
Ezio Bartocci · Pietro Lio
Nicola Paoletti (Eds.)

 123

LN
BI

 9
85

9

14th International Conference, CMSB 2016
Cambridge, UK, September 21–23, 2016
Proceedings

Computational Methods
in Systems Biology



Lecture Notes in Bioinformatics 9859

Subseries of Lecture Notes in Computer Science

LNBI Series Editors

Sorin Istrail
Brown University, Providence, RI, USA

Pavel Pevzner
University of California, San Diego, CA, USA

Michael Waterman
University of Southern California, Los Angeles, CA, USA

LNBI Editorial Board

Søren Brunak
Technical University of Denmark, Kongens Lyngby, Denmark

Mikhail S. Gelfand
IITP, Research and Training Center on Bioinformatics, Moscow, Russia

Thomas Lengauer
Max Planck Institute for Informatics, Saarbrücken, Germany

Satoru Miyano
University of Tokyo, Tokyo, Japan

Eugene Myers
Max Planck Institute of Molecular Cell Biology and Genetics, Dresden,
Germany

Marie-France Sagot
Université Lyon 1, Villeurbanne, France

David Sankoff
University of Ottawa, Ottawa, Canada

Ron Shamir
Tel Aviv University, Ramat Aviv, Tel Aviv, Israel

Terry Speed
Walter and Eliza Hall Institute of Medical Research, Melbourne, VIC, Australia

Martin Vingron
Max Planck Institute for Molecular Genetics, Berlin, Germany

W. Eric Wong
University of Texas at Dallas, Richardson, TX, USA



More information about this series at http://www.springer.com/series/5381

http://www.springer.com/series/5381


Ezio Bartocci • Pietro Lio
Nicola Paoletti (Eds.)

Computational Methods
in Systems Biology
14th International Conference, CMSB 2016
Cambridge, UK, September 21–23, 2016
Proceedings

123



Editors
Ezio Bartocci
TU Wien
Vienna
Austria

Pietro Lio
Computer Laboratory
University of Cambridge
Cambridge
UK

Nicola Paoletti
Department of Computer Science
University of Oxford
Oxford
UK

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Bioinformatics
ISBN 978-3-319-45176-3 ISBN 978-3-319-45177-0 (eBook)
DOI 10.1007/978-3-319-45177-0

Library of Congress Control Number: 2016948626

LNCS Sublibrary: SL8 – Bioinformatics

© Springer International Publishing AG 2016
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper

This Springer imprint is published by Springer Nature
The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland



Preface

This volume contains the papers presented at CMSB 2016, the 14th Conference on
Computational Methods in Systems Biology, held on September 21–23, 2016 at the
Computer Laboratory, University of Cambridge (UK).

The CMSB annual conference series, initiated in 2003, provides a unique forum of
discussion for computer scientists, biologists, mathematicians, engineers, and physi-
cists interested in a system-level understanding of biological processes. Topics of
interest include formalisms for modelling biological processes; models and their bio-
logical applications; frameworks for model verification, validation, analysis, and
simulation of biological systems; high-performance computational systems biology and
parallel implementations; model inference from experimental data; model integration
from biological databases; multi-scale modelling and analysis methods; and compu-
tational approaches for synthetic biology. Case studies in systems and synthetic biology
are especially encouraged.

There were 37 regular submissions, 3 tools papers, and 9 poster submissions. Each
regular submission and tool paper submission was reviewed by at least 4 Program
Committee members. The committee decided to accept 17 regular papers, 3 tool
papers, and all submitted posters. On average, regular and tool papers received 4.2
reviews each, while each poster submissions received 2 reviews. To complement the
contributed papers, we also included in the program four invited lectures: Luca Cardelli
(Microsoft Research, UK), Joëlle Despeyroux (Inria Sophia Antipolis, France), Radu
Grosu (TU Wien, Austria), and Jane Hillston (University of Edinburgh, UK).

As program co-chairs, we have many people to thank. We are extremely grateful to
the members of the Program Committee and the external reviewers for their peer
reviews and the valuable feedback they provided to the authors. We thank also the
authors of the accepted papers for revising the papers according to the suggestions
of the program committee and for their responsiveness on providing the camera-ready
copies within the deadline. Our special thanks goes to François Fages and all the
members of the CMSB Steering Committee for their advice on organizing and running
the conference. We acknowledge the support of the EasyChair conference system
during the reviewing process and the production of these proceedings. We thank
Kaushik Chowdhury and the IEEE Computer Society Technical Committee on Sim-
ulation for supporting the best student paper award and the best poster award. We thank
NVIDIA for providing their equipment as the best paper award. Our gratitude also goes
to the tool track chair, Claudio Angione, and the local organization chair, Max Con-
way, for their help, support, and spirited participation before, during, and after the
conference. We are also really grateful to Paolo Zuliani for having organized a min-
isymposium on Automated Reasoning for Systems Biology, which was held a day
before the conference. It is our pleasant duty to acknowledge the financial support from
our sponsor, Microsoft Research, and the support of the Computer Laboratory at the
University of Cambridge, where this year’s event was hosted. Finally, we would like to



thank all the participants of the conference. It was the quality of their presentations and
their contribution to the discussions that made the meeting a scientific success.

September 2016 Ezio Bartocci
Pietro Lio

Nicola Paoletti
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(Mathematical) Logic for Systems Biology
(Invited Paper)

Joëlle Despeyroux(B)

Inria and CNRS, I3S, Sophia-Antipolis, France
joelle.despeyroux@inria.fr

Abstract. We advocates here the use of (mathematical) logic for sys-
tems biology, as a unified framework well suited for both modeling the
dynamic behaviour of biological systems, expressing properties of them,
and verifying these properties. The potential candidate logics should have
a traditional proof theoretic pedigree (including a sequent calculus pre-
sentation enjoying cut-elimination and focusing), and should come with
(certified) proof tools. Beyond providing a reliable framework, this allows
the adequate encodings of our biological systems. We present two candi-
date logics (two modal extensions of linear logic, called HyLL and SELL),
along with biological examples. The examples we have considered so far
are very simple ones - coming with completely formal (interactive) proofs
in Coq. Future works includes using automatic provers, which would
extend existing automatic provers for linear logic. This should enable us
to specify and study more realistic examples in systems biology, biomedi-
cine (diagnosis and prognosis), and eventually neuroscience.

1 Introduction

We consider here the question of reasoning about biological systems in (math-
ematical) logic. We show that two new logics, both modal extensions of linear
logic [12] (LL), are particularly well-suited to this purpose. The first logic, called
Hybrid Linear Logic (HyLL), has been developed by the author in joint work
with K. Chaudhuri [8]. The second logic, an extension of Subexponential Linear
Logic (SELL�), has been independently proposed by C. Olarte, E. Pimentel and
V. Nigam [15]. Both HyLL and SELL provides a unified framework to encode
biological systems, to express temporal properties of their dynamic behaviour,
and to prove these properties. By constructing proofs in the logics, we directly
witness reachability as logical entailment [13,17]. This approach is in contrast to
most current approaches to applying formal methods to systems biology, which
generally encode biological systems either in a dedicated programming language
[6,10,19], or in differential equations [5], express properties in a temporal logic,
and then verify these properties against some form of traces (model-checking),
eventually built using an external simulator.

In a joint work with E. De Maria and A. Felty, we presented some first appli-
cations of HyLL to systems biology [13]. In these first experiments, we focused on

c© Springer International Publishing AG 2016
E. Bartocci et al. (Eds.): CMSB 2016, LNBI 9859, pp. 3–12, 2016.
DOI: 10.1007/978-3-319-45177-0 1



4 J. Despeyroux

Boolean systems and in this case a time unit corresponds to a transition in the
system. We believe that discrete modeling is crucial in systems biology because
it allows taking into account some phenomena that have a very low chance of
happening (and could thus be neglected by differential approaches), but which
may have a strong impact on system behavior.

In a recent joint work with C. Olarte and E. Pimentel [9], we compared HyLL
and SELL, providing two encodings. The first enoding is from HyLL’s logical
rules into LL with the highest level of adequacy, hence showing that HyLL is as
expressive as LL. We also proposed an encoding of HyLL into SELL� (SELL
plus quantification over locations) that gives better insights about the meaning of
worlds in HyLL. This shows that SELL is more expressive than HyLL. However,
the simplicity of HyLL might be of interest, both from the user point of view and
as far as proof search is concerned (a priori easier and more efficient in HyLL
than in SELL). In this joint work, we furthermore encoded temporal operators
of Computational Tree Logic (CTL) into linear logic with fixed point operators.

We first recall here these two previous works. Then we briefly mention our
current joint work with P. Lio, on formalizing the evolution of cancer cells,
concluding with some future work.

This note is thus based on joint works with K. Chaudhuri (INRIA Saclay),
A. Felty (Univ. of Ottawa), P. Lio (Cambridge Univ.), and C. Olarte and E.
Pimentel (Universidade Federal do Rio Grande do Norte, Brazil).

2 Preliminaries

Although we assume that the reader is familiar with linear logic [12] (LL), we
review some of its basic proof theory in the following sections. First, let us gently
introduce linear logic by means of an example.

2.1 Linear Logic for Biology

Linear Logic (LL) [12] is particularly well suited for describing state transition
systems. LL has been successfully used to model such diverse systems as: the
π-calculus, concurrent ML, security protocols, multiset rewriting, and games.

In the area of biology, a rule of activation (e.g., a protein activates a gene or
the transcription of another protein) can be modeled by the following LL axiom:

active(a, b) def= pres(a) −◦ (pres(a) ⊗ pres(b)).

The formula active(a, b) describes the fact that a state where a is present
(pres(a) is true) can evolve into a state where both pres(a) and pres(b) are
true.

Propositions such as pres(a) are called resources, and a rule in the logic can
be viewed as a rewrite rule from a set of resources into another set of resources,
where a set of resources describes a state of the system. Thus, a particular state
transition system can be modeled by a set of rules of the above shape. The rules of
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the logic then allow us to prove some desired properties of the system, such as, for
example, the existence of a stable state. However, linear implication is timeless.
Linear implication can be used to model one event occurring after another, but
it cannot be precise about how many steps or how long the delay is without
explicitly encoding time. In a domain where resources have lifetimes and state
changes have temporal, probabilistic or stochastic constraints, then the logic will
allow inferences that may not be realizable in the system being modeled. This
was the motivation of the development of HyLL, which was designed to represent
constrained transition systems.

2.2 Linear Logic and Focusing

Literals are either atomic formulas (p) or their negations (p⊥). The connectives
⊗ and .................................................

............
.................................. and their units 1 and ⊥ are multiplicative; the connectives ⊕ and &

and their units 0 and � are additive; ∀ and ∃ are (first-order) quantifiers; and !
and ? are the exponentials (called bang and question-mark, respectively).

First proposed by Andreoli [1] for linear logic, focused proof systems provide
normal form proofs for cut-free proofs. The connectives of linear logic can be
divided into two classes. The negative connectives have invertible introduction
rules: these connectives are .................................................

............
.................................. , ⊥, &, �, ∀, and ?. The positive connectives ⊗, 1,

⊕, 0, ∃, and ! are the de Morgan duals of the negative connectives. A formula
is positive if it is a negated atom or its top-level logical connective is positive.
Similarly, a formula is negative if it is an atom or its top-level logical connective
is negative.

Focused proofs are organized into two phases. In the negative phase, all the
invertible inference rules are eagerly applied. The positive phase begins by choos-
ing a positive formula F on which to focus. Positive rules are applied to F until
either 1 or a negated atom is encountered (and the proof must end by applying
the initial rules), the promotion rule (!) is applied, or a negative subformula is
encountered and the proof switches to the negative phase.

This change of phases on proof search is particularly interesting when the
focused formula is a bipole [1]. Focusing on a bipole will produce a single positive
and a single negative phase. This two-phase decomposition enables us to ade-
quately capture the application of object-level inference rules by the meta-level
linear logic, as shown in [9].

2.3 Hybrid Linear Logic

Hybrid Linear Logic (HyLL) is a conservative extension of Intuitionistic first-
order Linear Logic (ILL) [12] where the truth judgments are labelled by worlds
representing constraints on states and state transitions. Instead of the ordinary
judgment “A is true”, for a proposition A, judgments of HyLL are of the form “A
is true at world w”, abbreviated as A @ w. Particular choices of worlds produce
particular instances of HyLL. Typical examples are “A is true at time t”, or “A
is true with probability p”. HyLL was first proposed in [8] and it has been used
as a logical framework for specifying biological systems [13].
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Formally, worlds are defined as follows.

Definition 1 (HyLL worlds). A constraint domain W is a monoid structure
〈W, ., ι〉. The elements of W are called worlds and its reachability relation � :
W × W is defined as u � w if there exists v ∈ W such that u.v = w.

The identity world ι is �-initial and is intended to represent the lack of any
constraints. Thus, the ordinary first-order linear logic is embeddable into any
instance of HyLL by setting all world labels to the identity. A typical, simple
example of constraint domain is T = 〈IN,+, 0〉, representing instants of time.

Atomic propositions (p, q, . . .) are applied to a sequence of terms (s, t, . . .),
which are drawn from an untyped term language containing constants (c, d, . . .),
term variables (x, y, . . .) and function symbols (f, g, . . .) applied to a list of terms
(t). Non-atomic propositions are constructed from the connectives of first-order
intuitionistic linear logic and the two hybrid connectives satisfaction (at), which
states that a proposition is true at a given world (w, ι, u.v, . . .), and localization
(↓), which binds a name for the (current) world the proposition is true at. The
following grammar summarizes the syntax of HyLL.

t :: = c | x | f(t)
A,B :: = p(t) | A ⊗ B | 1 | A → B | A & B | � | A ⊕ B | 0 | !A |

∀x. A | ∃x. A | (A at w) | ↓ u. A | ∀u. A | ∃u. A

Note that world u is bounded in the propositions ↓ u. A, ∀u. A and ∃u. A.
World variables cannot be used in terms, and neither can term variables occur
in worlds. This restriction is important for the modular design of HyLL because
it keeps purely logical truth separate from constraint truth. We note that ↓ and
at commute freely with all non-hybrid connectives [8].

The sequent calculus [11] presentation of HyLL uses sequents of the form
Γ ;Δ � C @ w where Γ (unbounded context) is a set and Δ (linear context) is a
multiset of judgments of the form A @ w. Note that in a judgment A @ w (as
in a proposition A at w), w can be any expression in W, not only a variable.

The inference rules dealing with the new hybrid connectives are depicted
below (the complete set of rules can be found in [8]).

Γ ;Δ � A@u

Γ ;Δ � (A at u)@w
atR

Γ ;Δ,A@u � C@w

Γ ;Δ, (A at u)@v � C@w
atL

Γ ;Δ � A[w/u]@w

Γ ;Δ �↓ u.A@w
↓ R

Γ ;Δ,A[v/u]@v � C@w

Γ ;Δ, ↓ u.A@v � C@w
↓ L

Note that (A at u) is a mobile proposition: it carries with it the world at which
it is true. Weakening and contraction are admissible rules for the unbounded
context.

The most important structural properties are the admissibility of the general
identity (i.e. over any formulas, not only atomic propositions) and cut theorems.
While the first provides a syntactic completeness theorem for the logic, the latter
guarantees consistency (i.e. that there is no proof of .; . � 0 @ w).
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Theorem 1 (Identity/Cut).

1. Γ ;A @ w � A @ w
2. If Γ ;Δ � A @ u and Γ ;Δ′, A @ u � C @ w, then Γ ;Δ,Δ′ � C @ w
3. If Γ ; . � A @ u and Γ,A @ u;Δ � C @ w, then Γ ;Δ � C @ w.

Moreover, HyLL is conservative with respect to intuitionistic linear logic: as
long as no hybrid connectives are used, the proofs in HyLL are identical to those
in ILL. It is worth noting that HyLL is more expressive than S5, as it allows
direct manipulation of the worlds using the hybrid connectives and HyLL’s δ
connective (see Sect. 5) is not definable in S5. We also note that HyLL admits
a complete focused [1] proof system. The interested reader can find proofs and
further meta-theoretical theorems about HyLL in [8].

Modal Connectives. We can define modal connectives in HyLL as follows:

Definition 2 (Modal connectives).

�A
def= ↓u. ∀w. (A at u.w) ♦A

def= ↓u. ∃w. (A at u.w) δv A
def= ↓u. (A at u.v)

�A [resp. ♦A] represents all [resp. some] state(s) satisfying A and reachable from
now. The connective δ represents a form of delay.

2.4 Subexponentials in Linear Logic

Linear logic with subexponentials (SELL) shares with LL all its connectives
except the exponentials: instead of having a single pair of exponentials ! and
?, SELL may contain as many subexponentials [7,18], written !a and ?a, as one
needs. The grammar of formulas in SELL is as follows:

F :: = 0 | 1 | � |⊥| p(t) | F1 ⊗ F2 | F1 ⊕ F2 | F1
.................................................

............
.................................. F2 | F1 & F2 |

∃x.F | ∀x.F | !aF | ?aF

Theproof system for SELL is specifiedbya subexponential signature Σ = 〈I,�, U〉,
where I is a set of labels, U ⊆ I is a set specifying which subexponentials allow
weakening and contraction, and � is a pre-order among the elements of I. We
shall use a, b, . . . to range over elements in I and we will assume that � is
upwardly closed with respect to U , i.e., if a ∈ U and a � b, then b ∈ U .

The system SELL is constructed by adding all the rules for the linear logic
connectives except for the exponentials. The rules for subexponentials are dere-
liction and promotion of the subexponential labelled with a ∈ I

� ?a1F1, . . . ?anFn, G

� ?a1F1, . . . ?anFn, !aG !a
� Γ,G

� Γ, ?aG ?a

Here, the rule !a has the side condition that a � ai for all i. That is, one can
only introduce a !a on the right if all other formulas in the sequent are marked
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with indices that are greater or equal than a. Moreover, for all indices a ∈ U ,
we add the usual rules for weakening and contraction.

We can enhance the expressiveness of SELL with the subexponential quanti-
fiers � and � ([15,18]) given by the rules (omitting the subexponential signature)

� Γ,G[le/lx]
� Γ,�lx : a.G

�
� Γ,G[l/lx]

� Γ,�lx : a.G
�

where le is fresh. Intuitively, subexponential variables play a similar role as eigen-
variables. The generic variable lx : a represents any subexponential, constant or
variable in the ideal of a. Hence lx can be substituted by any subexponential l
of type b (i.e., l : b) if b � a. We call the resulting system SELL�.

As shown in [15,18], SELL� admits a cut-free and also a complete focused
proof system.

Theorem 2. SELL� admits cut-elimination for any subexponential signature.

Modal connectives. We can define modal connectives in SELL as follows:

�uA
def= ∀l : u. !lA ♦uA

def= ∃l : u. !lA �A
def= ∀t : ∞. !tA ♦A

def= ∃t : ∞. !tA

3 First Experiments with HyLL

In a joint work with E. De Maria and A. Felty, we presented some first applica-
tions of HyLL to systems biology [13]. In these first experiments, we focused on
Boolean systems and in this case a time unit corresponds to a transition in the
system.

The activation rule seen in LL (Sect. 2.1) can be written in HyLL as

active(a, b) def= pres(a) −◦ δ1 (pres(a) ⊗ pres(b)).

We chosed a simple yet representative biological example concerning the
DNA-damage repair mechanism based on proteins p53 and Mdm2, and present
and proved several properties of this system. All these properties were reacha-
bility properties or the existence of an invariant. Most interesting proofs require
induction or case analysis, that we borrowed from the meta-level (Coq). We
fully formalized these proofs in the Coq Proof Assistant [3]. In Coq, we can both
reason in HyLL and formalize meta-theoretic properties about it.

We discussed the merits and eventual drawbacks of this new approach com-
pared to approaches using temporal logic and model checking. To better illustrate
the correspondence with such approaches, which all use temporal logic to reason
about (simulations of models of) the biological systems described, we also pre-
sented, informally but in some detail, the encoding of temporal logic operators
in HyLL.
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4 Relative Expressiveness Power of HyLL and SELL

We observe that, while linear logic has only seven logically distinct prefixes
of bangs and question-marks, SELL allows for an unbounded number of such
prefixes, e.g., !i, or !i?j . Hence, by using different prefixes, we allow for the
specification of richer systems where subexponentials are used to mark differ-
ent modalities/states. For instance, subexponentials can be used to represent
contexts of proof systems [16]; to specify systems with temporal, epistemic and
spatial modalities [18] and to specify and verify biological systems [17]. An inhi-
bition rule can be written in (classical) SELL as

inhib(a, b) def= !ta −◦ !t+1(a ⊗ b⊥).

HyLL and Linear Logic. One may wonder whether the use of worlds in HyLL
increases also the expressiveness of LL. In a joint work with C. Olarte and E.
Pimentel [9], we proved that this is not the case, by showing that HyLL rules can
be directly encoded into LL by using the methods proposed in [14]. Moreover,
the encoding of HyLL into LL is adequate in the sense that a focused step in LL
corresponds exactly to the application of one inference rule in HyLL.

HyLL and SELL. Linear logic allows for the specification of two kinds of context
maintenance: both weakening and contraction are available (classical context) or
neither is available (linear context). That is, when we encode (linear) judgments
in HyLL belonging to different worlds, the resulting meta-level atomic formulas
will be stored in the same (linear) LL context. The same happens with classical
HyLL judgments and the classical LL context.

Although this is perfectly fine, encoding HyLL into SELL� allows for a better
understanding of worlds in HyLL. For that, we use subexponentials to represent
worlds, having each world as a linear context. A HyLL judgment of the shape
F@w in the (left) linear context is encoded as the SELL� formula ?w�F@w�.
Hence, HyLL judgments that hold at world w are stored at the w linear context
of SELL�. A judgment of the form G@w in the classical HyLL context is encoded
as the SELL� formula ?c?w�G@w�. Then, the encoding of G@w is stored in the
unbounded (classical) subexponential context c.

We showed that our encoding is indeed adequate. Moreover, as before, the
adequacy of the encodings is on the level of derivations.

Information Confinement. One of the features needed to specify spatial modali-
ties is information confinement : a space/world can be inconsistent and this does
not imply the inconsistency of the whole system. We showed in [9] that informa-
tion confinement cannot be specified in HyLL. The authors in [15] exploit the
combination of subexponentials of the form !w?w in order to specify information
confinement in SELL�. More precisely, note that the sequents (in a 2-sided pre-
sentation of SELL) !w?w0 �� 0 and !w?w0 �� !v?v0, representing “inconsistency is
local” and “inconsistency is not propagated” respectively hold in SELL.
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5 Computation Tree Logic (CTL) in Linear Logic

Hybrid linear logic is expressive enough to encode some forms of modal operators,
thus allowing for the specification of properties of transition systems. As men-
tioned in [13], it is possible to encode CTL temporal operators into HyLL con-
sidering existential (E) and bounded universal (A) path quantifiers. We extended
these encodings in [9], showing how to fully capture E and A CTL quantifiers
in linear logic with fixed points. For that, we used the system μMALL [2] that
extends MALL (multiplicative, additive linear logic) with fixed point operators.
In [13], proofs of (encodings of) properties involving CTL quantifiers use induc-
tion borrowed from the (Coq) meta-level. In [9], we could directly use fixed points
in linear logic.

6 Concluding Remarks and Future Work

Concerning related work, it is worth noticing that there are some other logical
frameworks that are extensions of LL, for example, HLF [20]. Being a logic in the
LF family, HLF is based on natural deduction, hence having a complex notion
of (βη) normal forms. Thus adequacy (of encodings of systems) results are often
much harder to prove in HLF than in (focused) HyLL/SELL. HLF seems to
have been later abandonned in favour of Hybridized Intuitionistic Linear Logic
(HILL) [4] - a type theory based on a subpart of HyLL.

Both HyLL and SELL have been used for formalizing and analyzing biological
systems [13,17]. SELL proved to be a broader framework for handling such
systems (in particular localities). However, the simplicity of HyLL may be of
interest for specific purposes, such as building tools for diagnosis in biomedicine.

Formal proofs in HyLL were implemented in [13], in the Coq [3] proof assis-
tant. It would be interesting to extend the implementations of HyLL given there
to SELL. Such an interactive proof environment would enable both formal stud-
ies of encoded systems in SELL and formal meta-theoretical study of SELL
itself.

We may pursue the goal of using HyLL/SELL for further applications. That
might include neuroscience, a young and promising science where many hypothe-
ses are provided and need to be verified. Indeed, logic is a general tool whose
area of potential applications are not restricted per se. This is in contrast to
most of the other approaches, which are valid only in a restricted area (typically
inside or outside the cell).

In an ongoing joint work with P. Lio, we are formalizing the evolution of can-
cer cells, acquiring driver or passenger mutations. A rule describing an intravasat-
ing Circulating Tumour Cell, for example, might be:

C(n, breast, f, [EPCAM]) −◦ δd C(n, blood, 1, [EPCAM])

where f is a fitness parameter, here in {0, 1}. Our long term goal here is the
design of a Logical Framework for disease diagnosis and therapy prognosis.
This requires the development of automatic tools for proof search in our logics.
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These tools should benefit both from current research on proof search in linear
logic and from current developments of automatic provers for SELL.
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Abstract. Calibrating parameters is a crucial problem within quantita-
tive modeling approaches to reaction networks. Existing methods for sto-
chastic models rely either on statistical sampling or can only be applied
to small systems. Here we present an inference procedure for stochas-
tic models in equilibrium that is based on a moment matching scheme
with optimal weighting and that can be used with high-throughput data
like the one collected by flow cytometry. Our method does not require
an approximation of the underlying equilibrium probability distribution
and, if reaction rate constants have to be learned, the optimal values can
be computed by solving a linear system of equations. We evaluate the
effectiveness of the proposed approach on three case studies.

1 Introduction

Stochastic models have proven to be a powerful tool for the analysis of bio-
chemical reaction networks. Especially when chemical species are present in low
copy numbers, a stochastic approach provides important insights on the random-
ness inherent to the system when compared to deterministic approaches. For the
inference of parameters based on experimentally observed samples, more detailed
descriptions given by stochastic models can substantially improve the quality of
the estimation [18].

The arguably most popular stochastic modeling approach to chemical kinet-
ics is based on a description in terms of continuous time Markov chains
(CTMC) [10]. In this case, the exact time evolution of the entire probability
distribution is given by the chemical master equation (CME). Although, this
description is exact up to the numerical precision of the integration scheme, its
solution is only feasible for simple systems with small molecular populations [22].
Therefore, the applicability of inference approaches based on a maximum likeli-
hood estimation (MLE) is limited to this class of networks since they require an
approximation of the probability distribution, i.e., a solution of the CME [2,3].
An alternative to ease the computational burden is to use stochastic simulation
to estimate the likelihood function or to learn parameters in a Bayesian set-
ting, e.g. by ABC methods [33]. However, the total number of simulations to be
performed is huge, still resulting in a computationally intensive approach.
c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-45177-0 2
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A computationally more feasible approach is to consider the statistical
moments (such as the expected value or the variance) instead of the entire prob-
ability distribution. Moment-based analysis approaches rely on a derivation of
a system of equations for the time-derivative of the moments [1,6,30]. Since the
exact time evolution of the moments of order k may depend on moments of
higher order, a closure method has to be applied to arrive at a finite system of
equations. However, moment-based methods complicate the application of MLE
since a reconstruction of the distribution is computationally expensive and may
be inaccurate depending on the shape of the distribution [4].

In this paper we propose a parameter estimation approach that does not
rely on MLE and distribution approximations, but on the generalized method
of moments (GMM), which has been a widely used inference method in econo-
metrics for over 30 years [12,14]. We consider the case in which experimentally
observed samples are drawn when the process is in equilibrium. Population snap-
shot data of equilibrium processes are considered, for instance, if the (possibly
multi-stable) steady-state expression in a gene regulatory network is investi-
gated [7,17] or if the steady-state behavior of a mutant is compared the behavior
of the wild type [19,27]. Modern high-throughput experimental techniques, like
flow cytometry, deliver a large amount of measurements from a population of
cells at steady state and thus give detailed information about the distribution of
proteins and RNAs [13,16,25]. The idea of the GMM is to consider constraints
of the form E[f(Y i,θ0)] = 0 where Y i is a sample and θ0 the parameter vector.
We propose to choose f as the time derivatives of the statistical moments of
the model, which can directly be derived from the CME. This follows from the
fact that the time derivatives will become equal to zero when the process is in
equilibrium. A major advantage, given the availability of steady state samples,
is that, compared to time depended observations, no moment closure approx-
imations are necessary. Instead exact equations for the steady state moments
can be used. If the propensities are linear in the unknown parameters, as is the
case for mass action kinetics, a closed linear form is possible. This results in an
extremely fast inference procedure since no numerical optimization is needed. In
case of propensities that are non-linear in the parameters numerical optimization
is necessary. Still, no numerical integration of moment equations or probabilities
is needed since the objective function corresponds to the right side of the steady
state moment equations.

The moment equations may also contain moments of species whose quantity
is hard to measure (e.g. the state of a promoter). Instead of treating these latent
variables as unknown (probably non-linear) parameters, here we propose a clus-
tering approach that estimates promoter states in a preprocessing step. Then, a
closed linear solution is still possible, which again enables an accurate estimation
in very short time.

We analyse the effectiveness of the GMM approach for the p53 oscillator
model [9] and two variants of the genetic toggle switch [8,20]. Our results show
that using moments of up to at least second order yields accurate estimates.
The inclusion of higher order moments (higher than three) can lead to a further
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decrease of the estimators variances, but for the p53 model and only few sam-
ples the estimation becomes worse. Nevertheless, even for comparatively small
sample sizes (100) the estimates are usually tightly distributed around the true
parameter value when moments up to order two or three are considered.

The paper is organized as follows. We first provide some background on the
model in Sect. 2 and present our inference approach based on GMM in Sect. 3.
We discuss the inference results for the case studies in Sect. 4 and conclude the
paper in Sect. 6.

2 Stochastic Chemical Kinetics

A stochastic model of a network of chemical reactions is usually specified by a
set of n species, which are represented by a set of symbols S1, . . . ,Sn. We are
interested in the system state, i.e., the number of individuals of the species,
and thus consider state space S ⊆ INn

≥0. Furthermore, a set of J reactions is
given describing the interactions between the different molecular populations.
For j ∈ {1, . . . , J} reaction Rj is specified by its stoichiometry

Rj : S1ν
−
j,1 + · · · + Snν−

j,n

cj−→ S1ν
+
j,1 + · · · + Snν+

j,n , (1)

where the vectors ν−
j and ν+

j ∈ INn
≥0 with entries ν−

j,i and ν+
j,i for i ∈ {1, . . . , n}

specify how many molecules are consumed (produced) of each type, respectively.
The vector νj = ν+

j − ν−
j is called the change vector of Rj . The propensity

functions αj are such that αj : S × Θ → IR≥0, where Θ is the parameter space.
If mass action kinetics are assumed, then αj is the product of the rate constant cj

and the number of possible combinations of reactant molecules, i.e., αj(x,θ) =
cj

∏n
i=1

( xi

ν−
j,i

)
for x ∈ S. Here, we do not restrict to mass action kinetics but

only impose certain regularity conditions on the propensity functions, such as
continuity and the existence of certain expected values. If a reaction does not
follow mass action propensities, we give the propensity function separately from
the stoichiometry (1).

Under the assumption of well-stirredness and thermal equilibrium such a
system can be accurately described by a continuous-time Markov chain (CTMC)
X(t) = (X1(t), . . . , Xn(t)) over the state space S [10]. The time evolution of the
probability distribution is given by the chemical master equation (CME):

d

dt
P (X(t)=x) =

J∑

j=1

P (X(t)=x − νj) αj(x − νj , θ) −
J∑

j=1

P (X(t)=x) αj(x, θ) (2)

Due to the largeness of the state space the integration of d
dtP is computationally

infeasible, especially if we have to integrate until convergence to determine the
equilibrium distribution. Given (2) it is straight-forward to compute the time
derivative of the expectation of some polynomial function g : S → IR [6]:

d

dt
E[g(X)] =

J∑

j=1

E[(g(X + νj) − g(X)) αj(X,θ)] , (3)
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where we omit the dependence of X on t. Here we are concerned with the
population moments of the distribution, which are monomials Xm over X
where we use the multi-index notation xm = xm1

1 · · · xmn
n for the vectors

m = (m1, . . . ,mn) ∈ INn
≥0 and x = (x1, . . . , xn).1 The order of a moment is

given by the sum m1 + · · · + mn. The first order moment of the i-th population,
for example, is obtained from (3) by setting g(x) = xi:

d

dt
E[Xi] =

J∑

j=1

νj,iE[αj(X,θ)] . (4)

In general, the equation of a moment of a certain order may depend on moments
of higher order, except if α is constant or linear, i.e., of the form cTj x+bj for some
constant cj ∈ IRn and bj ∈ IR. Here, we do not aim at finding a finite system
of ODEs to approximate the moments but we rather propose to use the exact
moment equations when the system is in equilibrium. The equilibrium probability
of a state x is defined as the limit of P (X(t)=x) when t → ∞, i.e.,

π(x) = lim
t→∞ P (X(t)=x) . (5)

and is uniquely defined for ergodic processes X. Since the equilibrium distribu-
tion is independent of time, the expected values in (3) are also time-independent
when t → ∞. Thus, we can use the right side of (3) to estimate propensity
parameters given samples from the equilibrium distribution.

3 GMM Conditions at Equilibrium

We propose to use the moments of the equilibrium distribution as an input
for a GMM inference, which is a very generic framework for parameter estima-
tion [12,23]. It is most popular in econometrics, where often the exact distribu-
tion of a model is not known. In this case MLE cannot be used since it needs a
sufficiently accurate description of the distribution for its optimality properties
to hold. As opposed to this, the GMM is based on the construction and min-
imization of certain cost functions, called moment conditions, which relate the
population and sample moments. A moment condition is given by a function
whose expected value is zero for the true parameter value θ0. Given indepen-
dent samples Y1, . . . ,YN of the process X in equilibrium, a vector of moment
conditions is given by

E[f(Y ,θ0)] = 0 , (6)

where we omit the index of the samples whenever they appear within the expec-
tation operator since Y1, . . . ,YN are identically distribution according to the
equilibrium distribution π. Moreover, let f be a vector of q different functions,

1 The existence and convergence of moments is treated Gupta et al. [11]. It can be
proved for the models in Sect. 4 with positive rate constants.
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i.e., f : (S ×Θ) → IRq. The sample equivalent of (6) for the vector f of moment
conditions is given by

fN (θ0) =
1
N

N∑

i=1

f(Y i,θ0) = 0 . (7)

Depending on the number of such conditions q and the number of parameters
to be estimated p, we distinguish for the estimated value the non-identified case
(q < p), the exactly identified case (p = q) and the over-identified case (q > p). In
the exactly identified case, assuming (7) has a unique solution, we have Pearson’s
classical method of moments [28].

Since we are considering the system at equilibrium, the right-hand side of (3)
must equal zero. In principle, it is possible to use any polynomial g meeting cer-
tain regularity conditions [12]. However, using population moments, i.e., mono-
mials of Y is a natural choice that leads to the moment conditions

d

dt
E[Y m] =

J∑

j=1

E
[(

(Y + νj)
m − Y m

)
αj(Y ,θ0)

]
= 0 (8)

for the estimation of θ. Therefore the moment condition vector f in (6) is deter-
mined by the functional form (8) of a selection of different vectors m, i.e., the
entry in the vector f that corresponds to m is

fm(Y ,θ) =
J∑

j=1

(
(Y + νj)

m − Y m
)
αj(Y ,θ) .

Typically, we choose these vectors such that their entries correspond to the
moments up to some fixed order. If, for example, we use first order moments
only, the i-th entry of f is equal to

∑
j νi,jαj(Y ,θ) for i = 1, 2, . . . , n (see Eq. 4).

For the moments of order two we extend f with entries according to the right
side in (8) of the second order moments and so forth.

We may choose as many moment conditions as there are parameters to
exactly identify the estimate. However, the inclusion of further information on
the distribution may lead to a more accurate estimation. GMM provides a frame-
work to deal with over-identified estimation problems. The estimator is given by

θ̂N = arg min
θ∈Θ

QN (θ) , (9)

where QN (θ) is the objective function

QN (θ) = fN (θ)TWfN (θ) . (10)

Here, W is some positive semi-definite matrix containing weights for each pair
of moment conditions. Under certain regularity conditions [12], this estimator is
asymptotically normal and consistent, i.e., the estimator converges in probability
to θ0. These regularity conditions mostly consist of the existence of expectations
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of f and ∂f/∂θ and their continuity w.r.t. θ on the parameter space Θ. Assum-
ing convergence to equilibrium moments the validity of these conditions depends
solely on the propensity functions. They hold for mass action and Hill’s propen-
sities, as they are smooth functions of the parameters. The parameter space
itself is assumed to be bounded, which in practice can be done by either fixing
a biologically relevant space or assuming a sufficiently large Θ [12]. A further
necessary condition for normality is that θ0 is a unique interior point of Θ such
that E[f(Y ,θ0)] = 0. However, if we have only samples from the steady state
distribution this property may not hold if one tries to estimate all parameters
at once. The reason is that often for a fixed steady-state distribution there is an
infinite number of ergodic Markov chains having this steady-state distribution
and the system is not fully identifiable.

Although the estimator’s normality holds for all positive semi-definite weight-
ing matrices, a good choice of W reduces the asymptotic variance of the estima-
tor. It can be shown, that the asymptotically most efficient matrix W0 is given
by the inverse of limN→∞ Var(

√
NfN (θ0)) [12,23]. In case of independent and

identically distributed samples, W0 can be estimated as follows [23]:

ŴN =

(
1
N

N∑

i=1

f(Y i,θ0)f(Y i,θ0)
T

)−1

. (11)

Since this estimate depends on θ0, which is unknown, GMM is usually applied in
a iterative manner: A first estimate θ̂1 is computed using some positive-definite
weight matrix, such as the identity matrix. The estimate θ̂1 is consistent, but
likely asymptotically inefficient. This estimate is then used to approximate (11).
The procedure of estimating θ0 and computing ŴN can be iteratively applied
until some convergence criterion is met. Since W is constant at each iterative
estimation, the solution to (9) can, under some restrictions on the propensities,
be expressed as a linear system (cf. Sect. 3.1).

Beyond this iterative estimation scheme, the continuously updating GMM
(CUGMM) [15] is a popular variant of the GMM estimator. Instead of recom-
puting the weight estimate between minimizations, the weight estimation (11)
is substituted into the objective function (10). The resulting estimator is thus
given by

θ̂CU ,N = arg min
θ∈Θ

fN (θ)T
(

1
N

N∑

i=1

f(Y i,θ)f(Y i,θ)T
)−1

fN (θ) . (12)

This estimator is often associated with improved finite sample properties and
more reliable test statistics [23]. However, a closed form solution for linear
propensities as described in Sect. 3.1 is not possible in a majority of cases. This
necessitates numerical optimization to approximate (12).

3.1 Linear Propensities

In general, the minimization problem (9) can be solved using numerical opti-
mization algorithms. However, depending on the rate functions, this may not be
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necessary, because a closed form solution, i.e., a linear system, can be obtained
for many relevant cases, including mass action kinetics. This system results from
the first order condition of the minimization ∂QN (θ̂N )/∂θ = 0 which yields [12]

0 =
∂fN (θ̂N )

∂θ

T

WfN (θ̂N ) . (13)

We now compute (13) under the condition that propensities are linear in θ and
W is constant, as is the case in iterative GMM. To this end, let R ⊆ {1, . . . , J}
be the index set of functions αj whose propensity is dependent on θ. Further let
f̄ be the part of f independent of θ such that the i-th entry equals

f̄mi
(Y ) =

∑

j∈R
αj(Y )

(
(Y + νj)

mi − Y mi
)
. (14)

By computation of the matrix product (13) and splitting the moment condition
based on (14), we get
(

∂fN

∂θ

T

WfN

)

i

=
p∑

h=1

θh

q∑

�,k=1

∂fN,mk

∂θi
Wk,�

∂fN,m�

∂θh

︸ ︷︷ ︸
(Aθ)i

+
q∑

�,k=1

∂fN,mk

∂θi
Wk,�f̄N,m�

︸ ︷︷ ︸
−bi

.

Note, that the sample derivatives ∂fN/∂θi are independent of θ. In vector nota-
tion this gives us the linear system Aθ̂N = b as a solution to (13) where

Ai,j =
∂fN

∂θi

T

W
∂fN

∂θj
bi = −∂fN

∂θi

T

W f̄N . (15)

Analogous to the general iterative scheme, we now solve (15) and use the estimate
to in turn estimate W using (11). In the following discussion we will refer to this
as the closed form GMM (CFGMM). One sees immediately that this method is
far more efficient than numerically optimizing QN .

4 Case Studies

We evaluate the GMM estimation on three chemical reaction networks. Samples
of the equilibrium distribution were generated by Gillespie’s stochastic simula-
tion algorithm (SSA) [10] and drawn by equidistant sampling after the initial
warm-up period. For each case study 107 samples were generated and sample
sets of different sizes were drawn at random from this large set. For each sample
size considered, the estimation procedure was carried out on 100 random sample
sets, in order to estimate the variance of the estimator.
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4.1 P53 System

We first consider Model IV proposed in [9], that describes the interactions of the
tumor suppressor p53. This system describes a negative feedback loop between
p53 and the oncogene Mdm2, where pMdm2 is a Mdm2 precursor [9]. We chose
the same parameter values as in [1], that is, k1=90, k2=0.002, k3=1.7, k4=1.1,
k5=0.93, k6=0.96, k7=0.01.

Model 1 (p53 System).

R1: ∅
k1−→ p53 R2: p53

k2−→ ∅

R3: p53
k4−→ p53 + pMdm2 R4: p53 → ∅

R5: pMdm2
k5−→ Mdm2 R6: Mdm2

k6−→ ∅

The degradation rate of p53 is in part influenced by Mdm2 and is given by
α4(x,θ) = (k3xp53xMdm2)/(xp53 + k7). Terms of species with stoichiometric con-
stant zero are omitted as well as stoichiometric constants equal to one.

We estimated the four parameters k3, k4, k5, and k6 using the CFGMM as pro-
posed in Sect. 3.1. Note that α4(·, ·) is linear in k4. We fixed k1 and k2 to ensure
identification as well as k7 to avoid a time-consuming numerical optimization.
The iterations were continued until either the parameter vector converged or the
maximum number of four iterations was reached. The plot in Fig. 1 (left) shows
that the best results were obtained already after the second step for moderate
and large sample sizes, while for a small sample size of 100 further iterations were
beneficial. It is important to note that for the first iteration, ŴN is chosen as the
identity matrix such that identical weights are assigned and mixed terms are not
considered. Hence, the general idea of assigning appropriate weights gives signif-
icantly more accurate results compared to an estimation with identical weights.

Fig. 1. p53 System: (left) The normalized parameter deviation ‖θ̂N − θ0‖/‖θ0‖ over
GMM iterations for different sample sizes. Moment conditions up to order two were
used. (right) Comparison of the average running time for a single estimation, as a func-
tion of the number of parameters (maximal moment order three) and of the maximum
order of moment conditions used (estimation for four parameters), for a sample size
of 100.
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Fig. 2. p53 System: (left) Estimate of k4 over GMM iterations (sample size 1000) (right)
Estimates of parameter k3 in relation to the sizes of the sample sets and the maximum
order of used moment conditions. Results are presented as box plots (whiskers with a
maximum of 1.5 IQR).

In Fig. 1 (right) we compare the running times of the CUGMM (using a
numerical optimization scheme, the L-BFGS-B algorithm [36]) and of the itera-
tion based method. The reported times are the average of 100 runs for a single
estimate for different moment orders and different numbers of estimated parame-
ters. As we can see, the iteration based method for linear propensities not only
outperforms CUGMM, but also is essentially insensitive to including higher order
moments and to increasing the number of estimated parameters. For CUGMM,
an optimization is carried out since (12) is not linear in θ and this optimization
becomes more costly when more moment conditions or parameters are consid-
ered. The advantage of CFGMM is that the Jacobian and f̄N is only computed
once for all iterations of a sample and no numerical optimization is needed.

In Fig. 2 we show the distribution of the estimate quality for different maxi-
mum moment orders against (left) different numbers of iterations for CFGMM
and (right) for different sample sizes. The quality of the results is excellent
for large sample sizes, while increasing the moment order beyond two does not
result in significant improvements or may even (for small sample sizes) signifi-
cantly decrease the quality (see Fig. 2 (right)). This bias may occur if the degree
of overidentification (q − p) is increased too much. It can be caused by the
estimation of W and the dependence on the previous estimates and decreases
proportional to N−1 [12,26]. In our evaluation estimators based on a maximal
order of two and three showed the most reliable performance. Moreover, identi-
cal weights in the first step of the iteration lead to a very high variance of the
corresponding estimator, as shown in Fig. 2 (left). In Fig. 2 (right) we also see
that, when the number of samples is increased, the variance of the estimator
becomes small.

4.2 Toggle Switch

The toggle switch is a widely known gene regulatory network [8,20] that models
the production of two proteins A and B. Each protein can bind to the promoter
of the opposite protein and thereby repress its production.
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Model 2 (Explicit Toggle Switch). [20]

R1: RB
ρB−→ RB + A R2: RA

ρA−→ RA + B

R3: A
δA−→ ∅ R4: B

δB−→ ∅

R5,6: RB + B
βB−⇀↽−
γB

RB R7,8: RA + A
βA−⇀↽−
γA

RA

Note that, given appropriate starting values, the conservation law RX + RX = 1
holds (X ∈ {A,B}). In our study we focus on two cases, that are high binding-/
unbinding rates and low binding-/unbinding rates with respect to the production
and degradation of proteins.

Slow Binding Toggle Switch. In the case of low binding-/unbinding rates
several attractor regions can arise that directly correspond to a given DNA state.
Here, we use the parameters ρX=3, δX=0.5, βX=10−6, γX=3×10−4, which are
identical for X = A and X = B. During the inference procedure, however, we did
not make use of the information that the parameters are symmetric. For these
parameters we get three distinct attractor regions corresponding to either one
of the repressors being bound and both repressors being free2.

