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Abstract. The elucidation of sources of heterogeneity in cell popu-
lations is crucial to fully understand biological processes. A suitable
method to identify causes of heterogeneity is reaction rate equation
(RRE) constrained mixture modeling, which enables the analysis of sub-
population structures and dynamics. These mixture models are cali-
brated using single cell snapshot data to estimate model parameters
which are not measured or which cannot be assessed experimentally.
In this manuscript, we evaluate different optimization methods for esti-
mating the parameters of RRE constrained mixture models under the
normal distribution assumption. We compare gradient-based optimiza-
tion using sensitivity analysis with two other optimization methods
– gradient-based optimization with finite differences and a stochastic
optimization method – for simulation examples with artificial data. Fur-
thermore, we compare different numerical schemes for the evaluation of
the log-likelihood function. We found that gradient-based optimization
using sensitivity analysis outperforms the other optimization methods in
terms of convergence and computation time.

Keywords: Parameter estimation · Reaction rate equations · Mixture
models · Sensitivity analysis

1 Introduction

In the past years, methods for studying biological processes on a single cell level
have been developed and improved. It is possible to quantify the (relative) abun-
dance of molecular species in single cells using, e.g. flow cytometry [2] or single cell
microscopy [11]. With these techniques, it is possible to also detect heterogeneity
in expression for cells of a same cell population. This heterogeneity has been shown
to play an important role for e.g. cancer cells or neurons [10,14]. For homogeneous
cell populations, dynamic mathematical models are convenient tools to study bio-
logical systems [8]. However, they only capture the dynamic of the mean response
in the cell population and cannot account for possible subpopulations. To exploit
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the information available in single cell data, dynamical models that are able to
account for subpopulation structures of the cells are needed.

A suitable method to study subpopulation structures of heterogeneous cell
populations is the method of RRE constrained mixture modeling introduced
by Hasenauer et al. [5]. These models can in principle be fitted to experimen-
tal single cell data to estimate unknown parameters of the biological system,
such as kinetic rates, initial conditions or subpopulation weights. Subsequently,
hypotheses about mechanistic differences between individual subpopulations can
be tested. However, it has not yet been discussed how the parameters of RRE
constrained mixture models can be estimated in an efficient and accurate way
and there is no comparison of methods available.

In this manuscript, we consider maximum likelihood methods for parameter
estimation. For this, a likelihood function which provides a measure of how well
the data is explained by the current parametrization of the model is maximized.
This maximization can be performed using e.g. local deterministic or global sto-
chastic optimization techniques [3,12,15]. Most deterministic optimizers employ
information about the gradient of the likelihood function. This gradient with
respect to the parameters can be approximated by finite differences or, if possi-
ble, calculated with sensitivity analysis [12,13]. An example of a global stochastic
optimizer is particle swarm optimization presented in [15]. This optimizer does
not rely on information about the gradient and has been shown to outperform
other global optimizers [15].

We describe the concept of RRE constrained mixture models and provide
the likelihood function and the sensitivity equations for the calculation of its
gradient with respect to the parameters. Additionally, we explain the standard
and a robust approach for the evaluation of a mixture likelihood. We compare the
deterministic optimization using sensitivities to the deterministic method using
finite differences and to the stochastic particle swarm optimization algorithm for
artificial single cell snapshot data of a one stage and three stage cascade.

2 Methods

In this section, we outline the method of RRE constrained mixture modeling for
single cell snapshot data and the corresponding likelihood formulation for the
parameter estimation. We establish the gradient of the likelihood with respect
to the model parameters and the sensitivity equations. Further, a numerically
robust evaluation of the log-likelihood is presented.

