trace π is noted tr(π) Δ=

⋃|π|
n=1 πn.

Given an automata network (Σ,S, T ) and a state s ∈ S, the local state
g� ∈ LS is reachable from s if and only if either g� ∈ s or there exists a trace
π with •π ⊆ s and g� ∈ π•.

We consider a trace π for g� reachability from s is minimal if and only if
there exists no different trace reaching g� having each successive step being a
subset of a step in π with the same ordering (Definition 4). Say differently, a
trace is minimal for g� reachability if no step or transition can be removed from
it without breaking the trace validity or g� reachability.

Definition 4 (Minimal trace for local state reachability). A trace π is
minimal w.r.t. g� reachability from s if and only if there is no trace � from s,
� �= π, |�| ≤ |π|, g� ∈ �•, such that there exists an injection φ : [1; |�|] →
[1; |π|] with ∀i, j ∈ [1; |�|], i < j ⇔ φ(i) < φ(j) and �i ⊆ πφ(i).

Automata networks as presented can be considered as a class of 1-safe Petri
Nets [3] (at most one token per place) having groups of mutually exclusive places,
acting as the automata, and where each transition has one and only one incom-
ing and out-going arc and any number of read arcs. The semantics considered in
this paper where transitions within different automata can be applied simulta-
neously echoes with Petri net step-semantics and concurrent/maximally concur-
rent semantics [19,20,30]. In the Boolean network community, such a semantics
is referred to as the asynchronous generalized update schedule [2].
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2.2 Local Causality

Locally reasoning within one automaton a, the reachability of one of its local
state aj from some global state s with s(a) = ai can be described by a (local)
objective, that we note ai �aj (Definition 5).

Definition 5 (Objective). Given an automata network (Σ,S, T ), an objec-
tive is a pair of local states ai, aj ∈ S(a) of a same automaton a ∈ Σ and is

denoted ai � aj. The set of all objectives is referred to as Obj Δ= {ai � aj |
(ai, aj) ∈ S(a) × S(a), a ∈ Σ}.

Given an objective ai � aj ∈ Obj, local-paths(ai � aj) is the set of local
acyclic paths of transitions T (a) within automaton a from ai to aj (Definition 6).

Definition 6 (local-paths). Given ai � aj ∈ Obj, if i = j, local-paths(ai �
ai)

Δ= {ε}; if i �= j, a sequence η of transitions in T (a) is in local-paths(ai �aj)
if and only if |η| ≥ 1, orig(η1) = ai, dest(η|η|) = aj, ∀n ∈ [1; |η| − 1], dest(ηn) =
orig(ηn+1), and ∀n,m ∈ [1; |η|], n > m ⇒ dest(ηn) �= orig(ηm).

As stated by Property 1, any trace reaching aj from a state containing ai

uses all the transitions of at least one local acyclic path in local-paths(ai �aj).
Property 1. For any trace π, for any a ∈ Σ, ai, aj ∈ S(a), 1 ≤ n ≤ m ≤ |π| where
ai ∈ •πn and aj ∈ πm•, there exists a local acyclic path η ∈ local-paths(ai �aj)
that is a sub-sequence of πn..m, i.e., there is an injection φ : [1; |η|] → [n;m] with
∀u, v ∈ [1; |η|], u < v ⇔ φ(u) < φ(v) and ηu ∈ πφ(u).

A local path is not necessarily a trace, as transitions may be conditioned
by the state of other automata that may need to be reached beforehand. A
local acyclic path being of length at most |S(a)| with unique transitions, the
number of local acyclic paths is polynomial in the number of transitions T (a)
and exponential in the number of local states in a.

Example 1. Let us consider the automata network (Σ,S, T ), graphically repre-
sented in Fig. 1, where:

Σ = {a, b, c, d}
S(a) = {a0, a1} T (a) = {a0

{b0}−−−→ a1, a1
∅−→ a0}

S(b) = {b0, b1} T (b) = {b0
{a1}−−−→ b1, b1

{a0}−−−→ b0}
S(c) = {c0, c1, c2} T (c) = {c0

{a1}−−−→ c1, c1
{b1}−−−→ c0, c1

{b0}−−−→ c2, c0
{d1}−−−→ c2}

S(d) = {d0, d1} T (d) = ∅

The local paths for the objective c0 � c2 are local-paths(c0 � c2) = {c0
{a1}−−−→

c1
{b0}−−−→ c2, c0

{d1}−−−→ c2}. From the state , A0, b0, c0, d0, instances of traces are

{a0 {b0}−−−→ a1} ::{b0 {a1}−−−→ b1, c0
{a1}−−−→ c1} ::{a1 ∅−→ a0} ::{b1 {a0}−−−→ b0} ::{c1 {b0}−−−→ c2};

