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Abstract. Reaction networks can be simplified by eliminating linear
intermediate species in partial steady states. In this paper, we study the
question whether this rewrite procedure is confluent, so that for any given
reaction network, a unique normal form will be obtained independently
of the elimination order. We first contribute a counter example which
shows that different normal forms of the same network may indeed have
different structures. The problem is that different “dependent reactions”
may be introduced in different elimination orders. We then propose a
rewrite rule that eliminates such dependent reactions and prove that the
extended rewrite system is confluent up to kinetic rates, i.e., all normal
forms of the same network will have the same structure. However, their
kinetic rates may still not be unique, even modulo the usual axioms of
arithmetics. This might seem surprising given that the ODEs of these
normal forms are equal modulo these axioms.

1 Introduction

Chemical reaction networks are widely used in systems biology for modeling the
dynamics of biochemical molecular systems [1,4,6,11]. A chemical reaction net-
work has a graph structure that can be identified with a Petri net [2]. Beside of
this, it assigns to each of its reactions a kinetic rate that models the reaction’s
speed. Chemical reaction networks can either be given a deterministic semantics
in terms of ordinary differential equations (ODEs), which describes the evolu-
tion of the average concentrations of the species of the network over time, or a
stochastic semantics in terms of continuous time Markov chains, which defines
the evolution of molecule distributions of the different species over time. In this
paper, we focus on the deterministic semantics.

Reaction networks may become very large when modeling molecular biologi-
cal systems in sufficient detail, see e.g. the examples in the BioModels database
[8]. Therefore much effort has been spent on their simplification (see [18] for an
overview). The traditional approach is by reducing the ODEs of the network by
symbolic rewriting techniques [9,10]. While clearly beneficial, such approaches
have the disadvantage that the simplified ODEs cannot always be translated
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back to a reaction network [3], so that these simplifications cannot be under-
stood directly as simplifications of biological systems.

Another major problem with large biological reaction networks is that precise
kinetic rates are rarely available [14,16]. In the worst case, no kinetic information
is available, so that no ODEs can be derived. The only simplifications that are
possible in this case rely purely on the graph structure of the reaction network
[12,17]. In a less extreme setting, the kinetic rates are given by arithmetic expres-
sions with unknown parameters. In this case, the purely structural methods must
be lifted so that they can properly account for the kinetic rates.

The common objective of the structural simplification methods is to eliminate
intermediate species that are irrelevant to the external behaviour of the system.
This can be done in an exact manner — when assuming partial steady states — so
that the solutions of the ODEs of reaction networks are preserved [13,19,21]. It
should be noticed that any structural reduction algorithm preserving the ODE’s
solutions necessarily induces an exact reduction method on the underlying ODE
level. Indeed the above methods are based on the same idea, which is to resolve the
partial steady state equation of some intermediate species along its concentration
variable, so that this variable can be eliminated from the ODEs. The restriction
that makes this possible is that the kinetic rates of the network’s reactions are
linear in the concentration of the intermediate species.

The structural reduction method for intermediate elimination from [13]
removes the intermediates stepwise one by one. The approach of [21] is simi-
lar with an extension to rapid equilibrium assumption. The alternative method
of [19] removes several intermediates simultaneously. We verified that both meth-
ods perform the same reductions when restricted to a single intermediate, even
though these are computed by quite differently algorithms. The yet independent
method from [17,18] also performs simultaneous elimination of intermediates,
but not necessarily in a unique manner. The intermediates are eliminated from
the reaction graph by computing elementary modes in a first step, and in a sec-
ond, appropriate kinetic rates are assigned to reduced graph. Their method can
also be applied in the nonlinear case, but then with some approximations.

In this paper, we study the question of whether the stepwise elimination
of linear intermediates is confluent, so that for any given reaction network, a
unique normal form will be obtained independently of the elimination order. If
confluence would hold, one could compare reaction networks for equivalence, by
computing and comparing their normal forms. Furthermore, the unique normal
form would be the natural target for simultaneous reduction methods such as
[18,19]. Indeed, a confluence statement was claimed in Sect.5 of [19] (for the
case without conservation laws), but without proof.