2.1 RRE Constrained Mixture Models

RRE modeling provides the temporal evolution for the mean concentrations
x = (x1, . . . , xnx

) of nx chemical species involved in a biological process, which
is stimulated by an external stimulus u. These RREs can be written as

ẋ = f(x,ψ, u), x(0) = x0(ψ, u), (1)
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an ODE system with initial conditions x0(ψ, u) and vector field f . The para-
meter vector ψ comprises e.g. kinetic rates, initial concentrations or observa-
tion parameters. Often, the concentrations x of the species cannot be measured
directly or only a subset of them can be observed. In most experiments, only a
single property is assessed. Therefore, we considered an observable

y = h(x,ψ, u),

with h denoting the mapping. The observation process depends on observation
parameters included in ψ such as scaling and offset constants.

Mixture models enable the depiction of subpopulations within an overall
population. The probability distribution is described by the weighted sum of
probability density functions φ for individual mixture components, i.e., subpop-
ulations

p(y|ws, μs, σs) =
ns∑

s=1

wsφ(y|μs, σ
2
s).

In this manuscript, we assumed φ to be a normal distribution, which is parame-
trized by its mean μ and variance σ2.

Combining these, every subpopulation is treated as a mixture component for
which the mean concentration is simulated using RREs [5]. This yields the fol-
lowing model for the distribution of an observable y for some given parameters θ
at a time point tk,

p(y|θ, tk) =
ns∑

s=1

ws(θ)φ
(
y|μs, σ

2
s(θ, tk)

)

with ẋs = f (xs,ψs(θ), u) , xs(0) = x0(ψs(θ), u),
μs = h (xs,ψs(θ), u) .

Fig. 1. Illustration of RRE constrained mixture modeling for an example of two sub-
populations. The means of measurement y for the individual subpopulations are calcu-
lated with RREs and plotted as purple and orange lines for the high and low responsive
subpopulation, respectively. The overall cell distribution Φ is plotted as black curve and
is calculated by a weighted mixture of the individual distributions for the subpopula-
tions (purple and orange areas). (Color figure online)
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The parameter vector can comprise e.g. θ = ({ws, σs, ξs}ns
s=1, ξ), the subpopu-

lation specific mixture weights ws, standard deviations σs and mechanistic para-
meters ξs as well as mechanistic parameters ξ that are shared across subpopu-
lations. The mean of the mixture distribution is linked to the RREs, while the
mixture weights and standard deviations do not depend on the RREs. The para-
meters for the RREs of an individual subpopulation as defined in (1) are thus given
by ψs = (ξs, ξ). The concept of RRE constrained mixture models is illustrated in
Fig. 1. For a more detailed explanation of these models, we refer to [5].

2.2 Single Cell Snapshot Data

We considered single cell snapshot data

D =
{{

yk
j

}nc

j=1

}nt

k=1
.

These data contain the measurements y for nc cells, indexed by j, at nt time
points, indexed by k. In the case considered, the data captures the dynamics of
the population on a single cell level after stimulation with some input u.

2.3 Parameter Estimation for RRE Constrained Mixture of Normal
Distributions

To obtain the parameters of a RRE constrained mixture model, the model needs
to be fitted to experimental data D. This is done by maximum likelihood estima-
tion. A likelihood function L(θ) describes the probability of observing the data
D given the parameters θ. For the case of RRE constrained mixture models, this
function is given by

L(θ) :=
∏

k,j

ns∑

s=1

ws(θ)φ
(
yk

j |μs, σ
2
s(θ, tk)

)

with ẋs = f (xs,ψs(θ), u) , xs(0) = x0(ψs(θ), u),
μs = h (xs,ψs(θ), u) .