{a0 {b0}−−−→ a1} ::{c0 {a1}−−−→ c1} ::{c1 {b0}−−−→ c2};

the latter only being a minimal trace for c2 reachability.
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Fig. 1. An example of automata network. Automata are represented by labelled boxes,
and local states by circles where ticks are their identifier within the automaton – for
instance, the local state a0 is the circle ticked 0 in the box a. A transition is a directed
edge between two local states within the same automaton. It can be labelled with a set
of local states of other automata. In this example, all the transitions are conditioned
by at most one other local state.

3 Goal-Oriented Reduction

Assuming a global AN (Σ,S, T ), an initial state s ∈ S and a reachability goal
g� where g ∈ Σ and g� ∈ S(g), the goal-oriented reduction identifies a subset
of local transitions T that are sufficient for producing all the minimal traces
leading to g� from s. The reduction procedure takes advantage of the local
causality analysis both to fetch the transitions that matter for the reachability
goal and to filter out objectives that can be statically proven impossible.

3.1 Necessary Condition for Local Reachability

Given an objective ai � aj and a global state s ∈ S where s(a) = ai, prior
work has demonstrated necessary conditions for the existence of a trace lead-
ing to aj from s [28,29]. Those necessary conditions rely on the local causality
analysis defined in previous section for extracting necessary steps that have to
be performed in order to reach the concerned local state.

Several necessary conditions have been established in [29], taking into account
several features captured by the local paths (dependencies, sequentiality, partial
order constraints, . . . ). The complexity of deciding most of these necessary con-
ditions is polynomial in the total number of local transitions and exponential in
the maximum number of local states within an automaton.

In this section, we consider a generic reachability over-approximation predi-
cate valids which is false only when applied to an objective that has no trace con-
cretizing it from s: aj is reachable from s with s(a) = ai only if valids(ai �aj).

Definition 7 (valids). Given any objective ai � aj ∈ Obj, valids(ai � aj) if
there exists a trace π from s such that ∃m,n ∈ [1; |π|] with m ≤ n, ai ∈ •πm,
and aj ∈ πn•.

For the sake of self-consistency, we give in Proposition 1 an instance imple-
mentation of such a predicate. It is a simplified version of a necessary condition
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for reachability demonstrated in [29]. Essentially, the set of valid objectives Ω is
built as follows: initially, it contains all the objectives of the form ai �ai (that
are always valid); then an objective ai � aj is added to Ω only if there exists
a local acyclic path η ∈ local-paths(ai � aj) where all the objectives from the
initial state s to the enabling conditions of the transitions are already in Ω: if
bk ∈ enab(ηn) for some n ∈ [1; |η|], then the objective b0 � bk is already in the
set, assuming s(b) = b0.

Proposition 1. For all objective P ∈ Obj, valids(P ) Δ⇔ P ∈ Ω where Ω is the
least fixed point of the monotonic function F : 2Obj → 2Obj with

F(Ω) Δ= {ai �aj ∈ Obj | ∃η ∈ local-paths(ai �aj) :
∀n ∈ [1; |η|],∀bk ∈ enab(ηn), s(b)�bk ∈ Ω}.

Applied to the AN of Fig. 1, if s = 〈a0, b0, c0, d0〉, valids(c0 � c2) is true
because c0

a1−→ c1
b0−→ c2 ∈ local-paths(c0 � c2) with valids(a0 � a1) true and

valids(b0�b0) true. On the other hand, valids(d0�d1) is false.

Note that Proposition 1 is an instance of valids implementation; any other
implementation satisfying Definition 7 can be used to apply the reduction pro-
posed in this article. In [29], more restrictive over-approximations are proposed.

3.2 Reduction Procedure

This section depicts the goal-oriented reduction procedure which aims at iden-
tifying transitions that do not take part in any minimal trace from the given
initial state to the goal local state g�. The reduction relies on the local causality
analysis to delimit local paths that may be involved in the goal reachability: any
local transitions that is not captured by this analysis can be removed from the
model without affecting the minimal traces for its occurrence.

The reduction procedure (Definition 8) consists of collecting a set B of objec-
tives whose local acyclic paths may contribute to a minimal trace for the goal
reachability. To ease notations, and without loss of generality, we assume that
any automaton a is in state a0 in s. Given an objective, only the local paths where
all the enabling conditions lead to valid objectives are considered (local-pathss).
The local transitions corresponding to the objectives in B are noted tr(B).