We first contribute a counter example which shows that the elimination of
linear intermediates on the same network may lead to normal forms with dif-
ferent graph structure. This example contradicts the confluence statement from
[19]. The problem is that different “dependent reactions” may be introduced
in different elimination orders. We then propose a rewrite rule that eliminates
such dependent reactions and prove that the extended rewrite system is conflu-
ent up to kinetic rates, so that all normal forms of a same network will have
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the same structure. This yields a method to eliminate linear intermediates from
a reaction graph in a unique manner, while no uniqueness result was stated
in [17,18]. However, the kinetic rates may still not be unique, even not mod-
ulo the usual axioms of arithmetics. This might seem surprising given that the
ODEs of these normal forms are equal modulo these axioms. Finally, we present
an example reaction network from systems biology for the failure of confluence
with respect to kinetic rates, that we found in the BioModels SBML database
[8] with an implementation of our rewrite rules.

Our positive confluence result shows that the graph structure of reaction net-
works after intermediate and dependency reduction is unique, and thus poten-
tially meaningful biologically. The two negative confluence results show that the
situation may be different without dependency reduction, and also for the kinetic
rates that can be assigned to the reactions of the reduced network.

All proofs and missing parts are available in the Appendix of the long version.

2 Confluence Notions

We recall confluence notions and their relationships from the literature.

Let (S,~) be a set with an equivalence relation and — C S x S a binary
relation. We define —° = ~ and —* = — o —*1 for all ¥ > 0. The relation
—* = Ug>o0 —* is called the reflexive transitive closure of —. We write —¢ =
—lU =% and « = {(s,5") | s’ — s}.

Definition 1 (Confluence modulo). We say that a binary relation — on (S, ~)
s confluent if «—* o —* C —* o *— locally confluent if +— o — C —* o *«—,
strongly confluent if < o — C —€ o ~ o “—, and uniformly confluent if < o —
C ~U(—o~o«).

Clearly, uniform confluence implies strong confluence, and strong confluence
implies local confluence. It is also folklore that there exist locally confluent rela-
tions that are not confluent, while strong confluence implies confluence [7]. Uni-
form confluence implies for any s € S that all complete reduction sequences
starting with s have the same length [15], which may be oo though.

In this paper, we will always use binary relations that are terminating, i.e.,
for any s € S there exists a k > 0 such that {s' | s =% s’} = (), i.e., the length
reduction sequences starting with s is bounded. It is well known that locally
confluent and terminating relations are confluent (Newman’s lemma).

We say that ~ commutes with — if ~ o0 — C — o ~.

Lemma 1. If — is confluent for (S, ~) and commutes with ~, then the relation

~ o — o~ is confluent for (S,=g).

3 Simplification of Systems of Equations

In this section, we recall the definition of arithmetic expressions and ordinary
differential equations. It is well known that such systems can be inferred from
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reaction networks with deterministic semantics and partial steady state assump-
tions. We will then show how to simplify such systems in a confluent manner by
eliminating intermediate variables.

Systems of Equations. Let Ry be the set of non-negative real numbers, and
Ny C R, the set of natural numbers including 0. Denote by Vars a countable set
of variables for functions of type Ry — R, and by Param a set of parameters.
We define the set of arithmetic expression as the terms e,e’ € Ezpr with the
following abstract syntax:

e,el € EBrpr=uz|k|nle+e |exe |1/e] —e

where x € Vars, k € Param, n € R. In the following, the expression 1/e is
permitted only if e can never become zero, as explained below. For convenience,
we will write ee’ for e x ¢’; e/e’ for e x (1/e’), e — €’ for e + (—€’) and e™ for
e x...* e with n repetitions of e.

We map variables to functions on non-negative real numbers, and para-
meters to positive numbers (different from 0), which are identified with pos-
itive constant functions on non-negative real numbers. Given an assignment
a: (Vars — (R — Ry)) U (Param — RY), any expression e € Ezpr can
be interpreted as a function [e], : Ry — Ry in the usual way.

