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Abstract. The proliferation of antibiotic-resistant bacteria poses a sig-
nificant threat to humans health and welfare. To reduce the bacterial
pathogenesis and growth, we propose an autonomous biological con-
troller that can adaptively generate quorum sensing inhibitors and con-
trol the iron availability in the environment. As the main theoretical
contribution, we provide a detailed analysis of our proposed controller
that includes model calibration, system response, and inhibitor effective-
ness. We also formulate a constrained optimization problem to choose the
values of the biological parameters of the proposed controller under given
environment constraints. Finally, we validate our results via detailed
population-level simulations and demonstrate that bacteria virulence can
be significantly reduced without developing drug resistance or induc-
ing selective pressure among bacteria wild type and mutants. This work
represents a first step towards a paradigm change in reducing bacterial
pathogenesis via controlling the dynamics of the cell-cell communication
through environment regulation.

Keywords: Quorum sensing · Biological controller · Pathogen ·
Environment regulation · Cell-cell communication

1 Introduction

The fight against bacterial virulence represents one of the big challenges of mod-
ern medicine. Indeed, due to the large-scale proliferation and inappropriate use
of antibiotics, new strains antibiotic-resistant bacteria begin to emerge. These
new, stronger bacteria pose a significant threat to humans health and welfare. To
fight antibiotic-resistant bacteria, we propose to engineer synthetic cells, insert
them in a population of bacteria, and then control the dynamics and virulence
of the entire population [9]. We note that while previous work [6,26] proposed
to engineer cells to kill the antibiotic-resistant bacteria, this kind of approaches
may actually select strains that can survive under such therapies. In contrast, in
this paper, we design an autonomous controller that can not only regulate the
cell-cell communication, but also manipulate the environment signals in order
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to reduce bacterial virulence and prevent selective pressure among antibiotic-
resistant strains.

Getting now into details, bacteria can form biofilms, express virulence, and
become resistant to antibiotics after reaching a quorum through cell-cell com-
munication. Quorum sensing (QS) is a fundamental cell-cell communication that
is used by bacteria to obtain cell density information and hence, alter their
genes expression [4]. In particular, the QS system used by Gram-negative bac-
teria is mediated by diffusible signaling molecules, termed “autoinducers”1 [4].
For instance, the opportunistic human pathogen Pseudomonas aeruginosa (PA)
possess a complex QS system that regulates genes and operons which consti-
tute over 6 % of the genome. Those genes coordinate the biofilm formation and
produce large amounts of virulence factors, such as elastase, rhamnolipids, and
pyocyanin [10].

QS regulation can be strongly affected by various environmental factors [11];
for example, in PA, the nutrient availability have been shown to affect the expres-
sion of QS genes [24]. Several other studies have demonstrated that high iron con-
centrations favor the formation of biofilms and higher growth rates, but restrict
the expression of QS signals [12,22]. On the other hand, QS also regulates bac-
teria access to nutrients and environmental niches that favor their growth and
defense.

The intertwined regulation between QS and environmental signals enable
bacteria to thrive in a stringent environment [2,15]; indeed, under such con-
ditions, bacteria must coordinate the expression of related genes in order to
successfully form and maintain biofilms [16]. For example, a shortage of iron
availability in the environment leads to the increased expression of iron acquisi-
tion system [3,5] and decreased activity of pathways that rely on relatively large
amounts of iron [10]. However, a rigorous mathematical model that can precisely
capture the complex relationship between the QS system and bacteria growth
has not yet been explored. Additionally, most studies published so far focus on
observing the qualitative behaviors of bacteria and lack the ability to predict
long term evolution dynamics under different environmental conditions [18].

We argue that having a quantitative model of QS behavior available can not
only capture the important dynamics of bacteria growth, but also give credible
predictions for the long term behaviors of bacteria virulence; this analytical
QS model is the first major contribution of this work. We also raise another
important question: Given such an analytical (i.e., quantitative) model, what
are the strategies to control bacteria virulence and growth rate, while lowering
the chances of developing drug resistance or inducing selective pressure among
bacteria wild type and mutants? To address this second question, we propose an
autonomous biological controller that can dynamically generate different types
of inhibitors; this controller is based on genetic parts used to design genetic
circuits [1].