Initially starting with the main objective g0 �g� (Definition 8(1)), the pro-
cedure iteratively collects objectives that may be involved for the enabling con-
ditions of local paths of already collected objectives. If a transition bj

�−→ bk is
in tr(B), for each ai ∈ �, the objective a0 � ai is added in B (Definition 8(2));
and for each other objective b	 � bi ∈ B, the objective bk � bi is added in B
(Definition 8(3)). Whereas the former criteria references the objectives required
for concretizing a local path from the initial state, the later criteria accounts for
the possible interleaving and successions of local paths within a same automaton:
e.g., g� reachability may require to reach bk and bi in some (undefined) order,
we then consider 4 objectives: b0�bk, bk �bi, b0�bi, and bi �bk.
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Definition 8 (B). Given an AN (Σ,S, T ), an initial state s where, without loss
of generality, ∀a ∈ Σ, s(a) = a0, and a local state g� with g ∈ Σ and g� ∈ S(g),
B ⊆ Obj is the smallest set which satisfies the following conditions:

1. g0�g� ∈ B
2. bj

�−→ bk ∈ tr(B) ⇒ ∀ai ∈ �, a0�ai ∈ B
3. bj

�−→ bk ∈ tr(B) ∧ b	 �bi ∈ B ⇒ bk �bi ∈ B

with tr(B) Δ=
⋃

P∈B
tr(local-pathss(P )), where,∀P ∈ Obj,

local-pathss(P ) Δ= {η ∈ local-paths(P ) | ∀n ∈ [1; |η|],
∀bk ∈ enab(ηn),valids(b0�bk)},

enab(t) being the enabling condition of local transition t (Definition 1).

Theorem 1 states that any trace which is minimal for the reachability of g�
from initial state s is composed only of transitions in tr(B). The proof is given
in AppendixA. It results that the AN (Σ,S, tr(B)) contains less transitions but
preserves all the minimal traces for the reachability of the goal.

Theorem 1. For each minimal trace π reaching g� from s, tr(π) ⊆ tr(B).

Figure 2 shows the results of the reduction on the example AN of Fig. 1 for
the reachability of c2 from the state where all automata start at 0. Basically,
the local path from c0 to c2 using d1 being impossible to concretize (because
valids(d0 � d1) is false), it has been removed, and consequently, so are the
transitions involving b1 as b1 is not required for c2 reachability. In this example,
the subnet computation for reachability properties proposed in [37] would have
removed only the transition c0

d1−→ c2 from Fig. 1.
Because the number of objectives is polynomial (|Obj| =

∑
a∈Σ |S(a)|2), the

computation of B and tr(B) is very efficient, both from a time and space com-
plexity point of view. The sets B ⊆ Obj and tr(B) ⊆ T can be built iteratively,
from the empty sets: when a new objective b	 �bi is inserted in B, each transi-
tion in tr(local-pathss(b	 �bi)) is added in tr(B), if not already in; and for each

Fig. 2. Reduced automata network from Fig. 1 for the reachability of c2 from initial
state indicated in grey.
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transition bj → bk currently in tr(B), the objective bk �bi is added in B, if not

already in. When a new transition bj
�−→ bk is added in tr(B), for each ai ∈ �, the

objective a0 �ai is added in B, if not already in; and for each objective b	 �bi

currently in B, the objective bk �bi is added in B, if not already in.
Putting aside the tr(local-pathss) computation, the above steps require a

polynomial time and a linear space with respect to the number of transitions
and objectives. The computation of tr(local-pathss(ai � aj)) requires a time
exponential with the number of local states in automaton a (|S(a)|), due to
the number of acyclic local paths (Sect. 2.2), but a quadratic space: indeed,
each individual local acyclic path does not need to be stored, only its set of local
transitions, without conditions. Then, valids is called at most once per objective.
We assume that the complexity of valids is polynomial with the number of
automata and transitions and exponential with the maximum number of local
states within an automaton (it is the case of the one presented in Sect. 3.1)

Overall, the reduction procedure has a polynomial space complexity (|Obj|+
|T |) and time complexity polynomial with the total number of automata and
local transitions, and exponential with the maximum number k of local states
within an automaton (k = maxa∈Σ |S(a)|). Therefore, assuming k � |Σ|, the
goal-oriented reduction offers a very low complexity, especially with regard to a
full exploration of the k|Σ| states.