Currently, our GMM-based approach requires all variables to be observed,
which is in general unfeasible for the DNA state. One possible solution, when
only proteins are observed, is to cluster the samples of the proteins using the k-
Means algorithm (cf. Fig. 3 (left) for an example of a clustering of samples of the
toggle switch). Then we can infer the state of the latent DNA state by assigning
each cluster to a specific combination of DNA states and by looking at the clus-
ter centroids, as illustrated in Fig. 3 (left). For low binding-/unbinding rates, the
attractors are well separated and this approach is feasible, though more sophis-
ticated approaches may be required when clusters overlap. After reconstruction
of the state of the unobserved variables, we used the GMM estimation with the
closed form solution for linear propensities. Results comparing different sample
sizes are shown in Fig. 3 (right). The estimation quality is very good even in the
case of only few samples, provided enough iterations are carried out. It is impor-
tant to note that for these results, we excluded moment conditions corresponding
to mixed moments involving the state of the gene as their moment conditions
have very similar values. Including them leads to severe numerical instabilities
(the matrix of the linear system for linear propensities becomes quasi-singular).
However, ill-conditioned matrices are detected automatically when their deter-
minant is calculated during the computation. Then, those entries responsible for
the numerical instabilities can be excluded.

Fast Binding Toggle Switch. Often, it can be assumed that the repressor
(RA,B) binding and unbinding (R5,6 and R7,8) happens a lot faster than the

2 The case of both repressors being bound, would result in samples around the origin,
which can be neglected if there are no such samples.
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Fig. 3. Slow Switching Toggle Switch: (left) Clustering of a sample (size 100) using
k-Means. (right) The normalized parameter deviation ‖θ̂N − θ0‖/‖θ0‖ over GMM
iterations for different sample sizes given the toggle switch with k-Means clustering.
Moment conditions up to order 3 were used and 4 parameters were estimated.

protein production. Then, a Michaelis-Menten approximation is possible [20].
Therein the time derivative of the repressors is assumed to be zero. Applying
this assumption to the mean-field equations of Model 2 yields the implicit toggle
switch (Model 3). In this case, we no longer need the repressor state of each
sample.

Model 3 (Implicit Toggle Switch).

R1: ∅ → A R2: ∅ → B R3: A
δA−→ ∅ R4: B

δB−→ ∅

The rate function of reactions R1 and R2 resulting from the Michaelis-Menten
approximation are

α1(x,θ) =
ρA

1 + kBxB
α2(x,θ) =

ρB
1 + kAxA

where θ is the vector of all parameters, x = (xA, xB), and kX = βX

γX
is the quotient

of the binding and unbinding rate, X ∈ {A,B}.

The toggle switch exhibits bistability if the binding happens significantly faster
than the unbinding, i.e., kA, kB � 1 [20]. However, the estimation of kA and kB
is inherently difficult because switching between the attractors is a rare event.

In this case study, we simulated the explicit model using the symmetric con-
stants βX=100.0, γX=50.0, ρX =0.2 and δX=0.005, assuming we could observe
only the two proteins. Thus, we estimated the parameters kX and δX of the
implicit model and fixed ρX to ensure identification. Due to non-linear depen-
dency of production rates on kX, we cannot rely anymore on the method for linear
propensities of Sect. 3.1, hence we resort to a numerical minimization routine,
namely the L-BFGS-B algorithm [36], for the CUGMM scheme. The initial guess
was chosen at random from [0, 1]p. For detection of unsuccessful optimizations
we used the J-Test statistic [14], which states that under the null hypothesis
of a correctly specified model, NQN (θ̂N ) converges to the χ2

q−p distribution. A
confidence threshold of 90 % was fixed and the optimization was repeated for at
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Fig. 4. Fast Binding Toggle Switch: Estimates of parameter kB in relation to the sizes of
the sample sets and the maximum order of used moment conditions. Only the parameter
kB was estimated. Results are presented as box plots (whiskers with a maximum of
1.5 IQR).

most four times until the threshold was met. The use of numerical optimization
increased the cost of a single estimate: For a sample size of 10,000 observations
and order 2, the computation takes 1–2 of minutes.

In Fig. 4, we give statistics on the quality of estimates based on 100 runs of
independently generated datasets. More specifically, we show how the quality of
estimates varies with the maximum order of moments considered in the method
and with sample size. For a fixed sample size, increasing the order from 1 to
2 improves considerably the quality of results. Use of higher order moments
significantly reduces the variance of the estimator, in particular for the case of
few samples.

5 Related Work

In the context of stochastic chemical kinetics, parameter inference methods are
either based on Bayesian inference [5,32,34] or maximum likelihood estima-
tion [2,3,29,31]. The advantage of the latter method is that the corresponding
estimators are, in a sense, the most informative estimates of unknown parame-
ters and have desirable mathematical properties such as unbiasedness, efficiency,
and normality. On the other hand, the computational complexity of maximum
likelihood estimation is high. If an analytic solution of the MLE is not possi-
ble, then, as a part of the non-linear optimization problem, the likelihood and
its derivatives have to be calculated. Monte-Carlo simulation has been used to
estimate the likelihood [31]. During the repeated random sampling it is difficult
to explore those parts of the state space that are unlikely under the current rate
parameters. Thus, especially if the rates are very different from the true parame-
ters, many simulation runs are necessary to calculate an accurate approximation
of the likelihood.

Therefore methods using computationally far more attractive moment expan-
sion approximations have been proposed. Kügler [18] uses results of the moment
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closure approximations to apply an ad-hoc weighted least squares estimator. Mil-
ner et al. [24] construct a multi-variate normal distribution based on low order
moments obtained from a moment closure approximation in order to apply MLE.
Another approach based on moment closure and MLE relies on a normal distri-
bution based on sample means and variances [35].

All of the aforementioned moment-based inference methods are, in contrast
to the scenario discussed in this paper, based on samples of the transient distribu-
tion before equilibrium is reached. Therefore they have to rely on moment closure
approximations, which is not necessary in our approach based on the equilibrium
distribution. Recently, the performance of GMM estimators has been studied for
transient (non-equilibrium) data [21] together with a (hybrid) moment closure
approach.

6 Conclusion

Parameter inference methods for stochastic models of reaction networks require
huge computational resources. The proposed approach based on the general-
ized method of moments is based on an adjustment of the statistical moments
of the model in equilibrium and therefore does not require the computation of
likelihoods. This makes the approach appealing for complex networks where sto-
chastic effects play an important role, since no statistical sampling or numerical
integration of master or moment equations is necessary. The proposed approach
gives accurate results in seconds when the parameters are linear because a closed
form of the solution is available. For non-linear parameters, a global optimiza-
tion problem must be solved and therefore the inference takes longer but is
still fast compared to other approaches based on the numerical computation of
likelihoods.

Our results show that the GMM estimator yields accurate results, where
its variance decreases when moments of higher order are considered. We found
that when moments of order higher than three are included, the results become
slightly worse in case of the p53 system while for the toggle switch quality
improved (variance decreased). A general strategy could be to start with as
many cost functions as unknown parameters and increase the maximal order
until appropriate statistical tests suggest that higher orders do not lead to an
improvement.

Currently, a major drawback of the method is that all species must be
observed in order to apply it. For populations of at most one individual, the
proposed clustering approach circumvents the problem that such species can
usually not be observed. In general, however, the clustering may not always
be possible and there may be other species that can not be observed. To deal
with such cases, we plan to develop an extension of the method that treats
the moments of such species as (additional) unknown parameters. Moreover, we
will investigate how measurement errors could be taken into account within the
GMM framework.
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Abstract. The modeling of Biological Regulatory Networks (BRNs)
relies on background knowledge, deriving either from literature and/or
the analysis of biological observations. But with the development of high-
throughput data, there is a growing need for methods that automatically
generate admissible models. Our research aim is to provide a logical app-
roach to infer BRNs based on given time series data and known influ-
ences among genes. In this paper, we propose a new methodology for
models expressed through a timed extension of the Automata Networks
[22] (well suited for biological systems). The main purpose is to have a
resulting network as consistent as possible with the observed datasets.
The originality of our work consists in the integration of quantitative
time delays directly in our learning approach. We show the benefits of
such automatic approach on dynamical biological models, the DREAM4
datasets, a popular reverse-engineering challenge, in order to discuss the
precision and the computational performances of our algorithm.

Keywords: Inference model · Dynamic modeling · Delayed biological
regulatory networks · Automata network · Time series data

1 Introduction

With both the spread of numerical tools in every part of daily life and the
development of NGS methods (New Generation Sequencing methods), like DNA
microarrays in biology, a large amount of time series data is now produced [6,8,
18]. This means that the produced data from the experiments led on a biological
system grows drastically. The newly produced data - as long as the associated
noise does not raise an issue with regard to the precision and relevance of the
corresponding information - can give us some new insights on the behavior of a
system. This justifies the urge to design efficient methods for inference.
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Reverse engineering of gene regulatory networks from expression data have
been handled by various approaches [14,16,29,34]. Most of them are only sta-
tic. However, other researchers are rather focusing on incorporating temporal
aspects in inference algorithms. The relevance of these various algorithms have
been recently assessed in [15]. The authors of [17] tackled the inference prob-
lem of time-delayed gene regulatory networks through Bayesian networks. As this
is a complex problem, in [33], the authors propose a Time-Window-Extension
Technique based on time series segmentation in different successive phases. These
approaches take gene expression data into account as input and generate the
associated regulations. But the discrete approaches that simplify this problem by
abstractions, need to determine the relevant thresholds of each gene to define its
active and inactive state. Various approches have been designed to tackle the dis-
cretization problem. We can cite for example [33], in which the authors have pro-
posed an alternative methodology that considers not a concentration level, but
the way the concentration changes (in other words: the derivative of the function
giving the concentration w.r.t time) in the presence/absence of one regulator. On
the other hand, the major problem for modeling lies on the quality of the expres-
sion data. Indeed, noisy data may be the main origin of the errors in the inference
process. Thus, the pre-processing of the biological data is crucial pertinence of the
inferred relations between components. In this work, the input data is considered
to be pre-processed and the result is reliable discretized time series data.

In this paper, we aim to provide a logical approach to tackle the learning of
qualitative models of biological dynamic systems, like gene regulatory networks.
In our context, we assume the set of interacting components as fixed and we
consider the learning of the interactions between those components. As in [3], in
which the authors targeted the completion of stationary Boolean networks, we
suppose that the topology of the network is given, providing us the influences
among each gene as background knowledge. From time series data of the evo-
lution of the system, given its topology, we learn the dynamics of the system.
The main originality of our work is that we address this problem in a timed
setting, with quantitative delays potentially occurring between the moment an
interaction activated and the moment its effect is visible.

During the past decade, there has been a growing interest for the hybrid
modeling of gene regulatory networks with delays. These hybrid approaches con-
sider various modeling frameworks. In [19], the authors hybridize Petri Nets: the
advantage of hybrid with regard to discrete modeling lies in the possibility of
capturing biological factors, e.g., the delay for the transcription of RNA poly-
merase. The merits of other hybrid formalisms in biology have been studied, for
instance timed automata [28], hybrid automata [2] and boolean representation
[21]. Finally, in [7], the authors investigate a direct extension of the discrete
René Thomas’ modeling approach by introducing quantitative delays. These
delays represent the compulsory time for a gene to turn from a discrete quali-
tative level to the next (or previous) one. They exhibit the advantage of such a
framework for the analysis of mucus production in the bacterium Pseudomonas
aeruginosa. The approach we propose in this paper inherits from this idea that
some models need to capture these timing features.



32 E. Ben Abdallah et al.

2 Background

The definition and semantics of automata networks is presented in Sect. 2.1.
The enrichment of the automata networks with delays and the corresponding
new semantics is presented in Sect. 3.

2.1 Automata Network

Definition 1 introduces the Automata Network (AN) [22–24] as a model of finite-
state machines having transitions between their local state conditioned by the
state of other automata in the network. A local state of an automaton is noted
by ai, where a is the automaton identifier, and i is the expression level within
a. At any time, each automaton has exactly one active local state, and the set
of active local states is called the global state of the network.

The concurrent interactions between automata are defined by a set of local
transitions. Each local transition has this form τ = ai

�→aj , with ai, aj being
local states of an automaton a called respectively origin and destination of t
and � is a (possibly empty) set of local states of automata other than a (with at
most one local state per automaton).

Notation: Given a finite state A, ℘(A) is the power set of A. Given a network
N , state(N, t) is the state of N at a time step t ∈ N.

Definition 1 (Automata Network). An Automata Network is a triple
(Σ,S, T ) where:

– Σ = {a, b, . . . } is the finite set of automata identifiers;
– For each a ∈ Σ, S(a) = {ai, . . . , aj}, is the finite set of local states of automa-

ton a; S =
∏

a∈Σ S(a) is the finite set of global states;
LS = ∪a∈ΣS(a) denotes the set of all the local states.

– T = {a �→ Ta | a ∈ Σ}, where ∀a ∈ Σ, Ta ⊂ S(a) × ℘(LS \ S(a)) × S(a) with
(ai, �, aj) ∈ Ta ⇒ ai 	= aj, is the mapping from automata to their finite set of
local transitions.

Example 1. The Fig. 1 represents an Automata Network, AN = (Σ,S, T ) with
4 automata (Σ = {a, b, c, d}) such that S(a) = {a0, a1}, S(b) = {b0, b1}, S(c) =
{c0, c1, c2}, S(d) = {d0, d1, d2} and 5 local transitions,

T = { b0
{a1}−→b1, a1

{b1,d2}−→ a0, c2
{a1}−→c1, d2

{a0}−→d1, b1
{a1,c2}−→ b0, }.

A global state of a given AN consists in a set of all active local states of each
automaton in the network. The active local state of a given automaton a ∈ Σ
in a state ζ ∈ S is noted ζ[a]. For any given local state ai we also note, ai ∈ ζ if
and only if ζ[a] = ai. For each automaton, it cannot have more than one active
local state at one global state.

Definition 2 (Playable Local Transition). Let AN = (Σ,S, T ) be an
Automata Network and ζ ∈ S, with ζ = state(AN , t). We note Pt the set of
playable local transitions in AN at time step t by:
Pt = { ai

�→aj ∈ T | � ⊆ ζ ∧ ai ∈ ζ with state(AN , t) = ζ}.



Inference of DBRNs from Time Series Data 33

a

0

1

b

0

1

c

0

1

2

d

0

1

2

b1, d2 a1
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Fig. 1. Example of Automata Network with 4 automata: a, b, c and d presented by
labeled boxes and their local states are presented by circles (for instance a is either
at level 0 or 1). A local transition is a labeled directed edge between two local states
within the same automaton: its label stands for the set of necessary conditions local
states of the automata to play the transition. The grayed circles stand for the global
state: 〈a1, b0, c2, d2〉.

The dynamics of the AN is performed thanks to the global transitions. Indeed,
the transition from one state ζ1 to its successor ζ2 is satisfied by a set of the
playable local transitions (Definition 2) at ζ1.

Definition 3 (Global Transitions). Let AN = (Σ,S, T ) be an Automata
Network and ζ1, ζ2 ∈ S, with ζ1 = state(AN , t) and ζ2 = state(AN , t + 1). Let
Pt be the set of playable local transitions at t. We note Gt the power set of global
transitions at t:

Gt := ℘(Pt)

In the semantics that we are based on, parallel application of local transitions
in different automata is permitted but it is not enforced. Thus the set of global
transitions is a power set of all the playable local transitions (also empty set).

3 Timed Automata Networks

In some dynamics it is crucial to have information about the delays between two
events (two states of a AN). The discrete transition, described above, cannot
exhibit this information: we just process chronological information, that the state
ζ2 will be after ζ1 in the next step but it is not possible to know chronometry,
i.e., how much time this transition takes to occur and whether it blocks some
transitions during this time. In fact some local transitions could not be played
any more because of concurrency about shared resources (necessary components
to play the transition) between them. We thus need to restrain the general
dynamics to capture more realistic behavior w.r.t biology. So we propose in
this section to add the delays in the local transitions attributes and give the
associated semantics that we based on to infer biological networks.

Definition 4 (Timed Automata Network (T-AN)). Timed Automata
Network is a triple (Σ,S, T ) where:
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– Σ = {a, b, . . . } is the finite set of automata identifiers;
– For each a ∈ Σ, S(a) = {ai, . . . , aj}, is the finite set of local states of automa-

ton a; S =
∏

a∈Σ S(a) is the finite set of global states;
LS = ∪a∈ΣS(a) denotes the set of all the local states.

– T = {a �→ Ta | a ∈ Σ}, where ∀a ∈ Σ, Ta ⊂ S(a) × ℘(LS \ S(a)) × S(a) × N

with (ai, �, aj , δ) ∈ Ta ⇒ ai 	= aj, is the mapping from automata to their finite
set of timed local transitions.

To model biological networks where quantitative time plays a major role, we
will use T-AN (Timed Automata Network). This formalism enriches AN with
timed local transitions: ai

�→
δ

aj . In the latter, δ is called a delay and represents

the time needed for the transition to be performed. When modeling a regulation
phenomenon, this allows to capture the delay between the activation order of
the production of the protein and its effective synthesis. and the synthesis of the
product.

We note ai
�→
δ

aj ∈ T ⇔ (ai, �, aj , δ) ∈ T (a) and ai
�→ aj ∈ T ⇔ ∃δ ∈

N, ai
�→
δ

aj ∈ T . Given τ = ai → aj ∈ T , orig(τ) = ai, dest(τ) = aj . Definition 2

also applies to timed local transitions.
Considering delays in the evolution of timed automata networks creates con-

currency between the timed local transitions. This concurrency is mainly justified
by the shared resources between local transitions. Indeed, transitions that have
the same origins and/or destinations could not be fired synchronously. Besides,
during the delay of the execution of a transition τ1, it is possible that another
transition τ2 could be activated. Then we need to take care of the following
possible conflicts between resources: transition τ2 may change the local states
of the automata participating in τ1. We make the following assumptions, that
is similar to the one adapted in [12]: we consider τ2 needs to be blocked until
the current transition τ1 finishes. Nevertheless, we allow the resources of τ1 to
participate to other transitions. In addition we do not forbid the process involved
in orig(τ1) to participate to other transition τ2 if and only if that the remaining
delay(τ1) is greater than delay(τ2) (see Definition 5). Those considerations lead
to the followings definitions.

Definition 5 (Blocked Timed Local Transition). Let AN = (Σ,S, T ) be
a T-AN and t ∈ N. Let P be a set of pairs T × N. The set of blocked timed
local transitions of AN by P at t is defined as follows:

B(AN , P, t) := {ai
�→
δ

aj ∈ T | ∃(bk
�′
→
δ′

bl, t
′) ∈ P such that (a = b) ∨(ai ∈

�′ ∧ δ′ > t′ − (t + δ)) ∨(bk ∈ � ∧ δ′ < t′ − (t + δ))}

In Definition 5, if P is the set of currently ongoing timed local transition, it
allows us to prevent the execution of transitions that would alternate the resources
currently being used or that would rely on resources that will be modified before
the end of those transitions. Let t1 be a transition such that τ1 = ai

�→
δ

aj is fired

at time step t. So t + δ is the ending time of τ1 and (t′ − (t + δ)) is the interval



Inference of DBRNs from Time Series Data 35

of time between the ending of the transition τ2 = bk
�→ bl
δ′

and the beginning of

transition τ1 with t′ > t. According to the Definition 5, τ2 is blocked if ai (resp.
bk) is a necessary resource for τ2 (resp. τ1) and the τ1 (resp. τ2) finishes before τ2
(resp. τ1): δ′ > t′ − (t + δ) (resp. δ′ < t′ − (t + δ)) i.e. ai (resp. bk) is not available
to participate in the transition τ2 (resp. τ1) during δ′ (δ).

Definition 6 (Fireable Timed Local Transition). Let AN = (Σ,S, T ) be
a T-AN, ζ ∈ S the state of AN at t ∈ N. Let P be a set of pairs T × N and
B(AN , P, t) be the set of blocked timed local transitions of AN by P at t. The
set of fireable local transitions of AN in ζ w.r.t. P at t is defined as follows:

F (AN , ζ, P, t) := {ai
�→aj ∈ T \ B(AN , P, t) | � ⊆ ζ, ai ∈ ζ}

Definition 6 extends the notion of playable transition by considering con-
curencies with the currently ongoing transition of P .

Definition 7 (Set of Fireable Sets of Timed Local Transition). Let
AN = (Σ,S, T ) be a T-AN, ζ ∈ S the state of AN at t ∈ N. Let P be a set of
pairs T × N and F (AN , ζ, P, t) the set of fireable local transitions of AN in ζ
w.r.t. P at t. The set of firable sets of timed local transition of AN in ζ w.r.t.
P at t is defined as:

SFS(AN , ζ, P, t) := {FS ⊆ F (AN , ζ, P, t) |

(∀τ = (bk
�→
δ

bl) ∈ FS, �(bk
�′
→
δ′

bl′) ∈ FS, bl 	= bl′ , τ 	∈ B(AN , FS \ {τ}, t)}

Definition 7 prevents the execution of two transitions that would affect the
same automaton.

Definition 8 (Active Timed Local Transitions). Let AN = (Σ,S, T ) be
a T-AN, ζ ∈ S the state of AN at t ∈ N. Let SFS(AN , ζ, P, t) be the set of
firable sets of timed local transition. The set of active timed local transitions of
AN at t is:

A(AN , t) :=

⎧
⎪⎨

⎪⎩

{(τ ∈ FS, t) | FS ∈ SFS(AN , ζ, ∅, t)} if t = 0
{(τ ∈ FS, t) | FS ∈ SFS(AN , ζ, A(AN , t − 1), t)}
∪{(bk

�′
→
δ′

bl, t
′) ∈ A(AN , t − 1) | t − t′ < δ} if t > 0

Definition 8 provides us the evolution of the possible set of ongoing actions.
Supposing that in the initial state of a trajectory (at t = 0) no transition is
blocked and all playable timed transitions are fireable. Then, when t > 0, at each
time step it should be verified that a playable timed transition is also fireable,
in other words that it is not blocked by the active timed local transitions fired
in previous steps. Furthermore the timed local transitions fired at the same time
should not block each other.
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Delays of local transitions can now be represented in an Automata Network
thanks to timed local transitions. Note that if all delays of local transitions are
set to 0 it is equivalent to an AN without delays (original AN). The way these
new local transitions should be used is described as follows.

At any time, each automaton has one and only one local state, forming
the global state of the network. Choosing arbitrary ordering between automata
identifiers, the set of global states of the network is referred to as S with
S =

∏
a∈Σ S(a). Given a global state ζ ∈ S, ζ(a) is the local state of automaton

a in ζ, i.e., the a-th coordinate of ζ. We write also ai ∈ ζ ⇔ ζ(a) = ai; and for
any ls ∈ LS, ls ⊂ ζ ⇔ ∀ai ∈ ζ, ζ(a) = ai. In this paper, we allow, but do not
force, applying in parallel transitions in different automata such in Definition 3
but adding delays in the local transitions and considering concurrency between
transitions require further study of the semantics of the model (Definition 9).

Definition 9 (Semantics of Timed Automata Network ). Let AN =
(Σ,S, T ) be a T-AN and t ∈ N. The set of timed local transition fired at t is:
FS := {(ai

�→
δ

aj) | ((ai
�→
δ

aj), t) ∈ A(AN , t)} then

(ai
�→
δ

aj) ∈ FS =⇒ ζ(a) = aj with ζ = state(AN , t + δ).

The state of AN at t + 1 is denoted ζt+1 = state(AN , t + 1) and defined
according to the set of timed local transitions that finished at t + 1:

Ft+1 := {(bk
�′
→
δ′

bl) | ((bk
�′
→
δ′

bl), t′) ∈ A(AN , t), t + 1 − t′ = δ}

then ∀c ∈ Σ, such that �(ck
�′′
→
δ′′

cl) ∈ Ft+1 =⇒ ζt+1(c) = ζt(c) with ζt =

state(AN , t) and ζt+1 = state(AN , t + 1).

We note that at any time step t such that ζ = state(AN , t) and P the set of
ongoing transitions, we have: FS ∈ F (AN , ζ, P, t) ∈ T \ B(AN , P, t).

Where synchronous biological regulatory networks have been studied, little
has been done on the asynchronous counterpart [31], although there is evidence
that most living systems are governed by synchronous and asynchronous updat-
ing. According to Harvey and Bossomaier [13], asynchronous systems are biolog-
ically more plausible for many phenomena than their synchronous counterpart
and observed global synchronous behavior in nature usually simply arises from
the local asynchronous behavior. In this paper, we defend these assumptions
and we consider an asynchronous behavior for each automata in one hand and
a synchronous behavior in the global network.

The assumptions in the synchronous model that all components could change
at the same time and take an equivalent amount of time in changing their expres-
sion levels, is biologically unrealistic. But there is seldom enough informations to
be able to discern the precise order and duration of state transitions. The timed
extension of Automata Network we propose in this paper allows both asynchro-
nous and synchronous behavior by proposing a non-deterministic application of
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the timed local transitions. Figure 2 shows a trajectory of a Timed Automata
Network when we choose to apply timed local transition in a synchronous maner.

We presented above the semantics of the T-AN that we are based on to
modeling BRNs from experimental data. Even if it already exists a few hybrid
formalisms like time Petri Nets, hybrid automata, etc., we propose this extension
of the AN framework for several reasons. First, AN is a general framework that,
although it was mainly used for biological networks [9,23], allows to represent
any kind of dynamical models, and converters to several other representations
are available. Indeed, a T-AN is a subclass of time Petri nets [10]. Finally, the
particular form of the timed local transition in a AN model allows to easily
represent them in Answer Set Programming (ASP), with one fact per timed
local transition, as described in this work [1]. Later we propose a new approach
to resolve the generation problem of T-AN models from time series data.

Taking the following timed automata network as an example, we generate a
possible trajectory of the network starting from a known initial state.

Example 2. Let AN = (Σ,S, T )) be a timed automata extended with delays

from Example 1. Such that T = {τ1 = b0
{a1}−→
2

b1, τ2 = a1
{b1,d2}−→

3
a0, τ3 = c2

{a1}−→
5

c1, τ4 = d2
{a0}−→
2

d1, τ5 = b1
{a1,c2}−→

2
b0, }.

T 0 1 2 3 4 5 6 7
B(AN , P, t) ∅ {τ1, τ2,

τ3}
{τ2, τ3} {τ2, τ3} {τ2, τ3,

τ5}
∅ {τ4} ∅

F (AN , ζ, P, t) {τ1, τ3} ∅ {τ2, τ5} ∅ ∅ {τ4} ∅ ∅
SF S(AN , ζ, P, t){∅, {τ1}, {τ3},

{τ1, τ3}}
{∅} {∅, {τ2},

{τ5}}
{∅} {∅} {∅, {τ4}} {∅} {∅}

F S {τ1, τ3} ∅ {τ2} ∅ ∅ {τ4} ∅ ∅
A(AN , t) {(τ1, 0),

(τ3, 0)}
{(τ1, 0),
(τ3, 0)}

{(τ3, 0),
(τ2, 2)}

{(τ3, 0),
(τ2, 2),
(τ5, 3)}

{(τ3, 0),
(τ2, 2),
(τ5, 3)}

{(τ4, } {(τ4, 5)} ∅

state(AN , T ) < a1, b0, < a1, b0, < a1, b1, < a1, b1, < a1, b1, < a0, b0, < a0, b0, < a0, b0,
c2, d2 > c2, d2 > c2, d2 > c2, d2 > c2, d2 > c1, d2 > c1, d2 > c1, d1 >

Fig. 2. Example of a trajectory of the timed automata network of Example 2 starting
from an initial state <a1, b0, c2, d2> (at t = 0) to a stable state < a0, b1, c1, d1 > (at
t = 10). With P = A(AN, t − 1) as in Definition 8.

4 Learning Timed Automata Networks

This algorithm takes as input a model expressed as a Timed Automata Network,
which the set of local transitions is empty, and time series data capturing the
dynamics of the studied system. Given the influences between the components
(or assuming all possible influences if no background knowledge is available),
this algorithm generates the timed local transitions that could result in the the
same changes of the model than the ones observed through the observation data.
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4.1 Algorithm

In this section we propose an algorithm to build Timed Automata Networks
from time series data. We assume that the latter data observations are provided
as a chronogram of size T : the value of each variable is given for each time point
t, 0 ≤ t ≤ T , through a time interval discretization (see Definition 10 below).

Definition 10 (Chronogram). A chronogram is a discretization of the time
series data for each component of a biological regulatory network. It is presented
by the following function Γ ,

Γ : [0, T ] ⊂ N+ −→ {0, ..., n}

t �−→ i

with T is the maximum time point regarding the time series data called the size
of the chronogram and n is the maximum level of discretization.

We note Γa a chronogram of the time series data for a component a.
Algorithm 1, MoT-AN (Modeling Timed Automata networks) shows the

pseudo code of our implemented algorithm. It will generate all possible timed
local transitions that can realize each observed change. Because of the delays
and the non-determinism of the semantics, it is not possible to decide whether a
timed local transition is absolutly correct or not. But we can output the minimal
sets of time local transitions necessary to realize all the changes.

Theorem 1 (Completeness). Let AN = (Σ,S, T ) be a Timed Automata
Network, Γ be a chronogram of the components of AN , i ∈ N and R ∈ T
be the set of timed local transitions that realized the chronogram Γ such that
(ai, l, aj , δ) ∈ R =⇒ |l| ≤ i. Let χ be the regulation influences of all a ∈ Σ.
Let AN ′ = (Σ,S, ∅) be a Timed Automata Network. Given AN ′, Γ , χ and i as
input, Algorithm1 is complete: it will output a set of Timed Automata Networks
φ, such that ∃AN ′′ = (Σ,S, ϕ′) ∈ φ with R ⊆ ϕ′.
Proof is given in appendix.

Theorem 2 (Complexity). Let AN = (Σ,S, T ) be a Timed Automata Net-
work, |Σ| be the number of automata of AN and η be the total number of
local states of an automaton of AN . Let Γ be a chronogram of the compo-
nents of AN over τ units of time, such that c is the number of changes
of Γ . The memory use of Algorithm1 belongs to O(τ · i|Σ|+1 · 2τ ·i|Σ|+1) that
is bounded by O(τ · |Σ|T ·|Σ||Σ|+1

). The complexity of learning AN by generating
timed local transitions from the observations of Γ with Algorithm1 belongs to
O(c · i|Σ|+1 + 22·τ ·i|Σ|+1

+c·2τ ·i|Σ|+1
), that is bounded by O(τ · 23·τ ·|Σ||Σ|+1

).
Proof is given in appendix.
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4.2 Case Study

In this section we show how this method generates a T-AN model consistent
with the set of biological regulatory time series data. First, the method uses
discretized observations as an input (i.e. chronogram), thus it is necessary to
treat first the time series data with another method in order to discretize it.

Our method may be summarized as follows:

– Detect biological components changes;
– Compute the candidate timed local transitions responsible for the network

changes;
– Generate minimal subset of candidate timed local transitions that can realize

all changes.

We apply the Algorithm 1 on learning the timed local transition τ ∈ T of
a simple example of a network AN = (Σ,S, T ) with 3 components (|Σ| = 3)
whose chronogram is detailed in Fig. 3:

The first change occurs at tmin = t1 = 2, denoted by change(2). It is the
gene z whose value changes from 0 to 1, thus the timed local transition that has
realized this change has this form z0

�→
δ

z1, where � can be any combination of

the values of the regulators at t1 − 1 of z.
Let χ = {b → z, a → z, a → a} be the set of regulation influences among the

components of the network. According to χ the set of genes having influence on z
is χz = {a, b}. It means that � = {a?, b?} or � = {a?} or � = {b?}. The expression

Algorithm 1. MoT-AN: Modeling Timed Automata Networks
INPUT:

- Timed Automata Network AN = (Σ, S, T ) with T = ∅;
- a chronogram Γ =

⋃
a∈Σ Γa;

- the regulation influences χ =
⋃

a∈Σ χa and
- a maximal in-degree i ∈ N∗

OUTPUT: φ a set of Timed Automata Networks that realize the time series data.
– Let ϕ := ∅
– Step 1: According to the chronogram Γ , for each time step where a component a

changes its value from ai to aj , with ai, aj ∈ S(a):

- Let δ(b) < t be the last time step where b has changed with b ∈ χa

- For each l′ ∈ ℘(χa), |l′| ≤ i generates all timed local transitions:

τ := (ak, l, al, t − δ)

such that δ = δ(b′), b′ ∈ l′, �b′′ ∈ l′, δ(b′′) > δ(b′) and l = {bi ∈ ζ(δ) | b ∈ l′}
- Add all timed local transition τ in ϕ

– Step 2: Generate φ the set of all Timed Automata Networks AN ′ = (Σ, S, ϕ′) with
ϕ′ ⊆ ϕ a set of timed local transitions that can realize Γ such that ϕ′ is minimal:

∀AN ′ = (Σ, S, ϕ′) ∈ φ, 	 ∃ϕ′′ ⊆ ϕ, ϕ′′ ⊂ ϕ′, such that ϕ′can realize Γ
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Fig. 3. Examples of the discretization of continous time series data into bi-valued
chronograms. Abscissa (resp. ordinate) represents time (resp. gene expression levels).
In this example, the expression level is discretized according to a threshold fixed to the
half of the maximum gene expression value. change(t) indicates that the expression
level of a biological component, here a gene, changes its value at a time point t.

level of the genes of χz when the researched candidate timed local transition (τi)
is ongoing, i.e. during the partial steady state between two successive changes
(ti and ti−1). This level is computed from the chronograms as follows:

- a ∈ χz: [a]t = 0 ∀t ∈ [0, 2] - b ∈ χz: [b]t = 1 ∀t ∈ [0, 2]

Thus �={a0, b1} or �={a0} or �={b1} and the set of candidate timed local transi-
tions is: Tchange(2) = {τ1 = z0

a0→
δ1

z1, τ2 = z0
b1→
δ2

z1, τ3 = z0
a0∧b1−→

δ3
z1}. Since

it is the first change, the delay of each timed local transition is the same:
δ1 = δ3 = δ3 = 2.

The second change occurs at t2 = 3 and denoted by change(3). Here it is the
gene a whose state changes from a0 to a1, thus the timed local transition that
realize this change has this form τ = a0

�→
δ

a1 where � can be any combination

of the regulators value at t1 of z. According to χ the genes influencing a are
χa = {a}. It means that � = {a?} and the expression level of a between t1 and
t2 is a0. So � = {a0}. Thus there is only one candidate timed local transition:

Tchange(3) = {τ = a0
∅→
1

a1}.

The third change occurs at t3 = 4, change(4). Here it is the gene b whose
value changes from b1 to b0, thus the timed local transition that realize this
change is of this form, τ = b1

�→
δ

b0 where � can be any combination of the

regulators value at t3 −1 of b. According to χ there is no gene that can influence
b, thus no timed local transition can realize this change.

The fourth change occurs at t4 = 5, change(5). Here it is a whose expression
decreases and changes from a1 to a0, thus the candidate timed local transition
that could realize this change has this form, τ = a1

�→
δ

a0 where � can be any

combination of the regulators value at t4−1 of a. According to χ the set of genes
having influences on a is χa = {a}. Again � = {a?} and since the expression level
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of a since its last change is a1. we have A = {a1} and there is only one candidate

timed local transition: Tchange(5) = {τ = a1
∅→
1

a0}.

The fifth change occurs at t5 = 6, change(6). Here it is z whose value changes
from z1 to z0, thus the time local transition that has realized this change has
the form of: τ = z1

�→
δ

z0 where � can be any combination of the regulators

value at t3 − 1 of b. Since χz = {a, b}, it means that � = {a?, b?} or � = {a?} or
� = {b?} The expression level of a and b at t5 − 1 is respectively a0 and b0. Thus
� = {a0, b1} or � = {a0} or � = {b0}. The candidate timed local states are:
Tchange(6) = {τ1 = z1

a0→
δ1

z0, τ2 = z1
b0→
δ2

z0, τ3 = z1
a0∧b0−→

δ3
z0}.

The last change of a is at t4 = 5 and the last change of b is at t3 = 4. Thus
δ1 = t5 − t4 = 1, δ2 = t5 − t3 = 2, δ3 = t5 − max(t4, t3) = 1.

After processing all changes, the set of timed local transitions that could real-
ize the chronograms are:
Tchange(2) = {τ1 = z0

a0→
2

z1, τ2 = z0
b1→
2

z1, τ3 = z0
a0∧b1−→

2
z1}

Tchange(3) = {τ4 = a0
∅→
1

a1}, Tchange(5) = {τ5 = a1
∅→
1

a0}

Tchange(6) = {τ6 = z1
a0→
1

z0, τ7 = z1
b0→
2

z0, τ8 = z1
a0∧b0−→

1
z0}.

Fig. 4. Left: influence graph modeling of the case study example (Fig. 3). Right, one
of the Timed Automata Networks generated by the Algorithm 1. The labels of each
local transition stands for the local states of the automata which make the transition
playable and its delay (time needed for the transition to be performed).

All timed local transitions learned are consistent with all observed time series
data and the regulation influences given as input. The used method ensures
completeness, we have the full set of timed local transitions that can explain
the observations. By generating all minimal subsets of this set of timed local
transitions, one of those subset will be the set who realized the observations
(Fig. 4).
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5 Evaluation

In this section, we provide two evaluations of Algorithm 1. We evaluate the capac-
ity of our algorithm1 to construct models for prediction and the impact of the
quantity of observations on run time. Here we process chronograms obtained
from time series data of the DREAM4 challenge [25].

5.1 DREAM4

In this section, we assess the efficiency of our algorithm through case studies
coming from the DREAM4 challenge. DREAM challenges are annual reverse
engineering challenges that provide biological case studies. In this section, we
focus on the datasets coming from DREAM4. It provides data for systems of
different size (10 genes on one hand, 100 genes on the other hand), allowing us
to assess the scalability of our approach. The input data that we tackle here
consists of the following: 5 different systems each composed of 100 genes, all
coming from E. coli and yeast networks. For every such system, the available
data are the following: (i) 10 time series data with 21 time points and 1000 is
the duration of each time series; (ii) steady state for wild type; (iii) steady states
after knocking out each gene; (iv) steady states after knocking down each gene
(i.e. forcing its transcription rate at 50 %); (v) steady states after some random
multifactorial perturbations. We processed all the data. Here, we focus on the
management of time series data.

Each time series includes different perturbations that are maintained all time
along during the first 10 time points and applied to at most 30 % of the genes.
In this setting, a perturbation means a significant increase or decrease of the
gene expression. In the raw data of the time series, gene expression values are
given as real numbers between 0 and 1. To apply our approach, we chose to
discretize those data into two to six qualitative values. Increasing the number
of qualitatives values from 2 to 4 improves the precision, but then the score
decrease from 5, must likely because of overfitting: the relations learned become
too precised and can’t be applied on something else than the training data. The
best score we obtain were with 4 qualitatives values and are reported in Fig. 5.
Each gene is discretized in an independent manner, with respect to the following
procedure: we compute the average value of the gene expression among all data
of a time series, then the values between the average and the maximal/minimal
value are divided into as many levels. Discretizing the data according to the
average value of expression is expected to reduce the impact of perturbation on
the discretization and thus on the model learned.

The DREAM4 challenge offers two different problems, which consist in pre-
dicting (i) the structure of the gene interactions (in terms of an unsigned directed
graph); (ii) attractors in some given conditions. Our method is not designed to
tackle the first issue, indeed we need to know those influences. But the models
1 All programs, described in this article, for Timed Automata Network generation are

implemented in ASP and are available online at: http://www.irccyn.ec-nantes.fr/
∼benabdal/modeling-biological-regulatory-networks.zip.

http://www.irccyn.ec-nantes.fr/~benabdal/modeling-biological-regulatory-networks.zip
http://www.irccyn.ec-nantes.fr/~benabdal/modeling-biological-regulatory-networks.zip
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we learn can be applied to predict trajectories and thus attractors. Here we use
the influences graphs expected in the first problem as background knowledge
(given in appendix) to tackle the attractor prediction part of the challenge.

5.2 Results

For this evaluation, we are given an initial state and 5 different dual gene knock-
outs conditions. The goal is to predict the attractor in which the system will
fall from the initial state for each dual knockout. Here, we just choose the first
model that our algorithm output and use the biggest set of fireable timed local
transition at each time step to produce a trajectory until a cycle is detected.
The first state of this cycle is reverse discretized and proposed as the predicted
state. In the challenge, the quality of the prediction is evaluated by computing
the mean square error (MSE) between the predicted state and the expected one.
As shown in Fig. 5, the precision we achieved in those experiments is quite good
considering the results of the competitors of the DREAM4 challenge [1]. Their
results range between 0.010 and 0.075 for the same evaluation settings, which
we are comparable to (0.033 to 0.086) giving us encouraging results. Regarding
run time, learning and predicting the trajectories of the benchmarks of 10 genes
took less than 30 s and the same experiements for the benchmarks of 100 genes
took about 3 h and 20 min on one processor Intel Core2 Duo (P8400, 2.26 GHz).

Benchmark Number of genes MSE
insilico size10 1 10 0.086
insilico size10 2 10 0.080
insilico size10 3 10 0.076
insilico size10 4 10 0.039
insilico size10 5 10 0.076

Benchmark Number of genes MSE
insilico size100 1 100 0.052
insilico size100 2 100 0.042
insilico size100 3 100 0.033
insilico size100 4 100 0.033
insilico size100 5 100 0.052

Fig. 5. Evaluation of our method on learning and prediction of the evolution of gene
regulatory network benchmarks from the DREAM4 challenge through the Mean Square
Error (MSE): 10 variables benchmarks (left) and 100 variables benchmarks (right).

To achieve this score, we had to perform several tests by varying the discretiza-
tion precision and the complexity of the dynamics learned. Those tests also allows
us to assess the scalability of our approach in practice. Figure 6 shows the impact
of both timed local transition indegree and discretization level on run time.

In the results obtained from the experimentation of our algorithm on the
time series data of the DREAM4 we can see the exponential influence on the
run time of the indegree per local transition considered as well as the level of
discretization chosen for all the 5 different networks. But it also shows that in
practice our approach can tackle big network, here 100 genes.

5.3 Discussion

We propose a new method MoT-AN (Algorithm 1) to automatically infer models
that could explain the dynamic evolution of the biological system. We illus-
trated the merits of this method by applying it on a large real biological system
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Fig. 6. Evolution of run time on processing different models inferred from time series
data of DREAM4 (100 variables benchmarks), varying indregree of local timed tran-
sitions and discretization levels. These tests were performed on a processor Intel Core
i7 (4700, 3 GHz) with 16 GB of RAM.

(DREAM4 challenge). As a result we obtain in few seconds models that are
proved to be relevant (this relevance is qualified in terms of mean square error
with gold standard network) This algorithm is implemented using Answer Set
Programming [4,5], thus provides the exhaustive enumeration of all models.

The main limit of the approach presented in this paper is the fact that topol-
ogy of the network is considered as granted. As discussed in the introduction of
the paper, there is a wide range of algorithms designed to address this issue. Fur-
thermore, such interaction graphs could be deduced from the available reliable
databases of biological networks. Some examples of data bases for human reg-
ulatory knowledge are: Pathways Interaction Database [20], Human Integrated
Pathway DB [32] and Causal Biological Network Database [30].

Various inference approaches [11,20,26] from time series data based on prior
knowledge about component interactions have been proposed. But they share a
common limit: they focus on static characterization of the interactions and they
do not allow to infer dynamic behaviors where delays are involved. The merits
of our contribution lie in the fact that we overcome such limits, and we infer
delays in a qualitative dynamic modeling of the network.

6 Conclusion and Perspectives

In this paper, we propose an approach takes a background knowledge under the
form of regulation graph and time series data as an input. The contribution
of our method lies in the fact that it identifies the set of interactions between
biological components by (1) concertizing the signs (negative or positive) (2)
providing thresholds and associating the quantitative time delays. As a result,
we have a set of Timed Automata networks that explain the biological network
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evolution. The Algorithm1 is implemented in ASP. We illustrated the applica-
bility and limits of the proposed method through benchmarks from DREAM4.
This opens the way to promising applications in the cooperation between biolo-
gists and computer scientists. Further works now consist in discussing the kind
of information one can get on Timed Automata Network by analyzing the asso-
ciated untimed model. We also plan to improve our implementation to make it
robust against noisy and scarse data as like in the DREAM8: Heritage-DREAM
breast cancer network inference challenge.

A Appendixes

A.1 Proof of Theorem1

Theorem 3 (Completeness). Let AN = (Σ,S, T ) be a Timed Automata
Network, Γ be a chronogram of the components of AN , i ∈ N and R ∈ T
be the set of timed local transitions that realized the chronogram Γ such that
(ai, l, aj , δ) ∈ R =⇒ |l| ≤ i. Let χ be the regulation influences of all a ∈ Σ.
Let AN ′ = (Σ,S, ∅) be a Timed Automata Network. Given AN ′, Γ , χ and i as
input, Algorithm1 is complete: it will output a set of Timed Automata Network
φ, such that ∃AN ′′ = (Σ,S, ϕ′) ∈ φ with R ⊆ ϕ′.