The mixture parameters μs implicitly depend on the parameter vector θ. A
different variance parameter σs can be used for every measured time point tk
and subpopulation s. Since the number of parameters increases with the number
of measured time points and the number subpopulations, an efficient method for
parameter estimation is required. Due to its better numerical properties, we used
the negative log-likelihood function

J(θ) = − log L (θ)

= −
∑

k,j

log
ns∑

s=1

ws(θ)φ
(
yk

j |μs, σ
2
s(θ, tk)

)

in the optimization, which has the same extrema as the likelihood function. In the
following, we derive the gradient of J with respect to θ, which can be employed
by deterministic local optimization methods.
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Gradient of Negative Log-Likelihood Function. For a simpler notation,
we neglect the arguments of ws and σs. The gradient of the log-likelihood with
respect to parameters θ = (θ1, . . . , θnθ

), with θ denoting an entry of the vector,
is given by

dJ

dθ
= −

∑

k,j

d

dθ
log

(
ns∑

s=1

ws φ
(
yk

j |μs, σ
2
s

)
)

= −
∑

k,j

1∑ns

s=1 ws φ
(
yk

j |μs, σ2
s

) d

dθ

ns∑

s=1

ws φ
(
yk

j |μs, σ
2
s

)

= −
∑

k,j

1∑ns

s=1 ws φ
(
yk

j |μs, σ2
s

)
ns∑

s=1

(
dws

dθ
φ

(
yk

j |μs, σ
2
s

)
+ ws

dφ
(
yk

j |μs, σ
2
s

)

dθ

)
.

Under the assumption that φ is a normal distribution, it holds that

dφ
(
yk

j |μs, σ
2
s

)

dθ
=

1
σs

φ
(
yk

j |μs, σ
2
s

)
⎛

⎝yk
j − μs

σs

dμs

dθ
+

⎛

⎝
(

yk
j − μs

σs

)2

− 1

⎞

⎠ dσs

dθ

⎞

⎠,

with

dσk
s

dθ
=

{
1 θ = σk

s

0 otherwise
,

dws

dθ
=

{
1 θ = ws

0 otherwise
.

The gradient of the objective function comprises dμs

dθ , which can be calculated using

sensitivity analysis. The sensitivities zxs =
(

∂xs,1
∂θ , . . . ,

∂xs,nx

∂θ

)
are defined by

∂zxs

∂t
=

∂f

∂xs
zxs +

∂xs

dθ
, zxs(0) =

∂x0

∂θ
,

zμs =
∂h

∂xs
zxs +

∂h

∂θ
,

with ∂f
∂xs

=
(

∂fm

∂xs,l

)

m,l
∈ R

nx×nx and ∂h
∂xs

=
(

∂hm

∂xs,l

)

m,l
∈ R

nx×ny . For the case

of RRE constrained mixture models, we obtain μs and dμs

dθ = zμs by simulating
an ODE system comprising the RREs and sensitivity equations.

Robust Evaluation of the Log-Likelihood Function and Its Gradient.
We explain and tackle the problem occuring when numerically evaluating (log-)
likelihood functions of mixture distributions. For this, we formulate the stan-
dard and robust approach to evaluate the log-likelihood function following [9].
As already mentioned, rather the log-likelihood than the likelihood function is
calculated due to numerical properties. This means, instead of the probability
density p, the logarithm log(p) is evaluated. For the assumption of a normal
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distribution this circumvents e.g. exponentiation of the difference between mea-
surement and simulation. This is especially advantageous for high differences,
since e−x might be numerically evaluated to zero for finite values of x. However,
for mixture models, if ns > 1 and ps := φ(y|μs, σ

2
s), it holds that

log(p) = log

(
ns∑

s=1

wsps

)
�=

ns∑

s=1

log (wsps) ,

i.e., for these cases it is not possible to use the logarithm of the probability
density of an individual mixture component directly. This problem also occurs
in the calculation of the gradient. We refer to this approach of evaluating the
likelihood function as standard approach.

A more robust approach for the log-likelihood calculation is given in the
following. With qs = log(ps) and ŝ = argmaxsqs, we reformulate

log(p) = log

(
ns∑

s=1

wse
qs

)

= log

⎛

⎝1 +
∑

s �=ŝ

ws

wŝ

(
eqs−qŝ

)
⎞

⎠ + log(wŝ) + qŝ. (2)

Considering ps to be a normal distribution it follows that

log(ps) = qs = −1
2

(
y − μs

σs

)2

− log(
√

2π) − log(σs).