4 Experiments

We experimented the goal-oriented reduction on several biological networks and
quantify the shrinkage of the reachable state space. Then, we illustrate potential
applications with the verification of simple reachability, and of cut sets. In both
cases, the reduction drastically increases the tractability of those applications.

4.1 Results on Model Reduction

We conducted experiments on Automata Networks (ANs) that model dynamics
of biological networks. For different initial states, and for different reachability
goals, we compared the number of local transitions in the AN specifications (|T |),
the number of reachable states, and the size of the so-called complete finite prefix
of the unfolding of the net [13]. This latter structure is a finite partial order
representation of all the possible traces, which is well studied in concurrency
theory. It aims at offering a compact representations of the reachable state spaces
by exploiting the concurrency between transitions: if t1 and t2 are playable in
a given state and are not in conflict (notably when •t1 ∩ •t2 = ∅), a standard
approach would consider 4 global transitions (t1 then t2, and t2 then t1), whereas
a partial order structure would simply declare t1 and t2 as concurrent, imposing
no ordering between them. Hence, unfoldings drop part of the combinatorial
explosion of the state space due to the interleaving of concurrent transitions.
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The selected networks are models of signalling pathways and gene regulatory
networks: two Boolean models of Epidermal Growth Factor receptors (EGF-r)
[32,33], one Boolean model of tumor cell invasion (Wnt) [10], two Boolean mod-
els of T-Cell receptor (TCell-r) [21,31], one Boolean model of Mitogen-Activated
Protein Kinase network (MAPK) [15], one multi-valued model of fate determina-
tion in the Vulval Precursor Cells (VPC) in C. elegans [38], one Boolean model
of T-Cell differentiation (TCell-d) [1], and one Boolean models of cell cycle reg-
ulation (RBE2F) [11]. The ANs result from automatic translation from the log-
ical network specifications in the above references; for most models using the
logicalmodel tool [16]. Note that the obtained ANs are bisimilar to the logical
networks [6]. For each of these models, we selected initial states and nodes for
which the activation will be the reachability goal1. Typically, the initial states
correspond to various input signal combinations in the case of signalling cascades,
or to pluripotent states for gene networks; and goals correspond to transcrip-
tion factors or genes of importance for the model (output nodes for signalling
cascades, key regulators for gene networks).

Table 1 sums up the results before and after the goal-oriented reduction. The
number of reachable states is computed with its-reach [23] using a symbolic
representation, and the size of the complete finite prefix (number of instances of
transitions) is computed with Mole [35]. The goal-oriented reduction is performed
using Pint [27]. In each case, the reduction step took less than 0.1s, thanks to
its very low complexity when applied to logical networks.

There is a substantial shrinkage of the dynamics for the reduced models,
which can turn out to be drastic for large models. In some cases, the model is
too large to compute the state space without reduction. For some large models,
the unfolding is too large to be computed, whereas it can provide a very com-
pact representation compared to the state space for large networks exhibiting a
high degree of concurrency (e.g., TCell-d, RBE2F). In the case of first profile of
TCell-d and EGF-r (104) the reduction removed all the transitions, resulting in
an empty model. Such a behaviour can occur when the local causality analysis
statically detect that the reachability goal is impossible, i.e., the necessary condi-
tion of Sect. 3.1 is not satisfied. On the other hand, a non-empty reduced model
does not guarantee the goal reachability. AppendixB show additional results
with the reduction made without the filtering valids (Sect. 3.1).

4.2 Example of Application: Goal Reachability

In order to illustrate practical applications of the goal-oriented model reduction,
we first systematically applied model-checking for the goal reachability on the
initial and reduced model (Table 1).

We compared two different softwares: NuSMV [8] which combines Binary Deci-
sion Diagrams and SAT approaches for synchronous systems, and its-reach [23]
which implements efficient decision diagram data structures [18]. In both cases,
the transition systems specified as input of these tools is an exact encoding of the