To shed light on the complex relationship between QS and environment sig-
nals, we use the opportunistic pathogen PA as a canonical example (Fig. 1(a)).

1 Denoted as AI in this paper.
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Fig. 1. (a) Interconnection of the las and pqs QS system of PA. The small orange cir-
cles represent autoinducer molecules (AIs) that move freely through the cell membrane;
the purple circles and triangles represent the QS signals of pqs QS system; the green
particles represent the pyoverdine molecules. The red, orange, blue, and purple ovals
represent LasR, LasI, PqsR, PqsA, and PqsE, respectively. (b) The simulation envi-
ronment, where bacteria (green cells) flow in space and release the QS signals (orange
circles). By placing the synthetic (red) cells in the environment, they first react to
the QS signals and then express the inhibitors (purple diamonds) that can quench
the communication among bacteria. (c) The diagram of the proposed control system.
The environment signal (d) (e.g., nutrient availability) can be viewed as the input to
the intracellular bacterial regulations system. The control variables (u) are the QSI
inhibitors which can control the dynamics of bacteria. The process variable (y) can be
detected by the synthetic controller. (Color figure online)

PA requires an abundance of iron to produce and sustain infections. Hence,
iron depletion prevents bacterial growth and affects their metabolism [19]. By
expressing siderophores, PA can sequester iron from environment and regain the
ability to form biofilm [25]. Two major genetic components of QS, namely, the
las and pqs QS systems have been identified in PA [5]. As shown in Fig. 1(a), the
las QS system sits at the upstream of pqs QS system and positively regulates the
operons of the pqs QS system [2]. The pqs QS system produces molecules that
mediate the expression of the siderophores [5,7]. To enhance the expression of
the siderophores, the upstream las QS system needs to highly express proteins
in order to induce the downstream pqs QS system. Hence, as the iron concen-
tration is relatively low, the las QS system is highly expressed and vice versa.
However, bacteria can become more virulent when the las QS system strongly
expresses proteins as this can regulate the virulence genes.
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In summary, in an iron depletion environment, the growth of bacteria can be
delayed but the virulence can actually increase [12]. To control both the viru-
lence and the growth rate of bacteria simultaneously, we use two different kinds
of inhibitors that target the las QS system and the iron availability in the envi-
ronment. Different types of inhibitors can have different effects on virulence and
growth rate, hence, multi-inhibitor schemes can be more effective. To synthesize
inhibitors and control the iron concentration, a few simple genetic circuits can
serve as the basic control units which automatically detect and react to environ-
ment changes. For example, we can construct the genetic circuits by cloning the
genes in the plasmid, such as the aiiA gene which expresses the enzyme that
hydrolyzes the AI [17] (Fig. 1(b)). However, synthesizing excessive amounts of
inhibitors in the environment can have toxic effects on the host.

Therefore, in this paper, we propose a dynamic optimization problem that
incorporates bacteria QS, growth, and control dynamics. Solving this optimiza-
tion problem allows us to choose the biological parameters that can be further
used to design controllers that can generate the optimal amount of inhibitors
adaptively. By placing the biological controller into the bacterial environment,
it becomes possible to detect the concentration of the signaling molecules in
the environment and then generate the right amount of inhibitors in real-time.
Consequently, the proposed system aims at a paradigm shift from manual to
autonomous control of bacteria population dynamics (Fig. 1(c)). Taken together,
our contribution is threefold:

– First, we develop a new (cellular-level) ordinary differential equations (ODEs)
based model of pqs QS system and propose new synthetic circuitry to con-
trol bacteria virulence and growth. To the best of our knowledge, this is the
first design that formally considers the autonomous control of the QS and
environmental signals in populations of bacteria.

– Second, we formulate a constrained optimization problem based on the QS
and control dynamics. We illustrate the design procedures for the biological
controller by solving this optimization problem; this provides the theoretical
basis for synthesizing the controller.

– Third, we verify our proposed controller via detailed simulations at population-
level. As such, the design procedure we provide can serve as a general guideline
towards in vitro construction of synthetic cellular controllers.