A system of equations S is a combination of equations and constraints, with
some existential variables, defined as follows:

S::=dz/dt =e|x=e]nzero(e) | cst(e) | SAS" | Fz. S.

dx/dt = e is an ordinary differential equation (ODE), and & = e an arithmetic
equation, for the variable x and with an expression e € FEzpr. The non-zero
constraint nzero(e) is satisfied by an assignment « if e is never equal to zero,
that is Vt. [e]a(t) # 0. The positive constant constraint cst(e) is satisfied by a
variable assignment « if [e], is a positive constant function. And Jz.S allows
us to existentially quantify some variables, that we actually want to remove to
simplify S. We denote by Vars(e) the set of variables of an expression e and by
Vars(S) the set of free variables of a system S. The set of solutions of a system
of equations S is the set of assignments on the free variables of S that make S
true, that is sol(S) = {a| [S]a = true}.

Example 1. The system of equations in Fig. 1 contains 4 ODEs for the variables
{za,xB,2c,zp}, and two arithmetic equations and positive constant constraints
for the existentially quantified variables Z = {zvy, z7}.

Similar Systems. We now define a syntactic notion of similarity between sys-
tems of equations, so that similar systems will have the same solutions. The sim-
tlarity relation ~ on arithmetic expressions is the least congruence that includes
the usual arithmetic axioms of a field: commutativity and associativity of + and
*, removal of neutral elements 0 in sums and 1 in products, uniqueness and laws
of inverses for —, distributivity, and simplification of real numbers. Similarity is
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6 6
cst(zy) A est(xz)

Fig. 1. The system of equations S(Nx).

decidable, by rewriting expressions to a fraction of polynomials, with the same
denominator, and comparing the numerators.

We always identify arithmetic expressions up to similarity (rather than syn-
tactic equality), i.e., we rewrite modulo ~. Given an assignment «, two similar
expressions e ~ ¢’ have trivially the same interpretation [e], = [€']o. The simi-
larity relation is lifted to systems of equations in the obvious manner.

Safe Linear Systems. We will consider only walid systems of equations in
which there is exactly one arithmetic equation per quantified variable and at
most one ODE for all others. We also assume that the systems are linear in
the existentially quantified variables as defined below, but not necessarily in the
others:

Definition 2. Given a sequence of variables T = x1,...,x,, an expression €' is
called T-linear if €' is similar to some expression e + Zlgign x;e;, where e and
e; do not contain any variables from T. We call a system 3z.S linear (in the
quantified variables) if for any quantified variable x € Vars(z), the system S is
similar to some system x = e A S’ where e is an T-linear expression.

In order to always avoid division by zero during the repeated elimination of
quantified variables to come (see Lemmas 2 and 3), we introduce the following
safety restriction of linear systems, which will be satisfied most of the time in
the applications. Without this restriction, the simplification procedure could be
shown to be only partially correct, similarly to [19].

Definition 3. Let S be a system 3x1,...,x,. S’ that is linear in the quantified
variables, such that S’ has the form N\ o,c, ©i = €'+, x5 NS". We
define a set expression Lg in which x and y are fresh variables:

Ls =g { (z,9) | \/ r=uxz; Ny =xj Anzero(e]) }.
1<i,j<n

For any assignment of the free variables in the subexpressions e}, the set expres-
siton Lg/ denotes a binary relation, that we call the linking relation of S’. We
call the system S safe if S' entails the following formula:

n n

S = /\ \/ L (x5, x1) A nzero(e®) A (e8>0 A /\ €5 >0).
j=1

i=1 k=1

We denote by SafeLin the set of safe linear systems of equations.
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x & Vars(e) (QUANTIFIED
Jz. (SAz=¢) = S[z:=e];  VARIABLE)

Fig. 2. Elimination of an existentially quantified variable z in a system of equations.

Simplifying Safe Linear Systems. We want to simplify safe linear systems
of equations by removing existentially quantified variables, while preserving the
solutions. To do that, given an expression x = e for a quantified variable x, we
will substitute = by e, as described in the simplification rule in Fig. 2.