1 Scripts and models available at http://loicpauleve.name/gored-suppl.zip.

http://loicpauleve.name/gored-suppl.zip
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Table 1. Comparisons before (normal font) and after (bold font) the goal-oriented
AN reduction. Each model is identified by the system, the number of automata (within
parentheses), and a profile specifying the initial state and the reachability goal. |T |
is the number of local transitions in the AN specification; “#states” is the number
of reachable global states from the initial state; “—unf—” is the size of the complete
finite prefix of the unfolding. “KO” indicates an execution running out of time (30 min)
or memory. When applied to goal reachability, we show the total execution time and
memory used by the tools NuSMV and its-reach. Computation times where obtained
on an Intel R© CoreTM i7 3.4 GHz CPU with 16 GB RAM. For each case, the reduction
procedure took less than 0.1 s

asynchronous semantics of the automata networks, where steps (Definition 2) are
always composed of only one transition. For NuSMV, the reachability property is
specified with CTL [9] (“EF g�”, g� being the goal local state, and EF the exists
eventually CTL operator). It is worth noting that NuSMV implements the cone
of influence reduction [5] which removes variables not involved in the property.
its-reach is optimized for checking if a state belongs to the reachable state
space, and cannot perform CTL checking.
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Experiments show a remarkable gain in tractability for the model-checking of
reduced networks. For large cases, we observe that the dynamics can be tractable
only after model reduction (e.g., TCell-r (94), RBE2F (370)). its-reach is sig-
nificantly more efficient than NuSMV because it is tailored for simple reachability
checking, whereas NuSMV handles much more general properties.

Because the goal-reduction preserves all the minimal traces for the goal reach-
ability, it preserves the goal reachability: the results of the model-checking is
equivalent in the initial and reduced model.

4.3 Example of Application: Cut Set Verification

The above application to simple reachability does not requires the preservation
of all the minimal traces. Here, we apply the goal-oriented reduction to the cut
sets for reachability, where the completeness of minimal traces is crucial.

Given a goal, a cut set is a set of local states such that any trace leading to
the goal involves, in some of its transitions, one of these local states. Therefore,
disabling all the local states of a cut set should make the reachability of the
goal impossible. This disabling could be implemented by the knock-out/in of
the corresponding species in the biological system: cut sets predict mutations
which should prevent a concerned reachability to occur (e.g., active transcription
factor). Such cut sets have been studied in [28,32] and are close to intervention
sets [21] (which are not defined on traces but on pseudo-steady states).

We focus here on verifying if a (predicted) set of local states is, indeed, a cut
set for the goal reachability. In the scope of this experiment, we consider cut sets
that are disjoint with the initial state. The cut set property can be expressed
with CTL: {a1, b1} is a cut set for g� reachability if the model satisfies the CTL
property not E [ (not a1 and not b1) U g� ] (U being the until operator). The
property states that there exists no trace where none of the local state of the
cut set is reached prior to the goal. It is therefore required that all the minimal
traces to the goal reachability are present in the model: if one is missing, a set
of local states could be validated as cut set whereas it may not be involved in
the missed trace.

Table 2 compares the model-checking of cut sets properties using NuSMV and
its-ctl [23] on a range of the biological networks used in the previous sec-
tions. Because the dynamical property is much more complex, its-reach cannot
be used. The cut sets have been computed beforehand with Pint. Because the

Table 2. Comparisons before (normal font) and after (bold font) the goal-oriented
AN reduction for CTL model-checking of cut sets.

Wnt (32) TCell-r (40) EGF-r (104) TCell-d (101) RBE2F (370)

NuSMV 44 s 55 Mb KO KO KO KO

9.1 s 27Mb 2.4 s 34Mb 13 s 33Mb 600 s 360Mb 6 s 29Mb

its-ctl 105 s 2.1 Gb 492 s 10 Gb KO KO KO

16 s 720Mb 11 s 319Mb 21 s 875Mb KO 179 s 1.8Gb
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goal-oriented reduction preserves all the minimal traces to the goal, the results
are equivalent in the reduced models. Similarly to the simple reachability, the
goal-oriented reduction drastically improves the tractability of large models.

5 Discussion

This paper introduces a new reduction for automata networks parametrized by
a reachability property of the form: from a state s there exists a trace which
leads to a state where a given automaton g is in state g�.

The goal-oriented reduction preserves all the minimal traces satisfying the
reachability property under a general concurrent semantics which allows at each
step simultaneous transitions of an arbitrary number of automata. Those results
straightforwardly apply to the asynchronous semantics where only one transition
occurs at a time: any minimal trace of the asynchronous semantics is a minimal
trace in the general concurrent semantics.

Its time complexity is polynomial in the total number of transitions and expo-
nential with the maximal number of local states within an automaton. Therefore,
the procedure is extremely scalable when applied on networks between numerous
automata, but where each automaton has a few local states.

Applied to logical models of biological networks, the goal-oriented reduction
can lead to a drastic shrinkage of the reachable state space with a negligible
computational cost. We illustrated its application for the model-checking of sim-
ple reachability properties, but also for the validation of cut sets, which requires
the completeness of minimal traces in the reduced model. It results that the
goal-oriented reduction can increase considerably the scalability of the formal
analysis of dynamics of automata networks.