The remainder of this paper is organized as follows. Section 2 focuses on the
mathematical modeling of the QS regulation system (i.e., las and pqs) of PA,
bacteria growth, and QSI model. Section 3 analyzes the QS system response
and bacteria growth model via simulation. Section 4 formulates the constrained
optimization problem for designing the biological controller and provides a design
example based on the proposed design guidelines. Section 5 utilizes the bacteria
simulator proposed in [21] to validate the model under various scenarios that
mimic realistic settings. Finally, conclusions are drawn in Sect. 6.
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2 Cellular-Level Mathematical Modeling

In this section, we model the dynamics of bacteria QS, growth, and inhibition
systems based on ODEs. To uncover the complex interaction between the QS
and environment signals (i.e., iron), we first model the las and the pqs QS
systems and the growth of PA explicitly. Next, we calibrate our models with the
reported experimental data [12]; that is, at different iron concentration levels, we
calibrate the relative concentration change of the LasR protein (main receptor
in las QS system); this provides the basis for examining the QS system response
and subsequently designing the biological controller.

2.1 QS Model of PA

The QS regulatory network of PA consists of two main systems: las and pqs. The
las and the pqs QS systems are linked by (1) LasR-AI complex which directly
up regulates the expression of the PqsR and the PqsH proteins and (2) iron-
chelated complex which down regulates the expression of the LasR protein and
then reduces the expression of the siderophore (a negative feedback loop). The
entire QS system is modeled as follows:

las QS Model. The regulatory network of the las QS system has two feedback
loops. As shown in Fig. 1(a), the LasR-AI complex up regulates the expression
of both lasR and the lasI genes. Based on the ODE models proposed in [13,23],
we have the following equations for the las QS system:

d[A]

dt
= cA +

VA[C]

KA + [C]
− αRA[R][A] + δRA[RA] − bA[A] − dA

ρ
([AEX ] − [A]) (1)

d[AEX ]

dt
= −bAEX [AEX ] − dA

1 − ρ
([AEX ] − [A]) (2)

d[R]

dt
= cR +

VR[C]

KR + [C]
− αRA[R][A] + δRA[RA] − bR[R] (3)

d[RA]

dt
= αRA[R][A] − 2αRA2 [RA]2 − δRA[RA] + 2δRA2 [C] (4)

d[C]

dt
= αRA2 [RA]2 − δRA2 [C] (5)

where [X] denotes the concentration of a particular molecular species X. In our
formulation, A stands for AI, AEX is the extracellular AI, R is LasR, RA is the
LasR-AI complex and C is the dimerized complex. The meaning of biological
constants are listed in Table 1 while their numerical values are listed in Tables 2
and 3 in the Appendix.

pqs QS Model. The pqs QS system consists of two kinds of signaling molecules,
PQS (2-heptyl-3,4-dihydroxyquinoline) and HHQ (4-hydroxy-2-heptylquinoline);
in addition we have one receptor regulator PqsR. The PqsR protein can bind
to the HHQ and the PQS molecules and up regulate the pqsABCDE operon;
this forms a positive feedback since the PqsA protein directly up regulates the
synthesis of the HHQ molecules. Another signaling molecule, PQS, is converted
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Table 1. Table with model parameters

Symbol Parameter Source

K Half saturation concentration [8,13]

U Utilization coefficient introduce in this paper

V Maximum production rate [8,13]

b Molecule decay rate [8,13]

c Basal production rate [8,13]

d Membrane diffusion rate [8]

α Binding rate [8,13]

β Enzyme production rate [8,13]

δ Unbinding rate [8,13]

ρ Cell density [8]

P Promoter strength [20]

r Basal production rate [20]

from HHQ via PqsH protein. Therefore, pqs QS system forms a second positive
feedback loop. By explicitly capturing regulations among proteins and molecules
based on molecular transcription and translation, we propose the following new
ODEs to describe the pqs QS system:

d[pR]

dt
= cpR +

VpR[C]

KpR + [C]
−αpR([pR][A1] + [pR][A2])+δpR([C1] + [C2])−bpR[pR] (6)

d[pH]

dt
= cpH +

VpH [C]

KpH + [C]
− bpH [pH] (7)

d[pA]

dt
= cpA +

VpA,1[C1]