A substitution [z := €] is the replacement of any occurrences of x; by the
expression e. Additionally, we also want to preserve the linearity and safety.
Therefore, we define a linear substitution, that rewrites arithmetic expressions
into linear ones after the substitution. Formally, given a Z-linear expression e ~
el +xoel + Y 5o, vier and an equation By = (22 = € +x1e] + Y 5,c,, Ti€?),

with Z = {x1,...,2,}, the linear substitution of z1 by e in Fy is:
1e2 4 e2
elef +e? e el
Eslxy :=¢€]; = (20 = —l— A nzero(1 — eje
o= = (o2 = TEEE Y wSDEE) Ansero(1 - el
3<i<n

The idea is to a) substitute x; by e in the equation of xs, b) bring the factor
6162x2 from the right to the left, ¢) factorize the x4, and d) divide by the factor
1 — e?el of x5 we obtained.

Lemma 2. If S is safe and with the above equations then S |= nzero(1 — efed).

We define S[x; := e]; by replacing 1 by e in the ODEs and the constraints of
S and by performing the linear substitution as above to all nondifferential equa-
tions of S. The relation S = S’ defined in Fig. 2 simplifies a safe linear system
S to S’: a quantified variable is eliminated by applying a linear substitution.

Lemma 3. The simplification of a safe linear system is a safe linear system.

Lemma 4. The simplification preserves the solutions of safe linear systems: if

S = 5, then sol(S) = sol(S").
Example 2. For instance, in the system from Example 1, we can substitute the

k1 ke
intermediate variable zy by e = A+ xz. Since we still have the
i iate vari v by [ ey ince we sti Y
constraint cst(xy), the constraint cst(e) can be simplified into cst(za ). The never-
kske

(ks + ks )ke
then nzero(kskes), and therefore is always true , and can be removed. We obtain
the system depicted in Fig. 3 (left). By doing the same with the variable zz, we
obtain the system in Fig.3 (right). Note that we used the fact that k¢/ks ~ 1,
that is always true, since parameters are assigned to positive numbers.

zero constraint nzero(1— ) is similar to nzero((ks+ ks)ke — kske) and

For safe linear systems, this simplification modulo similarity is confluent,
implying that whatever the order adopted for the elimination of quantified vari-
ables, it is always possible to find the same fully simplified system, modulo simi-
larity. We actually establish uniform confluence, implying that any simplification
leading to the fully simplified system will have the same number of steps.
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dx s d dx;
2A — (k1 + k2)za 20— kexz £2a - —(k1 + ka2)za
t dt t
TB kiks kske B
— = TA + Ty —_— = (lﬁ + kz)x;\
dt ks + ks ks + ks
Jz 4. dxc k1 (k4 + k5) /CG(/C4 + k5) dxc o (kl + k’2)(l€4 + k’5)
Y = TA Tz Y = TA
dt ks + ks ks + ks dt ks
R kiks +k2k3+k2k5x dxp  kiks +l€2k3+k2k5x
‘- kske 4 dt ks 4
est(xa) A est(xy) cst(za)

Fig. 3. Simplifications of S(Nx).

Theorem 1. The binary relation = on (SafeLin, ~) is uniformly confluent.

4 Reaction Networks

In this section, we introduce reaction networks, intermediate species, and the
interpretation of a network as a system of equations.

Let Spec be a countable set of molecular species ranged over by A. We asso-
ciate to each species A a concentration variable x4, and denote the set of these
variables by Vars = {z4 | A € Spec}. A kinetic expression is a non-negative
arithmetic expression on variables Vars, i.e. for any non-negative assignment «
for the concentrations, [e]q(t) > 0 for all ¢.

We define a (chemical) solution s € Sol : Spec — Ny as a multiset of molecular
species, i.e. a function from species to natural numbers, with finite support.
Given numbers nq,...,n;, we denote by n1A; + - + npAg the solution that
contains n; molecules of species A; for 1 < ¢ < k, and 0 molecules of others
species. Given s1,se € Solutions, their intersection is defined for any A by
(s1 N s2)(A) = min(s1(A),s2(A)). A kinetic reaction r = (s1 —>s2; e) is a pair
composed of a reaction s;—>so and a kinetic expression e € Expr. The reaction
transforms the solution si, called reactants, into the solution so, called products.
The reaction vector vr; of the reaction r is defined for any A € Spec by vr,.(A) =
s2(A) — s1(A). We denote by kin(r) = e the kinetic expression of r.