The goal is expressed as a single local state reachability, which also allows to
to support sequential reachability properties between (sub)states using an extra
automaton. For instance, the property “reach a1 and b1, then reach c1” can be

encoded using one extra automaton g, where g0
{a1,b1}−−−−−→ g1 and g1

{c1}−−−→ g�.
Further work consider performing the reduction on the fly, during the state

space exploration, expecting a stronger pruning. Although the complexity of the
reduction is low, such approaches would benefit from heuristics to indicate when
a new reduction step may be worth to apply.

A Proof of Minimal Traces Preservation

We assume a global AN (Σ,S, T ) where g ∈ Σ, g� ∈ S(g), and s ∈ S with
s(g) �= g�.

From Property 1 and Definition 7, any trace reaching first ai and then aj uses
all the transitions of at least one local path in local-pathss(ai �aj).

We first prove with Lemma 2 that the last transition of a minimal trace π for
g� reachability, of the form π|π| = {gi → g�}, is necessarily in tr(B). Indeed, by
definition of B, g0 �g� ∈ B; and by Lemma 1, gi → g� /∈ local-pathss(g0 �g�)
implies that reaching gi requires to reach g� beforehand.
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Lemma 1. Given aj → ai ∈ T , if aj → ai /∈ tr(local-pathss(a0�ai)), then for
any trace π from s with aj ∈ πv• and ai ∈ πw• for some v, w ∈ [1; |π|], there
exists u < v with ai ∈ πu•.

Proof. Let η ∈ local-pathss(a0 � aj) be an acyclic local path such that ∀n ∈
[1; |η|], ai �= dest(ηn). The sequence η ::aj → ai is then acyclic and, by definition,
belongs to local-pathss(a0�ai), which is a contradiction. ��
Lemma 2. If π is a minimal trace for g� reachability from state s, then, nec-
essarily, π|π| ⊆ tr(B).

Proof. As π is minimal for g� reachability, without loss of generality, we can
assume that π|π| = {gi → g�}. By definition, tr(local-pathss(g0�g�)) ⊆ tr(B).
By Lemma 1, if gi → g� /∈ tr(local-pathss(g0 � g�)), then there exists u < |π|
such that g� ∈ πu•; hence, π would be non minimal. ��

The rest of the proof of Theorem 1 is derived by contradiction: if a transition
of π is not in tr(B), we can build a sub-trace of π which preserves g� reachability,
therefore π is not minimal.

Given a transition ai → aj in the q-th step of π that is not in tr(B), removing
ai → aj from πq would imply to remove any further transition that depend
causally on it. Two cases arise from this fact: either all further transitions that
depend on aj must be removed; or ai → aj is part of loop within automaton a,
and it is sufficient to remove the loop from π.

Lemma 3 ensures that if az �ak is in B and if az occurs before the q-th step
and ak after the q-th step of π, then ai → aj /∈ tr(local-pathss(az � ak)) only
if ai → aj is part of a loop, i.e., there are two steps surrounding q where the
automaton a is in the same state before their application.

Lemma 3. Given a ∈ Σ and u, q, v ∈ [1; |π|], u ≤ q < v, with az ∈ •πu,
ak ∈ •πv ∪ πv•, and ai → aj ∈ πq \ tr(B), if az � ak ∈ B then ∃m,n ∈ [u; v],
m ≤ q ≤ n such that (π1..m−1)• ∩S(a) = (π1..n)• ∩S(a); and ak ∈ •πv ⇒ n < v.

Proof. If ai → aj /∈ tr(B) and az � ak ∈ tr(B), necessarily ai → aj /∈
tr(local-pathss(az � ak)). Therefore ai → aj belongs to a loop of a local path
from az (at index u in π) to ak (at index v in π). Hence, ∃m,n ∈ [u; v] with
m ≤ q ≤ n and ah, ax, ay ∈ S(a) such that ah → ax ∈ πm and ay → ah ∈ πn;
therefore (π1..m−1)• ∩ S(a) = (π1..n)• ∩ S(a) = ah. In the case where ak ∈ •πv,
ak �= ah, hence n < v. ��

Intuitively, Lemma3 imposes that π has the following form:

a
z ∈ /∈

tr
(B

)

a
k ∈

π = · · · ::πu :: · · · ::ah → ax :: · · · ::ai → aj :: · · · ::ay → ah :: · · · ::πv :: · · ·
u m q n v

given that az �ak ∈ B.
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The idea is then to remove the transitions forming the loop within automaton
a. However, transitions in other automata may depend causally on the transitions
that compose the local loop in automaton a within steps m and n, following the
notations in Lemma 3.