KpA,1 + [C1]

VpA,2[C2]

KpA,2 + [C2]
− bpA[pA] (8)

d[pE]

dt
= cpE +

VpE,1[C1]

KpE,1 + [C1]

VpE,1[C2]

KpE,1 + [C2]
− bpE [pE] (9)

d[C1]

dt
= αpR[pR][A1] − δpR[C1] (10)

d[C2]

dt
= αpR[R2][A2] − δpR[C2] (11)

d[A1]

dt
= βpA[pA]

KA1

KA1+[pE]
−αpR[pR][A1]+δpR[C1]−bA1 [A1]+

dA1

ρ
([A1EX ]−[A1]) (12)

d[A1EX ]

dt
= −bA1 [A1EX ] − dA1

1 − ρ
([A1EX − [A1]) (13)

d[A2]

dt
= βpH [pH][A1]−αpR[pR][A2] + δpR[C2] − bA2 [A2] +

dA2

ρ
([A2EX ] − [A2]) (14)

d[A2EX ]

dt
= −bA2 [A2EX ] − dA2

1 − ρ
([A2EX ] − [A2]) (15)

d[Pyo]

dt
= cPyo +

VPyo[pE]

KPyo + [pE]
− bPyo[Pyo] +

dPyo

ρ
([PyoEX ] − [Pyo]) (16)

d[PyoEX ]

dt
= −αI [PyoEX ][I] − bPyoEX

[PyoEX ] +
dPyo

1 − ρ
([PyoEX ] − [Pyo]) (17)
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d[Q]

dt
= −bQ[Q] +

dQ

ρ
([QEX ] − [Q]) (18)

d[QEX ]

dt
= αI [PyoEX ][I] +

dQ

1 − ρ
([QEX ] − [Q]) (19)

where [X] denotes the concentration of a particular molecular species X. In
our formulation, pA, pE, pH, and pR stand for PqsA, PqsE, PqsH and PqsR,
respectively. A1, A2, C1 and C2 represent HHQ, PQS, PqsR-HHQ and PqsR-
PQS, respectively. Pyo and I represent pyoverdine and iron, respectively. Q is
the iron-chelated complex.

Given the pqs QS system, we modify the expression of the LasR protein in
(3) as follows:

d[R]

dt
= cR +

VR[C]

KR + [C]

VQKQ

KQ + [Q]
− αRA[R][A] + δRA[RA] − bR[R] (20)

where we add a new term to account for the effect of iron-chelated complex Q.
In this equation, the parameters VQ and KQ represent the maximum production
rate and Michaelis-Menten constant, respectively.

2.2 Bacteria Growth Model and Virulence Measure

To describe bacteria growth, Monod introduced the concept of single nutrient
controlled kinetics [14], which relates the specific growth rate (µX) of a bacterium
cell mass (X) to the substrate concentration (S). The kinetic parameters, i.e.,
maximum specific growth rate (kX) and substrate affinity (KS), are assumed
to be constant and dependent on strain, medium, and growth conditions (e.g.
temperature, pH). In our model, however, we need to consider a second nutrient
source and add a new term Q to describe it. However, when cells are metaboli-
cally active, but not growing or dividing, they may still take up substrate.

To address bacteria size reduction, a maintenance rate (m) is generally used;
consequently, we improve Monod’s model as follows:

µX = kX · S+Q
S+Q+Kg

(21)
dX
dt = (µX − m) · X (22)

We also define the virulence (V ) as the concentration of LasR-AI complex as
it controls the downstream virulence expressions; therefore, the total virulence
(TV) of the bacteria population is defined as the product of the virulence and
the number of bacteria (N)2:

TV = V × N (23)

We note that, as discussed later in Sect. 4, both V and N are variables that
depend on time (t) and the set of biological parameters (p).