Regarding the calculation of the gradient it holds that

d log(p)
dθ

=
1
p

dp

dθ
=

ns∑

s=1

ps∑ns

j=1 wjpj
Hs

=
1∑ns

j=1 wjeqj−qŝ

ns∑

s=1

eqs−qŝHs, (3)

with Hs defined by

Hs =
1
ps

dwsps

dθ
=

dws

dθ
+

ws

ps

dps

dθ
.

Under the assumption that ps is a normal distribution this is

Hs =
dws

dθ
+

ws

σs

(
y − μs

σs

dμs

dθ
+

((
y − μs

σs

)2

− 1

)
dσs

dθ

)
.

The proposed reformulations (2) and (3) are used for the robust evaluation of
the log-likelihood function and its gradient. For further details we refer to [9].
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2.4 Implementation

The RRE constrained mixture models were implemented in MATLAB. The sen-
sitivity equations were derived and simulated using the toolbox CERENA [7].
For parameter estimation with deterministic optimization, we used the toolbox
PESTO1, which employs the MATLAB function fmincon. For stochastic global
optimization we employed a toolbox for the algorithm PSwarm [15].

3 Results

We compared the different optimizers in terms of convergence and computation
time for artificial data of a one stage and a three stage cascade.

3.1 One Stage Cascade

For a first comparison of the optimizers we considered a small example of a one
stage cascade comprising a conversion between two species A and B.

Model and Artificial Data. A conversion process describes a reversible reac-
tion between two species, A and B that have the concentrations [A] and [B],
respectively. In our example, we assumed that the conversion from A to B takes
place with a basal rate k2[A] and is additionally increased by external stimulus
u. Furthermore, B is converted back to A with kinetic parameter k3 yielding the
reactions

R1 : A → B, rate = k1u
[
A

]
,

R2 : A → B, rate = k2
[
A

]
,

R3 : B → A, rate = k3
[
B

]
.

We considered that there exist two subpopulations, s1 and s2, differing in the
stimulus-dependent conversion from A to B. This is described by the kinetic
parameter k1, i.e., the subpopulations share the parameters k2 and k3 but have
individual parameters k1,s1 and k1,s2 with s1 and s2 indicating the kinetic para-
meters of subpopulation 1 and 2, respectively. The system is in steady state
before stimulation (u = 0 for t < 0). To generate the artificial data we used
the parameters (k1,s1 , k1,s2 , k2, k3, w) = (0.1, 0.75, 0.5, 1.5, 0.7) and assumed that
only the concentration of species B can be measured, yielding the observation
model y = h(x,ψ, u) = x2, with x = (x1, x2)T = ([A), [B])T . An illustration
of the system including the subpopulations is given in Fig. 2A. This system
was simulated using the stochastic simulation algorithm [4], which models ran-
dom births and deaths of individual molecules. We considered a system size of
Ω = 1000 and divided the number of molecules by Ω to obtain the concentra-
tion of the species. Moreover, the external stimulus is set to u = 1 at t ≥ 0 and
1 Available at https://github.com/ICB-DCM/PESTO.

https://github.com/ICB-DCM/PESTO
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Fig. 2. Artificial data of a conversion process. (A) Illustration of a conversion
process between chemical species A and B in a cell population. The conversion from
A to B is enhanced by a stimulus u. 30 % of the cells show a higher response to the
external stimulus u than the other cells. Only the concentration of B denoted by [B]
is measured. (B) Artificial data for the conversion process. The system is stimulated
with u = 0 for t < 0 and u = 1 for t ≥ 0.

measurements of the concentration of B are recorded at t = 0, 0.1, 0.2, 0.3, 0.5, 1
minutes. The data are shown in Fig. 2B: For t = 0, the system is in steady
state and no subpopulation structure is visible, since the subpopulations differ
only in the response to stimulation. For t = 0.1, the subpopulation structure
becomes visible, but the subpopulations still highly overlap. However, for later
time points the subpopulations are clearly separated.