Given a reaction r = (81 —>s2; e) and the solution s = s1 N sg, the normaliza-
tion of r is the reaction (s1 — s—>s9 — s; ¢). In the following, we always assume
that every reaction is normalized, and normalization is implicitly applied after
every simplification. A reaction network N is composed of normalized kinetic
reactions, constraints, and bound species (that we want to remove):

Nu=r|cstle) | NAN' |3IX. N

We assume the usual structural congruence rules for conjunction and existential
quantification. We denote by C'(N) the set of constraints of V.

Once again, we need to add some conditions on the bound species, called
intermediate species, in order to be able to fully remove them in a confluent way.
We usually denote by U the intermediate species, and by I the other species.
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Given a set U of molecules, and a reaction r = (s; —>ss; €), we define the
consumption Consy(r) = s1 NU (resp. production Prody(r) = saNU) of r with
respect to U as the molecules of U that are consumed (resp. produced) by 7.

A molecule X € U is output-connected (resp. input-connected) in N with
respect to U if Ir € N with Consy(r) = {X} (resp. Prody(r) = {X})
and either Prody(r) = 0 (resp. Consy(r) = 0), or Prody(r) = {Y} (resp.
Consy(r) = {Y'}) with Y output-connected (resp. input-connected). This prop-
erty will correspond to the safety property of quantified variables in linear sys-
tems of equations.

A reaction network JU. N is linear if the following properties hold:

— connectivity: for any X € U, X is output and input-connected in N,

— U-stoichiometry: ¥r € N, |Consy/(r)| <1 and |Prody(r)| <1,

— U-linearity: Vir € N. Consy(r) = {X} = kin(r) = zxe, with VY € U.xzy ¢ e,

— kinetic non-interaction: Vr € N, Consy(r) = 0 and Prody(r) # () implies
xx ¢ kin(r) for any X € U,

— partial steady-state: VX € U, cst(zx) € C(N).

In the following, we will only consider linear networks, and denote by Nets the
set of linear reaction networks.

Given a linear network N € Nets, we can define the interpretation of N in
terms of a system of equations S(N), as described in Fig. 4.

Lemma 5. For any N € Nets, the interpretation S(N) is a (valid) safe linear
system.

Ezample 3. We consider the reaction network Ny in Fig.5, with the reac-
tions on the left and the reaction graph on the right. The set of species is
{A,B,C,D,Y,Z}, where Y and Z are considered intermediates, and the set of

Z kin(r)

= Z vry (A) kin(r) A |zx = {reNIXeProdr) ANC(N)
kin(r)/xx

{reN|XeCons(r)} Xeu

- |dza
’ dt

reN Aell

Fig. 4. Definition of the system of equations S(NNV), for the network N, with interme-
diate species U and with Z = {zx | X € U}.

kyxa kaxy
3Y, Z. est(xv) A cst(zz) = H6()H L=

T = ( —)Y, k‘ .TA) 4 = ( (/7 k4xY) Cl) \ T OQYCC]) I |
A T O > 3 «— | Iy
ro = (A — {7 kle\) s = (Y —7 —+ (j, kaY)

(
l koxa kgxz
r3 = (Y >B; ksawv) 16 =(Z->Y 4+ D; kewz) r2]— @ —[x]—

Fig. 5. The reaction network Nx.
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e= Z Kin(r) e = Z Kin(r) e =zxe”

{reN|XeProd(r)} {reN|XeCons(r)}

- (INTERMEDIATE)
/\{r,r'EN|X€P7‘od(r)ﬁCons(r/)} 7O T

nter -—_ e

IX. N 31 ‘ /\{rEN\XQPTOd(r)UCons(’r')} T[‘rX T E]
(&

ACN)fax = 5]

1

Fig. 6. Intermediate simplification rule, with C'(N) the constraints of N.

reactions is {ry,...,rs}. The parameters in the rates are some positive reals
ki,...,kg. All reactions have mass action kinetics, except for reaction rs which
is activated by Y. Its associated system is S(Nx), described in Example 1.