Proof. Let us suppose that the algorithm is not complete, then there is a timed
local transition h ∈ R that realized Γ and h 	∈ ϕ′. In Algorithm1, after step 1, ϕ
contains all timed local transitions that can realize each change of the chronogram
Γ . Here there is no timed local transition h ∈ R that realizes Γ which is not
generated by the algorithm, so h ∈ ϕ. Then it implies that at step 2, ∀ϕ′, h 	∈ ϕ′.
But since h realizes one of the change of Γ and h is generated at step 1, then it
will be present in one of the minimal subset of timed local transitions. Such that
h will be in one of the networks outputted by the algorithm. ��

A.2 Proof of Theorem2

Theorem 4 (Complexity). Let AN = (Σ,S, T ) be a Timed Automata Net-
work, |Σ| be the number of automaton of AN and η be the total number
of local state of a automaton of AN . Let Γ be a chronogram of the compo-
nents of AN over τ units of time, such that c is the number of changes of
Γ . The memory use of Algorithm1 belongs to O(τ · i|Σ|+1 · 2τ ·i|Σ|+1) that is
bounded by O(τ · |Σ|T ·|Σ||Σ|+1

). The complexity of learning AN by generating
timed local transitions from the observations of Γ with Algorithm1 belongs to
O(c · i|Σ|+1 + 22·τ ·i|Σ|+1

+c·2τ ·i|Σ|+1
), that is bounded by O(τ · 23·τ ·|Σ||Σ|+1

).

Proof. Let i be the maximal indegree of a timed local transition in AN , 0 ≤
i ≤ |Σ|. Let p be an automaton local state of AN then |Σ| is maximal the
number of automaton that can influence p. There is i|Σ| possible combinations
of those regulators that can influences p at the same time forming a timed local
transition. There is at most τ possible delays, so that there are τ ·|Σ|·i|Σ| possibles
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timed local transitions, thus in Algorithm1 at step 1, the memory is bounded by
O(τ · i|Σ|+1), which belongs to O(τ · |Σ||Σ|+1) since 0 ≤ i ≤ |Σ|. Generating all
minimal subsets of timed local transitions ϕ of AN that can realize Γ can require
to generate at most 2τ ·|Σ|·i|Σ|+1

set of rules. Thus, the memory of our algorithm
belongs to O(τ · i|Σ|+1 · 2τ ·i|Σ|+1

) and is bounded by O(τ · |Σ||Σ|+1 · 2τ ·|Σ||Σ|+1
).

The complexity of this algorithm belongs to O(c · i|Σ| + 1). Since 0 ≤ i ≤ |Σ|
and 0 ≤ c ≤ τ the complexity of Algorithm1 is bounded by O(τ · |Σ||Σ|+1)).

Generating all minimal subsets of timed local transitions ϕ of AN ′ that realize
Γ can require to generate at most 2τ ·i|Σ|+1

set of timed local transitions. Each set
has to be compared with the others to keep only the minimal ones, which costs
O(22·τ ·i|Σ|+1

). Furthermore, each set of timed local transitions has to realize each
change of Γ , it requires to check c changes and it costs O(c · 2τ ·i|Σ|+1

). Finally,
the total complexity of learning AN by generating timed local transitions from
the observations of Γ belongs to O(c · i|Σ|+1 + 22·τ ·i|Σ|+1

+ c · 2τ ·i|Σ|+1
). that is

bounded by O(3τ · 22·τ ·|Σ||Σ|+1
).

��

A.3 DREAM4: Influence Network

The Fig. 7 presents the regulatory graph that we are based on to identify the
signs (negative or positive), the thresholds and the quantitative time delays of
the learned transitions.

Fig. 7. The influence network of the DREAM4 challenge model (100 genes) given by
GeneNetWeaver (GNW) data generator [27]. Each node is a gene and each edge is an
influence from the source to the target gene.
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Abstract. Biological systems are often modelled at different levels of
abstraction depending on the particular aims/resources of a study. Such
different models often provide qualitatively concordant predictions over
specific parametrisations, but it is generally unclear whether model pre-
dictions are quantitatively in agreement, and whether such agreement
holds for different parametrisations. Here we present a generally applica-
ble statistical machine learning methodology to automatically reconcile
the predictions of different models across abstraction levels. Our app-
roach is based on defining a correction map, a random function which
modifies the output of a model in order to match the statistics of the
output of a different model of the same system. We use two biological
examples to give a proof-of-principle demonstration of the methodology,
and discuss its advantages and potential further applications.

Keywords: Computational abstraction · Emulation · Gaussian
Processes · Heteroschedasticity

1 Introduction

Computational modelling in the sciences is founded on the notion of abstraction,
the process of identifying and representing mathematically the salient features
and interactions of a real system. Abstraction is a human led and interdiscipli-
nary activity: many factors influence the decision of which features/interactions
are eventually represented in the abstracted model, including the specialist inter-
ests of the scientists formulating the model, as well as computational constraints
on the level of detail which can feasibly be implemented on the available hard-
ware. Such factors inevitably vary between different research groups and at dif-
ferent times, leading to a proliferation of different models representing the same
underlying phenomena.
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Systems biology is a prominent field where models with different level of
abstraction coexist. As an example, consider the process of gene expression,
whereby genetic material stored in the DNA is transcribed into messenger RNA
and eventually translated into protein. At the highest level of abstraction, which
is frequently employed when studying high-throughput data, the process may
be considered as a black box, and one may only be interested in characterising
the statistical structures underlying observed levels of gene expression in differ-
ent conditions [8]. Alternatively, one may want to mechanistically represent the
dynamics of some of the steps involved in the process. The choice of which steps
to include is again largely driven by extrinsic factors: examples in the litera-
ture range from highly detailed models where the synthesis of mRNA/protein is
modelled through the binding and elongation of polymerase/ribosomes, to mod-
els where protein production is modelled as a single reaction with first order
kinetics [1,10].

Representing the same physical process by multiple models at different lev-
els of abstraction immediately engenders the question of how different model
outputs can be reconciled. As the models all represent the same underlying
physical system, it can be plausibly assumed that such models will agree at least
qualitatively for suitable parametrisations. In general, however, models may not
agree quantitatively, and their discrepancy may be a function of the parameters.
Understanding and quantifying such discrepancies would often be very valuable:
first of all, it can shed light on how simplifications within models affect predic-
tions, and secondly it may open the opportunity to construct computationally
smaller surrogates of complex models. Such surrogates can be precious when
modelling requires intrinsically computationally intensive tasks like inference, as
they have less parameters.

In this paper, we approach the problem of reconciling models from a statisti-
cal machine learning angle. We start by sampling a sparse subset of the parame-
ter space over which we evaluate the models’ outputs (generally by simulation).
These evaluations are used as a training set to learn a correction map via a non-
parametric regression approach based on Gaussian Processes. We show that our
approach yields a consistent stochastic equivalence between models, which prov-
ably reconciles the predictions of the two models up to the second moment. We
demonstrate the approach on two biological examples, showing that it can lead
to non-trivial insights into the structure of the models, and provide an efficient
way to simulate a complex model via a simpler model. Correction maps could be
used to reduce the complexity of some common problems that we briefly discuss
in the paper, e.g., model selection, synthesis and parameter estimation.

The rest of the paper is organised as follows: we start by giving a high
level description of the problem and how we attack it. This is followed by a
formal definition and a thorough illustration of the proposed solution, discussing
its desirable theoretical properties. We then demonstrate the approach on two
proof of principle examples, showing the potential for practical application of the
method. We conclude the paper by discussing the relationship of our approach
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to existing ideas in model reduction and statistical emulation, as well as some
possible extensions of our results.

2 Problem Definition

High level description of the approach. In this paper we consider the problem of
performing analyses which require exhaustive sampling of a model’s outputs, M,
the dynamics of which are expensive to compute. We are not interested in the
origin of such a complexity, and we assume to be given an abstraction/surrogate
of this model, m, which is reasonably less challenging to analyze1. For this rea-
son, we want to investigate a general methodology to use m as a reliable proxy to
get statistics over M. Possible applications of this framework, which we discuss
in Sect. 4, regard model selection and synthesis, inference, and process equiva-
lence/control.

In general, we will assume both models to be stochastic processes, e.g. con-
tinuous time Markov Chains (CTMCs). Furthermore, we assume that the highly
detailed model M and the reduced model m share some parameters θm and some
observables/state variables X, but the large model will generally have many more
state variables and parameters. In general we can compute some statistics of the
shared state variables X (e.g. mean), and that such computation will be consid-
erably more expensive using the detailed model M.

As both models are devised as abstractions of the same physical system, it
is not unreasonable to assume that the expected values of the shared variables
will be similar for some parametrisations of the models. However, it is in general
not the case that the distribution of the shared variables implied by the two
models will be the same, and, as we vary the shared parameters θm, even the
expected values may show non-negligible discrepancies. Our aim is to develop
a generally applicable machine learning approach to correct the output of the
reduced model, in order to match the distribution of the larger model. This has
strong practical motivations: one of the primary uses of models in general is to
test hypotheses statistically against observed data, and it is therefore essential to
capture as accurately as possible the implied variability on observable variables.

The strategy we will follow is simple: we start by sampling values of the shared
parameters θm, and compute the first two statistics of the observed variables
as implied by both the large and reduced models (by simulation). In general,
one may expect the variance implied by the larger model to be larger, as a
more detailed model will imply more stochastic steps. We can therefore correct
the first two statistics (mean and variance) of the reduced model output by
adding a random function of the shared parameters θm, which can be learned by
rephrasing it as a regression task. We will work with heteroschedastic Gaussian
Processes [5].
1 M could be complex to analyze either because of its structure, e.g., it might have

many variables, or its numerical hurdles, e.g., the degree of non-linearity or parame-
ters stiffness. For similar reasons, we do not care whether m is has been derived by
means of independent domain-knowledge or automatic techniques.
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2.1 Formal Problem Statement

We assume to be given two models of the same underlying physical system:

– a highly detailed model M, with state variables Y and parameters θM.
– a reduced model m, with state variables X and parameters θm.

We will have |Y| � |X | and |θM| � |θm|.

Assumptions. In general, the problem we want to tackle draws immediate
connection to that of using m as a statistical emulation of M. However, to
exploit solutions from regression analysis and machine learning, we make further
assumptions and discuss their limitations thorough the paper.

1. (Observables) we assume that it exists a non-empty set of state variables (or,
more generally, observables) X, common to both models, that is sufficient to
compute our statistics of interest.

2. (Parameters) we assume that model M is fully parametrized by θM, a vec-
tor of real-valued parameters that breaks down as θM = [θm θf ]�, with θm

shared between models m and M. Here, we assume that m is fully parame-
trized2 by θm, which ranges in a domain set Θ. We term θf free parameters
in M, given θm. We further assume to have a probability density p(θf) for the
free parameters, and a probability density p(θm) for the shared parameters,
encoding our knowledge about them.

3. (Sampling) we assume that, for every parametrization, each model’s dynamics
is computable, i.e. it can be simulated.

In this work, we will consider correction maps conditioned to a reference
statistic of interest, in the following sense.

Definition 1 (Statistic). A statistic η is any observable that we can compute
from one, or from an ensemble of simulations of a model. We denote its estimator
computed from model q with parameters x as qη̂(x), and its true value qη(x).

Valid examples of such statistics are, e.g., a single value or the expectation
of a variable in X, the satisfiability of a temporal logical formula depending
on variables X that could be model-checked, etc. The richer the estimator, the
higher number of samples are required for the estimator to converge to the true
statistics. We will make use of estimators that are consistent in the following
sense: qη̂(x) → qη(x) as the number of samples goes to infinity.

Definition 2 (Correction map). We define an ε-correction map Mη : Θ →
R

w for a statistics η to be a function that for any θm ∈ Θ, satisfies

M̂η(θm) � mη(θm) + Mη(θm) and

∫

Θ

‖ M̂η(θm) − Eθ f [Mη(θm)] ‖2 p(θm)dθm < ε (1)

2 In principle, even m might have a set of free variables, with respect to M. However,
as we have full control over that model, we could assume a parametrization of such
variables and all what follows would be equivalent.
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Fig. 1. Correction maps as regression problems. From sampled estimates of a statistics
η̂ computed over domain Θ by models M and m, we can define a correction M̂η̂(x) �
mη̂(x) + Mη̂(x) from their difference. According to the variables/parameters involved,
we collect multiple values of such correction; see also Fig. 2. Then, a regression over such
values leads to a correction model for M’s prediction, from m’s ones; this differs from
standard emulation as we retain the mechanistic description of the system in m. A map
is modeled as a random function via Gaussian Processes (GPs) with heteroschedastic
variance; GPs induce a distribution over functions (colored lines), and the map will be
the expectation (red line). Maps allow to detect regions of Θ where the predictions of
the models are in agreement, Mη̂ → 0, or roughly constant (i.e., at low sensitivity).
(Color figure online)

where ε > 0 is the precision, and Eθf
[Mη(θm)] =

∫
Mη(θm;θf)p(θf)dθf is the

expectation of the statistics computed from M, with respect to its free parameters
θf . M̂ is our corrected prediction of M.

Thus, Mη̂ can correct the outcomes of η assessed over m, mη(θm), to match
(with a given precision) those that we would have by computing the statistics
over M. Notice that the corrected outcome has no more dependence from the
free parameters, as this is a correction in expectation with respect to θf .

Notice that the correction is a w-dimensional vector, and hence ‖ · ‖2 is used
as distance metric, and that the term ε allows for tolerance in the correction’s
precision. It is easy to define the optimal, zero-error, correction map:

Mη
�(θm) � Eθf

[Mη(θm)] − mη(θm) . (2)

However, the correction function Mη
�(θm) is impossible to compute exactly,

as we cannot compute neither Mη nor its marginalisation over θf . Hence, we
will learn an approximation of Mη

�(θm) trying to keep its error low so to satisfy
Definition 2. We turn this problem into a regression task, as graphically explained
in Figs. 1 and 2, and exploit Gaussian Processes.
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Fig. 2. For any pair of θm and θf we can compute the statistics for M, Mη(θm; θf).
Since we do regression over θm, we model the relation between such values and θf as
the variance of a random variable, indexed by θm, whose samples are the values, as a
function of θf . Marginalization is the exponential strategy that estimates such variance
correctly; all downsampling strategies possibly over or under fitting. Accounting for the
relation between this variance and θm can be achieved by heteroschedastic regression.

3 Learning the Correction Map

In this section we will present our machine learning strategy in more detail. We
consider the case of a scalar statistics, as w-dimensional ones can be treated by
solving w independent learning problems.

3.1 Marginalising θf

In order to evaluate (2), we need to be able to compute or approximate the
value Eθf

[Mη(θm)] with respect to the free parameters of M, for a any given θm.
As this integral cannot be treated analytically or numerically, due to the large
dimensionality involved (the cost is exponential in |θf |), we will resort to statisti-
cal approximations. Before discussing them, let us comment on the distribution
p(θf), which is an input for our method. In particular, this distribution encodes
our knowledge on the more plausible values of the free parameters. In case we
have no information, we can choose an uniform distribution. On the other side
of the spectrum, we may know the true value θ∗

f of θf , and choose a delta Dirac
distribution, which will dramatically simplify the evaluation of the integral. In
this case, we can evaluate (2) as

Mη(θm) � Mη(θm;θ∗
f ) − mη(θm) , (3)

Moreover, the approximation,
∫
Mη(θm;θf)p(θf)dθf ≈ Mη(θm;θ∗

f ) is appro-
priate when the distribution p(θf) is tightly concentrated around its mode θ∗

f .
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In general, however, when p(θf) does not have this special form, we can
resort to downsampling Eθf

[Mη(θm)], by generating k samples θf
(1), . . ., θf

(k)

and approximating Eθf
[Mη(θm)] ≈ 1

k

∑
j Mη(θm;θf

(j)). In the following, how-
ever, we will not necessarily aggregate the values Mη(θm;θf

(j)), and treat them
individually to better account for the variance in the observed predictions.

3.2 Gaussian Processes

We will solve the learning problem resorting to Gaussian Process (GP) regression
[12]. GPs are random functions, i.e. probability distributions over a function
space, in our case functions f : Θ → R, with the property that any finite
dimensional projection f(θ1), . . ., f(θk) is a multidimensional Gaussian random
variable. It follows that GP are defined by a mean function μ(θ), returning the
mean at any point in Θ, and by a covariance or kernel function k(θ1,θ2), for
giving the covariance between any pair of points in Θ. GP can be used to solve
regression tasks in a Bayesian setting. The idea is as follows: we put a GP prior on
the space of functions {f | f : Θ → R}, typically by assuming constant zero mean
and fixing a kernel function3, and then consider the posterior distribution given
a set of observations Y = {y(i)}I , i ∈ I, at input points X = {θ(i)

m }. If we assume
that y(i) = f(θ(i)

m ) + εi, with εi a zero mean Gaussian noise term with variance
σ2, then we obtain that the posterior distribution given the observed data is still
a GP, with mean and kernel functions that can be obtained analytically, see [12]
for further details. GP regression is essentially the same if the observation noise
σ2 is different at different input points, i.e. σ2 = σ(θ(i)

m )2, in which case we talk
about heteroschedastic regression.

3.3 The Regression Task

Let θ(i)
m for some index set i ∈ I be the input space, and {〈θ(i)

m , y(i)〉}I our training
points. In case we use Eq. (3) to evaluate the correction map, each y(i) is a scalar
value, and a standard regression schema based on Gaussian Processes can be
used. In that case we assume samples of the correction map y to be observations
from a random variable centered at a value given by the latent function

y(i) ∼ N (Mη(θ(i)
m ), σ2) . (4)

In this standard Gaussian Processes regression the noise model in the observa-
tions is assumed to be a constant σ2 for all sampled points.

In the more general case we work with downsampling solutions that exploit
k samples for the free variable, θf

(1), . . . ,θf
(k). In that case, we have k correc-

tion values per training point,
{

〈θ(i)
m , [y(i,1) · · · y(i,k)]�〉

}

I
, that we can use in

a straightforward way to reduce to the above schema, or to estimate the vari-
ance of M conditioned to its free variables. In these cases, the training set is
3 In this work, we use the classic Gaussian kernel fixing hyperparameters by maximis-

ing the type-II likelihood; see [12].
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{〈θ(i)
m , y(i)〉}I , namely we do regression on the point-wise expectation of the cor-

rection (i.e., y(i) = 1
k

∑k
j=1 y(i,j)).

Estimator 1 (Empirical σ-estimator). Set σ to the empirical estimate of the
variance across all correction values to exploit the schema in Eq. (4) with σ2 � σ.

Besides the simple first case, it is more interesting to account for a model of
the variance in the observations of the predictions from a model; we discuss how
this could be done in two ways.

Estimator 2 (Point-wise σ-estimator). Let σ(·) the empirical estimator of
the variance of the correction values, per training-point

σ(θ(i)
m ) � Var[y(i,1), . . . , y(k,1)] , (5)

then define a model of the variance as a point-wise function of the regression
parameter, that is

y(i) ∼ N
(
Mη(θ(i)

m ), σ(θ(i)
m )2

)
. (6)

In this case, the variance that we expect in each prediction of the latent function
is estimated from the data, thus leading to a form of heteroscedastic regression.

We can estimate with higher precision a model of the variation in the variance
across the input space; to do that we perform regression of the variance change,
and then inform the outer regression task of that prediction.

Estimator 3 (Nested σ-estimator). Consider the same estimator of the vari-
ance as above, and collect the variance estimates as {〈θ(i)

m , w(i)〉}I . Learn a latent
function model of the true variance σ�(·), which we assume to have a fixed vari-
ance σ2

�

w(i) ∼ N
(
σ�(θ(i)

m ), σ2
�

)
y(i) ∼ N

(
Mη(θ(i)

m ), σ�(θ(i)
m )2

)
. (7)

This is also a form of heteroschedastic regression, but nesting two GP regressions
to account in a finer way for the variance’s changes.

3.4 Properties of the Correction Map

The correction map that we learn, for all variance schemes, is a statistically
sound estimator of Eθf

[Mη(θm)], in the sense of being consistent.

Theorem 1 (Correctness). Let mη̂(θm) and Eθf
[Mη̂(θm)] be consistent esti-

mators of mη(θm) and Eθf
[Mη(θm)], then M̂η̂(θm) � mη̂(θm) + Mη̂(θm) is a

consistent estimator of Eθf
[Mη(θm)], for any estimation strategy of Mη̂.

The result follows because Mη̂ converges to Mη due to properties of GPs [12],
and because of the consistency of mη̂ and Eθf

[Mη̂(θm)]. The proof is sketched in
Appendix A.2.
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The correction map Mη̂(θm) is estimated from samples of the system, hence
it is an approximation of the exact map defined by Eq. (2). Thus, it is a correction
map in the sense of Definition 2. However, being the result of a GP regression,
Mη̂(θm) is in fact a random function. Therefore, in measuring the error accord-
ing to Eq. (1), we need to consider the average value of the random function
E[Mη̂(θm)]. The variance Var[Mη̂(θm)], instead, provides a way of computing
the error ε, but in a statistical sense with confidence α: ε can be estimated by
averaging over Θ (with respect to p(θm)) the half-width of the region containing
α% of the probability mass of Mη̂(θm).

The cost of all our approaches inherently depends on how many samples we
pick from Θ, the way parameters in θf are accounted for and the number of
parameters in θm. The sampling cost in general grows exponentially with |θm|,
and each Gaussian regression is cubic in the number of sampled values. Notice
that, asymptotically, the cost of the empirical and nested σ-estimators is the
same, as the two regressions are executed in series.

4 Applications

We discuss now several potential applications of our framework. The advantages
of using our approach are mostly computational: the reduced model is simpler
to analyze, yet it retains a mechanistic interpretation, compared to statistical
emulation.

Model Building. Many common problems in the area of dynamical systems can
be tackled by resorting to correction maps.

Problem 1 (Model selection). Let M be a model, and m1, . . ., mk a
set of candidate models for correction, each one having a correction map
Mη,1, . . ., Mη,k. The smallest-correction model m∗ for a statistic η is m∗ �
arg minmi

∫
Mη,i(θ)dθ.

This criterion is certainly alternative to structural Bayesian approaches [3], which
can be used to select the structurally smaller model within an equivalence class
(see below). Also, allows to frame a model synthesis problem.

Problem 2 (Model synthesis). For a model M with parameters θM and for
a statistic η: (i) partition θM into sets θm and θf , (ii) generate a finite set
of plausible reduced models with parameters θm and (iii) select the best one,
according to the above model selection criterion.

In this case, the partition might aim at identifying in θM the model’s parame-
ters which contribute the most to the variance for the statistics η. Opportunities
for control are also plausible if one can reduce the problem of controlling M to
“controlling and correcting” a reduced model m. This should be easier as m is
structurally smaller than M, and so is lower the complexity of solving a controller
synthesis problem.
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Parameter Estimation. Another application of our framework is in Bayesian
parameter estimation of the parameters θm of the big model M, given obser-
vations D of variables X, using the small model and the corrected statistics to
build approximations of the likelihood function p(D | θm). For instance, this can
be done by correcting the mean of variables X, and using the variance of the
correction map as a proxy of the variance X in M after marginalisation of θf . We
can then plug the distribution of X in a Bayesian inference scheme, and compute
an approximate posterior over θm.

Model Equivalence. Correction maps can also be used to compare processes, via
weak forms of bisimilarity with respect to the observations and a statistics.

Definition 3 (Model equivalence). Models M1 and M2, for a statistic η and
parameter sets θm and θf , are η-bisimilar conditioned to m, M1 ≡η

m M2, if and
only if for all θm ∈ Θ, it holds Mη,1(θm) = Mη,2(θm). A class of equivalence of
models with respect to m and η is the set of all such bisimilar models.

This notion of bisimilarity resembles conditional dependence, as we are saying
that two models are equivalent if an observer corrects both the same way. In this
case, m is a universal corrector of ≡η

m, as it can correct for all the models in the
class. The class of models that are equivalent to a model M is {M∗ | M∗ ≡η

M M} –
i.e., the class of models with correction zero; notice that in this case θf = ∅. The
previous definition can be relaxed by asking that |Mη,1(θm) − Mη,2(θm)| ≤ ε,
for all θm ∈ Θ.

Remark 1. Criterion ≡η
m is a weaker form of probabilistic bisimilarity, namely

if M1 ≡ M2 are bisimilar, then M1 ≡η
m M2 for some m and any statistics of

interest. For instance, for CTMCs, this follows because ≡ implies that M1 and
M2 have the same infinitesimal generators for any parameter θm and θf , hence
the outcomes of M1 and M2 are indistinguishable, and so are their statistics.

Fig. 3. Example models tested in this paper. Top panel: the Henri-Michaelis-Menten
model, where m is derived when C : [E]0+[ES]0 � [S]0+KMM. Bottom panel, a protein
translation network where m when C : β � α.
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5 Examples

We investigate two examples to better illustrate our method.

5.1 Model Reduction via QSSA

Consider the irreversible canonical enzyme reaction with its exact representation
(here, model M), for enzyme E, complex ES , substrate S and product PR (Fig. 3,
top left panel). When the concentration of the intermediate complex does not
change on the time-scale of product formation, product is produced at rate
f � VMS/(KM +S) where VM = k2([E]0 +[ES]0) and KMM = (k−1 + k2)/k1. This
is the Henri-Michaelis-Menten kinetics and is technically derived by a quasi-
steady-state assumption (QSSA), i.e., ĖS = Ė = 0, that is in place when C :
[E]0 + [ES]0  [S]0 + KMM, where [x]0 is the initial amount of species x. m is
thus the QSSA reduced model (Fig. 3, top right panel).

Fig. 4. Correction of the product formation at the transient time t∗ = 1.5, for a mean
field model of irreversible canonical enzyme reaction and its simplified Henri-Michaelis-
Menten form. Here k1 = 2, k−1 = 1 and k2 = 1.5, [S]0 = 60 and [P ]0 = 0. Regression
over [E]0 is done with 40 training points from (0, 100], and the correction in Eq. (3) as
M’s free variables are part of the Michaelis-Menten constant.

We interpret these two models as two systems of ordinary differential equa-
tions, see Appendix A.1, and learn a correction for the following statistics

η : E[PR(t∗)], with PR(t∗) the number of products at time t∗ (8)

For non-degenerate parameter values both models predict the same equilibrium
state, where a total transformation of substrate into product has happened,
E[PR(t)] → [S]0 for large t. Thus, we are not interested in correcting the dynamics
of m for long-run times, but rather in the transient (i.e., for small t∗).

Also, as the QSSA hypothesis does not hold for certain initial conditions,
we set θm = {[E]0} as the regression variable, and set [S]0 = 60 and [P ]0 = 0.
The other parameters are k1 = 2, k−1 = 1 and k2 = 1.5 with unit (mole
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per second)−1. In terms of regression, we pick 40 samples of the initial enzyme
amount from (0, 100], and set t∗ = 1.5 as it is a time in the transient (manual
tuning). This particular example is rather simple, as the free parameters of M are
part of the Michaelis-Menten constant and fixed, so we use the simpler correction
of Eq. (3). Also, knowing when the QSSA holds gives us an interval where we
expect the correction to shrink towards zero. The map is shown in Fig. 4, which
depicts the expected concordance among the correction map and validity of the
QSSA.

5.2 Model Reduction via Time-Scale Separation

Consider a gene switching among active and inactive states of mRNA transcrip-
tion to be ruled by a telegraph process with rates koff/kon. A reaction model of
such gene G, protein PR, messenger mRNA with transcription/translation rates
α/β as in Fig. 3, bottom left panel.

Here the gene switches among active and inactive states, with rates kon

and koff , and PR feedbacks positively on inactivation. Proteins and mRNAs are
degraded with rates δP and δRNA. In the uppermost part of the diagram species

Fig. 5. Comparison between the dynamics of the full and the reduced models from
Sect. 5.2, with koff = kon = δP = 10−2, δRNA = 10, [Gact]0 = 1. Values for transcription
(α) and translation (β) are reported in the figure. The reduced model predicts spiked
dynamics, leading to a unimodal distribution of proteins. The larger model, instead,
can either predict protein buffers, when there is no time scale separation (α = β), or
multiple equilibria, leading to a multimodal distribution of protein counts. Observe
that the expectation on the number of proteins in the long run spans over different
order of magnitudes, according to the relation between α and β.
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marked with a ∗ symbol are not consumed by a reaction, i.e., mRNA transcrip-
tion is Gact → Gact + mRNA. This model can be easily encoded in a Markov
process, as discussed in A.1.

We can derive an approximation to M where the transcription step is omitted.
This is valid when C : β � α (time-scales separation), namely for every copy of
mRNA a protein is immediately translated.

Correction of protein dynamics. We build a correction map with θm = {β}.
In this case the telegraph process is common to both models, but α and δRNA

are free variables of M; here we assume to have a prior delta distribution over
the values of mRNA’s degradation, so we set θf = {α}. For some values of the
transcription rate condition C does not hold; in this case it is appropriate to
account for α’s contribution to the variance in the statistics that we want to
correct, when we do a regression over β. Note that also β is part of C.

Model M leads to stochastic bursts in PR’s expression when the baseline gene
switching is slower than the characteristic times of translation/transcription.
Here we set koff = kon = 10−2, and assume mRNA’s lifespan to be longer than
protein’s ones (also in light of condition C), so δRNA = 10δP = 10−2. We simulate
both models with one active gene, [Gact]0 = 1; example dynamics are shown in
Fig. 5, for β = 100 and α ∈ {1, 100}. We observe that, when C does not hold
(α = β) the protein bursts increases of one order of magnitude, and the long-run
probability density function for the proteins, pt(PR), becomes multimodal.

We define two statistics. One measures the first moment of the random vari-
able that models the number of proteins in the long run; the other is a metric
interval temporal logic formula [2], expressing the probability of a protein burst
within the first 100 time units of simulation.

η1 : E[PR(t∗)], with PR(t∗) the number of proteins at time t∗ � 0 (9)

η2 : E[p(ϕ)], with ϕ � F[0,100]PR(t) > 200 (10)

The former is evaluated by a unique long-run simulation of the model, as its
dynamics are ergodic. For the latter we estimate the satisfaction probability of
the formula via multiple ensembles, as in a parametric statistical model checking
problem [4].

For the regression task we sample 50 values of β, in the range [0.1, 100]. For
α, instead, we sample 50 random values in the same interval, for each value of β;
notice that with high probability we pick values where C does not hold, so we
might expect high correction factors. Data generated and the regression results
are shown in Fig. 6, for both fixed-variance regression, empirical σ-estimator in
Eq. (4) and with the σ-estimator, Eq. (6). Because variance spans over many
orders of magnitude, regression is performed in the logarithmic space. Results
highlight a general difference between the posterior variance between the two
estimators.

For the second statistics, data is generated from an initial condition where
one gene is inactive, [Gin]0 = 1. Notice that the expected time for the gene to
trigger its activation is 1/kon = 100 (the time upper-bound of the formula),
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Fig. 6. For the regression task we sample 50 values of β from [0.1, 100]. For each
value of β, we sample 50 random values of α in the same interval. For each pair
(α, β) we estimate the statistics for both models (green, M; red, m), and obtain 50
correction values indexed by each β (green). Correction values (blue and pink) are
the expectation and variance of the difference between M’s and m’s predictions. We
transform them logarithmically before doing regression; observe that, on the linear
scale, the correction is of the order of 103 with variance 107 (midpoint value β ≈ 50).
Gaussian Process regression (right panel) is performed with a constant σ2 = 0.2, Eq. (4)
and with the σ-estimator, Eq. (6). Values are re-scaled linearly, and 95% log-normal
confidence intervals are shown; regression highlights that the posterior variances are
similar, but the fixed-variance schema tends to underfit or overfit the heteroscedastic
variance (assumed it to be closer to the true one). (Color figure online)

Fig. 7. Correction map for the expected satisfaction probability of the linear logic
formula η2 in Eq. (9). Comparison between the point-wise σ-estimator and the empirical
σ-estimator. Sampled data are shown in Appendix Fig. 8.

so for some parametrization there will be non-negligible probability of having
no protein spike above threshold 200. The formula satisfaction probability is
evaluated with 100 independent model runs, and data generated are shown in
Appendix Fig. 8. Regression results are shown in Fig. 7, where the point-wise
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σ-estimator and the empirical σ-estimator are compared, highlighting the more
robustness of the former with respect to the sampled bottom-left outlier.

6 Conclusions

Abstraction represents a fundamental tool in the armoury of the computational
modeller. It is ubiquitously used in biology as an effective mean to reduce com-
plexity, however systematic analysis tools to quantify discrepancies introduced
by abstraction are lacking. Prominent examples, beyond the ones already men-
tioned, include models with delays, generally introduce to approximately lump
multiple biochemical steps [6], or physiological models of organ function which
adopt multi-scale abstractions to model phenomena at different organisational
levels. These include some of the most famous success stories of systems biology,
such as the heart model of [11], which also constitutes perhaps the most notable
example of a physical systems which has been modelled multiple times at dif-
ferent levels of abstraction. Employing our techniques to clarify the quantitative
relationship between models of cardiac electrophysiology would be a natural and
very interesting next step.

Our approach has deep roots in the statistical literature. In this paper we
have focussed on the scenario where we try to reconcile the predictions of two
separate models, however the complex model was simply used as a sample gen-
erator black box. As such, nothing would change if instead of a complex model
we used a real system which can be interrogated as we vary some control para-
meters. Our approach would then reduce to fitting the simple model with a
structured, parameter dependent error term. This is closely related with the use
of Gaussian Processes in the geostatistics literature [7], where simple (generally
linear) models are used to explain spatially distributed data, with the residual
variance being accounted for by a spatially varying random function. Another
important connection with the classical statistics literature is with the notion of
emulation [9]. Emulation constructs a statistical model of the output of a com-
plex computational model by interpolating sparse model results with a Gaussian
Process. Our approach can be viewed as a partial emulation, whereby we are
interested in retaining mechanistic detail for some aspects of the process, and
emulate statistically the residual variability. In this light, our work represents a
novel approach to bridge the divide between the model-reduction techniques of
formal computational modelling and the statistical approximations to complex
models.

A Appendix

All the code that replicate these analysis is available at the corresponding
author’s webpage, and hosted on Github (repository GP-correction-maps).
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A.1 Further Details on the Examples

The two models from Sect. 5.1 correspond to these systems of differential equa-
tions

M:=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ė = −k1E · S + k−1ES + k2ES

Ṡ = −k1E · S + k−1ES

ĖS = k1E · S − k−1ES − k2ES

ṖR = +k2ES

m:=

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Ė = 0
Ṡ = −VMS/(KM + S)
ĖS = 0
ṖR = +VMS/(KM + S)

which we solved in MATLAB with the ode45 routine with all parameters (Initial-
Step, MaxStep, RelTol and AbsTol) set to 0.01.

Concerning the Protein Translation Network (PTN) in Sect. 5.2, the set of
reactions and their propensity functions that we can use to derive a Continuous
Time Markov Chain model of the network are the following. Here x denotes a
generic state of the system and, for instance, xmRNA the number of mRNA copies
in x.

event reaction propensity
activation Gin → Gact a1(x) = kon · xGin

inactivation Gact → Gin a2(x) = koff · xPR

transcription Gact → Gact + mRNA a3(x) = α · xGact

mRNA decay mRNA → ∅ a4(x) = δRNA · xmRNA

translation mRNA → mRNA + PR a5(x) = β · xmRNA

PR decay PR → ∅ a4(x) = δP · xPR

The reduced PTN model is a special of this reactions set where transcription and
mRNA decay are omitted. In this case we used StochPy to simulate the models
and generate the input data per regression – see http://stochpy.sourceforge.net/;
data sampling exploits python parallelism to reduce execution times.

For regression, we used the Gaussian Processes for Machine Learning toolbox
for fixed-variance regression, see http://www.gaussianprocess.org/gpml/code/
matlab/doc/ and a custom implementation of the other forms of regression.

A.2 Proofs

Proof of Theorem 1

Proof. Both the empiricals and nested estimator rely on an unbiased estimator
of the mean/variance, which means that if k → ∞, i.e., we sample all possible
values for the free variables, we would have a true model of y σ. This means
that, for each sampled value from Θ, even the simplest σ-estimator would be
equivalent, in expectation, to the marginalization of the free variables. This is
enough, combined with properties of Gaussian Processes regression (i.e., the
convergence to the true model with infinite training points), to state that the
overall approach leads to an unbiased estimator of the correction map.

http://stochpy.sourceforge.net/
http://www.gaussianprocess.org/gpml/code/matlab/doc/
http://www.gaussianprocess.org/gpml/code/matlab/doc/
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Fig. 8. Data generated to compute the satisfaction probability of the linear logic for-
mula η2 in Eq. (9). For each model 100 independent simulations are used to estimate
the expectation of the probability. The regression input space is the same used to
compute η1, but the models are simulated with just one inactive gene in the initial
state. The heteroscedastic variance in the regression is computed as the variance of the
correction of the expected satisfaction probability (point-wise σ-estimator); the fixed-
variance regression is computed by estimating the variance from the data (empirical
σ-estimator).
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Abstract. Computational analysis of the structure of intra-cellular
molecular interaction networks can suggest novel therapeutic approaches
for systemic diseases like cancer. Recent research in the area of network
science has shown that network control theory can be a powerful tool
in the understanding and manipulation of such bio-medical networks. In
2011, Liu et al. developed a polynomial time optimization algorithm for
computing the size of the minimal set of nodes controlling a given linear
network. In 2014, Gao et al. generalized the problem for target structural
control, where the objective is to optimize the size of the minimal set
of nodes controlling a given target within a linear network. The working
hypothesis in this case is that partial control might be “cheaper” (in
the size of the controlling set) than the full control of a network. The
authors developed a Greedy algorithm searching for the minimal solution
of the structural target control problem, however, no suggestions were
given over the actual complexity of the optimization problem. In here we
prove that the structural target controllability problem is NP-hard when
looking to minimize the number of driven nodes within the network, i.e.,
the first set of nodes which need to be directly controlled in order to
structurally control the target. We also show that the Greedy algorithm
provided by Gao et al. in 2014 might in some special cases fail to pro-
vide a valid solution, and a subsequent validation step is required. Also,
we improve their search algorithm using several heuristics, obtaining in
the end up to a 10-fold decrease in running time and also a significant
decrease of the size of the minimal solution found by the algorithms.

1 Introduction

The intrinsic robustness of living systems against perturbations is a key factor
that explains why many single-target drugs have been found to provide poor
efficacy or lead to significant side effects [5]. The efficacy of multi-target thera-
pies can be understood from a robustness of disease-networks point of view to
deal with single node perturbations, due to inherent diversity and redundancy
of compensatory signaling pathways that result in highly resilient and resistant
network architecture with modular and interconnected topology [5]. Rather than
trying to design selective ligands that target individual receptors only, network
c© Springer International Publishing AG 2016
E. Bartocci et al. (Eds.): CMSB 2016, LNBI 9859, pp. 67–81, 2016.
DOI: 10.1007/978-3-319-45177-0 5
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polypharmacology aims to modify multiple cellular targets to tackle the compen-
satory mechanisms and robustness of disease-associated cellular systems, as well
as to control unwanted off-target side effects that often limit the clinical utility of
many conventional drug treatments [1,3,5]. However, the exponentially increas-
ing number of potential drug target combinations makes the pure experimental
approach quickly unfeasible, and translates into a need for design principles to
determine the most promising target combinations to effectively control complex
disease systems, without causing drastic toxicity or other side-effects.

Network biology, with the help of mathematical modeling, has revolutionized
the human diseasome research and paved the way towards the development of
new therapeutic approaches and personalized medicine. Recent work on network
controllability has shown that full controllability and reprogramming of inter-
cellular networks can be achieved by a minimum number of control targets [10].
However, the computer-based experimental tests of Liu et al. [10] suggest that
the approach is totally unfeasible in practice, as achieving full control over gene
regulatory networks requires roughly 80 % of the nodes (i.e., on the order of 800
– 1000 nodes) to be directly controlled by an external controller.

Although diseased cells may harbor hundreds of genomic alterations in vari-
ous biological pathways [8,17], only a subset of these alterations are driving the
disease initiation and progression. These genes form together the sets of (disease
specific) essential genes, see [2]. Due to the new CRISPR gene editing technol-
ogy, researchers can now pinpoint the sets of essential genes, for a very large
class of illnesses [11,16], including many types of cancers [18].

In this research we concentrate over the target structural controllability prob-
lem, where the aim is to select a minimal set of driver/driven nodes which can
control a given target within a linear network. That is, for every initial config-
uration of the system and any desired final configuration of the target nodes,
there exists a finite sequence of input functions for the driver nodes such that
the target nodes can be driven to the desired final configuration, in finite time.

The target controllability problem for linear networks is a particular case of
output controllability [14] and a generalization of the full controllability problem,
which requires the control over the entire system. In 2011 Liu et al. [10] have
provided a polynomial time algorithm (in the size of the network) computing the
optimal solution for the full structural controllability problem. Few years latter,
Gao et al. [4] developed a Greedy algorithm searching for the minimal solution
of the structural target controllability problem. However, the overall complexity
of the target control optimization problem was not tackled.

In this study we prove that the structural target controllability problem
is NP-hard when looking to minimize the number of driven nodes within the
network. The driven nodes of a network are those to be directly controlled from
an outside agent in order to structurally control the given target. We also show
that the Greedy algorithm provided by Gao et al. [4] might sometimes fail to
provide a valid solution (i.e., a driver/driven set of nodes actually controlling
the target), and thus a subsequent validation step is required. Also, we improve
their search algorithm using several heuristics, obtaining up to a 10-fold decrease
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in the average running time and a significant decrease in the size of the average
minimal solution found by the algorithms, especially in the case of proportionally
small targets, i.e., less than 15 % of the total number of nodes.

2 Background and Definitions

A linear, time invariant dynamical system (in short LTIS)is a system of the form

dx(t)
dt

= Ax(t) (1)

where x(t) = (x1(t), ..., xn(t))T is the n-dimensional vector describing the sys-
tem’s state at time t, and A ∈ Rn×n is the time-invariant state transition matrix,
describing how each of these states are influencing the dynamics of the system.
The elements in x are called the variables of the system; we abuse notation and
denote with X the set of these variables. If the system is influenced by a size-m
external input controller u(t) = (u1(t), ..., um(t))T , then system (1) becomes:

dx(t)
dt

= Ax(t) + Bu(t) (2)

where B ∈ Rn×m is the time-invariant input matrix describing how each of
the n variables are affected by the m inputs. In the additional case when at
each time step t the system is also exporting a set of k output values, y(t) =
(y1(t), ..., yk(t))T depending on the current state x(t), the system (1) becomes:

dx(t)
dt

= Ax(t)

y(t) = Cx(t)
(3)

where C ∈ Rk×n is the output matrix describing how each of the k outputs
are influenced by the n variables of the system at time t. For example, in the
particular case when the desired output is represented just by the numerical
values of a k subset T ⊆ X of the total n variables, such as a target set, the
output matrix CT is a 0–1 matrix, with CT (i, j) = 1 iff i = j and i, j ∈ T , i.e.,
CT is the the identity matrix restricted to the subset T . For ease of notation,
such m-input, k-output linear, time invariant, dynamical systems are denoted
as (A,B,C) with A ∈ Rn×n, B ∈ Rn×m, and C ∈ Rk×n

Given a target set T , a linear time-invariant dynamical system (A,B,CT )
is said to be target controllable if there exists a time-dependent input vector
u(t) = (u1(t), ..., um(t))T that can drive the state of the target variables to any
desired numerical setup in finite time. It is known, see e.g. [4], that a system
(A,B,CT ) is target controllable if and only if

rank[CTB,CTAB, ,CTA
2B, ..., CTA

n−1B] = |T | (4)
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In the particular case when the target is the entire n variable set X, we can
see that the above condition is reduced to the well known Kalman condition for
full controllability [6], i.e., an LTIS (A,B) is controllable if and only if

rank[B,AB,A2B, ..., An−1B] = n (5)

A big step forward in the search for algorithms looking for efficient solu-
tions for the (target) controllability problem has been achieved by translating
the problem to graphs. A first step in this direction is implemented by detach-
ing from particular numerical setups of a linear system, and focussing on the
intrinsic wiring of the system’s variables. We say that a linear time-invariant
dynamical system (A,B,CT ) is structurally target controllable (with respect
to a given size-k target set T ) if there exists a time-dependent input vector
u(t) = (u1(t), ..., um(t))T and a numerical setup for the non-zero values within
the matrices A and B, that can drive the state of the target nodes to any desired
numerical setup in finite time. According to Eq. (4) above, a system (A,B,CT )
is structurally target controllable if and only if there exist values for the non-zero
entries in A and B such that

rank[CTB,CTAB, ,CTA
2B, ..., CTA

n−1B] = k (6)

The case of full structural controllability is obtained from the above when T = X
and CT = In. It is known, see e.g. [9,15], that if a system is structurally (target)
controllable, then it is (target) controllable in almost all numerical setups of the
non-zero values within the state transition matrix A.

Linear systems can be represented in terms of directed weighted graphs.
The n variables of the systems are the nodes of the graphs, while directed edges
correspond to non-zero values in the state transition matrix. That is, there exists
a directed edge between variables xi an xj with weight v if and only if A(xj , xi) =
v �= 0. Similarly, the size-m controller vector u corresponds to m input nodes,
u1, ...um, called driver nodes, while the input matrix B determines the edges
between the driver nodes and the network. That is, there exists a directed edge
between ui an xj with weight w if and only if B(xj , ui) = w �= 0. The nodes
xj such that there exists i with B(xj , ui) �= 0 are called the driven nodes of the
network; these are the first nodes in the network which are directly manipulated
in order to drive the entire system to the desired state.

Instead of (target) structural controllability we can now talk of the equivalent
network controllability problem, where the variables and the targets are now
nodes in the directed network graph. It is known, see e.g. [9], that the structural
controllability problem has a counterpart formulation in terms of network graphs.
The n variable system (A) is structurally controllable from the m-input/driver
controller u and control matrix B if and only if we can select a set of n directed
paths from the input/driver nodes (i.e., as starting points) to each of the network
nodes (i.e., as ending points), such that no two paths would intersect at the same
distance d from their end points. In case of the target controllability problem
for a given target set T , with |T | = m, the above condition must hold for a path
family containing m paths, connecting all the targets to the driver nodes.
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From the point of view of bio-medical disease network analysis and control,
it is sometimes more advantageous to consider the set of driven nodes instead
of that of the driver nodes. To a rough understanding, the set of driver nodes
is describing the complexity of an outside controller, assuming this controller
can interact/influence with equal impact several of the network nodes; such
an interaction could be seen for example as the influence of a drug over the
expression of some particular genes. Meanwhile, the set of driven nodes provide
the exact collection of network nodes, i.e., genes, that will be used in order to
ultimately control the entire set of target nodes. In particular, if we require that
each driver node is interacting with at most one network node, i.e., the control
matrix B has at most one non-zero entry for every column, then there is a one-
to-one correspondence between driver and driven nodes. From now on, within
this study we will concentrate over minimizing the set of driven nodes for the
control of a given target within a directed network.