2 Since the number of bacteria is proportional to the biomass, we use biomass and the
number of bacteria to account for the total virulence interchangeably.
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2.3 Inhibition Model

We target the bacterial iron acquisition as a strategy to control the virulence
of bacteria. From our previous discussion, the QS signaling pathways are the
primary target. More precisely, to control the iron uptake rate of PA, we propose
two strategies that can either modulate the iron uptake or inhibit the upstream
las QS system:

AI Inhibitors. The AI inhibitor hydrolyzes the extracellular AI molecules
which can be viewed as a degradation source and assumed to follow the Michaelis-
Menten kinetics. Accordingly, (2) should be modified as:

d[AEX ]

dt
= −bAEX [AEX ] − dA

1 − ρ
([AEX ] − [A]) − VE [AIEX ][AEX ]

KAEX + [AEX ]
(24)

where AIEX
denotes the extracellular AI inhibitor.

Iron Inhibitors. Different species of bacteria can produce different kinds of
siderophores that trap the iron from environment, e.g. Enterobactin produced
by E. coli cannot be up-taken by PA. If the amount of iron is limited, bacteria
compete with each other in order to retain the essential resources. Therefore, we
consider the siderophores produced by other bacteria as iron inhibitors that can
limit the availability of iron in the environment. The dynamics of the available
iron in the environment can be simply modeled as:

[Iava] = [I](
[PyoEX ]

[II ] + [PyoEX ]
) (25)

where Iava denotes the available iron in the environment and II stands for the
iron inhibitor. By replacing I with Iava in (17) and (19), we can incorporate the
iron inhibitor dynamics to the QS model.

2.4 Biological Controller

To dynamically and autonomously generate either AI or iron inhibitors, we pro-
pose to use synthetic methods to construct the genetic circuitry. To obtain vari-
able combinations of the inhibitors with optimal expression levels, we build two
circuits separately. More precisely, to generate AI inhibitor, we can assemble the
aiiA genes with the lux promoter to sense the concentration of LasR-AI (C).
Similarly, the iron inhibitor circuit is built with genes that can express the com-
peting siderophores and sense the concentration of iron-chelated complexes (Q).
Based on the general modeling of genetic circuitry [20], we model the dynamics
of the new biological controller with the following ODEs:

d[AI ]

dt
= PAI

(
1

rAI

+
[C]2

K2
AI

+ [C]2
) − bAI

[AI ] +
dAI

ρs

([AIEX
] − [AI ]) (26)
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d[AIEX
]

dt
= − dAI

1 − ρs

([AIEX
] − [AI ]) − bAIEX

[AIEX
] (27)

d[II ]

dt
= PII

(
1

rII

+
[Q]2

K2
II

+ [Q]2
) − bII [II ] +

dII

ρs

([IIEX
] − [II ]) (28)

d[IIEX
]

dt
= − dII

1 − ρs

([IIEX
] − [II ]) − bIIEX

[IIEX
] (29)

where AI (II) and AIEX
(IIEX

) denote the intracellular and extracellular con-
centration of the AI (iron) inhibitors, respectively. The inhibitors production
rate (second term) in (26) and (28) can be characterized by the binding of the
LasR-AI and iron-chelated complex, respectively. The product of the promoter
strength (PAI

and PII ) and the basal production rate (rA1 and rII ) characterize
the minimal expression rate when there is no LasR-AI and iron-chelated complex
present, respectively3.

3 QS System Analysis

In this section, we first examine the QS system responses to different chemical
substances. Next, we examine the effects of substrate utilization constant on
bacteria growth. Finally, we examine the effectiveness of AI and iron inhibitors.

3.1 QS System Responses

We first examine the responses of the las and pqs QS systems by varying the
concentration of available iron in the environment. Figure 2 shows the QS system
responses to several chemical substances. At first, the concentration of iron is
0.01 (arbitrary unit (a.u.)); at t = 5000 (a.u.), the concentration of iron is
changed to 1.00 (a.u.) (i.e., one hundred fold increase). We observe that the LasR
protein concentration decreases due to the increase of the iron concentration;
this is discussed in [12] and illustrated with the negative feedback (see also
Fig. 1(a)). The other chemical substances show similar patterns except the iron-
chelated complex which directly increases the growth rate. This way, the system
responses confirm that our model can precisely describe the changes of chemical
substance concentrations when the concentration of iron changes; this confirms
the experiments in [12].