Given a network N, we can compute its system of equations S(NV), and then
simplify it in a confluent way, as explained in Sect.3. But we might sometimes
be more interested in the network itself, rather than its system of equations and
unfortunately, rebuilding a reaction network from the equations can be difficult,
and the network obtained is not unique [3]. It seems then more appropriate to
proceed with the simplification directly on the reaction network.

5 Elimination of Intermediate Species

In this section, we introduce the Intermediate simplification rule for reaction
networks, and apply it to an example.

The (INTERMEDIATE) rule presented in Fig. 6 aims at removing an interme-
diate species X € U: any reaction r,,,q that produces X is combined with any
reaction 7.,,s that consumes X, and xx is replaced by its value at steady state
in the other reactions. This merging operation is achieved by the operator ¢:

ee

(51825 €) 0cr (51 >85; €) = (51 + 51 >s2 + 8 ).

Since we only consider normalized reactions, in merged reactions the intermedi-
ate molecule is implicitly discarded.
The interpretation S(V) is a simulation from (Nets, =%") to (SafeLin, =):

Lemma 6. Given a network N € Nets, if N =" N’ then S(N) = S(N').

This implies as expected that both a network and its simplification have the
same deterministic dynamics.

The next example shows that the rewriting system given by the elimination
of intermediate species alone is not confluent, given that different dependent
reactions may be produced for different elimination orders.

Ezxample 4. Starting from network Nx from Fig. 5, we can either remove Y or Z
and obtain the networks depicted in Fig. 7. If we first remove Z, then we obtain
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kyxp k3X\ xalT @
rlﬂ@ﬂrsﬂ vea[F13]—

kyxy
4%y [T | Balytia)
@j)H ™ \ °
\ .

Sxy koxa | I'236 ‘> «— r56 ir(kkls&x;&

I'26 *> «— | I's56

k k.
Mx\ k4( x\+ XA) /‘%x/
2
®*> ris <— T4 @H P55 —[ra wkkli;kz)m

~> I'36 —) «— 1'56 ks K
ra236 | — | T56 |g2r2xa

kgxP\ kgkg _ kgkg

(Nxvy) (Nxvz)

Fig. 7. Two elimination strategies to simplify Nx of Fig.5: either first eliminate Z
to obtain the network Nxz and then Y to obtain Nxzy, or swap the elimination
order to obtain first Nxy and then Nxyz. Simplified networks Nxzy and Nxyz
are structurally different since the latter has the additional reaction r1356. The new
parameters are K1 = k3 + ks and Ko = ki1ks + k2 K.

the reaction network Nx . From Nxz we can eliminate the intermediate Y and
obtain Nyxzy. This network cannot be simplified any further. Alternatively, we
can eliminate Y from Nx in a first step, obtain Nxy, and then remove Z and
obtain the network Nxyz.

Unfortunately, Nxyz and Nx 7y do not have the same structure, since Nxy z
has an additional reaction ri355, which is a combination of ri3 and r55. Such
dependent reactions can be removed, as we will show in the next section.

6 Elimination of Dependent Reactions

In this section we clarify the notion of dependency between reactions, and intro-
duce an additional simplification rule based on this notion. The addition of this
rule is sufficient to establish confluence for the structure of simplified networks.
However, we will show that this modification is not enough, in general, to guar-
antee full confluence.

We formalize the notion of dependency with respect to an initial set of reac-
tions with the notion of fluz. Flux vectors at steady state are a standard tool for
computing elementary modes [5], that correspond to the unique set of reactions
in the network normal form that we obtain with the techniques of this paper.
Our simplification method, unlike the elementary modes approach, deals with
the impact of the simplification on kinetic rates as well as the network structure.
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Given an ordered set of m reactions R = {ry,...,r.,} called reaction basis, a
flux is a pair w = (v;e) of a flux vector v € R™ and an expression e € Ezpr. The
function reactr maps fluxes to reactions w.r.t. a reaction basis R as follows:

reactnve E V;S; —> E V; 8 z,

1<i<m 1<i<m

Consequently, the i-th vector u; of the standard basis is mapped to the i-th
reaction 7; of the reaction basis R. Now, instead of simplifying reaction networks,
we directly simplify fluz networks W defined as reaction networks but with fluxes
in place of reactions:

W =w]|cstle) | WAW' | IX. W.
We lift reactr to map flux networks to reaction networks as follows:

reactr (cst(e)) = cst(e), reactr(W AW') = reactr (W) A reactr (W'),
reactr (3X. W) = 3X. reactr (W).