Definition 1. We say that for an LTIS (A,B,CT ) the input controller is 1-
bounded if and only if matrix B contains only one non-zero value on every col-
umn, i.e., each of the m inputs uj(t) control exactly one of the variables xi(t),
and that variable is independent of the choice for the time point t.

3 Driven Target Control Is NP-hard

In this section we prove that the problem of minimizing the number of driven
nodes for a given LTIS (A,B,CT ) and a target set T is NP-hard. If moreover
the system (A,B,CT ) is 1-bounded, the problem is equivalent to minimizing
its number of driver nodes. We are providing this result by proving that the
corresponding decision problem, i.e., whether there exists a size-k 1-bounded
controller B which can structurally control the target T , is itself NP-hard. This
will be done via a reduction to 3SAT.

We recall that in a directed graph, we say that a node Xi is an ancestor of
a node Xj if there exists a directed path (possibly empty) from Xi to Xj .

Theorem 1. The 1-Bounded Target Control Optimization Problem is NP-hard,
as the following associated decision problem is itself NP-hard. Given a network
graph G = (V,E), a target subset T ⊆ V , and a number n ≤ |V |, is there a
size-n 1-bounded control scheme for the target T , i.e., a set of n driver nodes,
each interacting with exactly one node from the graph, such that we obtain the
full control of the target nodes T? In matrix representation, is there a matrix B
of size |V | × n, with exactly one non-zero entry per each column, such that rank
[CTB,CTAB, ,CTA

2B, ..., CTA
n−1B] = |T |?

Proof (Sketch): We are proving the NP-hardness result via a reduction from
the 3SAT problem. Let P be an arbitrary 3SAT boolean formula instance, con-
taining n boolean variables x1, ..., xn and m clauses Cl1, ..., Clm. We are going
to construct a graph G = (V,E) with |V | = 3m(m + 1)/2 + 3n + m nodes and
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select a target subset C with |C| = m+ n such that the formula P is satisfiable
if and only if the cardinality of a minimal control set for C is n.

The graph G, presented also in Fig. 1, can be described as follows. It consists
of five types of nodes: valuation-nodes, clause-nodes, tautology-nodes, and path-
nodes. The valuation set of nodes contains 2n nodes, XT

j ,X
F
j , 1 ≤ j ≤ n, one for

each possible truth assignment of a variable xj . The clause set of nodes contains
m nodes, CL1, ..., CLm, one for each of the formula’s clauses. The tautology
set of nodes contains n nodes, TA1, ..., TAn, each corresponding to a variable-
specific tautological clause (xj∨¬xj). Finally, the path-level set of nodes contains
3m(m+1)/2 nodes, that is, for each of the clauses Cli, with 1 ≤ i ≤ m, we have
3i nodes Pa

(1;i)
j , Pa

(2;i)
j , and Pa

(3;i)
j , with 1 ≤ j ≤ i.

X1
T X1

F X2
T X2

F X3
T X3

F Xn
T Xn

F

CL1

CL2

CLm

TA1 TA2 TA3 TAn

P=(x1V x2V x3)    ( x1V x2V xn)

V L V V

(x3V x7V xn)

Fig. 1. The graph associated to a boolean formula P . For reducing the complexity of
the notations, the path nodes Pak;i

j are not labeled on the figure.

The directed edges of G can be easily described as follows. In the formula P ,
every clause Cli has exactly three valuations of the variables x1, ...,xn which may
validate Cli; let these be xv1

i1
, xv2

i2
, and xv3

i3
. Using the 3 disjoint sets of vertices

Pa
(1;i)
j , Pa

(2;i)
j , and Pa

(3;i)
j , with 1 ≤ j ≤ i, we connect the nodes Xv1

i1
, Xv2

i2
, and

Xv3
i3

to CLi, using 3 disjoint directed paths (each) of length i. The direction of
these edges are from the variable-type nodes towards the clause-type nodes.

In addition to the above edges, for any of the tautology-level nodes TAj ,
1 ≤ j ≤ n, we have two directed edges (XT

j , TAj) and (XF
j , TAj), representing

the two valuations which would validate the corresponding clause.
We fix the set T = {TAj | 1 ≤ j ≤ n} ∪ {CLi | 1 ≤ i ≤ m} containing n

tautology nodes and m clause nodes as our target set.
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We prove that the formula P is satisfiable if and only if the target T can be
controlled from exactly n control nodes. Moreover, at most one of the valuation
nodes associated to a boolean variable can be connected to a driver node.

The above result can be generalized for the case when each of the driver
nodes is connected to the network by at most k edges, for any given constant k.
That is, each driver node is controlling at most k driven nodes; we call such a
system k-bounded.

Definition 2. We say that for a linear time invariant dynamical system
(A,B,CT ) the input controller is k-bounded if and only if the matrix B con-
tains at most k non-zero values on every column, i.e., each of the m inputs uj(t)
control at most k of the variables in X.

Theorem: The k-Bounded Target Control Optimization Problem is NP-hard.
Namely, given a linear time invariant dynamical system (A,B,CT ) with a k-
bounded input controller and target control set T , finding the minimal set of
driven nodes controlling the target T is an NP-hard optimization problem.

Due to space limitations we omit the proof here.

4 Approximation Algorithms for Target Control

We have demonstrated in the previous section that trying to provide the optimal
solution for the Target Control problem is computationally hard. An alternative
choice is to develop approximation algorithms, trying to get close to the optimal
solution in a time-efficient manner.

A first Greedy algorithm for the Target Control problem has been described
by Gao et al. [4]. The authors approach the problem from a different perspective,
that of generating a linking in an associated network, called the dynamic graph;
the method has its roots in earlier studies of Poljak and Murota [13,14].

In the following we present first the approach of Poljak and Murota [14]
which connects the target control problem to the linking graph structure. Then,
we proceed to presenting the Gao et al. approximation algorithm for target con-
trollability, show its connection to the linking graph approach, and analyze the
algorithm’s shortcomings. Finally, we introduce three new heuristic improve-
ments of the optimization algorithm, and analyze their performance.

Let (A,B,CT ) be an LTIS over n variables, m inputs, and l targets (i.e.,
|T | = l), and let G = (V,E) be the associated network graph. The dynamical
graph G is a time-disjoint representation of the network graph, where each state
(from t = 1 to t = n) and each input variable (from t = 0 to t = n − 1) is
viewed as a distinct node at different time points, whereas the target states are
associated only with the time-point t = n+1. Formally, it is defined as the graph
G = (V ,E), with the set of nodes V = VA ∪ VB ∪ VC , where

– VA = {vi,t | i = 1..n, t = 1..n},
– VB = {vn+j,t | j = 1..m, t = 0..n − 1}, and
– VC = {vn+m+k | k = 1..l}.
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Note that the nodes in VC are in one-to-one correspondence with the nodes VC ,
as well as with the target T . The graph G has the following set of edges E:

– {(vj,tvi,t+1) | for all i and j such that Ai,j �= 0, t = 1..n}∪
– {(vn+j,tvi,t+1) | for all i and j such that Bi,j �= 0, t = 0..n − 1}∪
– {(vj,nvn+m+i) | for all i and j such that Ci,j �= 0}.

A collection L = (p1, p2, ..., pk) of k edge disjoint paths in the dynamical
graph G is called a linking of size k. If S, T ⊆ V are the sets of initial and
terminal nodes of the path L, then we say that L is an (S, T )-linking.

It has been shown in [14] that if (A,B) is an LTIS with m driver nodes (i.e.,
the number of columns of B is m) and T is a size-l target set which is controllable
from these driver nodes, then there must exist an (VB , VC)-linking of size l. It
has been a question for many years whether the converse of the above result also
holds. Namely, if for an LTIS (A,B,CT ) there exists an (VB , VC)-linking of size
l, then does it imply that the size-m driver set associated to B is controlling
the target T , i.e., rank[CTB,CTAB, ,CTA

2B, ..., CTA
n−1B] = l? Although the

answer to this question was proved in [14] to be negative, it became clear that
any counter-example for this claim must obey some very strict design conditions
regarding the controlling path from the driver nodes to the target.1 Thus, in
practice, finding a collection of nodes VB such that there exists a (VB , VC)-
linking of size l provides a good candidate for the set of driver nodes controlling
the target VC .

The above approach has been employed by Gao et al. [4] which introduced a
Greedy algorithm for the target control problem. Namely, given an LTIS A and
a target T , their algorithm searches for a small set VB for which there exists a
(VB , VC)-linking. In turns, such a set VB would have a very high probability for
defining a set of driver nodes for the target T . However, after applying this algo-
rithm, one has to perform a validation step which verifies whether the selected
set of driver/driven nodes selected by the algorithm are indeed controlling the
target. This can be done by checking that the rank of the controllability matrix
[CTB,CTAB, ,CTA

2B, ..., CTA
n−1B] is indeed equal to |T |.

In the following we describe the Gao et al. algorithm [4] and we introduce
three new heuristically improved variants of it. The comparative analysis of all
these algorithms is performed in Sect. 5

4.1 The Basic Target Control Algorithm (TarCo)

Let A be an LTIS over n variables and let G = (VA, EA) be the directed graph
associated to it. Let T ⊆ VA be a set of target variables/nodes. The following
algorithm outputs a set of driven nodes D which has a one-to-one correspondence
to the searched set VB for which there exists a (VB , VC)-linking.

1 An intuitive description of those systems for which a linking is not translated to a
valid controlling path is when there exist two targets t1 and t2 such that for every
path from a driver note d to t1 there exists another path from d to t2 using the exact
same collection of edges (as a multiset).
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Step 1: Let i = 0, Ci = T , and D = Di = ∅.
Step 2: Define a bipartite graph Gbi with nodes L∪R, where L = VA, R = Ci,

and any node appearing both in VA and in Ci is treated distinctly in L and R.
For l ∈ L and r ∈ R there exists an edge (l, r) in Gbi iff (l, r) ∈ EA is an edge in
the initial directed graph G.

Step 3: Find a maximum matching (ML,MR) in Gbi, ML ⊆ L and MR ⊆ R,
and let Ci+1 = ML be the set of the left sided matched nodes and let Di = R\MR

be the set of right sided un-matched nodes. Let D = D ∪ Di.
Step 4: We consider Ci+1 as the new set of target nodes. If Ci+1 = ∅ then

we complete the algorithm and output D. If not, we proceed to Step 5.
Step 5: If i < n then i = i+1 and proceed to Step 2 with the updated target

Ci and driven set D. Else, proceed to Step 6.
Step 6: Output D as the set of driven nodes.
Note: The previous algorithm is focussed on minimizing the set of generic

driver nodes, and not the set of 1-bounded driver nodes (i.e., driven nodes)
focussed on this research. In particular, the algorithm might not output the
complete set of driven nodes, but rather a subset of it which is in one-to-one
correspondence with the set of generic driver nodes. Indeed, if the algorithm
ends in Step 6, then it implies that the target set Cn is non-empty. Since the
total number of nodes in G is n, it implies that all the remaining nodes in Cn

can be partitioned into a number of cycles. Since the 1-bounded condition for
driver nodes is not imposed, all the nodes in these cycles, including the ones in
Cn, can be controlled from any driver nodes.

In order to modify the TarCo algorithm for finding a suitable set of driven
nodes, instead of driver nodes, we implemented an update/optimization step.

4.2 The Optimized Target Control Algorithm (OpTarCo)

In the TarCo algorithm, once a node x is selected for being a driven node, i.e.,
added to D in Step 3, we do not check whether until that stage the node x
appeared before in some previous control path. If so, now that we know that
node x is selected for being a driven node, we can prune that control path after
reaching node x. This leads to the following modified algorithm:

As before, let A be an LTIS over n variables and let G = (VA, EA) be the
directed graph associated to it. Let T ⊆ VA be the set of target variables/nodes.

Step 1 (Similar to TarCo): Let i = 0, Ci = T , and D = Di = ∅.
Step 2 (Similar to TarCo): Define a bipartite graph Gbi with nodes L ∪ R,

where L = VA, R = Ci, and any node appearing both in VA and in Ci is treated
distinctly in L and R. For l ∈ L and r ∈ R there exists an edge (l, r) in Gbi iff
(l, r) ∈ EA is an edge in the initial directed graph G.

Step 3.1: Find a maximum matching (ML,MR) in Gbi, ML ⊆ L and MR ⊆ R,
and let Ci+1 = ML be the set of the left sided matched nodes and Di = R \MR

be the set of right sided un-matched nodes.
Step 3.2: For each x ∈ Di \ D, do:
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Step 3.2.1: If node x appears in any previously computed Cj , j < i, then
remove the entire control path from that occurrence (in Cj) onward, and update
all the sets Ck,Dk with j ≤ k ≤ i + 1 accordingly. Then update D as D =⋃

p=0,..,i D
p.

End For (from Step 3.2)
Step 4: We consider D = D∪Di as the new set of driven nodes, and Ci+1 \D

as the new set of targets. If Ci+1 = ∅ then we complete the algorithm and output
D. If not, we proceed to Step 5.

Step 5 (Similar to TarCo): If i < n then i = i+1 and proceed to Step 2 with
the updated target Ci and driver set D. Else, proceed to Step 6.

Step 6: For all the remaining nodes in Cn, add them one by one to the driven
set D and, at each new addition to D, perform the check from Step 3.2.1, i.e.,
pruning the existing controlling path for each new addition in D.

Step 7: Output D as the set of driven nodes.

4.3 Heuristically Optimized Target Control Algorithms
(HeTarCo1-3)

In Step 3 (resp. 3.1) of the previous two algorithms, at each iteration of the search
process we find a maximum matching in between the nodes of G and the current
target Ci. However, such maximum matchings might not be unique, in which
case some of these maximum matchings might be more suitable to be chosen.
Let us assume the algorithm is at some iteration i in its search procedure. Let
C1, ..., Ci,D1, ..Di−1 and D be the already computed sets of targets and driven
nodes. Let Gbi be the bipartite graph constructed in iteration i, with nodes L∪R,
where L = VA, R = Ci, and any node appearing both in VA and in Ci is treated
distinctly in L and R. When searching for a maximum matching (ML,MR) in
Gbi, ML ⊆ L and MR ⊆ R, we are setting the following heuristic criteria for
guiding the process towards a minimum number of driven nodes. Note, not all
criteria below can be followed in the same time.

– Criteria 1: When computing the maximum matching (ML,MR), maximize the
use of already driven nodes in ML.

– Criteria 2: When computing the maximum matching (ML,MR) try to avoid
the creation of cyclic controlling path. That is, avoid selecting nodes x ∈ ML

such that there exists j ≤ i and a sequence ui+1, ..., uj such that uk ∈ Ck for
all j ≤ k ≤ i, ui+1 = uj = x, and for all j ≤ k ≤ i, uj is matched to uj+1 in
the corresponding bipartite graph.

– Criteria 3: When computing the maximum matching (ML,MR), maximize the
use of nodes in ML which have appeared in some previous Cj , j < i, on a path
that is already controlled (ends with a driven node).

– Criteria 4: When computing the maximum matching (ML,MR), maximize the
use of nodes in ML which have appeared in some previous Cj , j < i, on a path
that is not controlled yet.

– Criteria 5: When computing the maximum matching (ML,MR), maximize the
use of edges (u, v) (with u ∈ ML and v ∈ MR) which have been used in some
previous matching and are part of at least one path that is already controlled.
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– Criteria 6: When computing the maximum matching (ML,MR), maximize the
use of edges (u, v) (with u ∈ ML and v ∈ MR) which have been used in some
previous matching, but are not part of any path that is already controlled.

Following subsets of the above selection criteria, as well as the previously
introduced optimized control algorithm (OpTarCo) as a base algorithm, we
define in the following a series of three heuristically optimized target control
algorithms, as follows.

Algorithm HeTarCo1: Within Step 3.1 of the OpTarCo algorithm select a
maximum matching (ML,MR) following Criteria 2.

Algorithm HeTarCo2: Within Step 3.1 of the OpTarCo algorithm select a
maximum matching (ML,MR) following Criteria 1, 2, 3, and 4, in this exact
order of importance.

Algorithm HeTarCo3: Within Step 3.1 of the OpTarCo algorithm select a
maximum matching (ML,MR) following Criteria 2, 5, 6, 1, 3, and 4, in this
exact order of importance.

5 Results: A Comparative Analysis of the Four
Algorithms

We analyzed the performance of the four approximation algorithms against both
randomly generated networks and targets, as well as against a human protein-
protein interaction network, using as target a set of Breast Cancer specific essen-
tial genes.2

We predict the performance of all four algorithms to be highly dependent on
the size of the network, i.e., the number of nodes and edges, the average degree,
the size and the choice of the target set, as well as the overall control-affinity
of the network, i.e., the size of its minimal driven set controlling the entire set
of nodes. Thus, in order to perform a fair analysis of the algorithms against
one-another we impose several conditions for our test cases.

We generated randomly a set of 100 networks, each over 1000 nodes and
having exactly 4000 directed edges, i.e., all networks have equal average node
(in/out) degree 4.3 For each network, we randomly selected 10 target sets of size
100, 200, ..., up to 1000 (i.e., all the network’s nodes), respectively. We performed
10 (independent) runs for each of the target sets (and networks) with each of
the four algorithms; all runs were performed on the same Xeon 6/3 GHz core
computer.

2 Note that there is a one-to-one correspondence between genes and proteins; thus,
having as target a set of essential genes means the equivalent set of essential proteins.

3 Similar analyses were performed for networks of average degree from 2 to 6, but
due to space limitations we concentrate here over average degree 4 networks; sim-
ilar results were obtained in all cases, with more pronounced differences (for the
normalized values) in the case of higher degree networks.
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In order to compare the overall performance of all algorithms, as well as
the performance of each individual algorithm applied over different test-cases,
we normalize the performance of each run of an algorithm against the minimal
total driven control set of the network, i.e., against the size of the minimum set
of driven nodes controlling the entire network, as obtained over all runs with
all algorithm (40 runs for each of the complete 1000 target node set).4 Thus, a
reported value of 1 for an algorithm’s run (for a target and a network) signifies
that the size of that solution is equal to the minimal total driven control set of
that respective network.

In Fig. 2 we report the comparative analysis of the four algorithms with
regards to the average (normalized) size of solutions after each run of the algo-
rithm, Fig. 2(a), by taking to minimum of 10 runs for the same algorithm over
the same target, Fig. 2(b), as well as the average time complexity of each individ-
ual run, Fig. 2(c). Our analysis shows that in terms of minimality of the driven
set solution, all three heuristic algorithms, HeTarCo1 − 3 perform slightly bet-
ter than OpTarCo, when the target set is proportionally small compared to the
total number of nodes, i.e., less than 15 %. When the target size increases on the
other hand, two out of three heuristically improved algorithms perform consider-
ably worse, whereas the third one has a very similar performance as OpTarCo.
However, in terms of average time taken by each of the algorithms to perform a
run, there are up to 10-fold decreases for all heuristically improved algorithms.

In order to better analyze the importance of multiple runs over the solution
size decrease we considered testing the four algorithms by doing multiple runs
over a fixed time period, namely 12 h. For that we have selected a human protein-
protein interaction network consisting of approx. 3000 nodes (i.e., proteins) and
1000 directed edges (i.e., protein interactions); the network was obtained from
the SIGNOR (SIGnaling Network Open Resource) database [12]. For targets,
we have intersected the set of nodes from the previous network with the list
of Breast Cancer essential genes taken from the COLT-Cancer database [7]. In
particular, we considered the MDA-MBD-231 cell line and followed the GARP
(Gene Activity Rank Profile) and GARP-P values of corresponding proteins
mentioned in the database, selecting those entries with negative GARP score
and GARP-P value less than 0.05. The rationale behind this particular test-
case can be found in network pharmacology: Identifying a relative small set of
proteins which could control larger proportions of target essential genes would be
advantageous for the development of efficient drugs. By cascading effects, these
drugs could target several Breast Cancer essential genes in the same time, with
minimal effect over the healthy cells (by definition, disease-specific essential genes
are not taken among those genes which are essential for normal, i.e. healthy, cell
survival).

4 Note that computing the driven target control is different than computing the driver
control, as for the latter one there is a known polynomial time algorithm computing
the size of the minimal (total) driver control set, see [10]. In practice however, we
observed that the driver and driven control values are very close to one-another in
the case of randomly generated networks and real-life bio-medical networks.
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a)

b)

c)

Fig. 2. Comparative analysis of the four algorithms over randomly generated networks.
(a) The average (normalized) size of the driven set per algorithm and per target size;
(b) The average (normalized) size of the minimal size (over 10 runs) of the driven set
per algorithm and per target size; (c) the average time required for a single run, per
algorithm and per target size.

The above procedure provided us with a set of 145 essential genes which
could be used as target pool. We selected 3 target sets containing 30, 72, and 145
nodes, respectively; the choice of nodes for the smaller/incomplete targets was
done according to an increasing ordering of their corresponding GARP values.
The results of the 12 h runs of the algorithms are presented in Fig. 3. As it
can be seen from this analysis, the heuristically improved algorithms, especially
HeTarCo2 and HeTarCo3, performed much better and faster.
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Fig. 3. Comparative analysis of the four algorithms for multiple runs over a fixed 12 h
time period. The reported performance is cut short if no smaller sized solutions appear
after a certain time point.

6 Conclusions

The network controllability approach provides an interesting insight into a sys-
tem modeled as a directed graph: given a set of target nodes, we can identify a
set of driven nodes that allow an external user to gain control over the target
nodes through an external intervention on the driven nodes, taking advantage
of the internal ‘wiring’ of the network. We established in this paper that cal-
culating a minimal set of drive nodes is an NP-hard problem – this makes it
hopeless to apply the approach to real-life networks, such as signaling networks,
that may have thousands of nodes and edges. Even more, we established this
hardness result for a more practical version of the problem, where the exter-
nal intervention mimics that obtained through drug delivery. The drug delivery
constraint is modeled in our approach through a driver node that interacts with
exactly one node in the graph (seen as the main target of that drug) or, in a
different formulation, with at most k nodes (seen as the main and the secondary
targets of that drug). At the same time, we introduced several different heuris-
tics for approximated target control; these algorithms find a set of driven nodes
(perhaps not the smallest one) that control a given set of target nodes. Our
algorithms improve significantly the currently known algorithm for the problem
and we demonstrated in this paper that they are efficiently applicable even to
real-life-size networks.

Judging according to our computer simulations, the suitability of each of our
heuristically optimizedalgorithmsdepends greatly on the size of the target, propor-
tional to the size of the network, and the type of the network, i.e., sparse or dense,
homogeneous or non-homogeneous, etc. Determining which particular heuristics
works best for some type of networks, and thus designing problem-specific heuris-
tics, remains a topic of investigation. Meanwhile, given also the time efficiency of
these heuristic algorithms, we recommend the parallel use of all three of them in
determining the minimum target control of any particular network and target.

There are several other highly interesting research avenues that may be
explored in this area. On the theoretical side, an open problem is to establish
the approximation threshold of our heuristics. Another one, on which almost
nothing is known, is on the general, rather than on the structural controllabil-
ity of networks; in other words, this is the problem in which we also ask about
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the timing and the level of the external intervention, in addition to identifying
the driver nodes where it should be applied. On the applied side, an interesting
problem is to connect the network controllability approach with data on FDA-
approved drug targets, and with data on gene-essentiality for different types of
diseases; this has the potential of helping in the design of more diverse thera-
peutic strategies using currently known drugs.
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Abstract. Complex behaviour arising in biological systems is described
by highly parameterised dynamical models. Most of the parameters
are mutually dependent and therefore it is hard and computationally
demanding to find admissible parameter values with respect to hypoth-
esised constraints and wet-lab measurements. Recently, we have devel-
oped several high-performance techniques for parameter synthesis that
are based on parallel coloured model checking. These methods allow to
obtain parameter values that guarantee satisfaction of a given set of
dynamical properties and parameter constraints. In this paper, we review
the applicability of our techniques in the context of biological systems.
In particular, we provide an extended analysis of a genetic switch con-
trolling the regulation in mammalian cell cycle phase transition and a
synthetic pathway for biodegradation of a toxic pollutant in E. coli.

1 Introduction

Dynamical models in systems and synthetic biology are typically represented
in terms of systems of ordinary differential equations (ODE). These models are
quantitative and their functionality relies on adequate selection of parameter
values. Practical parametric identification [19] is in many cases the only solu-
tion to obtain parameter values that fit with experimental observations. Due
to the limited resolution of wet-lab experimentation, the task is hard. On the
other hand, formal methods provide techniques that allow global analysis of
model dynamics under uncertainty of parameter values. Parameter synthesis
is a technique that allows identification of parameter values with respect to a
given set of a priori known hypotheses (or requirements) on systems dynamics
and parameter constraints (e.g., correlations of parameter values, constraints on
production/degradation ratio, etc.).

There are several levels of complexity that significantly affect the tractabil-
ity of parameter synthesis for biological models. First, the procedure requires
consideration of all possible settings of parameters – points in the parameter
space. The size of the parameter space grows exponentially with the number of
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unknown parameters. Second, the complexity of the procedure increases with
the number of dependencies among individual parameters. Parameter synthesis
methods based on model checking or monitoring systems dynamics are capable
to deal with parameter dependencies to some extent. On the contrary, traditional
parameter estimation methods that search for an optimal fit of the parameters
wrt the given data do not directly deal with dependent parameters [19] (manual
work is required – model reduction or reformulation).

Several methods and tools based in computer science have been developed
to tackle advanced analysis of biological models [4]. Given the complexity of
the problem and the need for comprehensive large-scale models, there is a nat-
ural call for development of techniques prepared to perform efficiently on high-
performance computing platforms [1]. The complexity caused by the state space
and parameter space size can be reduced by parallel techniques. The achieved
efficiency is again highly dependent on the modelling approach, the nature of
models, and the properties considered.

In this paper, we formulate a general framework for parameter synthesis
using several recently developed techniques based on model checking [2,7,9].
In particular, these techniques work with a given Computational Tree Logic
(CTL) specification of behaviour constraints and a given initial parameter space
(potentially refined with a priori known constraints on parameter values). In this
context, parameter synthesis is solved by the coloured model checking technique
extended with symbolic encoding of parameter valuations. The paper focuses
primarily on case studies and practical evaluation of the workflow. As a part of
the workflow, we apply a recently developed parallel algorithm published in [7].

The contribution of this paper is a general workflow for parameter synthesis
based on model checking and application of this workflow to two different bio-
logical case studies that are of high importance in systems and synthetic biology.
In particular, we provide an extended analysis of a genetic switch controlling the
regulation in mammalian cell cycle phase transition and a synthetic pathway for
the biodegradation of a toxic pollutant in E. coli.

Related Work. Existing techniques for parameter synthesis from temporal speci-
fication are either based on model checking performed directly over a qualitative
finite quotient of systems dynamics [2,6,9,22], on techniques from hybrid sys-
tems [8], and on polytopic set representations employed with on-the-fly refine-
ment of the parameter space [11]. Our technique can be treated as an extension
to the first group of techniques. By employing SMT, we obtain a general frame-
work that supports all parameterisations and constraints that can be encoded
in a first-order logic over reals. Techniques in [6,15] also fit our workflow well,
they encode parameter sets symbolically in terms of polytopes allowing to cap-
ture linear dependencies. To the best of our knowledge, the mentioned related
techniques have not been parallelised yet.

Monitoring-based techniques [12,20] have an advantage that the function
defining the systems dynamics is considered as a black box provided that there
is basically no limitation on the form of parameterisation. A significant advan-
tage of these techniques is the ability of quantitative analysis giving detailed
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insights on the sampled parameter space. In our workflow, we employ these
methods in the post-processing phase. Additionally, a promising fact is that
numerical solvers can be replaced with SMT solvers for non-linear functions
and real domains [14,18]. However, these techniques currently focus on reach-
ability analysis only and their extension to general temporal specifications is
a non-trivial task yet to be explored as well as their inclusion into the overall
model-checking-based parameter synthesis framework.

2 Methods

The overall procedure of parameter synthesis based on model checking consists
of several tasks. The general overview of the workflow is depicted in Fig. 1 (left).
In particular, the input of the method is a set of behaviour constraints specifying
requirements on the systems dynamics, a set of parameter constraints collect-
ing all a priori known restrictions, dependencies and correlations of individual
parameter values, and finally, a dynamical system represented as a potentially
non-linear system of ordinary differential equations (ODE model).

The workflow can be realised with any parameter synthesis method based on
model checking and discretisation of the input ODE model by means of qualita-
tive finite quotient rigorously abstracting its dynamics. In our case, we employ
the technique of coloured model checking that provides a single-run heuristics

l

l

l

l

l

l

l
l

l

l

l l
l

l
l

Fig. 1. Overall workflow of parameter synthesis for ODE models based on model check-
ing (left). Refined description of the coloured model checking procedure for the case of
SMT-based symbolic representation of parameter sets (right).
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to exploration of the parameter space wrt the given behaviour constraints. The
output of the method is a collection of sets of parameter values for which the
given behaviour and parameter constraints are guaranteed to be satisfied. This
result can be further post-processed. First, the SMT-based optimisation tools
such as Symba [17] can be used to find approximate parameter values optimal
with respect to a given objective function. Second, sampling or statistical model
checking can provide detailed exploration of the valid parameter space including
quantitative measures such as satisfaction degree [20]. All the steps starting from
approximation, abstraction and finally the parameter synthesis are automatised
by the respective algorithms. The only input required from the user (in addi-
tion to the models and constraints) is a parameter setting the precision of the
approximation step. Finally, to automatise processing and visualisation of the
resulting data, we have implemented a set of scripts written in the R language.

An important fact is that simulation results performed on the ODE mod-
els can be aligned with model checking results only approximately due to the
different nature of approximation errors occurring in both methods. To explore
the resulting space by monitoring while correctly aligning the results with model
checking, the simulation has to be performed on the approximated (PMA) model.

Model. Let P ⊆ R
m
≥0 denote the continuous parameter space of dimension m.

A biological model has to be given as a system of ODEs of the form ẋ = f(x, μ)
where x = (x1, . . . , xn) ∈ R

n
≥0 is a vector of variables, μ = (μ1, . . . , μm) ∈ P is

a vector of parameters, and f = (f1, . . . , fn) is a vector where each component
is a function constructed as a sum of reaction rates where every sum member
represents an affine or bi-linear function of x, or a sigmoidal function of x.
In particular, this restriction covers mass action kinetics with stoichiometric
coefficients not greater than one and any sigmoidal kinetics such as all significant
variants of enzyme or Hill kinetics. An important additional requirement is that
each fi must be affine in μ.

Constraints. To express behaviour constraints of interest, we employ the stan-
dard branching time logic CTL. The formulae of CTL are defined by the following
abstract syntax:

ϕ ::= q | ¬ϕ | ϕ1 ∧ ϕ2 | AXϕ | EXϕ | A(ϕ1 Uϕ2) | E(ϕ1 Uϕ2)

where q ranges over the atomic propositions from the set AP. We use the stan-
dard abbreviations such as EFϕ ≡ E(ttUϕ) and AGϕ ≡ ¬EF¬ϕ.

To express initial parameter constraints on the admissible parameter space,
we employ a quantifier-free formula with parameters at the place of variables
and inequalities at the place of predicates, denoted as ΦI .

Approximation. We consider dynamical systems ẋ = f(x, μ) satisfying the crite-
rion that every fi is piecewise multi-affine (PMA) in x. To achieve that we employ
the approach defined in [15]. In particular, each sigmoidal function member in
fi is approximated with an optimal sequence of piecewise affine ramp functions.
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In this procedure, a finite number of thresholds is introduced for every com-
ponent of x. The crucial factor of the approximation error is the number of
piecewise affine segments.

Abstraction. We employ the rectangular abstraction [6,15]. We assume that we
are given a set of thresholds {θi

1, . . . , θ
i
ni

} for each variable xi satisfying θi
1 < θi

2 <
· · · < θi

ni
. Each fi is assumed to be multi-affine on each n-dimensional interval

[θ1j1 , θ
1
j1+1] × · · · × [θn

jn
, θn

jn+1]. We call these intervals rectangles. Each rectangle
is uniquely identified via an n-tuple of numbers: R(j1, . . . , jn) = [θ1j1 , θ

1
j1+1] ×

· · · × [θn
jn

, θn
jn+1], where the range of each ji is {1, . . . , ni − 1}. We also define

VR(j1, . . . , jn) to be the set of all vertices of R(j1, . . . , jn).
It has been shown that rectangular abstraction is conservative with respect

to almost all trajectories of the original (continuous) PMA model [5]. The rec-
tangular abstraction results in a state-transition system, a so-called parame-
terised Kripke structure, defined as K = (P, S,→, L) with S = {(j1, . . . , jn) |
∀i : 1 ≤ ji ≤ ni} where each α ∈ S represents the rectangle R(α). The
atomic propositions representing concentration inequalities are assigned to ade-
quate states by means of the labelling L. In particular, L : S → 2AP where
AP = {xi 	 θi

j | 1 ≤ i ≤ n, 1 ≤ j ≤ ni},	 ∈ {≤,≥}}. The transition relation →
is defined between any two states representing adjacent rectangles. Each transi-
tion is associated with a subset of parameter values under which it is allowed.

Symbolic Encoding of Parameters. Let now α = (j1, . . . , jn) ∈ S, 1 ≤ i ≤ n and
d ∈ {−1,+1}. We define αi,d = (j1, . . . , ji + d, . . . , jn) (if ji + d is in the valid
range). Thus αi,d describe all the neighbouring rectangles of α. We further define
vi,+1(α) = VR(α) ∩ {(..., ji + 1, ...)} and vi,−1(α) = VR(α) ∩ {(..., ji, ...)}. To
define the transition relation → of the parameterised Kripke structure K, every
pair of states α, αi,d ∈ S, 1 ≤ i ≤ n, d ∈ {−1, 1}, is associated with a formula
Φα,αi,d symbolically encoding the set of parameter values μ ∈ P for which the
transition α → αi,d is valid:

Φα,αi,d :=
∨

v∈vi,d(α)

d · fi(v, μ) > 0

Additionally, the rectangular abstraction approximates the potential exis-
tence of a fixed point in any rectangle α ∈ S. This is achieved conservatively by
introducing a self-transition for every state provided that every self-transition
α → α is labelled with the following formula:

Φα,α := ¬
∨

1≤i≤n

(
(Φαi,−1,α ∧ Φα,αi,+1 ∧ ¬Φα,αi,−1 ∧ ¬Φαi,+1,α)
∨ (¬Φαi,−1,α ∧ ¬Φα,αi,+1 ∧ Φα,αi,−1 ∧ Φαi,+1,α)

)

The formula is true just if there is either a pair of transitions αi,−1 → α →
αi,+1 or a pair of transitions αi,+1 → α → αi,−1 provided that the respective
two transitions are the only transitions allowed in ith dimension through the
rectangle α. According to [6], this situation implies that the zero vector is not
included in the convex hull of the vectors in rectangle vertices. That makes a
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necessary condition for non-existence of a fixed point inside the rectangle. We
have found this representation of fixed points as satisfactory for our biological
case studies [2,9].

Remark 1 (Interval-Based Encoding). In case every fi(x, μ) depends on at most
a single component in μ (there is at most one unknown parameter per equa-
tion), encoding of parameter values can be significantly simplified. In particular,
in such case all parameters in μ are mutually independent and therefore any set
of parameter values can be represented as a Cartesian product of closed inter-
vals describing ranges of individual parameters values. The reason for that comes
from inherent properties of rectangular abstraction. In consequence, the repre-
sentation of parameter sets as well as the overall parameter synthesis procedure
can be significantly simplified. In [9] we have presented an efficient solution for
the respective class of parameterised models that avoids SMT encoding.

Coloured Model Checking Integrated with SMT Solver. The procedure of coloured
model checking with SMT-encoded parameter values is briefly illustrated in
Fig. 1 (right). Formally, let K = (P, S, I,→, L) be the parameterised Kripke
structure with symbolic description as explained above. Let further ϕ be a CTL
formula over AP. The goal of coloured CTL model checking is, given K, ΦI , and
ϕ, to find the function F that assigns to every state of the Kripke structure the
set of parameters that ensure the satisfaction of the CTL formula. Formally, the
function is described as F(s) = {p ∈ P | p |= ΦI , s |=Kp

ϕ}.
We have adapted the CTL model checking algorithm to perform on the para-

meterised Kripke structure with symbolic encoding of parameter values. Briefly,
the states are iteratively labelled with all subformulae of ϕ and the respective SMT
formulae representing the parameter values for which the particular subformula is
valid. This is realised starting from atomic propositions and back-propagating the
information while unfolding the formula structure until the fixed point is reached.
In every phase the SMT solver is executed to decide on which transitions are valid
for the propagation. The distributed algorithm is presented in [7].

Remark 2 (Consequences of Overapproximation). It is important to note how the
overapproximative abstraction affects model checking results. For a formula in
the universal fragment of CTL (ACTL), the abstraction causes parameter values
synthesised by model checking to be under-approximated wrt the entire set of
parameter values for which the formula is exactly valid in the PMA model [5].
For the existential fragment (ECTL), we obtain over-approximation of the exact
set of parameter values.

3 Case Study

3.1 Biodegradation of 1,2,3-Trichloropropane in E. Coli

Anthropogenic halogenated compounds were unknown to nature until the indus-
trial revolution, and microorganisms have not had sufficient time to evolve
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TCP DCP ECH CPD GDL GLY
DhaA HheC EchA HheC EchA

d[TCP ]
dt

= − k1·DhaA·[TCP ]
Km,1+[TCP ]

d[DCP ]
dt

= k1·DhaA··[TCP ]
Km,1+[TCP ]

− k2·HheC·[DCP ]
Km,2+[DCP ]

d[ECH]
dt

= k2·HheC·[DCP ]
Km,2+[DCP ]

− k3·EchA·[ECH]
Km,3+[ECH]

d[CPD]
dt

= k3·EchA·[ECH]
Km,3+[ECH]

− k4·HheC·[CPD]
Km,4+[CPD]

d[GDL]
dt

= k4·HheC·[CPD]
Km,4+[CPD]

− k5·HheC·[GDL]
Km,5+[GDL]

d[GLY ]
dt

= k5·HheC·[GDL]
Km,5+[GDL]

k1 = 1.05, k2 = 0.751, k3 = 14.37, k4 = 2.38, k5 = 3.96,

Km,1 = 1.79, Km,2 = 1.00, Km,3 = 0.09, Km,4 = 0.86, Km,5 = 3.54

Fig. 2. (Up) An abstract scheme of the original system. Note that enzymes HheC and
EchA are employed twice on the pathway. The reverse mass flow is considered negligible
and abstracted away. (Down) The mathematical model. Enzyme concentrations are
considered as constant (and unknown) parameters. Units: kx(s−1), Km,x(mM).

enzymes for their degradation. A synthetic route for conversion of the highly
toxic 1,2,3-trichloropropane (TCP) to glycerol (GLY) in Escherichia coli was
assembled and the research was published in [16].

TCP is an emerging toxic groundwater pollutant and suspected carcinogen
which spreads to the environment mainly due to improper waste management.
According to [16] no naturally occurring bacterial pathway capable of degrada-
tion of TCP has been found so far. However, a synthetic pathway compound of
five intermediates with harmless glycerol as a final product and utilising enzymes
from other bacterial species was assembled (Fig. 2).

These enzymes are haloalkane dehalogenase (DhaA) from Rhodococcus rhodo-
chrous and haloalcohol dehalogenase (HheC), epoxide hydrolase (EchA) from
Agrobacterium radiobacter. They have the major role in this pathway. In order
to achieve an efficient implementation of the pathway it is important to quanti-
tatively characterise mutual interplay and optimal concentration levels of these
enzymes. In general, the higher is the enzyme concentration the higher is the
flux rate. Especially, if a substrate and its intermediates are more or less toxic
to a host cell such a requirement becomes critical.

Unfortunately, the solution is not straightforward because each of the
enzymes has a distinct rate and some of the intermediate products are much
more toxic than the others. Additionally, since these enzymes are not natural
proteins in E. coli, they have to be produced at the expense of other substances.
This is called metabolic burden. In other words, there must be a balance in con-
centrations of these enzymes in order to degrade TCP as fast as possible while
not killing the host by enervation. Therefore, we employ our workflow to answer
the question on optimal enzyme concentration levels.

The original model taken from [13] was reduced in order to minimise the
dimensionality of the system. Redundant reactions are eliminated based on their
rates and catalytic efficiency (defined as kx

Km,x
, see Table 1). In general, greater

catalytic efficiency means a faster reaction flux towards generation of the prod-
uct. Since we need to preserve the number of unknown parameters, the very first
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Table 1. Model reactions including enzymes, reaction constants and additional infor-
mation about catalytic efficiency.

Reaction Enzyme Rate (k) Michaelis const. (Km) Cat. efficiency ( k
Km

)

TCP→DCP DhaA 1.050 1.79 0.587

DCP→ECH HheC 0.751 1.00 0.751

ECH→CPD EchA 14.370 0.09 159.670

CPD→GDL HheC 2.380 0.86 2.767

GDL→GLY EchA 3.960 3.54 1.119

reaction cannot be omitted. Reaction towards CPD is undeniably the fastest
reaction of the model not just due to the best catalytic efficiency but also because
of the highest affinity which is an alternative interpretation of the reciprocal
Michaelis constant. Therefore this reaction can be omitted in our model. The
reaction towards GDL has the second fastest flux and since it is much faster than
the last reaction it can be omitted as well. Finally, we have reduced the model
to only three reactions which significantly helps to reduce the model state space
while making the investigation of the three uncertain parameters tractable.

The desired property is defined verbally as “complete degradation of TCP
as fast as possible with the least accumulated toxicity”. The notion of toxicity
is based on inhibitory concentration of particular molecules. Our framework is
designed for manipulation with differential expressions rather than with numer-
ical assignments. Hence we are not able to directly observe actual amount of
toxicity. But the toxicity has a direct connection to the concentrations of inter-
mediates. To this end, we translate the desired property as “TCP completely
degrades and the concentration of intermediates does not exceed given bounds”.
The bounds are based on experimental data of the original model (Fig. 3) with
the default setting of parameters (DhaA = 0.003, HheC = 0.0036, EchA = 0.0029
(mM)) and initial concentrations ([TCP ] = 2 mM , [other species] = 0 mM).

Fig. 3. Experimental data from the original model [16]. We are interested just in the
progress of TCP, DCP, GDL and GLY taken as variables of our reduced model. Note
the time scale and the maximal reached concentration of DCP and GDL.
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Constants are shown in Fig. 2. The presented data reveal that the considered
boundary is reasonable for the concentration 0.5 mM or less. In consequence,
we proceed by testing various combinations of bounds for GDL and DCP in the
interval [0, 0.5] of mM .

It has been mentioned that concentration of enzymes cannot be unlimited due
to the metabolic burden (which is not the object of investigation in this paper).
According to the default values the initial constraints for these parameters are
therefore set to the interval [0.0, 0.02] of mM . The parameter synthesis workflow
is employed in order to find parameter values satisfying the desired property. The
template of CTL formula expressing the property (denoted as ϕ) is a combination
of several smaller subformulae:

ϕ1 = (AG [TCP ] < y), ϕ2 = (A([TCP ] > x)U(AF ϕ1)),

ϕ3 = (AG [GLY ] > x), ϕ4 = (A([GLY ] < y)U(AF ϕ3)),

ϕ6 = (AG [DCP ] < v), ϕ7 = (AG [GDL] < w),

ϕ5 = (ϕ2 ∧ ϕ4), ϕ8 = (ϕ5 ∧ ϕ6), ϕ = (ϕ8 ∧ ϕ7),

where x, y, v and w are estimated values making a particular instance of this
property. Here x = 1.9 (according to [16] where authors use the value 2 mM),
y = 0.01 (cannot be zero), v ∈ {0.5, 0.3, 0.1} and w ∈ {0.5, 0.25, 0.1} (variations
based on an observation of the experimental data in Fig. 3).

The resulting formula is quite large. However, due to the global nature of
enumerative CTL model checking algorithm all the subformulae are investigated
during the process. This feature can be very convenient in many cases. The
computation took more than one day on one computing node while less than 2 h
on twenty nodes (each node equipped with common HW – Intel Xeon quad-core
2 GHz and 16 GB of RAM).

The result of parameter synthesis is the set of initial states (satisfying ϕ) each
accompanied with a set of respective values of the parameters (DhaA, HheC,
EchA). Results are encoded as a formula in the SMT-LIB format 2.5 [3]. Con-
sequently, to compare and visualise satisfactory parameter values in a human-
readable form some post-processing is necessary. In this case, we run a script
that systematically samples and visualises the parameter space encoded by the
formula (by calling the SMT solver iteratively). The result is the graphical rep-
resentation of the parameter subspace constraint by ϕ and the initial parameter
constraints. In Fig. 4 the results are shown for a specific initial state.

Finally, we further process the obtained parameter values by numerical sim-
ulation in order to evaluate the validity of ϕ in the original model (Fig. 5). Some
points of the resulting parameter space (Fig. 4 (up left)) were selected as repre-
sentatives of the satisfiable, unsatisfiable and in-between area. By in-between it
is meant the layer of points very close to satisfiable area but still being unsat-
isfiable. Since we operate on an overapproximated system, the result represents
an underapproximation of the exact solution. Hence the points in the in-between
area might satisfy a given property in the original ODE model even though our
framework has refused them.
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Fig. 4. A sample of the resulting parameter space for a particular initial state: TCP ∈
[1.9, 1.9586], DCP ∈ [0.448898, 0.5], GDL ∈ [0.0, 0.0669138], GLY ∈ [0.0, 0.01]. Dotted
area corresponds to ϕ (v = 0.5, w = 0.25). (Up left figure) The 3D space sampled with
400 points per a layer. (Other figures) Projection of the 3D plot for every combination
of unknown parameters. All values are shown in mM .