Lemma 4 establishes that we can always find m and n such that none of the
transitions within these steps with an enabling condition depending on automa-
ton a are in tr(B). Indeed, if a transition in tr(B) depends on a local state of a,
let us call it ap, the objectives a0 �ap and ap �ak are in B, due to the second
and third condition in Definition 8. Lemma 3 can then be applied on the subpart
of π that contains the transition ai → aj not in tr(B) and that concretizes either
a0�ap or ap �ak to identify a smaller loop containing ai → aj .

Lemma 4. Let us assume a ∈ Σ and q ∈ [1; |π|] with ai → aj ∈ πq\tr(B). There
exists m,n ∈ [1; |π|] with m ≤ q ≤ n such that ∀t ∈ tr(πm+1..n), enab(t)∩S(a) �=
∅ ⇒ t /∈ tr(B), and, if a = g or ∃t ∈ tr(πn+1..|π|)∩ tr(B) with enab(t)∩S(a) �= ∅,
then (π1..m−1)• ∩ S(a) = (π1..n)• ∩ S(a).

Proof. First, let us assume that a �= g and for any t ∈ πq+1..|π|, enab(t)∩S(a) �=
∅ ⇒ t /∈ tr(B): the lemma is verified with m = q and n = |π|.

Then, let us assume there exists v ∈ [q + 1; |π|] such that ∃t ∈ tr(πv) ∩ tr(B)
with ak ∈ enab(t). By Definition 8, this implies a0 � ak ∈ B. By Lemma 3,
there exists m,n ∈ [1; v − 1] with m ≤ q ≤ n such that (π1..m−1)• ∩ S(a) =
(π1..n)• ∩ S(a).

Otherwise, a = g, and by Lemma 3 with ak = g�, there exists m,n ∈ [1; |π|]
with m ≤ q ≤ n and m �= n such that (π1..m−1)• ∩ S(a) = (π1..n)• ∩ S(a).
Remark that it is necessary that n < |π|: if n = |π|, g� ∈ (π1..m−1)•, so π would
be not minimal.

In both cases, if there exists r ∈ [m + 1;n] such that ∃ap ∈ S(a) and ∃t ∈ πr

with ap ∈ enab(t), then t ∈ tr(B) implies that a0 � ap ∈ B and ap � ak ∈ B
(Definition 8). If r > q, by Lemma 3 with ak = ap and v = r, there exists m′, n′ ∈
[m+1;n] such that m′ ≤ q ≤ n′ < r ≤ n with (π1..m′−1)•∩S(a) = (π1..n′

)•∩S(a).
If r ≤ q, by Lemma 3 with a0 = ap and u = r, there exists m′, n′ ∈ [m+1;n] such
that r ≤ m′ ≤ q ≤ n′ with (π1..m′−1)• ∩ S(a) = (π1..n′

)• ∩ S(a). Therefore, by
induction with Lemma 3, there exists m,n ∈ [1; |π|] such that ∀t ∈ tr(πm+1..n),
enab(t) ∩ S(a) �= ∅ ⇒ t /∈ tr(B). ��

Using Lemma 4, we show how we can identify a subset of transitions in π
that can be removed to obtain a sub-trace for g� reachability. In the following,
we refer to the couple (m,n) of Lemma 4 with cb(π, a, q) (Definition 9).

Definition 9 (cb(π, a, q)). Given a ∈ Σ, q ∈ [1; |π|] with t ∈ πq \ tr(B) and
Σ(t) = a, we define cb(π, a, q) = (m,n) where m,n ∈ [1; |π|] such that:

– ∀t ∈ tr(πm+1..n), enab(t) ∩ S(a) �= ∅ ⇒ t /∈ tr(B);
– a = g∨∃t ∈ tr(πn+1..|π|)∩tr(B) with enab(t)∩S(a) �= ∅ =⇒ (π1..m−1)•∩S(a) =

(π1..n)• ∩ S(a). Moreover, if a = g, then n < |π|.
We use Lemma 4 to collect the portions of π to redact according to each

automaton. We start from the last transition in π that is not in tr(B): if tr(π) �⊆
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tr(B), there exists l ∈ [1; |π|] such that πl �⊆ tr(B) and ∀n > l, πn ⊆ tr(B). By
Lemma 2, we know that l < |π|. Let us denote by bi → bj one of the transitions
in πl which is not in tr(B).