3.2 Growth Model: Utilization Constant

In Monod’s bacterial growth model, bacteria consume the substrate for their
growth. We assume the utilization of substrate (US) is constant under different
iron concentrations. However, the exact values of the utilization constant are
hard to measure and estimate experimentally. To determine the US value, we
examine the changes of total virulence and biomass under different iron concen-
trations.

3 We discuss a design example for the biological parameters in subsequent sections.
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Fig. 2. Simulation results of the PA QS system responses to different iron concentra-
tions. At first, the iron concentration is 0.01 (a.u.); later at time t = 5000 (a.u.), it is
changed to 1 (a.u.). (a) As iron concentration increases, the expression of LasR proteins
is repressed due to the negative feedback of iron-chelated complexes (see Fig. 1(a)). (b)
The concentration of the LasR-AI complex decreases accordingly. The downstream
proteins (i.e., (c) PqsR, (d) PqsA, and (e) PqsE) are all positively regulated by LasR.
Hence, they change in accordance with LasR protein. The (f) PqsR-HHQ and (g) PqsR-
PQS concentrations also decrease due to the decrease of PqsR. (h) Pyoverdine (Pyo)
concentration shows similar profile since it is positively regulated by PqsE. (i) The
concentration of iron-chelated (Pyo-Iron) complex increases due to the high affinity of
pyoverdine and iron.

As shown in Fig. 3(a), once a certain concentration of iron is reached, the
larger the US , the greater the total virulence; this is because a consumption rate
of substrate that is low results in a nutrient abundant environment that favors
bacteria growth. We can observe that the biomass and the total virulence are
almost identical if US is greater than 10. Hence, in the following analysis, we set
US to 10.

3.3 Inhibitors Effectiveness

From Fig. 2(a), we note that when the iron concentration is high, the expression
of the LasR is repressed (Fig. 4(a)). On the other hand, the biomass increases
due to the higher growth rate (Fig. 4(b)). By using (23), the TV increases as the
concentration of iron increases as shown in Fig. 4(c).
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tion constant on total virulence under different iron concentrations. (b) The effect of
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Fig. 5. Operation points for different types of inhibitors. Different color indicates the
TV of a certain combination of biological parameters (promoter strength (P ) and basal
production rate (r) described in (26)–(29)). (a) and (b) show the operation points OA

and OB for iron and AI inhibitor alone; they can achieve TV around 0.1 and 0.001
where we choose the setting points SA and SB in Fig. 4(c) and (f), respectively. Based
on the operation points we choose, we can solve the optimization problem and obtain
the corresponding biological parameters where P = 100, r = 250 and P = 2, r = 250,
respectively. (c) The operation point OC for multi-inhibitors. In this case, P = 100 and
r = 250.

Figures 4(d)–(f) show the effect of adding the AI inhibitor into the environ-
ment, both LasR-AI complex and biomass decrease (Fig. 4(d), (e)). Hence, the
TV decreases as the amount of inhibitors increases.

Our most important observation shows that if we vary both the iron concen-
tration and AI inhibitors, we may decrease the TV. Indeed, Fig. 4(i) shows that
TV decreases as we increase the concentration of AI inhibitors and decrease the
iron concentration. The AI inhibitor and iron concentration have opposite effects
on the LasR-AI complex and the biomass. More precisely, lower concentrations
of iron result in higher concentrations of the LasR-AI complex (Fig. 4(g)), but a
decrease in the biomass production (Fig. 4(h)).

4 Autonomous Biological Control System

The autonomous biological controller we propose can automatically detect sig-
nals, react to environment, and adaptively release chemical substances for
intended objectives. To control the TV, the objective is to find a set of biological
parameters p that minimize (23). However, this objective function is subject
to various biological constraints including the bacteria QS, growth and QSI, as
well as control dynamics. Given the mathematical model in Sect. 2, we formu-
late a constrained dynamic optimization problem and solve it through numerical
methods.