Note that due to the global nature of our algorithm all states satisfying the
property have been found. Concentration of all variables in this case study has
been restricted to the interval [0.0, 5.0] mM . Our framework reveals parameter
values satisfying ϕ also for initial states beyond the singular initial concentration
of particular species considered in [16]. The most interesting are the initial states
that increase the upper limit of TCP concentration wrt ϕ (Fig. 6).

3.2 Regulation of G1/S Cell Cycle Transition

This case study is focused on extension of previous analysis from [9] of the model
describing regulatory interactions controlling a transition between two phases of
a mammalian cell cycle [21]. In particular, the model explains the core mech-
anism behind the irreversible decision for cell division described by a two-gene
regulatory network of interactions between the tumour suppressor protein pRB
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Fig. 5. Numerical simulations for particular parameter values obtained as the outcome
of our framework. (Up left) Satisfiable configuration: DhaA = 0.0015, HheC = 0.007,
EchA = 0.01. (Up right) In-between configuration: DhaA = 0.0035, HheC = 0.005,
EchA = 0.005. (Down left) Unsatisfiable configuration: DhaA = 0.01, HheC = 0.001,
EchA = 0.01. (Down right) Unsatisfiable configuration: DhaA = 0.01, HheC = 0.01,
EchA = 0.01. All values are in mM . Simulations were obtained in BIOCHAM [20].
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Fig. 6. (Left) Resulting parameter space for a specific initial state: TCP ∈
[3.84186, 5.0], DCP ∈ [0.0, 0.448898], GDL ∈ [0.0, 0.0669138], GLY ∈ [0.0, 0.01]. The
red dot shows the selected point for parameters values: DhaA = 0.001, HheC = 0.005,
EchA = 0.015. (Right) Numerical simulation for the selected point. All values are
in mM . Simulation was obtained in BIOCHAM [20]. (Color figure online)
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and the central transcription factor E2F1 (Fig. 7 (left)). For suitable parameter
values, two distinct stable attractors may exist (the so-called bistability). In [21]
a numerical bifurcation analysis of E2F1 stable concentration depending on the
degradation parameter of pRB (φpRB) has been provided. Note that traditional
methods for bifurcation analysis hardly scale to more than a single model para-
meter.

In this paper we demonstrate that by employing our algorithm we can pro-
vide bifurcation analysis for more than one parameter. In particular, we focus
on the synthesis of values of two interdependent parameters. We show how the
new results complement the results obtained with the algorithm employing the
interval-based representation of mutually independent parameters [9]. Addition-
ally, we compare the results achieved within our workflow with the numerical
analysis provided in [21].

The property of bistability expresses that the system is able to settle in two
distinct stable states (i.e., levels of concentration) for specific initial conditions
and particular parameter values. It implies existence of a decision-making point
(or area) in the system.

The main outcome of the original analysis is shown in Fig. 8 (left) (pro-
duced by numerical analysis) displaying the dependency of stable concentra-
tion of E2F1 on value of φpRB (degradation rate). The most interesting area
called unstable (for φpRB ∈ [0.007, 0.027]) determines feasible values of φpRB

wrt the above property. For φpRB < 0.007 the system converges to a lower-
concentration stable equilibrium whereas for φpRB > 0.027 it converges to a
higher-concentration stable equilibrium.

The CTL representation of the property in consideration is ϕ1 = (EFAG low
∧EFAGhigh) where low = (0.5 < E2F1 < 2.5) (representing safe cell behav-
iour) and high = (4 < E2F1 < 7.5) (representing excessive cell division). During
the single run of our algorithm all subformulae of ϕ1 have been analysed. Let
ϕ2 = (AG low) and ϕ3 = (AGhigh) as the most interesting.

In [9] we have investigated perturbations of a single parameter φpRB with
the initial constraint φpRB ∈ [0.001, 0.025]. According to the Sect. 2 we have first
created the PMA approximation of the original ODE model (Fig. 7 (right)) by
approximating each non-linear function in the right-hand side of ODEs with a
sum of optimal sequence of piecewise affine ramp functions (the precision has
been set to 70 automatically generated segments per each non-linear function).
For such a setting the verification process took less than 10 seconds on twenty
nodes. The results were processed by a Python script (Fig. 8 (right)). The plot

E2F1pRB

d[pRB]
dt = k1

[E2F1]
Km1+[E2F1]

J11
J11+[pRB] − φpRB [pRB]

d[E2F1]
dt = kp + k2

a2+[E2F1]2

K2
m2+[E2F1]2

J12
J12+[pRB] − φE2F1[E2F1]

a = 0.04, k1 = 1, k2 = 1.6, kp = 0.05, φpRB = 0.005
φE2F1 = 0.1, J11 = 0.5, J12 = 5, Km1 = 0.5, Km2 = 4

Fig. 7. G1/S transition regulatory network (left) and its ODE model (right).
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Fig. 8. (Left) Equilibrium curve for E2F1 in proportion to φpRB as the result of
bifurcation analysis [21] (the authors confirmed the scale of φpRB in the figure should
be 0.005-0.035 according to the text). (Right) Model checking results. Red and blue
are the high and low stable regions, respectively. Yellow are the states where ϕ1 holds.
(Color figure online)

intentionally depicts the same space as the Fig. 8 (left) to show obvious similar-
ities of these results. The blue area stands for stable concentration of E2F1 (y-
axis) with particular value of φpRB (x-axis) satisfying the property ϕ2, whereas
the red area satisfies the property ϕ3. The yellow area (in the middle) stands
for possibility of reaching both stable concentrations. Due to mixing of existen-
tial and universal quantifiers (see Sect. 2), the results achieved for ϕ1 cannot be
exactly interpreted. On the contrary, the results for ϕ2 and ϕ3 are guaranteed
due to the conservativeness of the abstraction.

Although the algorithm based on interval-based encoding performs fast, it is
limited to independent parameters only. To overcome this limitation, we have
employed the SMT-based algorithm to explore two uncertain mutually depen-
dent parameters. The method is computationally more demanding (about one
order of magnitude for each pair of dependent parameters). The goal of our
extended analysis is to explore the mutual effect of the degradation parameter
of pRB (φpRB) and the production parameter of pRB (k1) on the bistability.
Additionally, we perform post-processing of achieved results by employing addi-
tional constraints on the parameter space (e.g., imposing a lower and upper
bound on the production/degradation parameter ratio) and show an alternative
way of presenting the results.

In particular, we involve the SMT-based tool Symba [17] to obtain an approx-
imated interval of the bounds on valid parameter values. Since the considered
parameters are linearly dependent, the resulting intervals cannot be simply com-
bined to display the two-dimensional validity area in the parameter space. To this
end, we employ Symba to explore the ratio of the two parameters. By combining
initial parameter constraints with the bounds on the parameter ratio, a more
accurate parameter subspace is acquired. Such an outcome has been used with
the initial constraint φpRB ∈ [0.001, 0.1] and k1 ∈ [0.001, 10] (Fig. 9 (up left)).
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Fig. 9. (Up left) The resulting parameter space merged for all initial concentrations.
Each area corresponds to a different property: ϕ1 (yellow), ϕ2 (blue) and ϕ3 (red). (Up
right) The same parameter space magnified and projected to φpRB-axis. The framed
region agrees with the original numerical bifurcation analysis performed in [21] for
φpRB . (Down) Landscapes of the parameter space according to the quantitative satis-
faction degree computed by BIOCHAM for ϕ2 (left) and ϕ3 (right), respectively. (Color
figure online)

Additionally, we have explored a refined parameter space (φpRB ∈ [0.001, 0.025]
and k1 ∈ [0.001, 2]) where a one-dimensional projection on the φpRB-axis is
highlighted for k1 ≈ 1, the default value of k1 (Fig. 9 (up right)).

The analysis took 8 min on twenty nodes (excluding post-processing). The
obtained results can be used as a base for further analysis. We employ the feature
of BIOCHAM [10] to compute the landscape function that allows investigation of
quantitative satisfaction degree of the properties explored (Fig. 9 (down)). LTL
reformulation of ϕ2 and ϕ3 has been used (ϕ1 cannot be expressed in LTL). The
lighter is the colour the higher the satisfaction degree.
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4 Conclusions

Recently developed methods for parameter synthesis of piecewise multi-affine
systems have been embedded into a general workflow for biological models. The
workflow has been applied to a kinetic model of a synthetic metabolic pathway
and to a model of biological switch. In the former case, we have predicted admis-
sible configurations of required enzymes concentration that guarantee the desired
production of glycerol under elimination of the toxicity. In the latter case, we
have obtained computationally efficient analysis of bistability for two mutually
dependent parameters. In contrast to our previous results on synthesis of inde-
pendent parameters, computational loads were significantly increased. However,
the parallel algorithm was able to provide the results still in reasonable times
provided that an exhaustive amount of information about the systems dynamics
has been computed.

The main advantage is the global view of the systems dynamics. A disadvan-
tage is the need for approximation and abstraction of the original ODE model.
For future work, it is important to integrate the results with the approximation
error and to make abstraction sensitive to the properties analysed.
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Abstract. In Systems Biology, modelers develop more and more re-
action-based models to describe the mechanistic biochemical reactions
underlying cell processes. They may also work, however, with a sim-
pler formalism of influence graphs, to merely describe the positive and
negative influences between molecular species. The first approach is pro-
moted by reaction model exchange formats such as SBML, and tools
like CellDesigner, while the second is supported by other tools that have
been historically developed to reason about boolean gene regulatory net-
works. In practice, modelers often reason with both kinds of formalisms,
and may find an influence model useful in the process of building a reac-
tion model. In this paper, we introduce a formalism of influence systems
with forces, and put it in parallel with reaction systems with kinetics, in
order to develop a similar hierarchy of boolean, discrete, stochastic and
differential semantics. We show that the expressive power of influence
systems is the same as that of reaction systems under the differential
semantics, but weaker under the other interpretations, in the sense that
some discrete behaviours of reaction systems cannot be expressed by
influence systems. This approach leads us to consider a positive boolean
semantics which we compare to the asynchronous semantics of gene
regulatory networks à la Thomas. We study the monotonicity proper-
ties of the positive boolean semantics and derive from them an efficient
algorithm to compute attractors.

1 Introduction

In Systems Biology, modelers develop more and more reaction models to describe
the biochemical reactions underlying cell processes. This approach is promoted
by reaction-model exchange formats such as SBML [18] and by the subsequent
creation of large reaction-based model repositories such as BioModels [25], with-
out prejudging of their interpretation by differential equations, Markov chains,
Petri nets, or boolean transition systems [12].

Modelers can also work, however, with a simpler formalism of influence sys-
tems to merely describe the positive and negative influences between molecular
c© Springer International Publishing AG 2016
E. Bartocci et al. (Eds.): CMSB 2016, LNBI 9859, pp. 98–115, 2016.
DOI: 10.1007/978-3-319-45177-0 7
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species, without fixing their implementation with biochemical reactions. In par-
ticular, boolean influence systems have been popularized in the 70’s by Glass,
Kauffman [15] and Thomas [30,31] to reason about gene regulatory networks,
represented by ordinary graphs between genes given with a boolean transition
table which defines their synchronous or asynchronous boolean transition seman-
tics. Necessary conditions for multi-stability (cell differentiation) and oscillations
(homeostasis) have been given in terms of positive or negative circuits in the
influence graph [27,29]. Several tools such as GINsim [22], GNA [4] or Grif-
fin [28], use these properties and powerful graph-theoretic and model-checking
techniques to automate reasoning about the boolean state transition graph, com-
pute attractors and verify various reachability and path properties. The repre-
sentation of boolean influence systems by Petri nets was described in [6] but
leads to complicated encodings. It is also worth mentioning that influence sys-
tems with spatial information have been nicely developed in [7] as a formalism
particularly suitable for describing natural algorithms in life sciences and social
dynamics.

In Systems Biology, modelers often reason with both kinds of formalisms,
and may find it useful to use and maintain an influence model in the process
of building a reaction model, for instance in order to reduce it while preserving
the essential influence circuits [23]. One reason is that it is easier to visualize
influence systems, rather than reaction systems for which complicated graphical
conventions such as SBGN [26] have been developed. While it is clear that the
influence graph is an abstraction of the reaction hypergraph [12], and perhaps
more surprisingly that the Jacobian influence system derived from the differen-
tial semantics of a reaction system is largely independent of the kinetics [13],
influence models are mostly used for their graphical representation and their
boolean semantics, but more rarely as a modeling paradigm for systems biology
with quantitative semantics using differential equations, or stochastic semantics.

In this paper, we introduce a formalism of influence systems with forces,
which we put in parallel with reaction systems with kinetics, in order to develop
a similar hierarchy of boolean, discrete, stochastic and differential semantics for
influence systems, similarly to what is done for reasoning about programs in the
framework of abstract interpretation [10,12]. We show that the expressive power
of influence systems is the same as that of reaction systems under the differential
semantics, but is weaker under the other interpretations, in the sense that some
formal discrete behaviours of reaction systems cannot be expressed by influence
systems. This approach provides an influence model with a hierarchy of possible
interpretations related by precise abstraction relationships, so that, for instance,
if a behavior is not possible in the boolean semantics, it is surely not possible in
the stochastic semantics whatever the influence forces are.

This leads us to consider a positive boolean semantics which we compare to
the asynchronous semantics of gene regulatory networks à la Thomas. We study
the monotonicity properties of the positive boolean semantics and derive from
them an efficient algorithm to compute attractors. These concepts are illustrated
with models from the literature.
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2 Preliminaries on Reaction Systems with Kinetics

In this article, unless explicitly noted, we will denote by capital letters (e.g. S)
sets or multisets, by bold letters (e.g., x ) vectors and by small roman or Greek
letters elements of those sets or vectors (e.g. real numbers, functions). For a mul-
tiset M , let Set(M) denote the set obtained from the support of M , and brackets
like M(i) denote the multiplicity in the multiset (usually the stoichiometry). ≥
will denote the pointwise order for vectors, multisets and sets (i.e. inclusion).

2.1 Syntax

We recall here definitions from [11,13] for directed reactions with inhibitors:

Definition 1. A reaction over molecular species S = {x1, . . . , xs} is a quadruple
(R,M,P, f), also noted f for R/M ⇒ P , where R is a multiset of reactants, M
a set of inhibitors, P a multiset of products, all composed of elements of S, and
f : Rs → R, called kinetic expression, is a mathematical function over molecular
species concentrations. A reaction system is a finite set of reactions.

It is worth noting that a molecular species in a reaction can be both a reac-
tant and a product (i.e. a catalyst), or both a reactant and an inhibitor (e.g.
Botts–Morales enzymes [19]). Such molecular species are not distinguished in
SBML and both are called reaction modifiers. Unlike SBML, we find it useful to
consider only directed reactions (reversible reactions being represented here by
two reactions) and to enforce the following compatibility conditions between the
kinetic expression and the structure of a reaction.

Definition 2 ([11,13]). A reaction (R,M,P, f) over molecular species
{x1, . . . , xs} is well formed if the following conditions hold:

1. f(x1, . . . , xs) is a partially differentiable function, non-negative on R
s
+;

2. xi ∈ R if and only if ∂f/∂xi(x) > 0 for some value x ∈ R
s
+;

3. xi ∈ M if and only if ∂f/∂xi(x) < 0 for some value x ∈ R
s
+.

A reaction system is well formed if all its reactions are well formed.

Example 1. The classical prey-predator model of Lotka–Volterra can be repre-
sented by the following well-formed reaction system (without reaction inhibitors)
between a proliferating prey A and a predator B:

k1*A*B for A+B=>2*B.
k2*A for A=>2*A.
k3*B for B=>_.
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2.2 Hierarchy of Semantics

As detailed in [12], a reaction system can be interpreted with different for-
malisms that are formally related by abstraction relationships in the framework
of abstract interpretation [10] and form a hierarchy of semantics. We simply
recall here the definitions of the different semantics of a reaction system.

The differential semantics corresponds to the association of an Ordinary
Differential Equation (ODE) system with the reactions in the usual way:

dxj

dt
=

∑

(Ri,Mi,Pi,fi)

(Pi(j) − Ri(j)) × fi

It is worth noting that in this interpretation, the inhibitors are supposed to
decrease the reaction rate but do not prevent the reaction from proceeding with
effects on the products and reactants. For instance, in Example 2, we get the
classical Lotka–Volterra equations dB/dt = k1 ∗ A ∗ B − k3 ∗ B, dA/dt = k2 ∗
A − k1 ∗ A ∗ B, and the well-known oscillations between the concentrations of
the prey and the predator.

The stochastic semantics for reaction systems defines transitions between
discrete states describing numbers of each molecule, i.e. vectors x of N

s. A
transition is enabled if there are enough reactants, and the reaction propensity
is defined by the kinetics:

∀(Ri,Mi, Pi, fi),x −→fi

S x ′ with propensity fi if x ≥ Ri,x
′ = x − Ri + Pi

Transition probabilities between discrete states are obtained through normaliza-
tion of the propensities of all enabled reactions, and the time of next reaction
can be computed from the rates à la Gillespie [14]. In this interpretation, the
inhibitors are supposed to decrease the reaction propensity but do not prevent
the reaction from occurring. They are thus ignored here by the stochastic tran-
sition conditions as in the differential semantics. In Example 1, the stochastic
interpretation can exhibit some oscillations similar to the differential interpreta-
tion, and (almost surely) the extinction of the predator.

The discrete, or Petri Net, semantics is similar but ignores the kinetics and
is thus a trivial abstraction of the stochastic semantics by a forgetful functor:

∀(Ri,Mi, Pi, fi),x −→D x ′ if x ≥ Ri,x
′ = x − Ri + Pi

The boolean semantics is similar to the discrete one but on boolean vec-
tors x of Bs, obtained by the “zero, non-zero” abstraction of integers. With this
abstraction, when the number of a molecule is decremented, it can still remain
present, or become absent. It is thus necessary to take into account all the pos-
sible complete consumption or not of the reactants in order to obtain a correct
boolean abstraction of the discrete and stochastic semantics [12]. The boolean
transition system −→B is thus defined by:

∀(Ri,Mi, Pi, fi),∀C ∈ P(Set(Ri)),x −→B x ′ if x ⊇ Set(Ri),x ′ = x \C∪Set(Pi)
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It is worth remarking that in Example 2 under this boolean interpretation,
one can observe either the stable coexistence of the prey and the predator, or
the extinction of the predator with or without the preceding extinction of the
prey.

As proven in [12], the last three of these semantics are related by successive
Galois connections, which means that if a behaviour is not possible in the boolean
semantics, it is not possible in the stochastic semantics whatever the reaction
kinetics are. On the other hand, the first differential semantics is not an abstrac-
tion but rather a limit of the first one for high number of molecules, as shown
for instance in [14].

It is worth noticing that the set of inhibitors of a reaction is just a syntactical
annotation which has not been used to define the different semantics of the
hierarchy. One can also consider a boolean semantics with negation where the
set of inhibitors of a reaction is seen as a conjunction of negative conditions
for the transition (disjunctions can be represented with several reactions). The
boolean with negation transition system −→BN is then defined by:

∀(Ri,Mi, Pi, fi)∀C ∈ P(Set(Ri))x −→BN x ′

if x ⊇ Set(Ri),x ∩ Mi = ∅,x ′ = x \ C ∪ Set(Pi)

However, this strict interpretation of inhibitors by negations restricts the set of
possible boolean transitions and is not compatible with the differential semantics,
since in that interpretation an inhibitor may just slightly decrease the rate of a
reaction without preventing it from proceeding.

2.3 Influence Graph of a Reaction System

Here we recall two definitions of the influence graph associated with a reac-
tion system, and their equivalence under general assumptions [11,13]. The first
definition is based on the Jacobian matrix J formed of the partial derivatives
Jij = ∂ẋi/∂xj , where ẋi is defined by the differential semantics.

Definition 3. The differential influence graph associated with a reaction sys-
tem is the graph having for vertices the molecular species, and for edge-set the
following two kinds of edges:

{A →+ B | ∂ ˙xB/∂xA > 0 for some value x ∈ R
s
+}

∪{A →− B | ∂ ˙xB/∂xA < 0 for some value x ∈ R
s
+}

Definition 4. The syntactical influence graph associated with a reaction sys-
tem M is the graph having for vertices the molecular species, and for edges the
following set of positive and negative influences:

{A →+ B | ∃(Ri,Mi, Pi, fi) ∈ M , (Ri(A) > 0 and Pi(B) − Ri(B) > 0)
or (A ∈ Mi and Pi(B) − Ri(B) < 0)}

∪{A →− B | ∃(Ri,Mi, Pi, fi) ∈ M , (Ri(A) > 0 and Pi(B) − Ri(B) < 0)
or (A ∈ Mi and Pi(B) − Ri(B) > 0)}

The syntactical graph is trivial to compute, in linear time, by browsing the
syntax of the rules. Both definitions are equivalent under general assumptions:
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Theorem 1 ([11,13]). For any well-formed reaction system such that the syn-
tactical influence graph contains no conflict (i.e. no pair of the form A →+ B
and A →− B), the syntactical and differential influence graphs are identical.

3 Influence Systems with Forces

Reaction systems allow the description of mechanistic models of cell processes,
but modelers can also work with a simpler formalism of influence systems to
merely describe the positive and negative influences between molecular species,
without fixing their implementation with biochemical reactions. In this section,
we propose a syntax for influence systems with forces which allows us to define
a hierarchy of differential, stochastic, discrete and positive boolean semantics,
similarly to reaction systems. We then focus on different boolean semantics, and
compare them to Thomas’s setting for gene regulatory networks.

3.1 Syntax

The idea is to syntactically distinguish conjunctive from disjunctive conditions
by writing influences with several sources for representing a conjunction of con-
ditions, while the different influences on a same target express a disjunction of
conditions. These syntactical conventions are a particular case of the concept of
multiplexes introduced in [5] restricted here to disjunctive normal forms.

Definition 5. Given S = {x1, . . . , xs} a set of species, an influence system I
is a set of quintuples (P,N, t, σ, f) called influences, where P ⊂ S is called the
positive sources of the influence, N ⊂ S the negative sources, t ∈ S is the target,
sign σ ∈ {+,−} is the sign of the influence, and f is a real-valued mathematical
function of Rs, called the force of the influence.

Influences of sign + will be called positive influences and those of sign −,
negative influences. In addition, we distinguish the positive sources from the
negative sources in an influence (positive or negative), in order to annotate the
fact that in the differential semantics, the source increases or decreases the force
of the influence, and in the boolean semantics with negation whether the source
or the negation of the source is a condition for a change in the target.

For practical reasons we provide an ASCII syntax for influence systems which
is used in Biocham1 v4: they will be written as sequences of lines, where each set
is written as a comma-separated sequence of the corresponding species, where
the sign is represented as an arrow separating sources from the target, -> for
positive influences, and -< for negative influences, and where the positive and
negative sources are separated by a / that can be omitted if there is no negative
source.

Let us now define the concept of well-formed influence systems similarly to
the above Definition 2 for reaction systems, with a particular condition for the
target of a negative influence, as follows:
1 http://lifeware.inria.fr/biocham.

http://lifeware.inria.fr/biocham
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Definition 6. An influence (P,N, t, σ, f) over molecular species {x1, . . . , xs} is
well formed if the following conditions hold:

1. f(x1, . . . , xs) is a partially differentiable function, non-negative on R
s
+;

2. xi ∈ P if and only if σ = + (resp. −) and ∂f/∂xi(x) > 0 (resp. < 0) for
some value x ∈ R

s
+;

3. xi ∈ N if and only if σ = + (resp. −) and ∂f/∂xi(x) < 0 (resp. > 0) for
some value x ∈ R

s
+;

4. t ∈ P if σ = −.

An influence system is well formed if all its influences are well formed.

Example 2. The prey-predator model of Lotka–Volterra of Example 1 can also
be represented by the following well-formed influence system

k1*A*B for A,B -< A.
k1*A*B for A,B -> B.
k2*A for A -> A.
k3*B for B -< B.

composed of four influences with positive sources only, ({A,B}, ∅, A,−, k1 ∗ A ∗
B), ({A,B}, ∅, B,+, k1∗A∗B), ({A}, ∅, A,+, k2∗A) and ({B}, ∅, B,−, k3∗B).

3.2 Hierarchy of Semantics

Given a set of species S = {x1, . . . , xs} and an influence system I over S, the
differential semantics associates the following ODE system with I:

dxk

dt
=

∑

(Pi,Ni,xk,+,fi)∈I

fi −
∑

(Pj ,Nj ,xk,−,fj)∈I

fj

Intuitively, it adds up all the forces of the positive influences on xk and subtracts
all forces of negative influences on xk in the derivative of xk over time. For
instance, in Example 2, we get the same equations as for Example 1.

It is worth noticing that the negative sources in a well-formed influence
decrease the force of the influence but do not disable it. Consequently, we define
similarly the stochastic semantics of an influence system with forces, by a tran-
sition system, noted −→S , between discrete states, i.e. vectors x of N

s, with
the condition that the positive sources are present in sufficient number, with a
transition propensity defined by the force, and the target updated as follows:

∀(Pi, Ni, Ai, σi, fi),x −→fi

S x ′ with propensityfi if x ≥ Pi,x
′ = x σi Ai

Transition probabilities between discrete states are obtained through normaliza-
tion of the propensities of all enabled transitions, and the time of next reaction
can also be given à la Gillespie [14]. In this interpretation, the negative sources
are supposed to decrease the influence propensity but do not prevent the influ-
ence from proceeding. They are thus ignored here by the stochastic transition
conditions.
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The discrete (or Petri Net) semantics simply ignores the forces:

∀(Pi, Ni, Ai, σi, fi),x −→D x ′ if x ≥ Pi,x
′ = x σi Ai

The positive boolean semantics is defined on boolean vectors x of Bs, by the
“zero, non-zero” abstraction of integers of the discrete semantics. Unlike reaction
systems, this boolean semantics associates one transition with one influence:

∀(Pi, Ni, Ai, σi, fi),x −→B x ′ if x ≥ Pi,x
′ = x σi Ai

This boolean semantics is positive in the sense that it ignores the negative sources
of an influence and contains no negation in the influence enabling condition. In
Example 2 we get the same boolean transitions as in Example 1, although in
general one can expect to get more transitions (as shown below in Sect. 3.4).

With these definitions, one can obtain as in [12], a hierarchy of semantics
related by simple abstraction relationships (Galois connections in the framework
of abstract interpretation [10]) which allows us to state, for instance, that if a
behaviour is not possible in the positive boolean semantics, it is also not possible
in the discrete or stochastic semantics for any forces.

3.3 Influence Graph of an Influence System

One can define the differential influence graph of an influence system as in
Definition 3 for reaction systems, and get a similar equivalence result with the
following

Definition 7. The syntactical influence graph associated with an influence sys-
tem M is the graph having for vertices the molecular species, and for edges the
following set of positive and negative influences:

{A →+ B | ∃(Pi, Ni, B, σi, fi) ∈ M , (A ∈ Pi and σi = +)
or (A ∈ Ni and σi = −)}

∪{A →− B | ∃(Pi, Ni, B, σi, fi) ∈ M , (A ∈ Pi and σi = −)
or (A ∈ Ni and σi = +)}

Proposition 1. For a well-formed influence system such that the syntactical
influence graph contains no conflict, the syntactical and differential influence
graphs are identical.

Proof. Recall that ˙xB =
∑

(Pi,Ni,xB ,+,fi)∈I fi −
∑

(Pj ,Nj ,xB ,−,fj)∈I fj

Hence ∂ ˙xB

∂xA
=

∑
(Pi,Ni,xB ,+,fi)∈I

∂fi

∂xA
−

∑
(Pj ,Nj ,xB ,−,fj)∈I

∂fj

∂xA

Since the SIG does not have any conflict, A →+ B is in the SIG (a similar
reasoning can be made for A →− B) iff

∂ ˙xB

∂xA
=

∑
(Pi,Ni,xB ,+,fi)∈I,A∈Pi,A �∈Ni

∂fi

∂xA
−

∑
(Pj ,Nj ,xB ,−,fj)∈I,A �∈Pj ,A∈Nj

∂fj

∂xA

Now, since the influence system is well formed, all terms of the left-hand
sum are non-negative (A �∈ Ni) and strictly positive for some points x i and all
terms of the right-hand sum are non-positive (A �∈ Pj) and strictly negative for
some x j .
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We have that A →+ B in the SIG iff the above sum has at least one term,
which is equivalent to the existence of some x in the state space where one of the
terms above is non-null, and therefore ∂ ˙xB

∂xA
> 0, i.e., A →+ B is in the DIG. ��

3.4 Expressive Power Compared to Reaction Systems

Theorem 2. Any (well-formed) influence system with forces can be represented
by a (well-formed) reaction system with kinetics, with the same boolean, discrete,
stochastic and differential semantics.

Proof. Let us represent a positive influence f forP/N → t by a catalytic synthesis
reaction f for P/N ⇒ P + t.

Similarly, let us represent a negative influence f for P/N −� t, by an active
degradation reaction f for P + t/N ⇒ P .

It is straightforward to verify that the boolean, discrete, stochastic as well
as differential semantics recalled and defined above are the same.

Furthermore, the well-formedness condition is preserved. Indeed, this prop-
erty only depends on the forces/kinetic expressions and on the reactants/in-
hibitors, which do not change through that transformation thanks to the condi-
tion that in well-formed influence systems. In addition, t ∈ P in the case of the
negative influence. ��

This theorem shows that an influence system can be simulated by a reaction
system for the different semantics. The converse does not hold for the boolean
semantics, for instance. Indeed, let us consider boolean semantics of the reac-
tion C ⇒ A + B (the kinetics is omitted). We have a transition from the state
(A,B,C) = (0, 0, 1) to (1, 1, 0) which is obviously not possible in an influence
system since only one variable can change in one transition. However, the con-
verse holds for the differential semantics:

Theorem 3. Under the differential semantics, (well-formed) influence and
reaction systems have the same expressive power.

Proof. For each reaction (R,M,P, f) of a given reaction system, let us add the
following influences:

(Set(R),Set(M), xi,+, (P (i) − R(i)) × f) when P (i) − R(i) > 0
(Set(R),Set(M), xi,−, (R(i) − P (i)) × f) when P (i) − R(i) < 0

The associated ODE system collects all (Pi − Ri) × f exactly as in the differ-
ential semantics of the original reaction system. Furthermore, it is easy to check
that these influences are well formed since the original reaction is well formed and
the force is only a positive integer multiplied by the original kinetic expression. ��

This theorem shows that as far as the differential semantics is concerned, the
influence systems have the same expressive power as reaction systems and there
is no theoretical reason to develop a reaction model. This does not mean that
there is a canonical reaction system associated with an influence system. Gener-
ally, different implementations with reactions are possible without changing the
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differential semantics. They represent extra information that is irrelevant to the
analysis or simulation of the differential equations, but could lead to different
stochastic simulations, for instance.

3.5 Boolean Semantics with Negation

One can also consider a boolean semantics with negation for influence systems,
where the negative sources are interpreted as negations in the enabling condition.
Formally, the boolean with negation semantics of an influence system is then
defined by the following transition system:

∀(Pi, Ni, Ai, σi, fi),x −→B x ′ if x ≥ Pi, x ∩ Ni = ∅, x ′ = x σi Ai

This interpretation allows us to represent more boolean transition semantics.
Let us call a unitary transition system, a transition system that updates at most
one variable of x in each transition. It is worth remarking that in this case, the
state transition graph lives on a hypercube (e.g. Fig. 2 of Sect. 5).

Proposition 2. Any unitary boolean transition system can be represented by an
influence system under the boolean semantics with negation.

Proof. It is sufficient to notice that since a unitary boolean transition s −→BN s′

changes at most one species, say xi, from s to s′, it can be represented by
either a positive influence, (P,N, xi,+), if s′(xi) = 1, or a negative influence,
(P,N, xi,−), if s′(xi) = 0, with P = {x | s(x) = 1} and N = {x | s(x) = 0}. ��

Let us call a positive boolean transition system one that contains no negation
in the conditions for enabling a transition, i.e. if a transition is enabled when
s(xi) = 0 then it is also enabled when s(xi) = 1.

Corollary 1. Any unitary positive boolean transition system can be represented
by an influence system under the positive boolean semantics.

Proof. In the influence system associated by Proposition 2 with a positive uni-
tary transition system, any influence that has negative sources is doubled by
a counterpart influence where such sources are positive (by definition of posi-
tive boolean transition system). Therefore, in the associated influence system,
the negative sources can be simply ignored, as done by the positive boolean
semantics. ��

3.6 Functional Boolean Semantics with Negation à la Thomas

The boolean semantics defined by René Thomas originally for gene networks [31],
is functional, in the sense that the next boolean state x ′ is defined by a boolean
function φ(x ), not a relation. In this setting, the synchronous semantics is deter-
ministic, and the non-deterministic asynchronous semantics is obtained by inter-
leaving, by considering all the possible transitions that change the boolean value
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of exactly one of the genes at a time. A truly non-deterministic influence system
such as {(A, ∅, B,+, f), (A, ∅, B,−, g)}, for which the transition relation is not
a function, cannot be represented. Thomas’s setting excludes self-loops in the
state transition graph and all steady states are stable (i.e. terminal states):

Proposition 3. The boolean transition systems definable by Thomas’s regula-
tory networks are the unitary boolean transition systems without self-loops.

Proof. A Thomas’s transition graph is necessarily unitary and without self-loops
since each transition changes the boolean value of exactly (not at most) one
variable at a time. The converse follows from Proposition 2 by excluding the
possibility of having self-loop transitions which change no variable. ��

This restriction to transition functions is even more striking in Thomas’s
multilevel setting, where the above system can (in the discrete semantics) have
transitions from (1, 1) both to (1, 0) and to (1, 2). That would necessitate the
corresponding logical parameter for B to be at the same time < 1 and > 1. It
is worth noting that despite this restriction, the logical formalism of Thomas is
successfully used in a wide variety of models [16,17,24,32] in systems biology.

4 Properties of the Positive Boolean Semantics

In this section, we focus on the positive boolean semantics of influence systems
and study its properties. Recall that ≤ denotes the pointwise order on {0, 1}
coordinates of vectors representing states.

Proposition 4 (Monotonicity). The positive boolean semantics of influence
systems is monotonic: let I be an influence system over S = {x1, . . . , xs} and
v1, v2 be two boolean states, i.e., vectors of Bs

v1 ≤ v then andif 2 ∀v1, v1 −→ v1, ∃v2, v1 ≤ v2 v2 −→ v2

v1

v2

v1

v2

≤ ≤

Proof. One can simply notice that since there are no negations in the enabling
conditions, any influence that is enabled in v1 is also enabled in v2. ��

It is worth noticing that this monotonicity property for transitions is fun-
damentally different from that of monotone dynamical systems [3] which are
deterministic, and therefore impose the monotonicity property on the unique
image of v1 and v2. In our setting, Proposition 4 states that there exists some
v′
2 ≥ v′

1, but the existence of negative influences in the system permits that some
other images of v2 might not be greater than v′

1. Nevertheless, we have

Proposition 5 (Greatest element). Let C be a Terminal Strongly Connected
Component (TSCC) of the state transition graph of a positive influence system,
then C has a greatest element: ∃v0 ∈ C,∀v ∈ C, v ≤ v0.
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Proof. Let us prove this proposition by contradiction: assume that there are two
incomparable maximal elements v1 and v2 in C. Since C is strongly connected
there is a path from v1 to v2 and along that path a state v3 and its successor in
the path v4 such that v3 ≤ v1 and v4 �≤ v1, as v2 �≤ v1. Now, using Proposition 4
we get that v1 −→ v′

1 with v4 ≤ v′
1 and v′

1 ∈ C since C is terminal. However v′
1 is

either greater or less than v1 since it is the result of applying a single influence.
If v1 < v′

1 we have a contradiction as we supposed v1 maximal. If v′
1 ≤ v1 we get

v4 ≤ v1 by transitivity and that is also contradictory. ��

Corollary 2. To enumerate the attractors, i.e., TSCCs, of a positive influence
system, it is enough to check the strongly connected components (SCCs) of states
that have no strictly increasing transition.

Proof. This is an immediate consequence of Proposition 5 as each TSCC can be
represented by its greatest element which has no strictly increasing transition. ��

Notice that stable states are a particular case with no strictly decreasing tran-
sition either. Moreover, any strictly decreasing transition should be “reversible”
for the SCC to be a TSCC. This allows us to rule out potential TSCC candidates
without exploring their whole SCC in Algorithm1 (implementation available in
Biocham v4).

Algorithm 1. TSCC maximal elements candidates enumeration algorithm
procedure list tscc candidates

Constraints ← {P ∧ ¬N =⇒ t | (P, N, +, t, f) ∈ I}
� Enabled positive influences must not change the state

Candidates ←EnumerateSolutions(Constraints)
for C ∈ Candidates do

if C has no strictly decreasing transition then
C is a stable steady state

else if C has a non-reversible strictly decreasing transition then
C is not in a TSCC

else
C’s SCC must be explored to check if it is a TSCC

end if
end for

end procedure
function EnumerateSolutions(Constraints)

Iteratively solve by SAT/CP the CSP defined by Constraints
return The set of solutions

end function

Proposition 6. Given an influence system, there is at least one TSCC of the
original influence system in each TSCC of its positive semantics.

Proof. The positive semantics only adds transitions by enabling more influences,
it can therefore only merge TSCCs. ��
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This result suggests finding complex attractors of non-positive systems, such
as logical models à la Thomas [27,29], by enumerating the greatest elements of
the TSCCs of their positive boolean semantics, and then looking for attractors
of the original system. This approach provides an over-approximation of the
attractors and is complementary to recent works which provide lower-bounds on
their number [20].

5 Examples

5.1 Influence Model of p53/Mdm2 DNA Damage Repair System [1]

The p53/Mdm2 DNA damage repair system is an interesting oscillatory sys-
tem which has been first modeled in [8] by a reaction system with differential
equations, and then in [1,2] by simplified influence systems with discrete and
differential semantics respectively.

Fig. 1. Left: Influence graph displayed in Fig. 4 of [1], without the activation multi-
levels. The dashed influences are those added in our second version of the model. Right:
Biocham v4 session for computing the TSCC in both influence systems.
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We illustrate here the search for TSCCs with two versions of the influence
model of [1]. In the first model, we simply transcribe the graph of Fig. 4 of the
authors as a boolean influence system. We therefore ignore the multi-level aspect
they developed. In the second model, we add some activations on p53 and DNA-
damage, and an inhibition on cytoplasmic Mdm2, in order to take into account
some basal state of the model. The influence systems and the computed TSCCs
are listed in the Biocham session depicted in Fig. 1.

Our algorithm shows that there is in each case a single complex attractor
(i.e. not marked as stable or not terminal), accordingly to [1], and four stable
steady states in the first case. Note that in [2], this influence model was further
extended with differential and stochastic dynamics which could be represented
in our setting by influence forces.

5.2 Influence Model of the Mammalian Circadian Clock [9]

A good example of the use of logical models à la Thomas is the recent paper
by Comet et al. [9] studying different variants of small models of the circadian
rhythms in mammals. A direct import in Biocham v4 of the logical model of
Sect. 5 of [9] gives the following influence system with negative sources:

_ / L -> L.
L -< L.
_ / G, PC -> G.
G, PC -< G.
G / PC, L -> PC.
PC / G -< PC.
PC, L -< PC.

The positive semantics of this system is close to the original boolean semantics
with negation à la Thomas of the model. They both have a single TSCC: the
vector (1, 1, 1) that is found by the command list tscc candidates as sole
candidate. Furthermore, only a few state transitions become reversible in the
positive boolean semantics, while they are irreversible in the original boolean
semantics with negation à la Thomas of the model, as depicted in Fig. 2.

The approximation introduced by the positive boolean semantics can be
explained by quantitative dynamics considerations. For instance, when G is on,
the transcription leading to the PER-CRY complexes is stimulated, however [9]
explains that these complexes can only migrate to the nucleus in absence of
light. This absence cannot be checked in a positive semantics model, however
the consensus mechanistic process is rather thought to be a modulation of PER
transcription by light (see for instance [21] for the mammalian case). Being purely
quantitative, it is not easy to take into account such a regulation in a boolean
model except with the reversible activation of PC when G is on, whether L is
on or not. This is what happens in our positive model as can be seen in the right
panel of Fig. 2, and it is similar to what happens for the light in the original
model.

The same reasoning explains the reversible inactivation of G when PC is
active. Indeed there is a basal synthesis of G that cannot check, in a positive
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Fig. 2. State transition graphs of the model under, Left: the boolean semantics with
negation à la Thomas, similar to Fig. 7 of [9], Right: the positive boolean semantics,
where some state transitions have become reversible.

setting, that PC is inactive in order to activate the genes. Once again, the mech-
anistic process is a quantitative inhibition of the CLOCK-BMAL1 complexes by
PER-CRY and a conservative boolean approximation of that process is reflected
by the reversible activation of G in presence of PC.

In [9], the authors also restrict the possible behaviours by introducing delays
for the boolean transitions which could be considered as a further expansion of
the formalism.

6 Discussion

In this paper, we hope to have clarified some differences between influence sys-
tems and reaction systems, and especially some subtle discrepancies between the
precise boolean semantics that have been considered in the literature. As far as
the modeling of one biological system is concerned, the modeler can work with
one formalism and one tool to answer the questions about their model. Never-
theless, as soon as different modeling tools are to be used, or the model has to
be communicated and reused for another purpose, understanding and mastering
these discrepancies in the semantics of the interactions become crucial.

We have shown that, for influence systems and reaction systems with
inhibitors, one can obtain a hierarchy of semantics which goes from the con-
crete stochastic semantics to a discrete Petri net, and then a positive boolean
semantics in which the inhibitors of the reactions or influences are just ignored.
This is consistent with the fact that the inhibitors decrease the rate or force in
the quantitative semantics, but do not really prevent the reaction or influence
from proceeding. This convention thus ensures that all discrete behaviours are
approximated when we go up in the abstractions of the hierarchy of semantics,
and that if a behaviour is not possible in the positive boolean semantics (which
can be checked by model-checking methods for instance) it is not possible in
the stochastic semantics for any forces. Furthermore, we have shown that in the
positive boolean semantics, the monotonicity of the transition relation allows us
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to enumerate the complex attractors more efficiently by restricting the search to
the greatest elements candidates.

On the other hand, the boolean semantics à la Thomas of influence systems,
interprets inhibitors as negations, and contains a restriction on the definition
of the transition relation by a function, not a relation, which limits the sources
of non-determinism. We have shown that the boolean semantics with negation
leads to a more expressive formalism in which any unitary boolean transition
system can be encoded, but does not correspond to an abstraction of the stochas-
tic semantics, unless the stochastic transitions interprets inhibitors as negative
conditions which does not correspond to the differential semantics. With the
functional restriction, we have proven that each TSCC in the positive semantics
contains at least one TSCC of the semantics à la Thomas, and thus that our
algorithm can be used to prune the search space in this setting also.

We have also shown that reaction systems and influence systems have the
same expressive power under the differential semantics. This means that, as far as
the differential equations are concerned, the details given in the reactant-product
structure of a reaction system are not necessary, and that the same differential
equations can be derived from an influence system with forces. Several reaction
systems can be associated with an influence system with the same differential
semantics. This leaves open the design of canonical forms for reaction systems,
and computer tools for automatically maintaining the implementation of an
influence system by a reaction system.

Acknowledgements. We are grateful to Paul Ruet for interesting discussions on
Thomas’s framework, and to the reviewers for their comments. This work was partially
supported by ANR project Hyclock under contract ANR-14-CE09-0011, and PASPA-
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Jérôme Feret(B) and Kim Quyên Lý(B)

DI-ENS (INRIA/ÉNS/CNRS/PSL), Paris, France
feret@ens.fr, quyen@di.ens.fr

Abstract. Thanks to rule-based modelling languages, we can assemble
large sets of mechanistic protein-protein interactions within integrated
models. Our goal would be to understand how the behaviour of these sys-
tems emerges from these low-level interactions. Yet this is a quite long
term challenge and it is desirable to offer intermediary levels of abstrac-
tion, so as to get a better understanding of the models and to increase
our confidence within our mechanistic assumptions.

In this paper, we propose an abstract interpretation of the behav-
iour of each protein, in isolation. Given a model written in Kappa, this
abstraction computes for each kind of protein a transition system that
describes which conformations this protein can take and how a protein
can pass from one conformation to another one. Then, we use simplicial
complexes to abstract away the interleaving order of the transformations
between conformations that commute. As a result, we get a compact
summary of the potential behaviour of each protein of the model.

1 Introduction

Thanks to rule-based modelling languages, as Kappa, one can model accurately
the biochemical interactions between proteins involved for instance in signalling
pathways, without abstracting away a priori, when they are available, the mech-
anistic details about these interactions. For example, one can describe faithfully
the formation of dimmers, scaffold proteins, and the phosphorylation of proteins
on multiple sites, in a very compact way. Yet, understanding how the behaviour
of the systems may emerge from these interactions remains a challenge. More-
over, when models become large, no matter they have been humanly written,
or automatically assembled from the literature, as suggested in [14], it becomes
crucial to get some automatic tools to understand the content of the models and
to check that what is modelled matches with what the modeller has in mind.

This material is based upon works partially sponsored by the Defense Advanced
Research Projects Agency (DARPA) and the U. S. Army Research Office under
grant number W911NF-14-1-0367, and by the ITMO Plan Cancer 2014. The views,
opinions, and/or findings contained in this article are those of the authors and should
not be interpreted as representing the official views or policies, either expressed or
implied, of DARPA, the U. S. Department of Defense, or ITMO.
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We use the abstract interpretation framework [3,4] to systematically derive
automatic static analyses for Kappa models. Applications range from model
debugging, to the abstraction of complex properties offering new insights to
investigate the system overall behaviour. In this paper, we propose to study the
behaviour of each protein in isolation. Starting from a formal definition of the
trace semantics, we collect the behaviour of each kind of protein independently,
and summarise the potential steps to reach these conformations within a transi-
tion system. When proteins have too many interaction sites, it is crucial to take
benefit of the potential independence between some conformation changes in
some protein states. Taking inspiration from simplicial complexes [8], we intro-
duce the notion of macrotransition systems, in which the behaviour of different
subsets of sites can be described independently, abstracting away the potential
interleaving between their behaviour. The result is a scalable and convenient way
to visualise both the different conformations that each protein may take and the
causal relations among the different conformation changes.