We define Ψ ⊆ Σ × [1; |π|] × [1; |π|] the smallest set which satisfies:

– (b,m, n) ∈ Ψ if cb(π, l, b) = (m,n)
– ∀(a,m, n) ∈ Ψ , ∀q ∈ [m+1;n], ∀t ∈ πq, enab(t)∩S(a) �= ∅ =⇒ (Σ(t),m′, n′) ∈

Ψ where cb(π, q,Σ(t)) = (m′, n′).

Finally, let us define the sequence of steps � as the sequence of steps π where
the transitions delimited by Ψ are removed: for each (a,m, n) ∈ Ψ , all the transi-
tions of automaton a occurring between πm and πn are removed. Formally, |�| =
|π| and for all q ∈ [1; |π|], �q Δ= {t ∈ πq | �(a,m, n) ∈ Ψ : a = Σ(t)∧m ≤ q ≤ n}.

From Lemma 4 and Ψ definition, � is a valid trace. Moreover, by Lemma 4,
there is no q ∈ [1; |π|] such that (g, q, |π|) ∈ Ψ , hence g� ∈ �•. Therefore, π is
not minimal, which contradicts our hypothesis. ��
Example 2 Let us consider the reachability of c2 in the AN of Fig. 1 from state
〈A0, b0, c0, d0〉. The transitions tr(B) preserved by the reduction for that goal are
listed in Fig. 2.

Let π be the following trace in the AN of Fig. 1:

π = {a0
{b0}−−−→ a1} ::{b0

{a1}−−−→ b1, c0
{a1}−−−→ c1} ::{a1

∅−→ a0} ::{b1
{a0}−−−→ b0}

::{c1
{b0}−−−→ c2}.

The latest transition not in tr(B) is b1
{a0}−−−→ b0 at step 4. One can compute

cb(π, 4, b) = (2, 4), and as there is no transition involving b between steps 3 and
4, Ψ = {(b, 2, 4)}; therefore, the sequence

� = {a0
{b0}−−−→ a1} ::{c0

{a1}−−−→ c1} ::{a1
∅−→ a0} ::{} ::{c1

{b0}−−−→ c2}
is a valid sub-trace of π reaching c2, proving π non-minimality.

In conclusion, if π is a minimal trace for g� reachability from state s, then,
tr(π) ⊆ tr(B).

B Experiments with Partial Reduction

The goal-oriented reduction relies on two intertwined analyses of the local causal-
ity in ANs: (1) the computation of potentially involved objectives (Sect. 3.2) and
(2) the filtering of objective that can be proven impossible (Sect. 3.1). The second
part can be considered optional: one could simply define the predicate valids to
be always true. In order to appreciate the effect of this second part, we show here
the intermediary results of model reduction without the filtering of impossible
objectives. It is shown in table below, in the lines in italic. As we can see, for
some models it has no effect on the reduction, for some others the filtering parts
is necessary to obtained important reduction of the state space (e.g., MAPK,
TCell-r (94), TCell-d).
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Model # tr # states |unf |
EGF-r (20) 68 4,200 1,749

43 722 336

43 722 336

Wnt (32) 197 7,260,160 KO

134 241,060 217,850

117 241,060 217,850

TCell-r (40) 90 ≈ 1.2 · 1011 KO

46 25,092 14,071

46 25,092 14,071

MAPK (53) profile 1 173 ≈ 3.8 · 1012 KO

147 ≈ 9 · 1010 KO

113 ≈ 4.5 · 1010 KO

MAPK (53) profile 2 173 8,126,465 KO

148 1,523,713 KO

69 269,825 155,327

VPC (88) 332 KO KO

278 ≈ 2.9 · 1012 185,006

219 1.8 · 109 43,302

TCell-r (94) 217 KO KO

112 KO KO

42 54.921 1,017

TCell-d (101) profile 1 384 ≈ 2.7 · 108 257

275 ≈ 1.1 · 108 159

0 1 1

TCell-d (101) profile 2 384 KO KO

253 ≈ 2.4 · 1012 KO

161 75,947,684 KO

EGF-r (104) profile 1 378 9,437,184 47,425

120 12,288 1,711

0 1 1

EGF-r (104) profile 2 378 ≈ 2.7 · 1016 KO

124 ≈ 2 · 109 KO

69 62,914,560 KO

RBE2F (370) 742 KO KO

56 2,350,494 28,856

56 2,350,494 28,856
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