The mean of the stochastic single cell trajectories can be described by RREs,
i.e., the temporal evolution of x2 can be described by the ODE

ẋ2 = k1u + k2 − (k1u + k2 + k3) x2, x2(0) =
k2

k2 + k3
,

using mass conservation, [A] + [B] = 1. We then assumed the parameters θ =
(k1,s1 , k1,s2 , k2, k3, w, {{σs(tk)}2s=1}6k=1) to be unknown and estimated them from
the data. Since the data comprised six time points and we accounted for two
subpopulations, 12 parameters for the standard deviation σs(tk) need to be
estimated.

Convergence of Optimization Methods. To evaluate the optimizers, we
compared deterministic gradient-based optimization using sensitivities with
deterministic gradient-based optimization using finite differences and a stochas-
tic particle swarm algorithm [15]. For all optimizers, the parameter values for
the kinetic rates ki were restricted to the interval [10−6, 104], the mixture weight
w to [0, 1] and the parameters for the standard deviation of the normal dis-
tributions σs(tk) to [10−2.5, 102.5]. Each algorithm was started 100 times and
the deterministic optimizers were started from the same randomly drawn start
points.
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Fig. 3. Comparison of optimization methods. (A) Convergence plot for the final
negative log-likelihood values for 100 starts. The values are sorted from lowest to highest
implying a decreasing goodness of fit. (B) Data and fit for the optimal value, which
was found by all methods. Percentage of starts for which the initial value was ∞ (C)
and converged starts (D).

The final negative log-likelihood values for every start are sorted with decreas-
ing goodness of fit and shown in Fig. 3A. The data and fit, which correspond to
the optimal value found by all methods, are shown in Fig. 3B. The model shows a
good agreement with the data. For a detailed comparison of the results obtained
by the different optimization methods, we assessed the percentage of failed starts,
i.e., the starts for which the log-likelihood function was infinite at the start point
(Fig. 3C). For almost 20% of all drawn start points the log-likelihood has an infi-
nite value when using the standard evaluation of the log-likelihood. However, the
log-likelihood can be evaluated for all start points when using the robust calcula-
tion approach. Since for PSwarm an initial particle population is used instead of
a single initial value, there are no failed starts and it is not possible to compare
this property with the deterministic optimizers. We expect the percentage of
failed log-likelihood evaluations for the initial particle population to be similar
to the percentages found for the failed starts in the deterministic optimization
using the standard approach. The likelihood was numerically evaluated to zero
for all start points. For the log-likelihood, we counted the number of objective
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function values that are close to the minimal objective function value found,
i.e., below a statistical threshold according to a likelihood ratio test [6]. These
starts are then likely to have converged to the global optimum. The percentage
of converged starts determined for each optimizer is depicted in Fig. 3D. Clearly,
the best convergence is obtained by deterministic local optimization with an
analytical gradient that is calculated with sensitivities. For this optimizer, the
robust calculation of the log-likelihood and the gradient yielded better conver-
gence compared to the standard approach. For both approaches, standard and
robust evaluation of the log-likelihood function, deterministic local optimiziation
with finite difference approximation to the gradient shows less convergence than
when using sensitivites. The stochastic optimization with PSwarm has even less
converged runs than the deterministic optimization with finite differences.

Computation Time of Optimization Methods. We compared the perfor-
mance of the optimizers in terms of computation time (Fig. 4A). The best com-
putation time was achieved for the deterministic optimization with sensitivities,
while the highest computation time is needed for stochastic optimization. Also
regarding the number of function evaluations, the stochastic optimization needed
most function evaluation and the deterministic optimization with sensitivities
performed best (Fig. 4B). Furthermore, regarding the average computation time
needed per converged start shown in Fig. 4C, the deterministic optimizer using
sensitivities outperforms the other optimizers. However, there were almost no
additional computational costs when using the robust approach instead of the
standard approach to evaluate the log-likelihood function for all optimizers.