Related Works. A qualitative analysis is proposed in [6,9]. This abstraction cap-
tures all the conformations an agent may take in a Kappa model. In the present
paper, we go further and compute, for each agent, a transition system that
describes the causal relationships among its potential conformational changes.

Causality plays an important role in the understanding and the verification
of concurrent systems, as found in Systems Biology. Several frameworks are
available to study and understand causality, and to reduce the combinatorial
complexity of the models, by exploiting pair of commutative transitions. Partial
order reduction is broadly used in model checking [10]. It consists in restricting
the transitions of a concurrent system so as to force its computation to follow a
canonical order for the interleaving of commutative transitions. Event structures
[13] focus on the causal relations between events in a concurrent system. In [5],
they provide a compact description of trace samples, in which the events which
are not necessary, are discarded. Yet, it is worth noting that these discarded
events may have a kinetics impact. An application of event structures in sta-
tic analysis can be found in [2]. Since they focus on accumulating the effect of
causally related transformations, event structures somehow obfuscate the notion
of states. Our notion of macrotransition systems is inspired from simplicial com-
plexes. Simplicial complexes can be used for describing concurrent systems up to
the interleaving order of commutative transitions [8]. They describe the state of
the system as a point moving along a geometrical object, in which commuta-
tive transitions are denoted by higher dimension faces. Our formalism offers a
convenient compact abstraction of all the potential conformation changes of a
protein, without discarding any transition.

Outline. In Sect. 2, we introduce two case studies to motivate our framework.
In Sect. 3, we describe Kappa. In Sect. 4, we define its finite trace semantics,
that we abstract in Sect. 5, by over-approximating the behaviour of each kind
of agent thanks to local transition systems. Lastly in Sect. 6, we explain how to
abstract away the interleaving order of the transitions that commute in these
local transition systems.
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2 Case Studies

So as to motivate our goal, we introduce two models as case studies.
The first model describes the formation of some dimmers. Two kinds of pro-

teins are involved: ligands and membrane receptors. When activated by ligands,
receptors can form stable dimmers, as described by the means of the interac-
tion rules in Fig. 1. We are interested in one particular binding site in ligand
proteins, and in four sites in receptor proteins. Ligand proteins are depicted as
circles, whereas receptor proteins are depicted as rectangles. Their binding sites
are drawn as smaller circles. Some sites are connected pair-wisely. For the others,
we use the symbol ‘�’ to specify a free site and the symbol ‘−’ to specify a site
that is bound to an unspecified site. By convention, the site alone on its side in
a receptor protein is the one that can bind to a ligand protein; the three sites
on the other side can form bonds with other receptors (their order matters).

Let us now give more details about the interactions between these proteins.
A ligand protein and a receptor protein may bind to each other provided that the
sites that are dedicated to this binding are both free (e.g. see Fig. 1(a)), or detach
from each other, provided that the receptor protein is not yet involved in a dimmer
(e.g. see Fig. 1(b)). Two activated receptor proteins can form a symmetric bond

Fig. 1. Rules for dimmer formation.

Fig. 2. The local transition system of membrane receptors.
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by connecting their respective top-most site (e.g. see Fig. 1(c)), or break this bond
unless an asymmetric bond has been formed already (e.g. see Fig. 1(d)). To gain
stability, a dimmer with a symmetric link can form an asymmetric one by connect-
ing one of its free site in the first receptor protein to the free site of the other kind
in the second receptor protein (e.g. see Fig. 1(e)), or break this connection (e.g. see
Fig. 1(f)).

Writing interaction rules can be error prone. Especially, which amount of
information should be put in rules, is often not so clear. So as to gain confidence
in our modelling process, we propose to compute, for each kind of protein, a local
transition system. The goal is to abstract the different conformations that each
protein may take, and how a given protein may pass from one conformation to
another one. As an example, the local transition system for receptor proteins is
given in Fig. 2 (there are two transitions for the rule R/Int, since it operates
differently on the first and on the second receptort of its left hand side; the same
remark holds for the rule R.Int). We claim that it provides a helpful summary
of the effect of the rules on the behaviour of each protein instance.

Fig. 3. Rules for the protein with four phosphorylation sites.

When proteins have too many interaction sites, we can no longer describe
extensively their sets of potential conformations. Our second model deals with a
protein with four phosphorylation sites and a single binding site. The lower left
(resp. lower right) site can be phosphorylated without any condition (e.g. see
Figs. 3(a) and (e)). The upper left (resp. upper right) site can get phosphory-
lated, if the lower left (resp. lower right) site is still phosphorylated (e.g. see
Fig. 3(c) and (g)). When the four sites are all phosphorylated, the conformation
of the protein changes which reveals the binding site. Then the protein can bind
to another kind of protein (e.g. see Fig. 3(i)). This bond can be released with
no condition (e.g. see Fig. 3(j)). Phosphorylated sites can be dephosphorylated
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Fig. 4. Local transition system for the protein with four phosphorylation sites.

under the following conditions: as long as a protein is bound, none of its site can
be dephosphorylated; as long as the upper left site is phosphorylated, the lower
left site cannot be dephosphorylated (e.g. see Figs. 3(b), (d), (f), and (h)).

We notice that, in a protein instance, the potential transformations of the
states of both sites on the left commute with the potential transformations of
those of both sites on the right. Thanks to this, we can describe the transition
system between the different conformations of the protein in a more compact
way (e.g. see Fig. 4). In this transition system, the behaviour of the pair of sites
on the left and of the pair of sites on the right is described as two independent
subprocesses. This description is inspired by simplicial complexes [8]. It describes
independent processes modulo the interleaving order of their execution.

3 Kappa

In this section, we describe Kappa and its single push-out (SPO) semantics.
Firstly we define the signature of a model.

Definition 1. A signature is a tuple Σ = (Σag, Σsite, Σint, Σ
int
ag−st, Σ

lnk
ag−st)

where: 1. Σag is a finite set of agent types, 2. Σsite is a finite set of site identi-
fiers, 3. Σint is a finite set of internal state identifiers, 4. and Σlnk

ag−st : Σag →
℘(Σsite) and Σint

ag−st : Σag → ℘(Σsite) are site maps.

Agent types in Σag denote agents of interest, as kinds of proteins for instance.
A site identifier in Σsite represents an identified locus for capability of interac-
tions. Each agent type A ∈ Σag is associated with a set of sites which can bear
an internal state Σint

ag−st(A) and a set of sites which can be linked Σlnk
ag−st(A).

We assume without any loss of generality that Σlnk
ag−st(A) ∩ Σint

ag−st(A) = ∅, for
any A ∈ Σag and we write Σag−st(A) for the set of sites Σlnk

ag−st(A)�Σint
ag−st(A).

Example 1. We define the signature for the model in the second case study
as Σ := (Σag, Σsite, Σint, Σ

int
ag−st, Σ

lnk
ag−st) where: Σag := {P ,K}; Σsite :=

{a1, a2, b1, b2, x}; Σint := {◦, •}; Σint
ag−st := [P 	→ {a1, a2, b1, b2},K 	→ ∅];
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Σlnk
ag−st := [P 	→ {x},K 	→ {x}]. The agent type P denotes the first kind of

proteins and K the second one; the site identifier x denotes the binding site
(both in P and K), and the site identifiers a1, a2, b1, b2 denote respectively the
lower left, upper left, lower right, and upper right sites in the protein P .

Fig. 5. Three site-graphs G1, G2, and G3, and an embedding f .

Site-graphs describe both patterns and chemical mixtures. Their nodes are
typed agents with some sites which can bear internal states and binding states.

Definition 2. A site-graph is a tuple G = (A, type,S,L, pκ) where: 1. A ⊆ N is
a finite set of agents, 2. type : A → Σag is a function mapping each agent to its
type, 3. S is a set of sites such that S ⊆ {(n, i) | n ∈ A, i ∈ Σag−st(type(n))}, 4.
L is a function between the sets {(n, i) ∈ S | i ∈ Σlnk

ag−st(type(n))} and {(n, i) ∈
S | i ∈ Σlnk

ag−st(type(n))} ∪ {�,−}, such that for any two sites (n, i), (n′, i′) ∈ S,
we have (n′, i′) = L(n, i) if and only if (n, i) = L(n′, i′); 5. and pκ is a function
between the sets {(n, i) ∈ S | i ∈ Σint

ag−st(type(n))} and Σint.

A site (n, i) ∈ S such that i ∈ Σint
ag−st(type(n)) is called a property site,

whereas a site (n, i) ∈ S such that i ∈ Σlnk
ag−st(type(n)) is called a binding site.

Whenever L(n, i) =�, the binding site (n, i) is free. Various levels of information
can be given about the sites that are bound. Whenever L(n, i) = −, the binding
site (n, i) is bound to an unspecified site. Whenever L(n, i) = (n′, i′) (and hence
L(n′, i′) = (n, i)), the sites (n, i) and (n′, i′) are bound together.

For a site-graph G, we write as AG its set of agents, typeG its typing function,
SG its set of sites, LG its set of links, and pκG its set of the internal states.

A mixture is a site-graph in which the state of each site in each agent is
documented. Formally, a site-graph G is a chemical mixture, if and only if,
SG = {(n, i) | n ∈ AG, i ∈ Σag−st(typeG(n))}.

Example 2. Three site-graphs G1, G2, and G3 are drawn in Figs. 5(a), (b), and
(c). For the sake of brevity, we only give the explicit definition of the first one:
1. AG1 = {1, 2}, 2. typeG1

= [1 	→ P , 2 	→ K], 3. SG1 = {(1, x), (2, x)}, 4.
LG1 = [(1, x) 	→ (2, x), (2, x) 	→ (1, x)], 5. pκG1 = []; Among these three site-
graphs, we notice that only G3 is a chemical mixture.

Two site-graphs can be related by structure-preserving injective functions,
which are called embeddings. the notion of embedding is defined as follows:
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Definition 3. An embedding h : G
� � �� H between two site-graphs G and H

is a function of agents h : AG → AH satisfying, for all agent identifiers m,
n ∈ AG, for all site identifiers i ∈ Σag−st(typeG(n)), i′ ∈ Σag−st(typeG(n′)),
and for all internal state identifier ι ∈ Σint: 1. if m �= n, then h(m) �= h(n); 2.
typeG(n) = typeH(h(n)); 3. if (n, i) ∈ SG, then (h(n), i) ∈ SH ; 4. if L(n, i) =
(n′, i′), then L(h(n), i) = (h(n′), i′); 5. if L(n, i) =�, then L(h(n), i) =�; 6. if
L(n, i) = −, then L(h(n), i) ∈ {−} ∪ SH ; 7. if pκ(n, i) = ι, then pκ(h(n), i) = ι.

Example 3. An embedding between G1 and G3, is shown in Fig. 5(d).

Two embeddings respectively between two site-graphs E and F , and between
the site-graph F and a site-graph G, compose in the usual way (and form an
embedding between the site-graphs E and G). Moreover, two site-graphs E and
F , such that there exists an embedding between E and F , and an embedding
between F and E, are said isomorphic. An embedding between two isomorphic
site-graphs, is called an isomorphism. Given three site-graphs L, R, and D, a
couple of embeddings respectively between the site-graphs D and L, and between
the site-graphs D and R, is called a span between L and R. Besides, a couple
of embeddings respectively between the site-graphs L and D, and between the
site-graphs R and D is called a cospan between L and R.

Transformations between site-graphs are described by rules (e.g. see Figs. 1
and 3). For the sake of simplicity, we assume that rules can break and create
bonds between sites, and can change the internal states of sites, but we consider
neither agent degradation, nor agent creation.

These requirements are formalised in the following definition:

Definition 4. A rule is a span of embeddings L � �
hL�� D � � hR �� R such that: 1.

AD = AL and AD = AR; 2. for all agents n ∈ AD, hL(n) = n and hR(n) = n;
3. SD = SL and SD = SR; 4. for all sites (n, i) ∈ SD, if LR(n, i) = −, then
LL(n, i) = −.

Since we do consider neither agent creation, nor agent degradation, we can
assume that the agents in the left hand side and in the right hand side of a
rule are the same (constraint 1) and that both embeddings preserve agent iden-
tifiers (constraint 2). The constraint 3. ensures that, in a rule, sites cannot be
removed or added. Lastly, the constraint 4. ensures that, when the binding state
of a site is modified, it is not replaced with the state −.

A rule L � ��� D � � �� R is usually denoted as L � �� R.
Rules can be applied to site-graphs via an embedding, by the means of a

push-out construction.

Definition 5 ([5]). Let r be a rule L
� �� R, L′ be a site-graph, and hL be an

embedding between the site-graphs L and L′. Then, there exists a rule r′ between
the site-graph L′ and a site-graph R′ and an embedding hR between the site-
graphs R and R′ such that both following properties are satisfied: 1. hRr = r′hL;
2. for all rule r′′ between the site-graph L′ and a site-graph R′′ and all embedding
h′

R between R and R′′ such that: h′
Rr = r′′hL, there exists a unique embedding h
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Fig. 6. Rule application.

between R′ and R′′ such that r′′ = hr′ and hR′′ = hhR′ . With these notations, we
say that there is a transition from the state L′ into the state R′ via a computation

step with the label (r, hL), and we write L′ (r,hL)−−−−→ R′. Moreover, with the same
notations, whenever the site-graph L′ is a chemical mixture, the site-graph R′ is
a chemical mixture as well.

In Definition 5, the compositions between rules and embeddings are defined
by the means of a pull-back construction.

Example 4. The embedding f between the site-graph G1 and the left hand side
of the rule P/K induces a computation step as described in Fig. 6(b).

In Kappa, a model M (over a given signature Σ) is defined as a pair (G0,R)
where: 1. G0 is a chemical mixture; 2. and R is a set of rules. The chemical mix-
ture G0 denotes the initial state. Since we focus only on qualitative properties,
we do not associate rules with kinetic rates.

4 Trace Semantics

In this section, we define the semantics of a model (written in Kappa) as the set
of the traces that is induced by the underlying transition system.

We assume that we are given Q a set of states and L a set of labels. We
call a transition any triple (q, λ, q′) in the set Q × L × Q. In Kappa, states are
chemical mixtures whereas transition labels are pairs composed of a rule and an
embedding between the left hand side of this rule and a chemical mixture.

A transition system is given by a set of initial states and a set of transitions,
as formalised in the following definition:

Definition 6 (Transition system). A transition system is a pair (Q0, T )
where: 1. Q0 ⊆ Q; 2. T ⊆ Q × L × Q.

We denote as TQ,L the set of all the transition systems over Q and L. Tran-
sition systems can be ordered by the relation  that is defined as (Q0, T ) 
(Q′

0, T
′) if and only if 1. Q0 ⊆ Q′

0, 2. and T ⊆ T ′. The pair (TQ,L,) is indeed a
complete lattice. This means that any family (Ti)i∈I of transition systems has a
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least upper bound, that we denote by �{Ti | i ∈ I} (this way, 1. for each element
i ∈ I, Ti  �{Ti | i ∈ I}, 2. and for any transition system Y ∈ TQ,L such that
Ti  Y for each element i ∈ I, we have �{Ti | i ∈ I}  Y ).

Each model M := (G0,R) in Kappa is associated with the transition system
(Q0, T ) where 1. Q0 = {G0}; 2. and T is the set of the transitions (L′, (r, hL), R′)

such that L′ (r,hL)−−−−→ R′ as defined in Definition 5.
Each transition system induces a set of traces. In this paper, we focus on

finite traces, that are made of an initial state followed by a (potentially empty)
finite sequence of transitions, each of them starting from the state the previous
transition had ended in. This is formalised in the following definition:

Definition 7 (Finite traces). A finite trace is a pair τ = (q′
0, (qi, λi, q

′
i)1≤i≤p),

where q′
0 is a state (inQ), and (qi, λi, q

′
i)1≤i≤p is a family of transitions (inQ×L×

Q), such that q′
i−1 = qi for each integer i between 1 and p.

We denote as T �
Q,L the set of all the traces over the sets Q and L.

With the notations of Definition 7, we call the state q′
0 (resp. q′

p) the initial
(resp. the final) state of the trace τ and we denote it as fst(τ), (resp. as last(τ)).
When a trace is made of a single state, we write it as q instead of (q, ()). Besides,
any transition t := (qp+1, λp+1, q

′
p+1) such that the state qp+1 is equal to the final

state q′
p of the trace τ , can be concatenated to the trace τ . In such a case, we

write τ � (qp+1, λp+1, q
′
p+1) for the finite trace (q′

0, (qi, λi, q
′
i)1≤i≤p+1).

A transition system (Q0, T ) induces a set of traces γQ,L(Q0, T ), that is defined
as the set of the traces (q′

0, (qi, λi, q
′
i)1≤i≤p) such that: 1. the state q′

0 belongs to
the set Q0; 2. and for each integer i between 1 and p, the transition (qi, λi, q

′
i)

belongs to the set T . The set of traces γQ,L(Q0, T ) can also be defined as the least
fix-point of the operator FQ0,T that maps any set of traces X ∈ ℘(T �

Q,L) into the
set of traces {q | q ∈ Q0} ∪ {τ � (q, λ, q′) | τ ∈ X ∧ last(τ) = q ∧ (q, λ, q′) ∈ T}.
The operator FQ0,T is monotonic (that is to say that, for any two sets of traces
X,Y ∈ ℘(T �

Q,L), if X ⊆ Y , then FQ0,T (X) ⊆ FQ0,T (Y )). By [12], it follows that
FQ0,T has a fix-point that is included in any other fix-point. We denote this
fix-point lfp FQ0,T (thus, we have 1. lfp FQ0,T = FQ0,T (lfp FQ0,T ), 2. and for
each set X ′ ⊆ ℘(T �

Q,L) such that X ′ = FQ0,T (X ′), we have: lfp FQ0,T ⊆ X ′).
Conversely, a set X ⊆ T �

Q,L of finite traces can be abstracted by the transition
system αQ,L(X) that is defined as the pair (Q0, T ) with: 1. Q0 = {fst(τ) | τ ∈ X};
2. T = {ti| ∃(q0, (ti)1≤i≤p) ∈ X, i ∈ �1, p�}. The pair (αQ,L, γQ,L) forms a Galois
connection between the complete lattices (℘(T �

Q,L),⊆) and (TQ,L,). This means
that for any transition system (Q′

0, T
′), we have αQ,L(X)  (Q′

0, T
′), if and only

if, X ⊆ γQ,L(Q′
0, T

′). It follows (e.g. see [4]), that: 1. functions αQ,L and γQ,L are
both monotonic; 2. the function αQ,L maps each set of finite traces to the smallest
(for ) transition system which induces this set of traces.

5 Local Transition Systems

In Sect. 4, we have associated each model with a transition system, that describes
the set of the finite traces of this model. However, such transition systems are
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usually too large to be computed, or even if they could, they are too complex
to help understanding the behaviour of the models. We propose to simplify
these transition systems by focusing on the behaviour of each protein indepen-
dently, abstracting away which proteins are bound together. This abstraction
had already been applied in [6,9], to infer the relationships among the state of
sites in protein instances. Here we extend this static analysis to traces.

Firstly we explain how to track the behaviour of each protein independently
while forgetting about the bonds between pairs of binding sites. For any agent
identifier n ∈ N, we denote by βn the function that, when applied to a site-graph
G containing an agent with identifier n: 1. replaces any bond between two sites
by two occurrences of the symbol ‘−’; 2. restricts the site-graph G to the agent
with identifier n; 3. renames the identifier n with 1. More formally, the site-
graph βn(G) is defined by: 1. Aβn(G) := {1}; 2. typeβn(G) := [1 	→ typeG(n)];
3. Sβn(G) := {(1, i) | (n, i) ∈ SG}; 4. the function Lβn(G) maps each site (1, i)
such that i ∈ Σlnk

ag−st(typeG(n)) and (n, i) ∈ SG, to the symbol ‘�’ whenever
LG(n, i) =�, and to the symbol ‘−’ otherwise; 5. the function pκβn(G) maps
each site (1, i) such that i ∈ Σint

ag−st(typeG(n)) and (n, i) ∈ SG, to pκG(n, i).

Fig. 7. Abstraction of the site-graphs G1, G2, G3, and of the embedding f .

Fig. 8. The abstraction of a push-out (in the concrete) is a push-out (in the abstract),
and application of rule (in the abstract).

Example 5. The restriction of the site-graphs G1, G2, and G3 to their agent with
identifier 1, are depicted in Figs. 7(a), (b), and (c). For instance, the site-graph
β1(G1) is equal to the tuple ({1}, [1 	→ P ], {(1, x)}, [(1, x) 	→ −], []). Moreover,
the function [1 	→ 1] induces an embedding between the site-graph β1(G1) and
the site-graph β1(G3), as depicted in Fig. 7(d).
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For each agent type A, we define the set of the local views QA, for the agents
of type A, as the set of the site-graphs G with only one agent of type A and
identifier 1, that documents the state of all the sites in Σag−st(A) (that is to
say such that SG = {(1, i) | i ∈ Σag−st(A)}). Besides, we define the set of the
local transition labels LA as the set of pairs (r, n) where r is a rule, and n is an
agent identifier. Intuitively, the local transition label (r, n) denotes the fact that
a rule r is applied along an embedding that matches the agent with identifier n
in the left hand side of the rule r, to the local view to which we want to apply
the rule. Given a rule r : L � ��� D � � �� R and an identifier n ∈ AL of an agent
in the left hand side L of the rule r, we define the abstraction βn(r) of the rule
r as the span βn(L) � ��� βn(D) � � �� βn(R). In this span, both embeddings are
induced by the function [1 	→ 1]. The copsan βn(r) is not a rule in general, yet
it can be applied along any embedding between its left hand side βn(L) and a
site-graph L′ thanks to a push-out construction (e.g. see Fig. 8). In such a case,

we write L′ (r,n)−−−→�R′ for the corresponding abstract computation step. Moreover,

we notice that in an abstract computation step q� (r,n)−−−→�q�′ if q� is a local view
in QA, then q�′ is a local view in QA as well.

Example 6. The application of the abstraction β1(P/K) of the rule P/K can be
applied to the site-graph β1(G1), as drawn in Fig. 8(c).

The application of the function βn can be lifted to traces. Given a trace
τ := (q′

0, (qi, (ri, fi), q′
i)1≤i≤p) ∈ T �

Q,L and an agent identifier n ∈ Aq′
0
, we define

the local trace βn(τ) as the trace: (βn(q′
0), (βn(qσ(i)), (rσ(i), ni), βn(q′

σ(i)))1≤i≤p′)
where 1. σ1, . . . , σp′ is the sequence (in increasing order) of the integers i between
1 and p such that βn(qi) �= βn(qi+1); 2. and for each integer i between 1 and
p′, the integer ni is the unique identifier such that the embedding fσi

maps the
agent with identifier ni in the left hand side of the rule rσi

into the agent with
identifier n in the chemical mixture qσi

(there always exists such an integer,
otherwise the abstract state would not have been modified).

Now we combine our abstractions to over-approximate the behaviour of each
agent as an independent local transition system. The abstraction απ(X) of a
set of traces X ⊆ T �

Q,L is defined as the function mapping each agent type
A ∈ Σag into the local transition system αQ,L[QA,LA]({βn(τ) | τ ∈ X, n ∈
Afst(τ) such that typefst(τ)(n) = A}) (i.e. the best over-approximation, as a tran-
sition system, of the set of the local traces that can be associated with an agent
of type A). Conversely, the concretization γπ(Y ) of a function Y between agent
types and local transition systems, is defined as the set of the traces τ ∈ T �

Q,L

such that for each identifier n of an agent in the initial state fst(τ) of the trace
τ , the local trace βn(τ) belongs to the set γQ,L[QA,LA](Y (typefst(τ)(n))).

By [4], the function απ ◦ FQ0,T ◦ γπ is the best abstract counterpart to the
function FQ0,T . The function απ ◦FQ0,T ◦ γπ is monotonic and its least fix-point
satisfies the inclusion: lfp FQ0,T ⊆ γπ(lfp απ ◦ FQ0,T ◦ γπ). The least fix-point
in the right hand side of the inclusion can be computed in a finite number of
iterations, since the domain of απ ◦FQ0,T ◦γπ is finite. However computing these
iterations is quite cumbersome, because it intertwines the computation of the
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local transition systems that are associated to each agent type. We propose to
desynchronise these computations. To do this, we introduce, for each agent type
A ∈ Σag, the function F

�
Q0,T,A that maps any local transition system (Q�

0, T
�) ∈

TQA,LA
to the local transition system (Q�

0
′, T �′) ∈ TQA,LA

where: 1. Q�
0
′ = Q�

0 ∪
{βn(q0) | q0 ∈ Q0, n ∈ Aq0 , typeq0(n) = A}; 2. and T �′ is the union between
the set T � and the set of the transitions (q�, (r, n), q�′) such that the local view

q� is reachable in the transition system (Q�
0, T

�) and such that q� (r,n)−−−→�q�′.
For any function Y mapping each agent type A ∈ Σag to a local transi-

tion system over the states QA and the transition labels LA, we have [απ ◦
FQ0,T ◦ γπ](Y )  F

�
Q0,T,A(Y ). Moreover, for each agent type A ∈ Σag, the func-

tion F
�
Q0,T,A is monotonic. By [12], for each agent type A ∈ Σag, the function

F
�
Q0,T,A has a least fix-point. By [4], the inclusion lfp FQ0,T ⊆ γπ([A ∈ Σag 	→

lfp F
�
Q0,T,A(A)]) is satisfied, which ensures the soundness of our approach.

Thus, we have derived an abstraction of the finite trace semantics, as a fam-
ily of local transition systems, that describes the behaviour of each particular
type of agent, in isolation. Each such local transition system can be computed
independently iteratively. We can apply our framework to abstract the local
transition system associated to the membrane receptors in the model of dim-
mer formation (e.g. see Fig. 1). As expected, the result is the abstract transition
system that is given in Fig. 2.

6 Macrotransition Systems

The analysis described in Sect. 5 can also be applied to our second case study
(e.g. see Fig. 3). But there are too many conformations for the result to be
visualisable in practice. In this section, we propose to identify which transitions
commute and provide a more compact symbolic representation of local transition
systems, which abstracts the interleaving order of commutative transitions.

Fig. 9. Pairs of commutative transitions.

We firstly define the notion of pairs of commutative transitions in a set of
traces. Given a set X ⊆ T �

Q,L of traces, We denote by TX the set of the transitions
that occur in X, i.e. TX := {(qi, λi, q

′
i) | (q0, (qi, λi, q

′
i))1≤i≤p, 1 ≤ i ≤ p}. For the

sake of simplicity, and since this is the case in Kappa, we assume that any transi-
tion is fully defined by the state it is starting from and the label of the transition.
Formally, we assume that for any two transitions (q1, λ1, q

′
1), (q2, λ2, q

′
2) ∈ TX ,

the states q′
1 and q′

2 are equal whenever the pairs (q1, λ1) and (q2, λ2) are equal.
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Definition 8. We say that transitions with labels λa ∈ L and λb ∈ L commute
in the set of traces X ⊆ T �

Q,L, if and only if both following properties are satisfied:
1. for any trace τ ∈ T �

Q,L, and any states q, q′
a, q′

b ∈ Q such that τ � (q, λa, q′
a)

and τ � (q, λb, q
′
b) are well defined traces that both belong to the set X, there

exists a state q′′ ∈ Q, such that the trace τ � (q, λa, q′
a) � (q′

a, λb, q
′′) belongs to

the set X; 2. and for any trace (q0, (ti)1≤i≤p) in X, if there exists three states
qa, q′

a, q′
b ∈ Q and an integer j between 1 and p−1 satisfying both tj = (qa, λa, q′

a)
and tj+1 = (q′

a, λb, q
′
b), then there exists a state q′′ ∈ Q such that the trace

(q0, (t′i)1≤i≤p), where t′i is defined as (qa, λb, q
′′) whenever i = j, as (q′′, λa, q′

b)
whenever i = j +1, and as ti otherwise, is well defined and belongs to the set X.

In Definition 8, the first property entails that whenever after a given prefix of
trace, two transitions that commute are enable (they necessarily starts from the
same state), each transition can be followed by the other one modulo the fact
that the latter transition should now start from the ending state of the former
one (e.g. see Fig. 9(a)), whereas the second property entails that two consecutive
transitions that commute can always be performed in the reverse order, modulo
the fact that the intermediary state has to be modified (e.g. see Fig. 9(b)).

Given C ∈ ℘(L2) a set of pairs of transition labels, we define the opera-
tor ρC which maps each set of traces X ⊆ T �

Q,L, into the smallest set of traces
ρC(X) ⊆ T �

Q,L that contains the set X and in which each pair of transitions
((qa, λa, q′

a), (qb, λb, q
′
b)) ∈ T 2

X such that (λa, λb) ∈ C, commutes. The function
ρC is an upper closure operator, that is to say that: 1. ρC is monotonic; 2. ρC is
idempotent (i.e. ρC ◦ ρC = ρC); 3. and ρC is extensive (i.e. X ⊆ T �

Q,LρC(X),
∀X ⊆ T �

Q,L). We notice that the fix-points of the upper closure ρC are the set of
traces X ⊆ T �

Q,L such that each pair of transitions ((qa, λa, q′
a), (qb, λb, q

′
b)) ∈ T 2

X

such that (λa, λb) ∈ C, commutes.We can use the upper closure ρC to accelerate the
computation of the set of traces γQ,L(Q0, T ) that is induced by a given transition
system (Q0, T ) provided that each pair of transitions ((qa, λa, q′

a), (qb, λb, q
′
b)) ∈

T 2
γQ,L(Q0,T ) such that (λa, λb) ∈ C, commutes in the set of traces γQ,L(Q0, T ). The

function ρC ◦ FQ0,T is monotonic and satisfies FQ0,T (X) ⊆ [ρC ◦ FQ0,T ](X)), for
any set of traces X ⊆ T �

Q,L. So, by [12], the function ρC ◦FQ0,T has a least fix-point,
and by [4], lfp FQ0,T ⊆ lfp [ρC ◦ FQ0,T ]. If additionally, each pair of transitions
((qa, λa, q′

a), (qb, λb, q
′
b)) ∈ TγQ,L(Q0,T ) such that (λa, λb) ∈ C, commutes, we get

that ρC(lfp FQ0,T ) = lfp FQ0,T , and thus that lfp FQ0,T = lfp [ρC ◦ FQ0,T ].
In Kappa, pairs of commutative local transitions can be identified syntacti-

cally. Let us consider an agent type A ∈ Σag. Given the label (r, n) ∈ LA of a
local transition, we denote as test(r, n) the set of the site identifiers i such that
the site (n, i) occurs in the domain of the rule r, and as mod(r, n) the set of the
site identifiers i such that the site (n, i) occurs in the domain of the rule r with-
out occurring in its left hand side. Then, for any two labels λ1, λ2 ∈ LA of local
transitions such that both mod(λ1)∩test(λ2) = ∅ and mod(λ2)∩test(λ1) = ∅,
any pair of local transitions with the labels λ1 and λ2 commutes [11].

Example 7. In the rules Fig. 3, we have: We have: test(b+1 , 1) = {a1, b1};
mod(b+1 , 1) = {b1}; test(b+2 , 1) = {a2, b2}; mod(b+2 , 1) = {b2}. As a consequence
any two local transitions with respective labels (b+1 , 1) and (b+2 , 1) commute.



Local Traces: An Over-Approximation of the Behaviour of the Proteins 129

Given a local view v ∈ QA, we consider the set Λ(v) as the set of all the
transitions labels λ such that there exists a local transition starting from the
view v and with the label λ. We define the site-graph frameλ(v) as the site-
graph that is obtained by removing from the site-graph v any site that belongs
to the set

⋃
{mod(λ′) | λ′ ∈ Λ(v)\{λ}}. Intuitively, frameλ(v) is the restriction

of the local view v to the sites that cannot be modified by local transitions that
commute with a local transition with the label λ.

We are left to provide a compact data-structure to represent transition sys-
tems with pairs of commutative transitions. We propose to use macrostates
and macrotransitions. A macrostate is a symbolic representation of a set
of (micro)states (that behave similarly), and macrotransitions are transitions
between macrostates, that denote some transitions between the corresponding
microstates. Let us assume that we are given a set of macrostates Q

�. Each
macrostate q� ∈ Q

� denotes a set of microstates ΓQ,Q�(q�) ⊆ Q.
A macrotransition system is defined as follows:

Definition 9. A macrotransition system is a pair (Q0, T
�) where: 1. Q0 ⊆ Q;

2. T � ⊆ Q
� × L × Q

�.

A macrotransition system is made of a set of initial microstates, and a
set of labelled transitions between macrostates. Each macrotransition is an
implicit representation of a set of transitions between microstates. Formally,
each macrotransition (q�, λ, q�′) denotes the set of the transitions (q, λ, q′) ∈
Q × L × Q for which there exists a set of macrostates X ⊆ Q

� satisfying:
q =

⋂
{ΓQ,Q�(x) | x ∈ X ∪ {q�}} and q′ =

⋂
{ΓQ,Q�(x) | x ∈ X ∪ {q�′}}.

We denote as Γ ′
Q,Q�(q�, λ, q�′) the set of the transitions denoted by the macro-

transition (q�, λ, q�′). A macrotransition system (Q0, T
�) is an abstraction of the

transition system (Q0,∪{Γ ′
Q,Q�(t) | t ∈ T �}), that we denote as ΓQ0,T,Q�(Q0, T

�).
In Kappa, a macrostate is a site-graph that can be embedded in a local

view. Each macrostate intentionally denotes the set of the local views it can be
embedded in. Now we mimick the computation of F

�
Q0,T,A in macrotransition

systems. We define the function G
�
Q0,T � mapping each macrotransition system

(Q0, T
�) to the macrotransition system where the set of initial states is defined

as the union between Q0 and the set {βn(q0) | n ∈ A(q0), typeq0(n) = A};
and where the set of macrotransitions is obtained 1. by adding in the set T � any
transition of the form (frameλ(v), λ, v′) for any local view v ∈ QA such that: (a)
the local view v is reachable in the transition system γQA,LA

(ΓQ0,T,Q�(Q0, T
�));

(b) and frameλ(v) λ−→� v′, 2. before removing any macrotransition t such that
there exists a macrotransition t′ satisfying Γ ′

Q,Q�(t) ⊂ Γ ′
Q,Q�(t′).

For any macrotransition system X�, both following inclusions are satisfied:
1. γQA,LA

(F�
Q0,T,A(ΓQ0,T,Q�(X�))) ⊆ γQA,LA

(ΓQ0,T,Q�(G�
Q0,T �(X�))) (soundness);

2. γQA,LA
(ΓQ0,T,Q�(G�

Q0,T �(X�))) ⊆ ρC(γQA,LA
(F�

Q0,T,A(ΓQ0,T,Q�(X�))))) (rela-
tive completeness). It follows (since ΓQ0,T,Q�(∅, ∅) = (∅, ∅)) that, when k ∈
N increases, the sequence of the images by [γQA,LA

◦ ΓQ0,T,Q� ] of the iterates
G

�(k)

Q0,T �(∅, ∅) of the function G
�
Q0,T � , starting from the macrotransition system
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(∅, ∅), stations ultimately at the valueγQA,LA
(lfp F

�
Q0,T,A).The result of our analy-

sis is defined as the macrotransition system G
�(l)

Q0,T �(∅, ∅), where l ∈ N is the rank
at which this limit is reached.

Our analysis is integrated within an open-source static analyser [1]. It relies
on binary decision diagrams, to describe implicitly which microtransitions are
not yet covered by any macrotransition (as required both in the function G

�
Q0,T �

and to detect when to stop the iterations). We obtain, for the second case study
in Fig. 3, the macrotransition system that is described in Fig. 4. We have also
applied to a similar model with 5 pairs of phosphorylation sites and obtained
the corresponding macrotransition system in around one second.

7 Conclusion

Kappa [7] allows for the description of highly combinatorial systems of interac-
tions between proteins. But it is not always obvious to check the consistency of
the models that are written in Kappa or to get an overview of how these mod-
els work. To cope with this issue, we have proposed an abstract interpretation
framework to automatically over-approximate the behaviour of each agent of a
model, independently, by the means of a local transition system.

Since these local transition systems may remain too combinatorial when pro-
teins have many interaction sites, we have designed a coarser description of the
local transition systems, inspired by simplicial systems. This latter description
abstracts away the interleaving order between commutative transitions, by the
means of transitions between macrostates, that denotes symbolically sets of tran-
sitions between microstates. Our tool computes these macrotransitions directly.
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Abstract. We present a bifurcation analysis of electrical alternans in
the two-current Mitchell-Schaeffer (MS) cardiac-cell model using the the-
ory of δ-decidability over the reals. Electrical alternans is a phenomenon
characterized by a variation in the successive Action Potential Durations
(APDs) generated by a single cardiac cell or tissue. Alternans are known
to initiate re-entrant waves and are an important physiological indicator
of an impending life-threatening arrhythmia such as ventricular fibrilla-
tion. The bifurcation analysis we perform determines, for each control
parameter τ of the MS model, the bifurcation point in the range of τ
such that a small perturbation to this value results in a transition from
alternans to non-alternans behavior. To the best of our knowledge, our
analysis represents the first formal verification of non-trivial dynamics
in a numerical cardiac-cell model.

Our approach to this problem rests on encoding alternans-like behav-
ior in the MS model as a 11-mode, multinomial hybrid automaton (HA).
For each model parameter, we then apply a sophisticated, guided-search-
based reachability analysis to this HA to estimate parameter ranges
for both alternans and non-alternans behavior. The bifurcation point
separates these two ranges, but with an uncertainty region due to the
underlying δ-decision procedure. This uncertainty region, however, can
be reduced by decreasing δ at the expense of increasing the model explo-
ration time. Experimental results are provided that highlight the effec-
tiveness of this method.

1 Introduction

An important component of cardiac electrodynamic modeling is the ability to
understand and predict qualitative changes that take place in the dynamics as
model parameters are varied [1,9,29]. One well-known change involves a transi-
tion to alternans: a phenomenon characterized by a period-doubling bifurcation
where, while cells are paced at a constant period, their response has different
c© Springer International Publishing AG 2016
E. Bartocci et al. (Eds.): CMSB 2016, LNBI 9859, pp. 132–146, 2016.
DOI: 10.1007/978-3-319-45177-0 9
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dynamics between even and odd beats, with one long action potential follow-
ing a short one [23]. Alternans are known to destabilize waves [15] and initi-
ate re-entrant waves and represent an important physiological indicator of an
impending life-threatening arrhythmia such as ventricular fibrillation [19,27].

About 100 mathematical models [10] have been developed to recreate and
study, to varying degrees of complexity, the electrical dynamics of a cardiac cell
(i.e., cardiomyocyte). A particularly appealing one in terms of its mathematical
tractability is the model of Mitchell and Schaeffer [24], which represents the
cellular electrodynamics using only two state variables: a voltage variable v that
describes the trans-membrane potential, and a gating variable h that describes
the internal ionic state of the cell.

In this paper, we present a bifurcation analysis of electrical alternans in the
two-current Mitchell-Schaeffer (MS) cardiac-cell model1 using the theory of δ-
decidability over the reals [12]. The bifurcation analysis we perform determines,
for each parameter τ of the MS model, the bifurcation point in the range of τ
such that a small perturbation to this value results in a transition from alternans
to non-alternans behavior; see Fig. 1. To the best of our knowledge, our analy-
sis represents the first formal verification of non-trivial dynamics in a realistic
cardiac-cell model.

Our approach to this problem rests on encoding alternans-like behavior in
the MS model as an 10-mode, multinomial hybrid automaton (HA). For each MS
model parameter, we then apply a sophisticated, guided-search-based reachabil-
ity analysis to this HA to estimate ranges for both alternans and non-alternans
behavior. The bifurcation point separates these two ranges, but with an uncer-
tainty region due to the underlying δ-decision procedure. This uncertainty region,
however, can be reduced by decreasing δ at the expense of increasing the model
exploration time. Experimental results are provided that highlight the effective-
ness of this method.

Fig. 1. Bifurcation analysis of alternans for parameter τ . Parameter values τ ′ and τ ′′

are bifurcation points.

1 A third current Is, which is not intrinsic to the MS model, is used to stimulate the
cell to produce an action potential.
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This paper is organized as follows. Section 2 presents the MS model and
gives a brief overview of the dReach tool that we use to perform reachability
analysis. Section 3 represents the MS model as an HA and then extends the MS
HA to encode alternans behavior. Section 4 formally defines bifurcation analysis
of alternans, and outlines an approach to perform the analysis by reducing it
to a parameter-synthesis problem for the HA that encodes alternans. Section 5
presents our results for the bifurcation analysis of all of the control parameters of
the MS model. Section 6 considers related work. Section 7 offers our concluding
remarks and directions for future work.

2 Background

2.1 Mitchell-Schaefer Model

The Mitchell-Schaefer model is an activator-inhibitor system that describes the
electrical dynamics of a ventricular myocyte. The model involves two coupled,
nonlinear ordinary differential equations of the form:

v̇ = Iin(v, h) + Iout(v) + Is(t)

ḣ =

{
1−h
τopen

v < Vg

−h
τclose

v ≥ Vg

(1)

where v(t) is the transmembrane voltage and h(t) is a gating variable (as in a
voltage-gated ion channel [10]). The voltage ranges from -85 to 20 mV in a real
cardiac cell, but has been scaled to the range [0, 1] in the MS model, and is
expressed as the sum of three currents: an inward current, outward current and
stimulation current. The inward current Iin(v, h) = hv2(1−v)/τin is designed to
replicate the behavior of fast-acting gates found in more complex models. The
outward current Iout(v) = −v/τout is ungated and represents the currents that
act to decrease the membrane voltage. The strength of each respective current
is controlled by the timing parameters τin and τout.

The stimulus current Is is an externally applied current which is used to
periodically excite an action potential in the cell. It is applied every BCL (Basic
Cycle Length) milliseconds for a duration of τs milliseconds. The stimulation
parameters used in this work are [τs, Is]=[1, 0.2].

The gating variable h(t) is dimensionless and scaled between 0 and 1. Para-
meters τclose and τopen are time constants that control the opening and closing
of the h-gate, and Vg is the “critical” gating voltage; i.e., the voltage required
to generate an action potential. The four time constants in the model are used
to control the four phases of the cardiac action potential.

For certain parameter values, the Mitchell-Schaeffer model can exhibit alter-
nans, a state which successively exhibits alternating short-long values of the
APD. An example of alternans and non-alternans behavior in the voltage time
series is shown in Fig. 2.
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Fig. 2. The voltage time series for the Mitchell-Schaeffer model using parameter values
[τin, τout, τopen, τclose, Vg]=[0.3, 6, 20, 150, 0.1]. The threshold value used to compute the
APD is VT = 0.2. (a) The time series does not meet the definition of alternans since
APD1=APD2. (b) The time series meets the definition of alternans since the APDs
alternate in length (short, long, short long).

2.2 The dReach Tool

dReach [21] is a bounded reachability analysis tool for nonlinear hybrid sys-
tems. It takes a hybrid automaton H, reachability properties P, a numerical
error bound δ ∈ Q

+, and an unrolling depth k ∈ N as inputs. It then encodes
a bounded-reachability problem for a hybrid automaton as a first-order for-
mula over the reals and solves the formula using the delta-decision SMT solver
dReal [14]. There are two possible outputs from the dReach tool:

– unreachable: dReach confirms that there is no trace satisfying the reachability
properties up to k discrete jumps.

– δ-reachable: dReach shows that there exists a trace ξ satisfying the reachabil-
ity properties if we consider a user-specified numerical perturbation δ ∈ Q

+

in H. The tool also provides a feature to visualize this trace.

We note that the bounded-reachability problem for nonlinear hybrid automata
is undecidable [3]. The tool is implemented in the framework of delta-complete
analysis for bounded reachability of hybrid systems [13], which provides an algo-
rithm for the originally undecidable problem by using approximation (the use of
δ in the analysis).

3 Hybrid Automata for the MS Model and Alternans

In this section, we represent the MS model as a hybrid automaton and extend
this automaton to encode alternans and non-alternans behavior.

3.1 Hybrid Automaton (HM) for the MS model

The stimulus current Is(t) in Eq. 1 is typically a periodic square-wave pulse of
fixed duration (τs). An example of such a wave form is shown in Fig. 3.
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Fig. 3. A typical wave form for the stimulus current Is(t) with period=BCL and stim-
ulus duration = τs.

Fig. 4. The four-mode hybrid automaton for the MS model. The primed version of
variables is used to indicate the reset map of a given transition. Variables not shown
in the reset map are not updated during the jump.

To handle this type of stimulus signal in the MS model, we split the voltage
dynamics into two separate modes: a stimulus mode and a non-stimulus mode.

Since the dynamics of variable h is also separable into two modes, we can
represent the MS cardiac-cell model as a four-mode hybrid automaton (HA)
whose schematic is shown in Fig. 4(a). We add an additional state variable τ
that serves as a local clock for time-triggered events; for example, the transition
from a stimulus to a non-stimulus mode or the transition from the current AP
cycle to the next.