We denote FNetsg the set of flux networks W such that reactg (W) is a linear
reaction network for Y. The interpretation of W € FNetsg in terms of system
of equations is defined as Sg(W) = S(reactg(W)). Finally, we translate some
previous definitions to the context of flux networks:

Prodg (w) = Prod(reactr (w)), Consg(w) = C’ons(r@actyz(w)),
kin(v;e) = e, (vye) oer (V'5€') = (v+2'; &)

e’

We then define two simplification rules for flux networks in Fig.8. First,
(INTERMEDIATE) is simply a reformulation of the one in Fig. 6 but in the termi-
nology of flux networks. The new rule (DEPENDENT) removes a dependent fluz,
that is one whose flux vector can be written as a positive linear combination
of the flux vectors of some other fluxes. The rate of the removed flux is added
to the rate of the fluxes that it depends on. This guarantees that the system of
ordinary differential equations associated to the reaction network is unchanged:

e= Z kin(w) e = Z kin(w) e =axxe

{weW|XeProdg (w)} {weW|XeConsg (w)}
- (INTERMEDIATE)

/\{w,w/GW\XEPTodR(u))ﬁConsR(w’)} W Oer W

nter Pp— e

IX. W =% /\{wEW\XEPTodR(w)UCOnSR(w)} wlrx = g}
e
NCW)[zx = Z}
(DEPENDENT)

W/\1<z<k(vwel A Z n;vi, e) 3139;) W/\lgigk(vi’ei+nie)

1<i<k

Fig. 8. Simplification rules of flux networks.
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Lemma 7. Given W € FNetsg, if W =R W', then Sg(W) ~ Sg(W").

Two fluxes are structurally similar, denoted (v, e) ~%t"4¢ (v/ ¢, if they have
the same flux vector, that is v = v'. Two vector networks are structurally similar,
denoted W ~$truc W' if they have structurally similar fluxes.

We can now state the Theorem on the structural confluence for this simplifi-
cation system. We denote by == (2ter y SDGP) the simplification of vector
networks with the rules of Fig. 8.

Theorem 2. The relation =5 on (FNetsg,~*"""¢) is confluent.
Proof (Scetch). The outline of the proof is as follows:

1. the simplification relation =5 preserves the set of intermediate species,
2. the local confluence holds for =,
3. the binary relation is terminating, so by Newman’s lemma, it is confluent.

Note that adding a rule that eliminates reactions whose reaction vectors
can be written as sums of the reaction vectors of other reactions in the same
network (instead of using a reaction basis) does not guarantee the confluence for
the network structure.

Ezample 5. In Example 4, the elimination of the intermediates Y and Z in
two different orders was shown to generate two different networks Nxzy and
Nxyz the latter having the additional reaction riss¢. Let us take {rq,...,76}
as a reaction basis. If we translate the simplifications to flux networks, the flux
vector associated to reaction r;; is u; 4+ u;. Also, the flux vector associated to
71356 1S U1 + U3 + U5 + ug, that is the sum of the flux vectors of r13 and r5g. Thus,
the application of the (DEPENDENT) rule to the flux associated to ri3se results
in a flux network W such that reactr (W) = Ny . Since 71356 is eliminated, the
networks Nxzy and Nk, have the same structure. The rate of reaction ri3 in
N 5 is given by the rate of 713 in Nxy z, plus the rate of ri356 in Nxy z, and
is therefore equal to klk%: + klks xA ~ kixpa, that is the rate of r13 in Nxzy.
Similarly, one can show that the rates of 756 in the two networks also coincide,
and both networks have the same kinetics.