4.1 Problem Formulation

Based on the general constrained dynamic optimization formulation and control
dynamics (see Appendix), we can formulate our problem as follows:
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min
p

TVt = V (xt,p) × N(xt,p)

subject to ẋt = f(xt, ut, dt,p) u̇t = h(ut, et,p)
yt = g(xt,p) et = yt − rt ∀t ∈ [t0, tFL]
xt0(p) = x0(p)

pL ≤ p ≤ pU

(30)

where t ∈ R represents time, t0, tFL are the initial and final time, respectively,
ti ∈ [t0, tFL], x and ẋ ∈ R

n are the state variables and their time deriva-
tives, respectively, and p ∈ R

r capture the time-invariant biological parameters
that can vary within [pL,pU ]. The functions f and h are QS and QSI models,
respectively. The function g selects the process variables (y) (i.e., LasR-AI and
iron-chelated complexes in our case). The state variable x represents the set of
concentrations of chemical substances described by (1)–(19); the environment
input (d) describes the environment conditions such as the nutrient availabil-
ity. The control variables (u) are the inhibitors which target the AI and iron
availability.

The genetic circuit can be thought of as an integral controller which reacts
to the concentration of LasR-AI and iron-chelated complexes, respectively. The
error signal (e) is computed as the difference between the process variable and
the reference signal (r); this then feeds back to the controller, which forms a
closed loop (see Fig. 1(c)).

4.2 Biological Parameters Design

To design the biological parameters for our controller, we can numerically solve the
above optimization problem by sampling biological parameters within the given
constraints. From our analyses in Sect. 3, we notice that TV is a monotonically
decreasing function (Fig. 4(i)). Consequently, by setting (23) to a desired value,
we can solve (30) for biological parameters to fulfill the design specifications.

We now provide a design example for the control circuitry that can effec-
tively achieve the setting objective value. As shown in Fig. 4(c), (f), (i), we first
choose the setting points SA, SB, and SC for three different strategies that can
achieve desired TVs (0.1, 0.001 and 0.001 in this design examples). The biolog-
ical parameters we choose to engineer are the promoter strength (P ) and the
basal production rate (r) in (26)–(29) since we can tune their values through the
evolution method [1]. Next, by solving (30) through varying the value of a set
of biological parameters within the given constraints ([pL,pU]), we can obtain
the most suitable combination of biological parameters that express the minimal
amount of inhibitors. Figure 5 shows the operation points OA, OB and OC for
three strategies that can achieve the setting values (SA, SB , and SC), respec-
tively. Based on the operation points, we obtain the set of desired biological
parameters.
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5 Population-Level Simulation Results

In this section, we validate the proposed control system by using a 3D microflu-
idic environment agent-based simulator [21]. First, we explicitly apply the
cellular-level model to each agent (bacterium). Next, we consider several phys-
ical and stochastic effects (physical interactions between bacteria, variation in
the QS systems, growth model, etc.) and examine the growth and virulence of
populations of bacteria.

The environmental configurations used in these simulations are presented
in the Appendix. As shown in Fig. 6(a), for the case without inhibitors, the
values of TV surpass the other strategies after 70 h of cultivation (i.e., the time
we grow bacteria in wet-lab); this is because the bacteria growth rate (µX in
(21)) without inhibitors is larger compared to inhibitor schemes (Fig. 6(c)). If we
use AI inhibitors alone, the concentration of LasR-AI complex is reduced, but
this can not repress the growth of bacteria. On the contrary, the iron inhibitor
alone can inhibit the bacteria growth but the LasR-AI concentration increases
(Fig. 6(b)). The multi-inhibitor strategy shows the best results; indeed it can
lower the concentration of LasR-AI and bacteria growth simultaneously.

Time (hr)

To
ta

l V
ir

u
le

n
ce

 (
a.

u
.)

(a) (b) (c)

0 50 100 150
100

102

104

0 50 100 150
10 3

10 2

10 1

100

0 50 100 150
103

104

105

106

Time (hr) Time (hr)

L
as

R
-A

I (
a.

u
.)

N
u

m
b

er
 o

f 
B

ac
te

ri
a Without Inhibitor

AI Inhibitor

Iron Inhibitor
Both Inhibitors

Without Inhibitor
AI Inhibitor

Iron Inhibitor
Both Inhibitors

Without Inhibitor
AI Inhibitor

Iron Inhibitor
Both Inhibitors

Fig. 6. The simulation results for (a) TV (b) concentration of LasR-AI complex (c)
number of bacteria for four different scenarios. Note that TV is the product of the
concentration of LasR-AI complex and the number of bacteria as shown in (23). We
observe that the multi-inhibition strategy is the most effective in reducing TV.