Due to the following observations, we can simplify this HA by removing
certain edges:

– v < Vg will not occur in “Stimulation Mode 1”, as the value of v always
increases in this mode

– v ≥ Vg will not occur in “Non-stimulation Mode 2”, as v always decreases in
this mode
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– v ≥ Vg occurs before τ ≥ τs in “Stimulus Mode 2”
– For a chosen BCL range, v < Vg occurs before τ ≥ BCL in “Non-stimulus

Mode 1”

3.2 Encoding Alternans and Non-Alternans as Hybrid Automata

We now encode a modified definition of alternans that incorporates transient
cycles and a tolerance threshold rth, 0 ≤ rth ≤ 1, which establishes the relative
difference between APDs. Transients are important since, when starting from
an initial state and a set of parameters that are known to produce alternans,
the voltage signal only settles into period-doubling after the transient phase
is over. Failure to incorporate transient cycles can result in unwanted effects
on the alternans calculation. We add the tolerance threshold rth to take into
account noise and measurement errors in the clinical data that is used to calculate
alternans.

Definition 1. Let σ be a (possibly infinite) voltage signal that begins with Ntrans

AP cycles, followed by at least two AP cycles, where Ntrans is the number of
transient cycles. Let τ1 > 0 and τ2 > 0 be the APDs of any two consecutive
AP cycles after the initial Ntrans cycles in σ. Further, let r = τ2

τ1
. We say

that σ exhibits alternans with respect to a given rth when |r − 1| > rth is an
invariant. Likewise, we say that σ exhibits non-alternans with respect to rth

when |r − 1| ≤ rth is an invariant.

As opposed to using the absolute value of the difference of consecutive APDs
(|APD1−APD2|) for the definition of alternans, Definition 1 yields a normalized
(between 0 and 1) basis for comparison. Note that as rth is increased, the esti-
mated bifurcation point is moved away from the exact value and farther into the
alternans region. In the limit as rth approaches zero, the estimated bifurcation
point approaches the exact value, as shown in Fig. 5.

We first explain the steps used to encode alternans as an HA based on HM ,
and then follow similar steps to encode non-alternans as another HA. We con-
sider alternans as a safety property and characterize it using a so-called safety
automaton [2]. For our purposes, a safety automaton is an HA with modes addi-
tionally marked as accepting or non-accepting, and with the property that no

Fig. 5. Effect of rth on bifurcation point.
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accepting mode can be reaching from a non-accepting mode. After first deter-
mining that HM has completed Ntrans transient cycles, our safety, or observer,
automaton HO repeatedly computes two successive APDs τ1 and τ2, and checks
if the condition for alternans (Definition 1) is violated. If so, the automaton enters
a trap (i.e. non-accepting) state, from which it never exits. If no such violation
is detected, then the observed sequence of cycles is accepted. Thus, in HO, there
is a single non-accepting mode named “Trap”; all other modes are accepting.
Note that HO uses the v and τ values from HM to determine when a cycle has
completed and to compute APD values.

Figure 6 presents observer HA HO for the alternans problem. As, by defini-
tion, APD is the time period in each AP cycle during which v ≥ VT , an APD
event can occur only in “Stimulus Mode: 1” and “Non-stimulus Mode: 1” in
HM . So to compute APD, the observer splits “Non-stimulus Mode: 1” into two
modes: “APD Mode” (when v ≥ VT ) and “Non-APD Mode” (when v < VT ).
As the “Stimulus Mode: 1” is at most τs and τs (typically 1 ms) is negligible
compared to the duration of “Non-stimulus Mode: 1”(> 200 ms), we ignore the
event v ≥ VT inside “Stimulus Mode: 1” for the APD computation. This helps
us avoid splitting “Stimulus Mode: 1” and thus reduces the number of modes in
the observer HA.

Fig. 6. The hybrid automaton HO for the observer. The number after the colon in
each mode name gives a number to the mode. Mode “Trap” is non-accepting; all other
modes are accepting.
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Fig. 7. The 11-mode hybrid automaton HA for alternans.

To determine whether HM completes Ntrans transient cycles, we add a
counter CN in HO which is increased by 1 during the jump from “Non-APD
Mode: 3” to “Stimulus Mode 2: ”. In (Ntrans + 1) cycle, HO computes τ1 in
“APD Mode: 2” and then compute τ2 in the consequent cycle in “APD Mode: 6”.
When v < VT ∧ |r − 1| > rth does not hold, a transition from“APD Mode: 6”
to “Trap Mode: 9” occurs, i.e., the alternans property is violated. All the other
modes are the accepting states for this safety (Buechi) automaton.

To check the alternans property, we combine HM and HO into a single
automaton HA as shown in Fig. 7. This approach is known as shared-variable
composition [4].

Let Θ0 be a set of initial states in HO. We say Θ0 produce alternans when:

∃θ0 ∈ Θ0.“Trap Mode: 11” is not reachable in HA. (2)

Similar to Fig. 7, we can encode the dual behavior, non-alternans, as an HA
HN by inter-changing guard conditions of the outgoing transitions in “APD
Mode: 7”. We then say that that Θ0, a set of initial states in HN , produces
non-alternans when:

∃θ0 ∈ Θ0.“Trap Mode: 11” is not reachable in HN . (3)
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4 Bifurcation Analysis of Alternans Using dReach

To perform bifurcation analysis of alternans for a parameter τ of the MS model,
we need to augment the state vector of both HA and HN with τ by adding τ̇ = 0
in each mode. Let Rτ = [τ , τ ] be the set of initial values of τ . Now we define the
set of initial states of both augmented automata as Θa

0 = θ0 × Rτ , where θ0 is
some nominal initial state from where both HA and HN start operating.

Now we will redefine the problem (2) and (3) based on the augmented
automata. Let Θa

0 be a set of initial states in the augmented automata. We
say Θa

0 produce alternans, when

∃θa
0 ∈ Θa

0 .“Trap Mode: 11” is not reachable in augmented HA. (4)

Algorithm 1. Bifurcation Analysis on dReach
1: procedure Bifurcation-Analysis(τ ,Rτ ,δ0)
2: add τ̇ = 0 in HA and HN

3: AR ← {} NR ← {} UR ← Rτ δ ← δ0
4: while UR meets desired precision criteria do
5: UR ← RecursiveSearch(δ,UR)
6: Decrease δ
7: end while
8: end procedure

Similarly, we say Θa
0 produce non-alternans, when

∃θa
0 ∈ Θa

0 .“Trap Mode: 11” is not reachable in augmented HN . (5)

Algorithm 1 serves as an outline of our bifurcation analysis of alternans,
for τ varying in range Rτ , using dReach-based reachability analysis on prob-
lems (4) and (5). The algorithm will partition Rτ into three regions: 1) Alternans
Region (AR), 2) Non-alternans Region (NR) and 3) Uncertainty Region (UR)
which contains the bifurcation point (BP).

Algorithm 1 starts by augmenting HA and HN with τ and initializing AR,
NR, UR and δ. In the while-loop, it then calls a recursive search procedure to
reduce the size of the UR, while concomitantly computing AR and NR. The
algorithm terminate when size of the UR meets the desired precision criteria
(i.e., the UR is small enough).

In the recursive search procedure, we first initialize Θa
0 , which we will use for

both automata. We then run dReach on problem (4). If dReach returns unsat
for this problem, we add UR to NR and return the empty set for the new UR. If
it returns δ-sat, however, we run dReach on the dual problem as shown on line 8.
If dReach returns unsat for the dual problem, we add UR to AR and return the
empty set for the new UR.

In both cases, when dReach returns δ-sat and the size of UR becomes less
than or equal to current δ, we return UR as the new uncertainty region as
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1: procedure RecursiveSearch(UR,δ)
2: Θa

0 = θ0 × UR
3: α ← dReach(HA, Θa

0 , δ)
4: if α = unsat then
5: NR ← NR ∪ UR
6: return {}
7: end if
8: β ← dReach(HN , Θa

0 , δ)
9: if β = unsat then

10: AR ← AR ∪ UR
11: return {}
12: end if
13: if |UR| ≤ δ then
14: return UR
15: end if
16: (URl,URr) ← Bisect(UR)
17: return RecursiveSearch(URl, δ) ∪ RecursiveSearch(URr, δ)
18: end procedure

shown on line 14. If, however, the size of UR is greater than δ, we bisect UR
and recursively call the search method on both branches, returning their union
as the new UR.

Figure 8 provides an example of our bifurcation analysis of alternans.
Figure 8(a) shows the exact bifurcation analysis that we wish to achieve using
δ-decidability over the reals. Figure 8(b) shows the bifurcation analysis using
Algorithm 1. Initially, the entire range is considered as an UR in Algorithm1. The
algorithm then iteratively reduces UR and increases AR and NR. Figure 8(c),
shows how the recursive search procedure, in a binary-search-tree-like fashion,
computes AR and NR and reduces UR.

Fig. 8. Bifurcation analysis of alternans. Red: AR, Green: NR, Gray: UR. (Color figure
online)
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5 Results

In this section, we present the results of performing bifurcation analysis of alter-
nans over five parameters in the MS model using Algorithm1. When we perform
bifurcation analysis for a parameter, we fix the other parameter as follows:

[Vg, rth, Ntrans,BCL, τin, τout, τopen, τclose] are set to [0.1, 0.2, 2, 300, 0.3, 6,
20, 150] unless specified otherwise. The fixed initial condition θ0 for HA and
HN were taken as v(0) = 0.2, h(0) = 1 with CN (0), τ(0), τ1(0) and τ2(0) all
set to zero. In all cases, we consider voltage signal that contains Ntrans + 2 AP
cycles.

For the bifurcation analysis of alternans for BCL, we consider the range as
[300, 330], δ0 = 0.5. We perform the bifurcation analysis for three different rth

values. Figure 9, for three different rth,illustrates the partitioning of the range
of BCL into three regions: AR, NR and UR and Table 1 shows the correspond-
ing subranges computed by Algorithm 1. We also overlay the simulation-based
bifurcation diagram to help visualizing the position of the bifurcation point. The
sequence of figures illustrate how the bifurcation region returned by dReach
approaches the exact bifurcation point as rth approaches zero.

We summarize the bifurcation analysis for other parameters in Table 2 for
rth = 0.01 and Fig. 10 shows their bifurcation diagrams. Note that we are not
able to find any BP for τopen. All computation is performed using Intel Core
i7-4770 CPU @ 3.40 GHz × 8 on Linux platform.

Fig. 9. Bifurcation analysis of alternans with respect to BCL for three different rth

values.

Table 1. Parameter ranges for alternans and non-alternans and uncertainty region.

rth AR NR UR Runtime (s)

0.1 [300, 311.91] [311.912, 350] (311.91, 311.912) 80, 209

0.05 [300, 318.564] [318.567, 350] (318.564, 318.567) 81, 012

0.01 [300, 332.4714] [332.4716, 330] (332.4714, 332.4716) 81, 162
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Table 2. Parameter ranges for alternans and non-alternans and uncertainty region.

Parameter AR NR UR Runtime (s)

τin [0.3, 0.3729] [0.3730, 0.4] (0.3729, 0.3720) 176010

τout [4.9995, 6] [3, 4.9990] (4.9990, 4.9995) 66000

τopen [7.5, 20] − − 110231

τclose [131.8586, 150] [130, 131.8584] (131.8584, 131.8586) 84938

Fig. 10. Bifurcation analysis of alternans with respect to four parameters of the MS
model with rth = 0.01.

6 Related Work

Reachability analysis has emerged as a promising solution for many biological
systems [6,11,17,31]. SMT-based verification using dReal [14] has been applied
in various problems [5,8,18,20,25,26]. Liu et al. successfully applied SMT-based
reachability analysis using dReach in identifying patient-specific androgen abla-
tion therapy schedules for postponing the potential cancer relapse in [22].

Brim et al. present a bifurcation analysis technique to analyze stability of
genetic regulatory networks in [7]. They first express various stability-related
properties by a temporal logic language extended by directional propositions and
then verify those properties by varying the model parameters. Even though they
apply their method only on piece-wise affine dynamics, the authors claim that
it can be extended for piece-wise multiaffine dynamics. The method, however, is
not applicable for general nonlinear dynamical systems.
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In [16], Huang et al. presents a reachability analysis technique for a hybrid
model of cardiac dynamics for a 1-d cable of cells and show the presence of
alternans based on computed reachtube. The authors, however, neither define
nor verify the alternans property formally. They just do reachability analysis for
two BCL values and show, by visual inspection, that one BCL value produces
alternans and another does not.

7 Conclusions

In this paper, we have applied reachabilty analysis to identify the bifurcation
points that represent the transition to alternans in the Mitchell-Schaefer cardiac-
cell model. Our bifurcation analysis is performed using the bounded-reachability
tool dReach [21], and uses a sophisticated guided-search strategy to“zoom in”
on the bifurcation point in question. Since this tool is designed to work with
nonlinear hybrid systems, we converted the original MS model into a hybrid
automaton (HA), and further extended this HA to encode alternans- and non-
alternans-like behavior.

For future work, we intend to study other models where alternans are not due
to solely the voltage dynamics, as in the MS model. Rather, they may also be
caused by the calcium dynamics, as both mechanisms have been found to occur
in cardiac cells [28]. Such models can have multiple BPs and our algorithm will
automatically find all of them, as it searches for BPs in each branch of the
recursive search tree.

We also plan to extend the cell-level bifurcation analysis we conducted to a
1-d cable of cells. Traveling waves can exhibit alternans along cables [30]. Doing
so, will require us to extend our reachability analysis from ODEs to PDEs. We
can also extend our analysis by varying multiple parameters simultaneously;
currently, we only vary one parameter at a time. We can accomplish this by
augmenting the state vector with each of these parameters.
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Abstract. The Linear Noise Approximation (LNA) is a continuous
approximation of the CME, which improves scalability and is accurate
for those reactions satisfying the leap conditions. We formulate a novel
stochastic hybrid approximation method for chemical reaction networks
based on adaptive partitioning of the species and reactions according to
leap conditions into two classes, one solved numerically via the CME
and the other using the LNA. The leap criteria are more general than
partitioning based on population thresholds, and the method can be com-
bined with any numerical solution of the CME. We then use the hybrid
model to derive a fast approximate model checking algorithm for Sto-
chastic Evolution Logic (SEL). Experimental evaluation on several case
studies demonstrates that the techniques are able to provide an accurate
stochastic characterisation for a large class of systems, especially those
presenting dynamical stiffness, resulting in significant improvement of
computation time while still maintaining scalability.

1 Introduction

Biochemical systems are inherently stochastic: the time for the next reaction
to occur and which reaction fires next are both random variables. When the
reactant molecules are in low number the resulting dynamic behaviour can be
highly stochastic and deterministic models are unable to correctly approximate it
[4,23]. Thus, an accurate characterisation of stochastic fluctuations in biological
systems is essential [30]. It is well known that a biochemical system evolving in
a spatially homogeneous environment, at constant volume and temperature, can
be described as a continuous-time Markov chain (CTMC) [10] Transient analysis
is generally performed through solving the Chemical Master Equation (CME)
[30] or with the Stochastic Simulation Algorithm (SSA) [12]. The SSA produces
a single realization of the stochastic process, whereas the CME gives the proba-
bility distribution of each species over time. The CME can be solved numerically
through solving differential equations or methods based on uniformisation, both
requiring exploration of the reachable state space and thus infeasible for sys-
tems with large or infinite state spaces. On the other hand, the SSA is generally

c© Springer International Publishing AG 2016
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faster, although obtaining good accuracy necessitates potentially large numbers
of simulations and can be time consuming.

An alternative is to approximate the CME as a continuous-state stochastic
process. The Linear Noise Approximation (LNA) is a Gaussian process which
has been derived as an approximation of the CME [30]. Thus, the LNA is inher-
ently unimodal and not accurate for multimodal dynamics. Its solution involves
a number of differential equations that is quadratic in the number of species and
independent of the molecular populations. As a consequence, the LNA is gen-
erally much more scalable than a discrete stochastic representation. For these
reasons, the LNA has recently been used for model checking of large biochemical
systems [5,8]. The solution given by the LNA is accurate if conditions on species
and reactions known as the leap conditions are satisfied, which holds in the
limit of high populations, but typically only for a subset of species and reactions
(i.e. stiff systems). As a result, a discrete stochastic representation is necessary
for the remaining species. A natural approach is thus to consider a stochastic
hybrid semantics that combines a continuous approximation based on the LNA
for species respecting the leap conditions and maintains a discrete stochastic
representation for the remaining species. Fortunately, for a large class of biologi-
cal systems the species that respect the leap conditions are in high number [31],
which necessitates solving the CME only for a significantly reduced state space.

Contributions. We present a stochastic hybrid model for biochemical systems,
where a subset of species and reactions is treated with a continuous state-space
stochastic process, the LNA, while the remaining species are treated as a dis-
crete state-space stochastic process. A key advantage is that transient analysis
of a discrete stochastic process is needed only for a substantially reduced set of
species, ameliorating state-space explosion. The main novelty of our approach
is that we partition species and reactions using the leap conditions. This allows
us to dynamically and automatically update the partitions, which is necessary
since the satisfaction of the leap conditions may change with time. We derive
equations for the joint and marginal probability distributions of the partitioned
system. Continuous species are modelled as a mixture of Gaussian distributions,
enabling us to treat multimodality. We present a numerical method for solving
the CME, which adaptively and automatically decides for which species a dis-
crete characterization is needed, and which species can be approximated with
the LNA, thus resulting in significant improvement of computation time while
still maintaining scalability. We then employ the presented hybrid semantics to
build a fast and scalable probabilistic model checking algorithm for Stochastic
Evolution Logic (SEL), a temporal logic presented in [8]. We implement the
techniques and demonstrate on several case studies their ability to provide an
accurate stochastic characterization of systems for which the LNA is imprecise,
but full solution of the CME, even using advanced numerical techniques, is not
feasible because of scalability issues. We emphasise that our method can be used
in conjunction with any existing numerical solution of the CME.
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Related Work. The work of Henzinger et al. [18], where a hybrid method is
presented with a subset of species treated as a continuous approximation and
the remaining species by solving the CME, differs from ours in at least two key
aspects. Firstly, their continuous approximation is deterministic, whereas ours is
continuous stochastic. Secondly, they partition the species based on a threshold
on the molecular population, rather than the leap conditions, which may lead to
inaccuracies, since the error of the deterministic model depends not only on the
molecular population but also on model parameters [10]. Our use of the leap con-
ditions guarantees the accuracy of the stochastic approximation. Thomas et al.
[29] develop a conditional LNA method and apply it to gene expression networks.
They approximate the probability distribution of gene expression products with
the conditional LNA, while still treating promoters with the CME. Our app-
roach is similar in the sense that we also consider the LNA for a subset of the
species and a discrete-time Markov process for the remaining ones. However,
it is not clear in [29] how to partition the species. Instead, we provide criteria
based on the leap conditions to automatically decide for which species the LNA
is accurate, and which species instead need a discrete characterization.

In [17], the authors present the method of conditional moments for approx-
imating the moments of the solution of the CME, where small populations are
treated via a discrete process and high using approximate moment closure. How-
ever, how to automatically partition the species is left as an open problem.

Partitioning of species and reactions of a reaction network for the purpose of
speeding up the SSA in multi-scale systems has been explored in [15,25,26]. For
instance, Yao et al. introduced the slow-scale stochastic simulation algorithm
[6], where they distinguish between fast and slow species. Fast species are then
treated assuming they reach equilibrium much faster than the slow ones. Adap-
tive partitioning of the species has been considered in [11,19]. However, in both
cases, the authors consider continuous models that differ from the LNA. In par-
ticular, in [11] the authors use a jump diffusion Markov process to approximate
the original CTMC and derive error bounds to decide the species partitioning.

2 Background

Chemical Reaction Networks. A chemical reaction network (CRN) C =
(Λ,R) is a pair of finite sets, where Λ is the set of chemical species, |Λ| denotes
its size, and R is a set of reactions. Species in Λ interact according to the reac-
tions in R. A reaction τ ∈ R is a triple τ = (rτ , pτ , kτ ), where rτ ∈ N

|Λ| is the
reactant complex, pτ ∈ N

|Λ| is the product complex and kτ ∈ R>0 is the coeffi-
cient associated to the rate of the reaction. rτ and pτ represent the stoichiometry
of reactants and products. Given a reaction τ1 = ([0, 1, 1], [0, 0, 2], k1) we often
refer to it as τ1 : λ1 + λ2 →k1 2λ3. The state change associated to a reaction τ
is defined by υτ = pτ − rτ . Assuming well mixed environment, constant volume
V and temperature, a configuration or state x ∈ N

|Λ| of the system is given by a
vector of the number of molecules of each species. Given a configuration x then
x(λi) represents the number of molecules of λi in the configuration and x(λi)

N is
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the concentration of λi in the same configuration, where N = V · NA is the vol-
umetric factor, V is the volume and NA Avogadro’s number. The deterministic
semantics approximates the concentrations of species over time as the solution
Φ(t) of a set of differential equations of the form:

dΦ(t)
dt

= F (Φ(t)) =
∑

τ∈R

υτ · (kτ

|Λ|∏

i=1

Φ
ri,τ

i (t)) (1)

where Φ
ri,τ

i (t) is the ith component of vector Φ(t) raised to the power of ri,τ ,
the ith component of vector rτ . The initial condition is Φ(0) = x0

N . It is known
that Eq. (1) is accurate in the limit of high populations [10].

Stochastic Semantics. The propensity rate ατ of a reaction τ is a function of
the current configuration x of the system such that ατ (x)dt is the probability
that a reaction event occurs in the next infinitesimal interval dt. We assume
mass action kinetics, therefore ατ (x) = kτ

∏|Λ|
i=1 ri,τ !

N |rτ |−1

∏|Λ|
i=1

(
x(λi)
ri,τ

)
, where ri,τ is

the ith component of the vector rτ , ri,τ ! is its factorial, and |rτ | =
∑|Λ|

i=1 ri,τ

[3]. To simplify the notation, N is considered embedded inside the coefficient kτ

for any τ . The stochastic semantics of the CRN C = (Λ,R) is represented by a
time-homogeneous continuous-time Markov chain (CTMC) [10] (X(t), t ∈ R≥0)
with state space S ⊆ N

|Λ|. X(t) is a random vector describing the molecular
population of each species at time t. Let x0 ∈ N

|Λ| be the initial condition of X
then P (X(0) = x0) = 1. For x ∈ S, we define P (x, t) = P (X(t) = x |X(0) = x0).
The transient evolution of X is described by the Chemical Master Equation
(CME), a set of differential equations

d
dt

(P (x, t) ) =
∑

τ∈R

{ατ (x − υτ )P (x − υτ , t) − ατ (x)P (x, t)}. (2)

Solving Eq. (2) requires computing the solution of a differential equation for each
reachable state. The size of the reachable states depends on the number of species
and molecular populations and can be huge or even infinite. As a consequence,
solving the CME is generally feasible only for CRNs with very few species and
small molecular populations.

Linear Noise Approximation. A promising line of research is to consider
continuous state-space approximations of X(t). The Linear Noise Approximation
(LNA) [30] is a continuous approximation of the CME, which permits a stochastic
characterization of the evolution of a CRN, while still maintaining scalability
comparable to that of deterministic models. The LNA is accurate for processes
satisfying the leap conditions [31]. Given a CRN C = (Λ,R), we say that the
Markov process X(t) induced by C satisfies the leap conditions at time t if, for
any τ ∈ R, there exists a finite time interval dt such that:

ατ (X(t)) constant in [t, t + dt] (3)



A Stochastic Hybrid Approximation for Chemical Kinetics 151

ατ (X(t)) · dt � 1. (4)

In [13], Gillespie shows that if these conditions are satisfied then the solution
of the CME can be approximated by a Chemical Langevin Equation (CLE).
Then, under the assumption that stochastic fluctuations are of the order of N

1
2

[10,30], we can assume that X(t) admits a solution of the form

X(t) = NΦ(t) + N
1
2 G(t) (5)

where G(t) = (G1(t), G2(t), ..., G|Λ|) is a random vector, independent of N ,
representing the stochastic fluctuations at time t and Φ(t) is the solution of
Eq. (1). It is possible to show that the probability distribution of G(t) can be
modelled by a linear Fokker-Planck equation [31]. For every t ∈ R≥0, G(t) has
a multivariate normal distribution whose expected value E[G(t)] and covariance
matrix C[G(t)] are the solution of the following differential equations:

dE[G(t)]
dt

= JF (Φ(t))E[G(t)] (6)

dC[G(t)]
dt

= JF (Φ(t))C[G(t)] + C[G(t)]JT
F (Φ(t)) + W (Φ(t)) (7)

where JF (Φ(t)) is the Jacobian of F (Φ(t)), JT
F (Φ(t)) its transpose, W (Φ(t)) =∑

τ∈R υτυτ
T αc,τ (Φ(t)) and Fj(Φ(t)) the jth component of F (Φ(t)). We assume

X(0) = x0 with probability 1; as a consequence E[G(0)] = 0 and C[G(0)] = 0,
which implies E[G(t)] = 0 for every t. The following theorem illustrates the
nature of the approximation using the LNA.

Theorem 1 [10]. Let C = (Λ,R) be a CRN and X the CTMC induced by C.
Let Φ(t) be the solution of Eq. (1) with initial condition Φ(0) = x0

N and G be
the Gaussian process with expected value and variance given by Eqs. (6) and (7).
Then, for t ∈ R≥0

N
1
2 |X(t)

N
− Φ(t)| ⇒N G(t)

In the above ⇒N indicates convergence in distribution [10]. Theorem 1 shows
that G(t) models the stochastic fluctuations around the rate equations and
guarantees that the leap conditions are always verified in the limit of high pop-
ulations. However, they could be satisfied even for relatively small numbers of
molecules [31]. To compute the LNA it is necessary to solve O(|Λ|2) first order
differential equations, and the complexity is independent of the initial number of
molecules of each species. Therefore, one can avoid the exploration of the state
space that methods based on uniformization rely upon.

3 Stochastic Hybrid Approximation

The key idea behind our approximation is to partition the species into two
classes, those that satisfy the leap conditions, which we approximate by a con-
tinuous process using the LNA, and the remaining species, for which we need a
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discrete model. The stochastic process X(t) induced by the CRN can then be
approximated by a hybrid combination of the continuous and discrete processes
describing the evolution of the partitions. The set of reactions satisfying the leap
conditions may change with time and, as a consequence, the partitions of species
and reactions need to adapt with time.

Partitioning of Species and Reactions. Given a CRN C = (Λ,R), condition
(3) is satisfied for reaction τ ∈ R at time t and during the interval dt if ατ (X(t))
is approximately constant during dt. Reaction τ ∈ R, at time t, satisfies condition
(4) if it fires many times during dt. Given σ1, σ2 ∈ R≥0, it can be equivalently
stated that a CRN C = (Λ,R) satisfies the leap conditions at time t for an
interval dt and reaction τ ∈ R if:

Xλi
(t) ≥ σ1 · |υλi

τ | for λi such that υλi
τ �= 0and rλi

τ �= 0 (8)

ατ (X(t)) ≥ σ2 (9)

where υλi
τ represents the state change induced by the occurrence of reaction

τ with respect to species λi, and rλi
τ is the component of the reactant complex

relative to species λi. A method for choosing σ1, σ2 ∈ R≥0 is given in [26] for SSA
(see also below). These criteria induce a partition R = (Rf , Rs) over reactions,
where Rf includes reactions for which the leap conditions are satisfied and Rs

the remaining reactions, respectively called continuous (or fast) reactions and
discrete (or slow). This induces a partition Λ = (Λf , Λs) over the species of the
CRN, where Λf and Λs are respectively called continuous and discrete species.
λ ∈ Λ is in Λf if and only if it is changed by at least one reaction in Rf and
it is not changed by reactions in Rs whose propensity is of the same order of
magnitude as the reactions in Rf that change it, and otherwise it is in Λs. For
some systems these criteria may result in species with large populations treated
with a discrete stochastic process. This happens for systems where the LNA is
not accurate. We illustrate partitioning with the following example.

Example 1. We consider the gene expression model described in [28]. There are
two species, mRNA and the protein P , and the following set of reactions

τ1 : ∅ →0.5 mRNA; τ2 : mRNA →0.0058 mRNA + P ;

τ3 : mRNA →0.0029 ∅; τ4 : P →0.0001 ∅.

All species are initialized with 0 molecules. We consider σ1 = 30 and σ2 =
0.05. At time t = 0, the initial partition is Λf = {mRNA} and Rf = {τ1},
meaning that the continuous subsystem is given by the only reaction τ1. In
fact, in τ1 mRNA is not a reagent but only a product. Note that, using a simple
threshold on the molecular population of each species to decide if it has a discrete
or continuous characterization, as done in [18], would not consider mRNA as a
continuous species. After the first molecule of mRNA is produced, the propensity
rate of τ3 increases and its influence needs to be considered. The new species
partition becomes Λf = {} and Λs = {mRNA,P}. Under our initial conditions,
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there exists t′ such that mRNA(t′) > 30 with probability 1. As a consequence,
in t′ τ3 is a continuous reaction and the continuous subsystem is:

τ1 : ∅ →0.5 mRNA; τ3 : mRNA →0.0029 ∅.

Thus, P is considered a discrete species until both τ2 and τ4 become continuous
reactions, and thus partitions change over time.

Derivation of the Transient Probability in the Hybrid Model. Based
on the partitioning described above, the stochastic process X(t) induced by a
CRN can be written as X(t) = (Xf (t),Xs(t)), where Xf and Xs respectively
describe the evolution of species in Λf and species in Λs. X(t) is a Markov
process, but Xf (t) and Xs(t), if taken separately, are not Markovian because
they depend on each other. To tackle this issue, following Cao et al. [6], we
consider the virtual process X̄f (t) that describes the same species as Xf , but
with all the discrete reactions turned off. Therefore, X̄f is Markovian because it
is independent of Xs, and species in Λs are now only parameters. Note that X̄f

is only an approximation of the real stochastic process Xf . This approximation
is accurate when continuous and discrete species evolve in different time scales.
Generally, partitioning using the leap conditions guarantees that. However, it
may happen that some reactions satisfy the second leap condition (Eq. 4), but
not the first one (Eq. 3). This particular scenario requires attention because these
reactions would be classified as discrete, and, in this case, the introduction of
the virtual process may introduce some inaccuracies.

Now, we derive equations to study the transient evolution of the continuous
and discrete species. Given xs ∈ Ss and xf ∈ Sf , where Ss and Sf are the
state spaces of discrete and continuous species, then P (Xs(t) = xs, X̄f (t) =
xf ), the joint distribution of Xs(t) and X̄f (t), can be described by the CME
(Eq. (2)). However, this would lead to state space explosion. As a consequence, in
what follows, we first separate the evolution of continuous and discrete species,
and then approximate the continuous subsystem using the LNA. This enables
analysis of the transient evolution of the resulting hybrid process.

We denote P (Xs(t) = xs, X̄f (t) = xf |Xs(0) = xs
0, X̄

f (0) = xf
0 ) =

P (xs, xf , t), P (Xs(t) = xs|Xs(0) = xs
0, X̄

f (0) = xf
0 ) = P (xs, t) and P (X̄f (t) =

xf |Xs(t) = xs, X̄f (0) = xf
0 ) = P (xf |xs, t). Then, as illustrated in [25], by using

the axioms of probability we have the following equivalent representation for the
CME.

Lemma 1. Let xs ∈ Ss and xf ∈ Sf . Then, for t ∈ R≥0

dP (xf , xs, t)
dt

=
dP (xf |xs, t)

dt
P (xs, t) + P (xf |xs, t)

dP (xs, t)
dt

So, to solve the CME in this form it is necessary to calculate P (xf |xs, t) and
P (xs, t). The first term is Markovian because of the assumption that in the vir-
tual continuous subsystem the continuous species are independent of the discrete
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species, which are only parameters. Thus, it can be described by the following
master equation for continuous species

dP (xf |xs, t)
dt

=
∑

τ∈Rf

ατ (xf −υτ , xs)P (xf −υτ |xs, t)−ατ (xf , xs)P (xf |xs, t) (10)

where υτ is considered restricted to the components relative to continuous species
in xf − υτ . Since the criteria for applicability of the LNA are ensured by parti-
tioning, Eq. (10) can be approximated by the LNA.

On the other hand, P (xs, t) is not Markovian. However, Proposition 1, whose
proof is in the Appendix, guarantees that P (xs, t) can be derived by solving a set
of equations which have the same form as a master equation, and so numerical
techniques developed for the CME can still be employed

Proposition 1. Let xs ∈ Ss and xf ∈ Sf . Then, for t ∈ R≥0 we have

dP (xs|t)
dt

=
∑

τ∈R

βτ (xs − υτ , t)P (xs − υτ , t) − βτ (xs, t)P (xs, t) (11)

where βτ (xs, t) =
∑

xf ∈Sf ατ (xf , xs)P (xf |xs, t).

βτ (xs, t) is the conditional expectation of the propensity rate of τ at time t
given Xs(t) = xs. Reactions of higher order than bi-molecular are not likely [7],
and they can always be simulated as a sequence of bi-molecular reactions. As a
consequence, we can assume we are limited to at most bi-molecular reactions.
Given λs

i , λ
s
j ∈ Λs and λf

i , λf
j ∈ Λf , if ατ = kτ · λf

i · λs
j then βτ (xs, t) = kτ ·

E[X̄f
λi

(t)|xs, t]·xs(λj). Similarly, if ατ = kτ ·λf
i ·λf

j then βτ (xs, t) = kτ ·E[X̄f
λi

(t)·
X̄f

λj
(t)|xs, t]. If ατ = kτ · λs

i · λs
j then βτ (xs) = kτ · xs(λi) · xs(λj). The uni-

molecular case follows in a straightforward way. Therefore, to fully characterize
P (xs, t) only the first two moments of the conditional distribution of X̄f (t) given
xs are needed. In general, this would require solving the entire CME (Eq. (2)).
However, thanks to our partitioning criteria, we can safely approximate Eq. (10)
by using the LNA and calculating coefficients β using Eqs. (6) and (7).

Example 2. Consider the following CRN, taken from [9]:

λz →k1 λ1; λz →k2 ∅; λ1 →1 λ1 + λout

with k1, k2 ∈ R≥0 and initial condition x0 such that x0(λz) = 1 and x0(λ1) =
x0(λout) = 0. According to the partitioning criteria, for σ1 > 1 and σ2 < k1

k1+k2
there exists t′ > 0 such that for t > t′ the set of discrete species is Λs =
{λz, λ1} and the set of continuous species is Λf = {λout} and the partition
remains constant over time. A state of the discrete state space is a vector xs =
(xs(λz), xs(λ1)). It is easy to verify that the discrete state space Ss is composed
of only 3 states: Ss = {xs

0 = (1, 0), xs
1 = (0, 0), xs

2 = (0, 1)}. According to
Eq. (10), and using the law of total probability, the distribution of λout for t > t′

is given by
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P (X̄f
λout

(t) = k) =P (X̄f
λout

(t) = k|xs
0, t)P (xs

0, t)+

P (X̄f
λout

(t) = k|xs
1, t)P (xs

1, t) + P (X̄f
λout

(t) = k|xs
2, t)P (xs

2, t)

and P (X̄f
λout

(t) = k|xs
0, t) = P (X̄f

λout
(t) = k|xs

1, t) =

{
1 if k = 0
0 if otherwise

. As

explained in [9], for t → ∞ we have P (Xs(t) = xs
0) = 0 and P (Xs(t) = xs

1) =
k2

k2+k1
. As a consequence, our partitioned system correctly predicts that, for

t → ∞, λout has a bimodal distribution that is 0 with probability k2
k2+k1

.

As shown in Example 2, the distribution of the continuous species can be derived
using the law of total probability as P (xf , t) =

∑
xs∈Ss P (xf |xs, t)P (xs, t). Since

each P (xf |xs, t) is approximated with the Gaussian distribution given by the
LNA, P (xf , t) is given by a mixture of Gaussian distributions weighted by the
probability of being in a particular state of the discrete state space. This enables
stochastic characterisation of multimodal distributions for continuous species.
Note that the simple LNA, because of its unimodal nature, is unable to represent
multimodal behaviours. The following remark shows that, if some assumptions
are verified, we can further reduce the computational effort.

Remark 1. Equation (11) requires solving the LNA once for each xs ∈ Ss. This
can be expensive. However, for a large class of systems, especially those where
continuous species have a unimodal distribution, we can consider a reason-
able approximation. We can assume βτ (xs, t) ≈

∑
xf ∈Sf ατ (xf , E[Xs(t)]) and

P (xf , t) =
∑

xs∈Ss P (xf |xs, t)P (xs, t) ≈ P (xf |E[Xs(t)], t). So, instead of solv-
ing the LNA many times, this requires solving the LNA only once and condi-
tioned on the expectation of the discrete population.

Ensuring Satisfaction of the Leap Conditions. We now explain how to
choose constants σ1 and σ2 introduced in Eqs. (8) and (9). Given a CRN C =
(Λ,R) and an infinitesimal time interval dt, then τ ∈ R satisfies the first leap
condition at time t if ατ (X(t)) is approximately constant during the next dt.
This is verified if the relative state change of each reactant species of τ is small
enough during dt, that is, if

|Xλi
(t + dt) − Xλi

(t)| ≤ max(εXλi
(t), 1) forλi ∈ Λ such that rλi

τ �= 0

where 0 ≥ ε ≥ 1 is a parameter which quantifies the maximum relative change
admitted in reactant species, extensively discussed in [14] for SSA. Rearranging
the terms, it is easy to verify that the condition holds if

Xλi
(t) ≥ |Xλi

(t + dt) − Xλi
(t)|

ε
forλi such that rλi

τ �= 0and υλi
τ �= 0.

Thus, for a given CRN, σ1 in Eq. (8) quantifies the minimum number of molecules
for which we can assume the inequality is satisfied. This is reasonable, as dt is
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Algorithm 1. Compute Transient Probabilities at Time tfin

Require: A CRN C = (Λ, R) with initial condition x0 = (xf
0 , xs

0), a finite time interval
[t0, tfin], and parameters for leap conditions σ1, δ2.

1: function ComputeProb(C, x0, σ1, δ2, [t0, tfin])
2: Compute partitions Λ = (Λf , Λs), R = (Rf , Rs) at time t0
3: (Ss(t0), X

f (t0), t) ← ((xs
0, 1), xf

0 , t0)
4: while t < tfin do
5: Compute Δt and solve discrete master equation for [t, t + Δt]
6: for each (xs, p) ∈ Ss(t + Δt) do
7: Solve the LNA to compute P (Xf (t + Δt)|Xs(t) = xs)
8: t ← t + Δt
9: Compute new partitions Λ = (Λ̄f , Λ̄s), R = (R̄f , R̄s) at time t

10: for each λi ∈ Λ do
11: if λi ∈ Λ̄f ∧ λi ∈ Λs then
12: Move λi from Ss(t) to Xf (t)
13: if λi ∈ Λ̄s ∧ λi ∈ Λf then
14: Move λi from Xf (t) to Ss(t)
15: (Λf , Λs, Rf , Rs) ← (Λ̄f , Λ̄s, R̄f , R̄s)
16: P (Xf (t)) ←∑(xs,p)∈Ss(t) P (Xf (t)|Xs(t) = xs) · p

17: Compute P (Xs(t)) by exploration of Ss(t)
18: return (P (Xf (t)), P (Xs(t)))

considered to be small, and we assume there are no reactions with unbounded
propensity rate. τ ∈ R satisfies Eq. (9) if it fires many times during dt, that is,
if ατ (X(t)) > δ2

dt = σ2, where δ2 quantifies the number of times that τ must fire
during dt in order to assume the condition satisfied. As a consequence, in order
to choose σ1 and σ2, we need to tune three parameters: σ1, δ2 and dt. Empirical
values for σ1 and δ2 are given in [26]; dt can be computed as for tau-leaping (see
Sect. 3 of [14]). A possible strategy is to compute dt only once, at time t0. Then,
we can consider dt constant for any t > t0 and make use of Eqs. (8) and (9).
Fixing dt does not affect the correctness of the algorithm, but simply means
that, for t > 0, there could be a better choice of dt′ for which more reactions
would be considered continuous.

4 Numerical Implementation

In this section, we present an algorithm to calculate the marginal probability
of discrete and continuous species. We first present the general method, where
continuous species are modelled as a mixture of Gaussian distributions, and
then show how it can be simplified if Remark 1 applies. Algorithm 1 presents the
pseudo-code for our routine. In Line 2, we partition species and reactions accord-
ing to the leap conditions (Eqs. (8) and (9)). In Line 3, we initialize discrete and
continuous stochastic processes as follows. The discrete process Xs(t) at time
t is represented by its state space, Ss(t), given by a set of pairs (xs, p), where
xs ∈ N

|Λs| and p is such that P (Xs(t) = xs) = p. The continuous process Xf (t)
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at time 0 is equal to xf
0 with probability 1. From Line 4 to 19, the algorithm

iteratively updates the partitions. Δt is determined as the integration step of
the numerical method used for characterizing discrete species; we use an explicit
4-th order Runge-Kutta algorithm with fixed time step, as in [18]. Alternatively,
methods such as uniformisation [20,22] or aggregation-based techniques [1] could
also be used. In Line 5, Eq. (11) is solved numerically for the next Δt. In Lines
6 − 7, for any (xs, p) ∈ Ss(t + Δt), the algorithm solves the LNA to compute
Eq. (10). In Line 9, the partitions are computed at time t according to the leap
conditions (Eqs. (8) and (9)) at that time. In general, the probability mass at
time t is distributed over a set of states. In some cases the leap conditions can be
checked deterministically based on the expected values E[Xf (t)] and E[Xs(t)].
In a more general scenario, it may be necessary to compute the probability that
the leap conditions are verified for any τ ∈ R and then partition according
to these probabilities, which can be approximated as, at time t, we know the
approximate solution of the CME [3]. In Lines 11−15, the species are reclassified
and the partitions, Ss(t) and Xf (t), are modified accordingly. If λi was previ-
ously a discrete species and is now assigned to the continuous set, then all states
in Ss(t) that are equal except for the number of molecules of λi can now be
merged. Then, for any state xs of the updated discrete state space, we compute
P (Xf

λi
(t)|Xs(t) = xs), which is Gaussian. In Line 14, for any (xs, p) ∈ Ss(t)

we discretize the Gaussian distribution P (Xf
λi

(t)|Xs(t) = xs), where Xf
λi

is the
component of Xf (t) relative to λi. Finally, for t ≥ tfin, in Lines 16 − 17, the
probability distributions of interest are computed.

A Faster Algorithm. If, for a particular CRN, Remark 1 applies then we
can assume that P (Xf (t)) ≈ P (Xf (t)|Xs(t) = E[Xs(t)]). Then we need to
compute the LNA only once, and conditioned on the expectation of the discrete
stochastic process. The remaining computation can be simplified as well because
the virtual continuous process is modelled with a Gaussian distribution and not
with a mixture of Gaussians.

Complexity and Error Analysis. The solution of Eq. (11) at time t, using
our particular implementation, has a time cost linear in |Ss(t)|. We work with
the numerical method of [18], which, for each (xs, p) ∈ Ss(t), propagates the
probability retaining only the xs such that P (Xs(t) = xs) = p > ζ. We fix
ζ = 10−14. Solving the LNA requires solving a number of differential equations
quadratic in the number of continuous species, and independent of the molecular
population of such species. In the general case, at time t, we need to solve the
LNA during the next Δt a number of times that is of the same order as the
dimension of the discrete state space (O(|Ss(t)||Λf |) differential equations). If
Remark 1 is applicable, then the LNA needs to be solved only once.

If all species are partitioned as discrete/continuous, then the solution of
Algorithm 1 reduces to that of the CME/LNA. The accuracy depends on the
choice of σ1, σ2, where it can be shown [14] that, as σ1, σ2 → ∞, then our
algorithm guarantees an error equal to the error guaranteed by the numerical
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method used to solve the discrete master equation. If, instead, both σ1, σ2 equal
0, then the error of our hybrid algorithm reduces to the error in computing the
LNA, which is model dependent and does not depend only on the molecular
counts [10], but also on the validity of assumption (5), which needs to be veri-
fied a posteriori [16]. Error bounds would be a viable companion to estimate the
committed error, but we are not aware of any explicit formulation of them for
the convergence of the LNA. As a result, simulations may be used to validate
the results.

5 Model Checking of Stochastic Evolution Logic (SEL)

Employing the hybrid semantics developed here, we present a fast probabilistic
model checking algorithms for Stochastic Evolution Logic (SEL) [8]. SEL is a
probabilistic logic for analysis of linear combinations of the species of a CRN.

Let C = (Λ,R) be a CRN with initial state x0, then SEL enables evaluation
of the probability, variance and expectation of linear combinations of populations
of the species of C. The syntax of SEL is given by

η := P∼p[B, I][t1,t2] | Q∼v[B][t1,t2] | η1 ∧ η2 | η1 ∨ η2

where Q = {supV, infV, supE, infE}, ∼= {<,>}, p ∈ [0, 1], v ∈ R, B ∈ Z
|Λ|,

I is a finite set of disjoint intervals and [t1, t2] ⊆ R≥0. If t1 = t2 the interval
reduces to a singleton.

Formulae η describe global properties of the stochastic evolution of the sys-
tem. (B, I) specifies a linear combination of the species, where B ∈ Z

|Λ| is a
vector defining the linear combination and I represents a set of disjoint closed
real intervals. P∼p[B, I][t1,t2] is the probabilistic operator, which specifies the
average value of the probability that the linear combination defined by B falls
within the range I over the time interval [t1, t2] (we stress that this is not equiv-
lent to reachability). The operators supE, infE, infV, supV , see [8], respectively,
yield the supremum and infimum of expected value and variance of the random
variables associated to B within the specified time interval. The quantitative
value associated to a formula can be computed by writing =? instead of ∼ p
or ∼ v. For instance, P=?[B, I][t1,t2] gives the probability value associated to the
probabilistic property.