Fig. 4. Performance comparison of optimization methods. (A) Time needed
for one optimization start. (B) Number of objective function evaluations for one opti-
mization start. (C) Average computation time needed per converged start.
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3.2 Three Stage Cascade

To validate the results obtained for the simple conversion process, we studied
artificial data of a three stage cascade, namely the Raf/Mek/Erk cascade.

Model and Artificial Data. The considered pathway comprises the protein
kinases Raf, Mek and Erk and their corresponding phosphorylated/active forms
pRaf, pMek and pErk. Raf is activated with a stimulus-dependent rate k1u

[
Raf

]

and a basal rate k2
[
Raf

]
. The activation rate of Mek is proportional to the

amount of phosphorylated Raf, while active Mek in turn phosphorylates Erk.
These reactions and the dephosphorylation of the active kinases are given by

R1 : Raf → pRaf, rate = k1u
[
Raf

]
,

R2 : Raf → pRaf, rate = k2
[
Raf

]
,

R3 : pRaf → Raf, rate = k3
[
pRaf

]
,

R4 : Mek → pMek, rate = k4
[
pRaf

][
Mek

]
,

R5 : pMek → Mek, rate = k5
[
pMek

]
,

R6 : Erk → pErk, rate = k6
[
pMek

][
Erk

]
,

R7 : pErk → Erk, rate = k7
[
pErk

]
,

with mass conservation
[
Raf

]
+

[
pRaf

]
=

[
Raf

]
0
,

[
Mek

]
+

[
pMek

]
=

[
Mek

]
0
,

[
Erk

]
+

[
pErk

]
=

[
Erk

]
0
.

For the data generation, we assumed to observe y = h(x,ψ, u) = s
[
pErk

]
. To

circumvent structural non-identifiabilities, we consider the reformulations

x1 = k4
[
pRaf

]
,

x2 = k6
[
pMek

]
,

x3 = s
[
pErk

]
.

This yields the ODE system

ẋ1 = (k1u + k2)(k4
[
Raf

]
0

− x1) − k3x1, x1(0) =
k2k4

[
Raf

]
0

k3+k2
,

ẋ2 = x1(k6
[
Mek

]
0

− x2) − k5x2, x2(0) =
x1(0)k6

[
Mek

]
0

x1(0)+k5
,

ẋ3 = x2(s
[
Erk

]
0

− x3) − k7x3, x3(0) =
x2(0)s

[
Erk

]
0

x2(0)+k7
,

with y = x3 and parameters (k1, k2, k3, k5, k7, k4
[
Raf

]
0
, k6

[
Mek

]
0
, s

[
Erk

]
0
). For

details regarding the model we refer to [5]. In this example, we considered two
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Fig. 5. Artificial data of the Raf/Mek/Erk cascade. (A) Illustration of the con-
sidered signaling pathway, which comprises the kinases Raf, Mek and Erk and its cor-
responding actived forms. The model comprises two subpopulations differing in their
response to stimulus u. (B) Artificially generated data of the Raf/Mek/Erk cascade
for measurements of pErk levels.

subpopulations that differ in their response to stimulus u, captured by para-
meter k1 (Fig. 5A). We generated measurements of 1000 cells by simulating the
ODE system for log10(k1,s1 , k1,s2 , k2, k3, k5, k7, k4

[
Raf

]
0
, k6

[
Mek

]
0
, s

[
Erk

]
0
) =

(−2,−1,−2,−0.15,−0.15,−0.15,−2, 2, 3), w = 0.7 and normally-distributed
measurement noise (Fig. 5B). The stimulus u is set to 0 for t < 0 and to 1
for t ≥ 0.