The following variation on the same example shows that confluence of the
kinetics is not in general guaranteed.

Ezample 6. Now we shall examine again the simplifications performed in
Example 4, but this time we look at the reaction networks as simplifications
of the larger network N, in Fig.9 from which Nx results after elimination of
X. The reaction basis is now R’ = {ry/,ro,r3, 74, 75,76} and the reaction 1 in
Nx is obtained from N, by merging r1. and ro (that, following our convention,
we denote 71/9/) and is thus associated to the flux (u; + ug, k1za) w.r.t. R'. Sim-
ilarly, 7o = 7174/ is associated to (uy 4 ug, kaza), 74 = ro5 to (ug + us, kazy),
and 5 = ry5 to (ug + us, kszy).

The eliminations of Z first and Y after, represented in Fig. 7, generate the
reactions 7a6, rse, m13 and ra3e (with flux vectors respectively u; + ug + ug,
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Fig. 9. Initial network (N.) and network (NYy ) obtained after elimination of X, Y,
dependent rule r15 and then Z. We have K1 = ks + ks.

ug + us + ug, uy + uz + ug and uy + ug + ug + ug), with no dependent reac-
tions. Consider now the elimination of Y from Nx. Reaction ri5 has flux
(u1 + ug + ug + us, k}éf” za) in network Nxy and is dependent on reactions rq
and r4. If we choose to eliminate reaction 715 using the (DEPENDENT) rule and
apply the (INTERMEDIATE) rule on Z we obtain the network N, , in Fig.9.
No further simplification rule can be applied. Notice that this network is struc-
turally the same as network Nxzy in Fig.7, but all reactions have different
kinetic rates.

7 Normalization Modulo Kinetic Rates

We now present the principal result of this paper, about confluence of the sim-
plification system modulo the kinetic rates. In other words, whatever the order
of simplification, we can always obtain a fully simplified network with the same
structure and with similar system of equations, but the kinetic rates associated
to the fluxes can be different, as illustrated before in the Example 6.

Given a fixed set of intermediate species U and an initial reaction basis R,
two networks are similar, denoted W ~x W', if they are structurally similar
(W ~strue W) and their systems of equations are similar (S (W) ~ Sr(W’)).

Theorem 3. The relation =5 on (FNetsg,~r) is confluent.

8 An Example from the BioModels Database

We have shown that the simplification system that we presented can exhibit non-
confluence of the rates, even in a simple scenario with a small number of interme-
diates. To find if such a situation occurs in practice, we investigated the SBML
models in the curated BioModels database [8]. For each mass-action model, we
created the graph of complexes and searched it for cycles of intermediates, to
identify possible candidates for non-confluence. Then, with an implementation
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Fig. 10. Subnetwork of the Smad signal transduction network in [20].

of the simplification rules, we considered the elimination of triples or quadruples
of intermediates in different orders, and compared the resulting networks.

We were thus able to identify two different reduced networks for model
BIOMDO0000000173. This is a model of the Smad-based signal transduction
mechanisms from the cell membrane to the nucleus, presented in [20]. A sub-
network of this model is represented in Fig. 10. It includes all reactions involv-
ing cytoplasmic and nuclear Smad4 and Smad2/Smad4 complexes (abbreviated
S4., S4,, S24, and S24,): shuttling of Smad4, formation of Smad2/Smad4
complex, import of Smad2/Smad4 into the nucleus, and formation of EGFP-
Smad2/Smad4 complex. This network is linear for the four intermediate species
S4., S4,, S24., S24,,. The different orders of elimination yield simplified net-
works with the same structure but different kinetics. This confirms that the or
of simplifying a biological network may indeed affect the result.

Conclusion

We have shown that the elimination of linear intermediate species is not confluent
in general. We provided a new simplification rule to remove dependent reactions,
and proved that the extended rewrite system is confluent up to kinetic rates, that
is, all normal forms of the same network will have the same structure and similar
systems of equations, but can have different kinetic rates. Future research efforts
is needed to characterize networks that possess a unique normal form.
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