6 Conclusion

In this work, we have proposed an autonomous optimal controller that incor-
porates the bacteria QS regulation and growth models and operates within a
synthetic cell. By analyzing the system characteristics through numerical meth-
ods and simulations, we have shown that such synthetic cells can control the
expression level of QS signals and cells growth.

We have also formulated a dynamic optimization problem to design the bio-
logical parameters of the proposed controller; this provides general guidelines
to synthesize such optimal controllers in vitro. The proposed autonomous con-
trolled system represents a first step towards a paradigm change in controlling
the dynamics of communicating bacteria.
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Appendix

General form of a dynamic constrained optimization problem. A gen-
eral dynamic optimization problem can be formulated as follows:

min
p

J(xt, p)

subject to ẋt = f(xt, p) ∀t ∈ [t0, tFL]
xt0(p) = x0(p)

pL ≤ p ≤ pU

where t ∈ R is time, t0, tf are the initial and final time, respectively, ti ∈ [t0, tFL],
x and ẋ ∈ Rn are the state variables and their time derivatives, respectively,
and p ∈ Rr are the time-invariant parameters and is subjected to the lower
constraints pL and upper constraints pU . The function J is the objective that
we want to minimize. f describes the system dynamics. x0 is the initial conditions
of the state variables.

Control problem formulation. Consider a general control system which con-
sists of a plant and a controller (see Fig. 1(c)). The plant (process) takes in the
input variable (d(t)) and control variable (CV) (u(t)) generating the process
variable (PV) (y(t)). The controller calculates an error (e(t)) signal as the dif-
ference between a measured process variable and a desired setpoint (SP) (r(t)).
The controller aims at minimizing the error by adjusting the process through the
control variable (u(t)). The control system can be characterized by the following
equations:

ẋ(t) = f(x(t), u(t), d(t)), u̇(t) = h(e(t), u(t)) (31)
y(t) = g(x(t)), e(t) = y(t) − r(t) (32)

where f , g and h are arbitrary functions. The controller, in this case, can be
viewed as an integral controller since the control signal is proportional to the
integral of the error signal.

Simulation Environment Configuration. We model bacterial growth in a
3D microfluidic environment (100µm x 100µm x 100µm) that is initialized and
inoculated with 1000 wild-type cells, all of which are non-overlapping and ran-
domly attached to the substrate. We set up the simulation time up to 150 h in
order to observe the evolution dynamics of bacteria growth.

Model Calibration. We calibrate the model parameters of the pqs QS system
shown in Table 3. We first use similar values from [8,13] as our initial values.
Next, we tune the model parameters to capture the behavior of the QS system.
More precisely, we tune the model parameters based on the relative concentration
change of the LasR protein under different iron concentration levels.

As shown in Fig. 2, when we change the iron concentration from 0.01 (a.u.)
to 1 (a.u.), the LasR concentration changes from 2 (a.u.) to 0.5 (a.u.) which
preserves the fold changes reported in Fig. 4 of reference [12].
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Table 2. Table with numerical values of model parameters from [8,13]

Symbol Value

cA, cR 1e − 4/s

αRA, αRA2 1e − 1

δRA, δRA2 1e − 1

bA, bR 1e − 2

dA 1e − 1

VA, VR 2e − 3

KA 1e − 6

KR 1e − 5

Table 3. Table with numerical values of model parameters calibrated in this paper as
explained below.

Symbol Value

cpR, cpH , cpA, cpE , cPyo 1e − 7/s

αpR 1e − 1

αI 1e − 2

δpR 1e − 1

bpR, bpH , bpA, bpE , bA1 , bA2 1e − 2

bA1EX
, bA2EX

, bPyo, bPyoEX , bQ 1e − 1

dA1 , dA2 , dPyo, dQ 1e − 1

VpR, VpH , VpA,1, VpA,2, VpE,1, VpE,2VPyo 2e − 3

KpA,1, KpA,2, KpE,1, KpE,2 1e − 6

KA1 1e − 3

KpR, KpH 1e − 1

KPyo 1

βpA 1e − 2

βpH 1e − 1
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