Convergence of Optimization Methods. For parameter estimation, the
intervals for the parameters were set to [10−3, 105] for the kinetic parameters, to
[0, 1] for the mixture weight and to [10−3, 102] for σs(tk). The resulting objec-
tive function values for 100 runs of the optimization procedures are shown in
Fig. 6A, and a zoom in of the five best runs in Fig. 6B. The optimization with
sensitivities and a robust evaluation of the log-likelihood function converged to
the optimal value 44 times. This optimal value yields a good fit to the data
(Fig. 6C). Using deterministic optimization with sensitivities and the standard
evaluation of the log-likelihood function the same optimal value as with the
robust evaluation was found only once. The other optimizers were not able to
find the optimal value at all. For the deterministic optimization and the standard
evaluation of the log-likelihood function, only three out of 100 initial parame-
ter values yielded a finite log-likelihood value. Consequently, the remaining runs
could not be started. These findings indicate that for higher-dimensional esti-
mation problems, the use of sensitivity-based methods and robust log-likelihood
evaluation becomes increasingly important.

Performance of Optimization Methods. We compared the computation
times and needed function evaluations of the different optimization methods
(Fig. 7). Since only the deterministic optimization with sensitivities and robust
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Fig. 6. Comparison of optimization methods. (A) Final negative log-likelihood
values for 100 runs, sorted according to a decreasing goodness of fit. (B) Zoom for the
five best starts. The black line indicates the statistical threshold according to a likeli-
hood ratio test, which was used to obtain the number of converged starts. (C) Data
and fit for the optimal parameter value found by deterministic optimization with sen-
sitivities and a robust evaluation of the log-likelihood function.

Fig. 7. Performance of optimization methods. (A) CPU time needed for one
optimization start. (B) Number of objective function evaluations for one optimization
start. The representation is based on three starts for deterministic optimization with
the standard approach to evaluate the log-likelihood (grey shaded), while it is based
on 100 starts for the other optimizers.
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evaluation reached a sufficient number of converged starts, we did not compare
the optimizers in terms of average computation time per converged starts. The
analysis for the deterministic optimization with standard evaluations is only
based on three starts that have not failed and is therefore not meaningful for
the comparison. Among the optimizers for which 100 starts could be analyzed in
terms of their computation time and number of function evaluations, the opti-
mization with sensitivities and the robust evaluation of the log-likelihood func-
tion performs best. The proposed approach therefore yields better optimization
results and is also more efficient than the other optimizers.

4 Conclusion

In this manuscript, we summarized the concept of RRE constrained mixture
modeling and studied the calibration of those models to experimental data under
the normal distribution assumption. An often used approach to estimate the
parameters of mixture models in general is the Expectation-Maximization (EM)
algorithm (see e.g. [1]). This algorithm highly depends on the initialization of the
mixture components, which is challenging for RRE constrained mixture models
since the components depend on the dynamic parameters of the model. In pre-
liminary studies the EM algorithm showed poor convergence. Therefore, we did
not consider the EM algorithm in this manuscript and focused on a maximum
likelihood approach.

We derived the log-likelihood function and its gradient, which can be used to
perform gradient-based deterministic optimization. Additionally, a robust app-
roach of numerically evaluating these terms has been provided. We compared
three optimization schemes, two deterministic gradient-based methods, one using
the analytical gradient and one using an approximation of the gradient by finite
differences, and a stochastic particle swarm algorithm. For each optimizer, we
assessed performance and convergence for the standard and robust approach to
evaluate the log-likelihood function. The comparison was carried out for exam-
ples of artificial single cell snapshot data of a one stage and a three stage cascade.
We found that deterministic gradient-based optimization with sensitivities and
robust calculation of the mixture probability outperformed all other methods
in terms of robustness and convergence. This is especially important, since the
complexity of RRE constrained mixture models increases with the number of
measured time points. For the example of the three stage cascade only gradient-
based optimization with sensitivites and a robust evaluation of the log-likelihood
function yielded a reasonable calibration of RRE constrained mixture models
to the data. We expect this also to hold when considering even more compli-
cated systems. Accordingly, the proposed approach facilitates a robust and effi-
cient calibration of RRE constrained mixture models to elucidate the sources of
heterogeneity.
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