Model Checking Algorithm. Given Z(t) = B · X(t), where B is a linear
combination of the species of C, then, according to the semantics of SEL [8],
in order to perform model checking, we need to compute P (Z(t) = z|X(0) =
x0), E[Z(t)|X(0) = x0] and E[Z(t) · Z(t)|X(0) = x0] (transient probability,
expected value and variance of Z), where z ∈ Z, and x0 ∈ N

|Λ|. In general,
this requires solving the CME, which leads to state space explosion ot the LNA,
which is fast but not always accurate. However, we can use our hybrid approx-
imation in order to derive a fast and approximate model checking algorithm of
SEL. We approximate Z with Zh, which is the linear combination of the hybrid
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approximation of X = (Xf ,Xs). The following theorems, whose proofs are in
the Appendix, show that model checking SEL just requires computing the hybrid
approximation of the CME. In fact, uni-dimensional Gaussian integrals can be
computed numerically in constant time. We denote Λs

t as the set of discrete
species at time t.

Theorem 2. Assume Λs
t is non-empty and Ss is the state space of Xs(t). Then,

the stochastic process Zh : Ω × R≥0 → S, with Ω its sample space and (S,B) a
measurable space, is such that for A ∈ B and t ∈ R≥0

P (Zh(t) ∈ A|X(0) = x0) =
∑

xs∈Ss

P (Zxs(t) ∈ A)P (Xs(t) = xs)

where Zxs(t) is a Gaussian random variable with expected value and variance

E[Zxs(t)] = B ·
(

E[X̄f (t)]
xs

)

C[Zxs(t)] = B ·
(

C[X̄f (t)] 0
0 0

)

· BT

where X̄f is the virtual fast process introduced in Sect. 3.

Note that if the linear combination, at time t, involves only slow species, then
Zx0(t) is distributed according to a delta-Dirac function. This theorem guar-
antees that the transient probabilities of Zh can be computed by solving a set
of Guassian integrals, one for each reachable discrete state. The following the-
orem illustrates that expected value and variance of Zh can be computed by
considering Gaussian properties, even if Zh is not Gaussian in general.

Theorem 3. Assume Λs
t is non-empty. Then, for t ∈ R≥0

E[Zh(t)|X(0) = x0] =
∑

xs∈Ss

E[Zxs(t) ∈ A]P (Xs(t) = xs)

C[Zh(t)|X(0) = x0] =
∑

xs∈Ss

C[Zxs(t) ∈ A]P (Xs(t) = xs)

The basic tools used in the proofs are the law of total expectation and the
fact that jointly Gaussian random variables are closed with respect to a linear
combination, which is Gaussian [2]. Theorems 2 and 3 assume that, at time t,
the set of discrete species is not empty. In fact, if this is the case, all species are
treated with the LNA and model checking algorithms for this scenario are given
in [8]. We stress that the presented model checking algorithms are accurate only
for finite time. In fact, for unbounded time, events that can be neglected in a
finite time horizon scenario may fire with probability one. In the next section,
SEL is employed in a set of case studies.

6 Experimental Results

We present three case studies showing how our approach significantly improves
stochastic analysis of biochemical systems. We implemented Algorithm 1 in Mat-
lab. All the experiments were run on an Intel Dual Core i7 machine with 8 GB
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of RAM. The first example is a CRN where we need to adaptively partition the
species. The second example shows that our hybrid approach can be accurate
in cases where the LNA is not, still maintaining comparable time complexity.
The third is a system for which advanced numerical techniques for solving the
CME such as fast adaptive uniformisation (FAU) [22], as implemented in PRISM
[21], fail (out of memory) and using simulations would be too time consuming
for comparable accuracy. However, we show that our approach still permits an
accurate stochastic characterization.

Gene Expression. We consider the CRN of Example 1. All species in this
example follow a unimodal distribution. As a consequence, we employ Remark 1.
To ensure a fair comparison, we use the same numerical method for solving the
CME and for solving the discrete part of our hybrid model: an explicit 4th
order Runge-Kutta algorithm [18]. Even though the stochastic semantics is an
infinite CTMC, there are only 2 species in the system with relatively small
variance, and thus a numerical solution of the CME is feasible. In Fig. 2, in the
Appendix, we compare supE=?[mRNA][T,T ] and supV=?[mRNA][T,T ]] for T ∈
[0, 200], the transient evolution of the expected value and variance of the mRNA,
as calculated by direct solution of the CME and by our hybrid algorithm. Our
algorithm decides to use the LNA for around 70% of the time points. Moreover,
we need to adaptively recompute the partitions, as shown in Example 1. In the
table below we compare the performance of the same properties for different
methods. We consider the following metrics: ||ε||∞ and ||ε||1, respectively, average
point-wise error and maximum point-wise error of LNA or hybrid approach with
respect to the CME solution. ProbLost is the probability lost by the numerical
solution of the CME due to the truncation of states with probability mass smaller
than 10−14.

Semantics Time ||ε||1 ||ε||∞ ProbLost

CME 205 s - - < 10−7

Hybrid 35 s < 10−7 < 10−7 -

LNA 5 s 9 · 10−5 0.0112 -

The LNA yields good accuracy. However, our hybrid algorithm achieves accu-
racy comparable to that for CME and is faster by one order of magnitude.

Bimodal Switch. We consider the CRN presented in Example 2 for k1 = 0.7
and k2 = 0.3. We are interested in analysing the probability distribution of
λout over time, more specifically the SEL property P=?[λout = K][100,100], for
K ∈ [0, 200]. Because of the bimodal nature of such a distribution, Remark 1
is not applicable and the LNA alone is not able to correctly estimate such a
distribution. However, our hybrid model, as described in Eq. (2), correctly char-
acterizes the distribution of λout. Figure 1 compares the distribution of λout at



A Stochastic Hybrid Approximation for Chemical Kinetics 161

(a) CME (b) Hybrid (c) LNA

Fig. 1. Comparison of the probability distribution of λout at time t = 100, as estimated
by a numerical solution of the CME (Fig. 1a), by our hybrid semantics for σ1 = 2,
σ2 = 0.5 (Fig. 1b) and by the LNA (Fig. 1c). Note that in Fig. 1a and b there is
non-zero probability of having exactly zero molecules.

time t = 100 as estimated by our hybrid approach against the LNA and a full
solution of the CME. The following table compares our hybrid approach with
the other semantics for different values of σ1 and σ2. We consider the average
point-wise error, ||ε||1, and the maximum point-wise error, ||ε||∞, with respect
the a numerical solution of the CME, whose error is due to state space truncation
(ProbLost). For a fair comparison, both for the solution of the master equations
of discrete species and for the CME, we use the same numerical method, an
explicit 4th order Runge Kutta algorithm with fixed time step [18].

Semantics σ1 σ2 Time ||ε||1 ||ε||∞ ProbLost

CME - - 100 s - - < 10−6

LNA - - 2.3 s 0.081 0.2971 -

Hybrid 2 0.5 2.5 s 3.284 · 10−4 0.0024 -

Hybrid 0.5 0.5 2.2 s 0.081 0.2971 -

Hybrid 2 2 96 s < 10−6 < 10−6 -

For σ1 > 1 and σ2 < 0.7, the hybrid approach improves the accuracy of the
LNA by around two orders of magnitude, while still maintaining comparable
execution time. Note that, for this choice of σ1 and σ2, the virtual continuous
subsystem ignores the delay induced by the firing of the first reaction, which
explains why the accuracy of the hybrid method is worse than CME. For σ2 >
0.7, all species are considered as discrete and the hybrid approach reduces to
the solution of the CME. For σ1 = σ2 = 0.5, all species are continuous and the
accuracy of the hybrid approach is identical to that of the LNA.
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Viral Infection. We consider the intracellular viral infection model proposed
in [27]. This model of virus infection is given by the following set of reactions:

τ1 : DNA + P →0.00001125 V ; τ2 : DNA →0.025 DNA + RNA; τ3 : RNA →0.25

τ4 : RNA →1 RNA + DNA; τ5 : RNA →1000 RNA + P ; τ6 : P →1.9985

The initial condition is RNA(0) = 1 and all other species initialized to 0 mole-
cules. We consider σ1 = 40 and σ2 = 20. This system, although apparently quite
small (6 reactions), is very complex to analyse formally or using simulations.
This is because it is extremely stiff, with all species presenting high variance
and some also high molecular populations. As a consequence, solution of the full
CME, even using advanced techniques such as FAU or finite state projection
(FSP) [24], is prohibitive due to state-space explosion. For all the properties we
consider, FAU is out of memory on our hardware. Because of the stiffness of
the system, simulations are time consuming and ensuring good accuracy is not
feasible. Our hybrid approach, by considering P as a continuous species for any
time instant, enables an effective and efficient stochastic characterization of such
a system. Note that, for this system, the LNA is clearly not accurate because of
its multimodality.

In Fig. 3, in the Appendix, we compare the distribution of the RNA at time
t = 200 as estimated by our hybrid approach and the distribution of the same
species with only the LNA. Results show that the LNA is not able to accurately
characterize the distribution of interest, while our hybrid approach correctly
predicts multimodality and confirms values obtained by Goutsias in [15] (Fig. 5)
by using 4000 simulations.

Note that, although the original model is stiff, after species separation the
resulting model is much less stiff. This remains true for a large class of systems,
and it is a consequence of how we separate the species of a CRN. As a result,
for such systems, we need to solve a discrete master equation only for less stiff
systems in a reduced state space. As we see in the following table, this results
in a marked improvement.

Property (SEL) Time (Hy) Time (LNA) Time (FAU) RelErr (Hy-LNA)

P=?[RNA = 0][200,200] 4300 s 28 OutOfMem 0.215

P=?[RNA = 0][50,50] 1500 s 20 OutOfMem 0.215

Time(·) represents the execution time of different algorithms. RelErr(Hy-
LNA) is the distance between the quantitative value of the property as computed
by our hybrid algorithm (and validated by simulations) and by the LNA.

7 Conclusion

We presented a stochastic hybrid approximation of the CME based on auto-
matically partitioning the species and reactions of a CRN according to the leap
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conditions, and treating the discrete species as a discrete stochastic process,
while treating the continuous species as a mixture of Gaussian distributions.
The use of the leap conditions justifies the hybrid approximation compared to
simple threshold conditions on molecular populations. Our method can be inte-
grated with any numerical method to solve the CME, such as FAU [22], FSP
[24] or aggregation based techniques [1]. We demonstrated through case studies
that our method is efficient, scales well and can handle multimodality. The algo-
rithm works particularly well for systems where species evolve on different time
scales (i.e. stiff systems), which are common in biology. It also works well when
there are no reactions that satisfy the second leap condition, but not the first
one. In this case, our hybrid model can introduce some inaccuracies due to the
assumptions in partitioning of the species. As future work, we plan to handle
this problem by dealing directly with the non-Markovian aspect of the process
related to continuous species, without introducing any virtual process. Finally,
we plan to implement an algorithm to automatically tune the parameters for
species partitioning using stochastic simulations.

A Proofs

Proposition 1. Let xs ∈ Ss and xf ∈ Sf . Then, for t ∈ R≥0

dP (xs|t)
dt

=
∑

τ∈R

βτ (xs − υτ , t)P (xs − υτ , t) − βτ (xs, t)P (xs, t)

where βτ (xs, t) =
∑

xf ∈Sf ατ (xf , xs)P (xf |xs, t).

Proof. By using the law of total probability we have

dP (xs|t)
dt

=
∑

xf ∈Sf

dP (xs, xf , t)
dt

Then, using Eq. (2), and rearranging terms we have

∑

xf ∈Sf

dP (xs, xf , t)
dt

=

∑

xf ∈Sf

∑

τ∈Rf

ατ (xf − υτ , xs − υτ )P (xf − υτ , xs − υτ , t) − ατ (xf , xs)P (xf , xs, t) =

∑

τ∈R

βτ (xs − υτ , t)P (xs − υτ , t) − βτ (xs, t)P (xs, t)

where βτ (xs, t) =
∑

xf ∈Sf ατ (xf , xs)P (xf |xs, t), that is, the conditional expec-
tation of the propensity rate of τ at time t given Xs(t) = xs.
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Theorem 2. Assume Λs
t is non-empty and Ss is the state space of Xs(t). Then,

the stochastic process Zh : Ω × R≥0 → S, with Ω its sample space and (S,B) a
measurable space, is such that for A ∈ B and t ∈ R≥0

P (Zh(t) ∈ A|X(0) = x0) =
∑

xs∈Ss

P (Zxs(t) ∈ A)P (Xs(t) = xs)

where Zxs(t) is a Gaussian random variable with expected value and variance

E[Zxs(t)] = B ·
(

E[X̄f (t)]
xs

)

C[Zxs(t)] = B ·
(

C[X̄f (t)] 0
0 0

)

· BT

where X̄f is the virtual fast process introduced in Sect. 3.

Proof. By the law of total probability we have

P (Z(t) ∈ A|X(0) = x0) =
∑

xs∈Ss

P (Z(t) ∈ A|Xs(t)=xs, X(0) = x0)P (Xs(t)=xs|X(0) = x0).

By application of the LNA it follows that Xf (t) conditioned on the event Xs(t) =
xs is a Gaussian random variable with expected value and variance

E[Xf (t)|Xs(t) = xs] =
(

E[X̄f (t)]
xs

)

and covariance matrix

C[Xf (t)|Xs(t) = xs] =
(

C[X̄f (t)] 0
0 0

)

Given a multidimensional Gaussian distribution, each linear combination of its
components is still Gaussian. As a consequence, E[Zh(t)|Xs(t) = xs] = B ·
E[Xf (t)|Xs(t) = xs] and C[Zh(t)|Xs(t) = xs] = B · C[Xf (t)|Xs(t) = xs] · BT .

Theorem 3. Assume Λs
t is non-empty. Then, for t ∈ R≥0

E[Zh(t)|X(0) = x0] =
∑

xs∈Ss

E[Zxs(t) ∈ A]P (Xs(t) = xs)

C[Zh(t)|X(0) = x0] =
∑

xs∈Ss

C[Zxs(t) ∈ A]P (Xs(t) = xs)

Proof. The proof follows from the application of the law of total expectation for
random variables with mutually exclusive and exhaustive events.
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B Figures

(a) (b)

Fig. 2. Comparison of expected value and variance of mRNA in Example 2 in interval
[0, 200] as calculated by direct solution of the CME (Fig. 2a) and by our algorithm
(Fig. 2b).

(a)
(b)

Fig. 3. Comparison of the probability distribution of RNA at time t = 200 as calcu-
lated by numerical hybrid algorithm (Fig. 3a) and by the LNA (Fig. 3b).
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Abstract. The proliferation of antibiotic-resistant bacteria poses a sig-
nificant threat to humans health and welfare. To reduce the bacterial
pathogenesis and growth, we propose an autonomous biological con-
troller that can adaptively generate quorum sensing inhibitors and con-
trol the iron availability in the environment. As the main theoretical
contribution, we provide a detailed analysis of our proposed controller
that includes model calibration, system response, and inhibitor effective-
ness. We also formulate a constrained optimization problem to choose the
values of the biological parameters of the proposed controller under given
environment constraints. Finally, we validate our results via detailed
population-level simulations and demonstrate that bacteria virulence can
be significantly reduced without developing drug resistance or induc-
ing selective pressure among bacteria wild type and mutants. This work
represents a first step towards a paradigm change in reducing bacterial
pathogenesis via controlling the dynamics of the cell-cell communication
through environment regulation.

Keywords: Quorum sensing · Biological controller · Pathogen ·
Environment regulation · Cell-cell communication

1 Introduction

The fight against bacterial virulence represents one of the big challenges of mod-
ern medicine. Indeed, due to the large-scale proliferation and inappropriate use
of antibiotics, new strains antibiotic-resistant bacteria begin to emerge. These
new, stronger bacteria pose a significant threat to humans health and welfare. To
fight antibiotic-resistant bacteria, we propose to engineer synthetic cells, insert
them in a population of bacteria, and then control the dynamics and virulence
of the entire population [9]. We note that while previous work [6,26] proposed
to engineer cells to kill the antibiotic-resistant bacteria, this kind of approaches
may actually select strains that can survive under such therapies. In contrast, in
this paper, we design an autonomous controller that can not only regulate the
cell-cell communication, but also manipulate the environment signals in order

c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-45177-0 11
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to reduce bacterial virulence and prevent selective pressure among antibiotic-
resistant strains.

Getting now into details, bacteria can form biofilms, express virulence, and
become resistant to antibiotics after reaching a quorum through cell-cell com-
munication. Quorum sensing (QS) is a fundamental cell-cell communication that
is used by bacteria to obtain cell density information and hence, alter their
genes expression [4]. In particular, the QS system used by Gram-negative bac-
teria is mediated by diffusible signaling molecules, termed “autoinducers”1 [4].
For instance, the opportunistic human pathogen Pseudomonas aeruginosa (PA)
possess a complex QS system that regulates genes and operons which consti-
tute over 6 % of the genome. Those genes coordinate the biofilm formation and
produce large amounts of virulence factors, such as elastase, rhamnolipids, and
pyocyanin [10].

QS regulation can be strongly affected by various environmental factors [11];
for example, in PA, the nutrient availability have been shown to affect the expres-
sion of QS genes [24]. Several other studies have demonstrated that high iron con-
centrations favor the formation of biofilms and higher growth rates, but restrict
the expression of QS signals [12,22]. On the other hand, QS also regulates bac-
teria access to nutrients and environmental niches that favor their growth and
defense.

The intertwined regulation between QS and environmental signals enable
bacteria to thrive in a stringent environment [2,15]; indeed, under such con-
ditions, bacteria must coordinate the expression of related genes in order to
successfully form and maintain biofilms [16]. For example, a shortage of iron
availability in the environment leads to the increased expression of iron acquisi-
tion system [3,5] and decreased activity of pathways that rely on relatively large
amounts of iron [10]. However, a rigorous mathematical model that can precisely
capture the complex relationship between the QS system and bacteria growth
has not yet been explored. Additionally, most studies published so far focus on
observing the qualitative behaviors of bacteria and lack the ability to predict
long term evolution dynamics under different environmental conditions [18].

We argue that having a quantitative model of QS behavior available can not
only capture the important dynamics of bacteria growth, but also give credible
predictions for the long term behaviors of bacteria virulence; this analytical
QS model is the first major contribution of this work. We also raise another
important question: Given such an analytical (i.e., quantitative) model, what
are the strategies to control bacteria virulence and growth rate, while lowering
the chances of developing drug resistance or inducing selective pressure among
bacteria wild type and mutants? To address this second question, we propose an
autonomous biological controller that can dynamically generate different types
of inhibitors; this controller is based on genetic parts used to design genetic
circuits [1].

To shed light on the complex relationship between QS and environment sig-
nals, we use the opportunistic pathogen PA as a canonical example (Fig. 1(a)).

1 Denoted as AI in this paper.
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Fig. 1. (a) Interconnection of the las and pqs QS system of PA. The small orange cir-
cles represent autoinducer molecules (AIs) that move freely through the cell membrane;
the purple circles and triangles represent the QS signals of pqs QS system; the green
particles represent the pyoverdine molecules. The red, orange, blue, and purple ovals
represent LasR, LasI, PqsR, PqsA, and PqsE, respectively. (b) The simulation envi-
ronment, where bacteria (green cells) flow in space and release the QS signals (orange
circles). By placing the synthetic (red) cells in the environment, they first react to
the QS signals and then express the inhibitors (purple diamonds) that can quench
the communication among bacteria. (c) The diagram of the proposed control system.
The environment signal (d) (e.g., nutrient availability) can be viewed as the input to
the intracellular bacterial regulations system. The control variables (u) are the QSI
inhibitors which can control the dynamics of bacteria. The process variable (y) can be
detected by the synthetic controller. (Color figure online)

PA requires an abundance of iron to produce and sustain infections. Hence,
iron depletion prevents bacterial growth and affects their metabolism [19]. By
expressing siderophores, PA can sequester iron from environment and regain the
ability to form biofilm [25]. Two major genetic components of QS, namely, the
las and pqs QS systems have been identified in PA [5]. As shown in Fig. 1(a), the
las QS system sits at the upstream of pqs QS system and positively regulates the
operons of the pqs QS system [2]. The pqs QS system produces molecules that
mediate the expression of the siderophores [5,7]. To enhance the expression of
the siderophores, the upstream las QS system needs to highly express proteins
in order to induce the downstream pqs QS system. Hence, as the iron concen-
tration is relatively low, the las QS system is highly expressed and vice versa.
However, bacteria can become more virulent when the las QS system strongly
expresses proteins as this can regulate the virulence genes.
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In summary, in an iron depletion environment, the growth of bacteria can be
delayed but the virulence can actually increase [12]. To control both the viru-
lence and the growth rate of bacteria simultaneously, we use two different kinds
of inhibitors that target the las QS system and the iron availability in the envi-
ronment. Different types of inhibitors can have different effects on virulence and
growth rate, hence, multi-inhibitor schemes can be more effective. To synthesize
inhibitors and control the iron concentration, a few simple genetic circuits can
serve as the basic control units which automatically detect and react to environ-
ment changes. For example, we can construct the genetic circuits by cloning the
genes in the plasmid, such as the aiiA gene which expresses the enzyme that
hydrolyzes the AI [17] (Fig. 1(b)). However, synthesizing excessive amounts of
inhibitors in the environment can have toxic effects on the host.

Therefore, in this paper, we propose a dynamic optimization problem that
incorporates bacteria QS, growth, and control dynamics. Solving this optimiza-
tion problem allows us to choose the biological parameters that can be further
used to design controllers that can generate the optimal amount of inhibitors
adaptively. By placing the biological controller into the bacterial environment,
it becomes possible to detect the concentration of the signaling molecules in
the environment and then generate the right amount of inhibitors in real-time.
Consequently, the proposed system aims at a paradigm shift from manual to
autonomous control of bacteria population dynamics (Fig. 1(c)). Taken together,
our contribution is threefold:

– First, we develop a new (cellular-level) ordinary differential equations (ODEs)
based model of pqs QS system and propose new synthetic circuitry to con-
trol bacteria virulence and growth. To the best of our knowledge, this is the
first design that formally considers the autonomous control of the QS and
environmental signals in populations of bacteria.

– Second, we formulate a constrained optimization problem based on the QS
and control dynamics. We illustrate the design procedures for the biological
controller by solving this optimization problem; this provides the theoretical
basis for synthesizing the controller.

– Third, we verify our proposed controller via detailed simulations at population-
level. As such, the design procedure we provide can serve as a general guideline
towards in vitro construction of synthetic cellular controllers.

The remainder of this paper is organized as follows. Section 2 focuses on the
mathematical modeling of the QS regulation system (i.e., las and pqs) of PA,
bacteria growth, and QSI model. Section 3 analyzes the QS system response
and bacteria growth model via simulation. Section 4 formulates the constrained
optimization problem for designing the biological controller and provides a design
example based on the proposed design guidelines. Section 5 utilizes the bacteria
simulator proposed in [21] to validate the model under various scenarios that
mimic realistic settings. Finally, conclusions are drawn in Sect. 6.
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2 Cellular-Level Mathematical Modeling

In this section, we model the dynamics of bacteria QS, growth, and inhibition
systems based on ODEs. To uncover the complex interaction between the QS
and environment signals (i.e., iron), we first model the las and the pqs QS
systems and the growth of PA explicitly. Next, we calibrate our models with the
reported experimental data [12]; that is, at different iron concentration levels, we
calibrate the relative concentration change of the LasR protein (main receptor
in las QS system); this provides the basis for examining the QS system response
and subsequently designing the biological controller.

2.1 QS Model of PA

The QS regulatory network of PA consists of two main systems: las and pqs. The
las and the pqs QS systems are linked by (1) LasR-AI complex which directly
up regulates the expression of the PqsR and the PqsH proteins and (2) iron-
chelated complex which down regulates the expression of the LasR protein and
then reduces the expression of the siderophore (a negative feedback loop). The
entire QS system is modeled as follows:

las QS Model. The regulatory network of the las QS system has two feedback
loops. As shown in Fig. 1(a), the LasR-AI complex up regulates the expression
of both lasR and the lasI genes. Based on the ODE models proposed in [13,23],
we have the following equations for the las QS system:

d[A]

dt
= cA +

VA[C]

KA + [C]
− αRA[R][A] + δRA[RA] − bA[A] − dA

ρ
([AEX ] − [A]) (1)

d[AEX ]

dt
= −bAEX [AEX ] − dA

1 − ρ
([AEX ] − [A]) (2)

d[R]

dt
= cR +

VR[C]

KR + [C]
− αRA[R][A] + δRA[RA] − bR[R] (3)

d[RA]

dt
= αRA[R][A] − 2αRA2 [RA]2 − δRA[RA] + 2δRA2 [C] (4)

d[C]

dt
= αRA2 [RA]2 − δRA2 [C] (5)

where [X] denotes the concentration of a particular molecular species X. In our
formulation, A stands for AI, AEX is the extracellular AI, R is LasR, RA is the
LasR-AI complex and C is the dimerized complex. The meaning of biological
constants are listed in Table 1 while their numerical values are listed in Tables 2
and 3 in the Appendix.

pqs QS Model. The pqs QS system consists of two kinds of signaling molecules,
PQS (2-heptyl-3,4-dihydroxyquinoline) and HHQ (4-hydroxy-2-heptylquinoline);
in addition we have one receptor regulator PqsR. The PqsR protein can bind
to the HHQ and the PQS molecules and up regulate the pqsABCDE operon;
this forms a positive feedback since the PqsA protein directly up regulates the
synthesis of the HHQ molecules. Another signaling molecule, PQS, is converted
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Table 1. Table with model parameters

Symbol Parameter Source

K Half saturation concentration [8,13]

U Utilization coefficient introduce in this paper

V Maximum production rate [8,13]

b Molecule decay rate [8,13]

c Basal production rate [8,13]

d Membrane diffusion rate [8]

α Binding rate [8,13]

β Enzyme production rate [8,13]

δ Unbinding rate [8,13]

ρ Cell density [8]

P Promoter strength [20]

r Basal production rate [20]

from HHQ via PqsH protein. Therefore, pqs QS system forms a second positive
feedback loop. By explicitly capturing regulations among proteins and molecules
based on molecular transcription and translation, we propose the following new
ODEs to describe the pqs QS system:

d[pR]

dt
= cpR +

VpR[C]

KpR + [C]
−αpR([pR][A1] + [pR][A2])+δpR([C1] + [C2])−bpR[pR] (6)

d[pH]

dt
= cpH +

VpH [C]

KpH + [C]
− bpH [pH] (7)

d[pA]

dt
= cpA +

VpA,1[C1]

KpA,1 + [C1]

VpA,2[C2]

KpA,2 + [C2]
− bpA[pA] (8)

d[pE]

dt
= cpE +

VpE,1[C1]

KpE,1 + [C1]

VpE,1[C2]

KpE,1 + [C2]
− bpE [pE] (9)

d[C1]

dt
= αpR[pR][A1] − δpR[C1] (10)

d[C2]

dt
= αpR[R2][A2] − δpR[C2] (11)

d[A1]

dt
= βpA[pA]

KA1

KA1+[pE]
−αpR[pR][A1]+δpR[C1]−bA1 [A1]+

dA1

ρ
([A1EX ]−[A1]) (12)

d[A1EX ]

dt
= −bA1 [A1EX ] − dA1

1 − ρ
([A1EX − [A1]) (13)

d[A2]

dt
= βpH [pH][A1]−αpR[pR][A2] + δpR[C2] − bA2 [A2] +

dA2

ρ
([A2EX ] − [A2]) (14)

d[A2EX ]

dt
= −bA2 [A2EX ] − dA2

1 − ρ
([A2EX ] − [A2]) (15)

d[Pyo]

dt
= cPyo +

VPyo[pE]

KPyo + [pE]
− bPyo[Pyo] +

dPyo

ρ
([PyoEX ] − [Pyo]) (16)

d[PyoEX ]

dt
= −αI [PyoEX ][I] − bPyoEX

[PyoEX ] +
dPyo

1 − ρ
([PyoEX ] − [Pyo]) (17)
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d[Q]

dt
= −bQ[Q] +

dQ

ρ
([QEX ] − [Q]) (18)

d[QEX ]

dt
= αI [PyoEX ][I] +

dQ

1 − ρ
([QEX ] − [Q]) (19)

where [X] denotes the concentration of a particular molecular species X. In
our formulation, pA, pE, pH, and pR stand for PqsA, PqsE, PqsH and PqsR,
respectively. A1, A2, C1 and C2 represent HHQ, PQS, PqsR-HHQ and PqsR-
PQS, respectively. Pyo and I represent pyoverdine and iron, respectively. Q is
the iron-chelated complex.

Given the pqs QS system, we modify the expression of the LasR protein in
(3) as follows:

d[R]

dt
= cR +

VR[C]

KR + [C]

VQKQ

KQ + [Q]
− αRA[R][A] + δRA[RA] − bR[R] (20)

where we add a new term to account for the effect of iron-chelated complex Q.
In this equation, the parameters VQ and KQ represent the maximum production
rate and Michaelis-Menten constant, respectively.

2.2 Bacteria Growth Model and Virulence Measure

To describe bacteria growth, Monod introduced the concept of single nutrient
controlled kinetics [14], which relates the specific growth rate (µX) of a bacterium
cell mass (X) to the substrate concentration (S). The kinetic parameters, i.e.,
maximum specific growth rate (kX) and substrate affinity (KS), are assumed
to be constant and dependent on strain, medium, and growth conditions (e.g.
temperature, pH). In our model, however, we need to consider a second nutrient
source and add a new term Q to describe it. However, when cells are metaboli-
cally active, but not growing or dividing, they may still take up substrate.

To address bacteria size reduction, a maintenance rate (m) is generally used;
consequently, we improve Monod’s model as follows:

µX = kX · S+Q
S+Q+Kg

(21)
dX
dt = (µX − m) · X (22)

We also define the virulence (V ) as the concentration of LasR-AI complex as
it controls the downstream virulence expressions; therefore, the total virulence
(TV) of the bacteria population is defined as the product of the virulence and
the number of bacteria (N)2:

TV = V × N (23)

We note that, as discussed later in Sect. 4, both V and N are variables that
depend on time (t) and the set of biological parameters (p).

2 Since the number of bacteria is proportional to the biomass, we use biomass and the
number of bacteria to account for the total virulence interchangeably.
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2.3 Inhibition Model

We target the bacterial iron acquisition as a strategy to control the virulence
of bacteria. From our previous discussion, the QS signaling pathways are the
primary target. More precisely, to control the iron uptake rate of PA, we propose
two strategies that can either modulate the iron uptake or inhibit the upstream
las QS system:

AI Inhibitors. The AI inhibitor hydrolyzes the extracellular AI molecules
which can be viewed as a degradation source and assumed to follow the Michaelis-
Menten kinetics. Accordingly, (2) should be modified as:

d[AEX ]

dt
= −bAEX [AEX ] − dA

1 − ρ
([AEX ] − [A]) − VE [AIEX ][AEX ]

KAEX + [AEX ]
(24)

where AIEX
denotes the extracellular AI inhibitor.

Iron Inhibitors. Different species of bacteria can produce different kinds of
siderophores that trap the iron from environment, e.g. Enterobactin produced
by E. coli cannot be up-taken by PA. If the amount of iron is limited, bacteria
compete with each other in order to retain the essential resources. Therefore, we
consider the siderophores produced by other bacteria as iron inhibitors that can
limit the availability of iron in the environment. The dynamics of the available
iron in the environment can be simply modeled as:

[Iava] = [I](
[PyoEX ]

[II ] + [PyoEX ]
) (25)

where Iava denotes the available iron in the environment and II stands for the
iron inhibitor. By replacing I with Iava in (17) and (19), we can incorporate the
iron inhibitor dynamics to the QS model.

2.4 Biological Controller

To dynamically and autonomously generate either AI or iron inhibitors, we pro-
pose to use synthetic methods to construct the genetic circuitry. To obtain vari-
able combinations of the inhibitors with optimal expression levels, we build two
circuits separately. More precisely, to generate AI inhibitor, we can assemble the
aiiA genes with the lux promoter to sense the concentration of LasR-AI (C).
Similarly, the iron inhibitor circuit is built with genes that can express the com-
peting siderophores and sense the concentration of iron-chelated complexes (Q).
Based on the general modeling of genetic circuitry [20], we model the dynamics
of the new biological controller with the following ODEs:

d[AI ]

dt
= PAI

(
1

rAI

+
[C]2

K2
AI

+ [C]2
) − bAI

[AI ] +
dAI

ρs

([AIEX
] − [AI ]) (26)
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d[AIEX
]

dt
= − dAI

1 − ρs

([AIEX
] − [AI ]) − bAIEX

[AIEX
] (27)

d[II ]

dt
= PII

(
1

rII

+
[Q]2

K2
II

+ [Q]2
) − bII [II ] +

dII

ρs

([IIEX
] − [II ]) (28)

d[IIEX
]

dt
= − dII

1 − ρs

([IIEX
] − [II ]) − bIIEX

[IIEX
] (29)

where AI (II) and AIEX
(IIEX

) denote the intracellular and extracellular con-
centration of the AI (iron) inhibitors, respectively. The inhibitors production
rate (second term) in (26) and (28) can be characterized by the binding of the
LasR-AI and iron-chelated complex, respectively. The product of the promoter
strength (PAI

and PII ) and the basal production rate (rA1 and rII ) characterize
the minimal expression rate when there is no LasR-AI and iron-chelated complex
present, respectively3.

3 QS System Analysis

In this section, we first examine the QS system responses to different chemical
substances. Next, we examine the effects of substrate utilization constant on
bacteria growth. Finally, we examine the effectiveness of AI and iron inhibitors.

3.1 QS System Responses

We first examine the responses of the las and pqs QS systems by varying the
concentration of available iron in the environment. Figure 2 shows the QS system
responses to several chemical substances. At first, the concentration of iron is
0.01 (arbitrary unit (a.u.)); at t = 5000 (a.u.), the concentration of iron is
changed to 1.00 (a.u.) (i.e., one hundred fold increase). We observe that the LasR
protein concentration decreases due to the increase of the iron concentration;
this is discussed in [12] and illustrated with the negative feedback (see also
Fig. 1(a)). The other chemical substances show similar patterns except the iron-
chelated complex which directly increases the growth rate. This way, the system
responses confirm that our model can precisely describe the changes of chemical
substance concentrations when the concentration of iron changes; this confirms
the experiments in [12].

3.2 Growth Model: Utilization Constant

In Monod’s bacterial growth model, bacteria consume the substrate for their
growth. We assume the utilization of substrate (US) is constant under different
iron concentrations. However, the exact values of the utilization constant are
hard to measure and estimate experimentally. To determine the US value, we
examine the changes of total virulence and biomass under different iron concen-
trations.

3 We discuss a design example for the biological parameters in subsequent sections.
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Fig. 2. Simulation results of the PA QS system responses to different iron concentra-
tions. At first, the iron concentration is 0.01 (a.u.); later at time t = 5000 (a.u.), it is
changed to 1 (a.u.). (a) As iron concentration increases, the expression of LasR proteins
is repressed due to the negative feedback of iron-chelated complexes (see Fig. 1(a)). (b)
The concentration of the LasR-AI complex decreases accordingly. The downstream
proteins (i.e., (c) PqsR, (d) PqsA, and (e) PqsE) are all positively regulated by LasR.
Hence, they change in accordance with LasR protein. The (f) PqsR-HHQ and (g) PqsR-
PQS concentrations also decrease due to the decrease of PqsR. (h) Pyoverdine (Pyo)
concentration shows similar profile since it is positively regulated by PqsE. (i) The
concentration of iron-chelated (Pyo-Iron) complex increases due to the high affinity of
pyoverdine and iron.

As shown in Fig. 3(a), once a certain concentration of iron is reached, the
larger the US , the greater the total virulence; this is because a consumption rate
of substrate that is low results in a nutrient abundant environment that favors
bacteria growth. We can observe that the biomass and the total virulence are
almost identical if US is greater than 10. Hence, in the following analysis, we set
US to 10.

3.3 Inhibitors Effectiveness

From Fig. 2(a), we note that when the iron concentration is high, the expression
of the LasR is repressed (Fig. 4(a)). On the other hand, the biomass increases
due to the higher growth rate (Fig. 4(b)). By using (23), the TV increases as the
concentration of iron increases as shown in Fig. 4(c).
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tion constant on total virulence under different iron concentrations. (b) The effect of
substrate utilization constant on biomass under different iron concentrations.
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Fig. 4. The concentration changes of LasR-AI, biomass, and the TV due to the effect
of different inhibitors. (a), (b), and (c) show the effect of iron concentration alone. (d),
(e), and (f) show the effect of AI inhibitors alone. (g), (h), and (i) show the combined
effect of iron and AI inhibitors. The set points in (c), (f), and (i) are denoted as SA,
SB , and SC , respectively; they are used to derive results in Fig. 5
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Fig. 5. Operation points for different types of inhibitors. Different color indicates the
TV of a certain combination of biological parameters (promoter strength (P ) and basal
production rate (r) described in (26)–(29)). (a) and (b) show the operation points OA

and OB for iron and AI inhibitor alone; they can achieve TV around 0.1 and 0.001
where we choose the setting points SA and SB in Fig. 4(c) and (f), respectively. Based
on the operation points we choose, we can solve the optimization problem and obtain
the corresponding biological parameters where P = 100, r = 250 and P = 2, r = 250,
respectively. (c) The operation point OC for multi-inhibitors. In this case, P = 100 and
r = 250.

Figures 4(d)–(f) show the effect of adding the AI inhibitor into the environ-
ment, both LasR-AI complex and biomass decrease (Fig. 4(d), (e)). Hence, the
TV decreases as the amount of inhibitors increases.

Our most important observation shows that if we vary both the iron concen-
tration and AI inhibitors, we may decrease the TV. Indeed, Fig. 4(i) shows that
TV decreases as we increase the concentration of AI inhibitors and decrease the
iron concentration. The AI inhibitor and iron concentration have opposite effects
on the LasR-AI complex and the biomass. More precisely, lower concentrations
of iron result in higher concentrations of the LasR-AI complex (Fig. 4(g)), but a
decrease in the biomass production (Fig. 4(h)).

4 Autonomous Biological Control System

The autonomous biological controller we propose can automatically detect sig-
nals, react to environment, and adaptively release chemical substances for
intended objectives. To control the TV, the objective is to find a set of biological
parameters p that minimize (23). However, this objective function is subject
to various biological constraints including the bacteria QS, growth and QSI, as
well as control dynamics. Given the mathematical model in Sect. 2, we formu-
late a constrained dynamic optimization problem and solve it through numerical
methods.

4.1 Problem Formulation

Based on the general constrained dynamic optimization formulation and control
dynamics (see Appendix), we can formulate our problem as follows:
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min
p

TVt = V (xt,p) × N(xt,p)

subject to ẋt = f(xt, ut, dt,p) u̇t = h(ut, et,p)
yt = g(xt,p) et = yt − rt ∀t ∈ [t0, tFL]
xt0(p) = x0(p)

pL ≤ p ≤ pU

(30)

where t ∈ R represents time, t0, tFL are the initial and final time, respectively,
ti ∈ [t0, tFL], x and ẋ ∈ R

n are the state variables and their time deriva-
tives, respectively, and p ∈ R

r capture the time-invariant biological parameters
that can vary within [pL,pU ]. The functions f and h are QS and QSI models,
respectively. The function g selects the process variables (y) (i.e., LasR-AI and
iron-chelated complexes in our case). The state variable x represents the set of
concentrations of chemical substances described by (1)–(19); the environment
input (d) describes the environment conditions such as the nutrient availabil-
ity. The control variables (u) are the inhibitors which target the AI and iron
availability.

The genetic circuit can be thought of as an integral controller which reacts
to the concentration of LasR-AI and iron-chelated complexes, respectively. The
error signal (e) is computed as the difference between the process variable and
the reference signal (r); this then feeds back to the controller, which forms a
closed loop (see Fig. 1(c)).

4.2 Biological Parameters Design

To design the biological parameters for our controller, we can numerically solve the
above optimization problem by sampling biological parameters within the given
constraints. From our analyses in Sect. 3, we notice that TV is a monotonically
decreasing function (Fig. 4(i)). Consequently, by setting (23) to a desired value,
we can solve (30) for biological parameters to fulfill the design specifications.

We now provide a design example for the control circuitry that can effec-
tively achieve the setting objective value. As shown in Fig. 4(c), (f), (i), we first
choose the setting points SA, SB, and SC for three different strategies that can
achieve desired TVs (0.1, 0.001 and 0.001 in this design examples). The biolog-
ical parameters we choose to engineer are the promoter strength (P ) and the
basal production rate (r) in (26)–(29) since we can tune their values through the
evolution method [1]. Next, by solving (30) through varying the value of a set
of biological parameters within the given constraints ([pL,pU]), we can obtain
the most suitable combination of biological parameters that express the minimal
amount of inhibitors. Figure 5 shows the operation points OA, OB and OC for
three strategies that can achieve the setting values (SA, SB , and SC), respec-
tively. Based on the operation points, we obtain the set of desired biological
parameters.
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5 Population-Level Simulation Results

In this section, we validate the proposed control system by using a 3D microflu-
idic environment agent-based simulator [21]. First, we explicitly apply the
cellular-level model to each agent (bacterium). Next, we consider several phys-
ical and stochastic effects (physical interactions between bacteria, variation in
the QS systems, growth model, etc.) and examine the growth and virulence of
populations of bacteria.

The environmental configurations used in these simulations are presented
in the Appendix. As shown in Fig. 6(a), for the case without inhibitors, the
values of TV surpass the other strategies after 70 h of cultivation (i.e., the time
we grow bacteria in wet-lab); this is because the bacteria growth rate (µX in
(21)) without inhibitors is larger compared to inhibitor schemes (Fig. 6(c)). If we
use AI inhibitors alone, the concentration of LasR-AI complex is reduced, but
this can not repress the growth of bacteria. On the contrary, the iron inhibitor
alone can inhibit the bacteria growth but the LasR-AI concentration increases
(Fig. 6(b)). The multi-inhibitor strategy shows the best results; indeed it can
lower the concentration of LasR-AI and bacteria growth simultaneously.
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Fig. 6. The simulation results for (a) TV (b) concentration of LasR-AI complex (c)
number of bacteria for four different scenarios. Note that TV is the product of the
concentration of LasR-AI complex and the number of bacteria as shown in (23). We
observe that the multi-inhibition strategy is the most effective in reducing TV.

6 Conclusion

In this work, we have proposed an autonomous optimal controller that incor-
porates the bacteria QS regulation and growth models and operates within a
synthetic cell. By analyzing the system characteristics through numerical meth-
ods and simulations, we have shown that such synthetic cells can control the
expression level of QS signals and cells growth.

We have also formulated a dynamic optimization problem to design the bio-
logical parameters of the proposed controller; this provides general guidelines
to synthesize such optimal controllers in vitro. The proposed autonomous con-
trolled system represents a first step towards a paradigm change in controlling
the dynamics of communicating bacteria.
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Appendix

General form of a dynamic constrained optimization problem. A gen-
eral dynamic optimization problem can be formulated as follows:

min
p

J(xt, p)

subject to ẋt = f(xt, p) ∀t ∈ [t0, tFL]
xt0(p) = x0(p)

pL ≤ p ≤ pU

where t ∈ R is time, t0, tf are the initial and final time, respectively, ti ∈ [t0, tFL],
x and ẋ ∈ Rn are the state variables and their time derivatives, respectively,
and p ∈ Rr are the time-invariant parameters and is subjected to the lower
constraints pL and upper constraints pU . The function J is the objective that
we want to minimize. f describes the system dynamics. x0 is the initial conditions
of the state variables.

Control problem formulation. Consider a general control system which con-
sists of a plant and a controller (see Fig. 1(c)). The plant (process) takes in the
input variable (d(t)) and control variable (CV) (u(t)) generating the process
variable (PV) (y(t)). The controller calculates an error (e(t)) signal as the dif-
ference between a measured process variable and a desired setpoint (SP) (r(t)).
The controller aims at minimizing the error by adjusting the process through the
control variable (u(t)). The control system can be characterized by the following
equations:

ẋ(t) = f(x(t), u(t), d(t)), u̇(t) = h(e(t), u(t)) (31)
y(t) = g(x(t)), e(t) = y(t) − r(t) (32)

where f , g and h are arbitrary functions. The controller, in this case, can be
viewed as an integral controller since the control signal is proportional to the
integral of the error signal.

Simulation Environment Configuration. We model bacterial growth in a
3D microfluidic environment (100µm x 100µm x 100µm) that is initialized and
inoculated with 1000 wild-type cells, all of which are non-overlapping and ran-
domly attached to the substrate. We set up the simulation time up to 150 h in
order to observe the evolution dynamics of bacteria growth.

Model Calibration. We calibrate the model parameters of the pqs QS system
shown in Table 3. We first use similar values from [8,13] as our initial values.
Next, we tune the model parameters to capture the behavior of the QS system.
More precisely, we tune the model parameters based on the relative concentration
change of the LasR protein under different iron concentration levels.

As shown in Fig. 2, when we change the iron concentration from 0.01 (a.u.)
to 1 (a.u.), the LasR concentration changes from 2 (a.u.) to 0.5 (a.u.) which
preserves the fold changes reported in Fig. 4 of reference [12].
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Table 2. Table with numerical values of model parameters from [8,13]

Symbol Value

cA, cR 1e − 4/s

αRA, αRA2 1e − 1

δRA, δRA2 1e − 1

bA, bR 1e − 2

dA 1e − 1

VA, VR 2e − 3

KA 1e − 6

KR 1e − 5

Table 3. Table with numerical values of model parameters calibrated in this paper as
explained below.

Symbol Value

cpR, cpH , cpA, cpE , cPyo 1e − 7/s

αpR 1e − 1

αI 1e − 2

δpR 1e − 1

bpR, bpH , bpA, bpE , bA1 , bA2 1e − 2

bA1EX
, bA2EX

, bPyo, bPyoEX , bQ 1e − 1

dA1 , dA2 , dPyo, dQ 1e − 1

VpR, VpH , VpA,1, VpA,2, VpE,1, VpE,2VPyo 2e − 3

KpA,1, KpA,2, KpE,1, KpE,2 1e − 6

KA1 1e − 3

KpR, KpH 1e − 1

KPyo 1

βpA 1e − 2

βpH 1e − 1
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10. Häussler, S., Becker, T.: The pseudomonas quinolone signal (PQS) balances life
and death in Pseudomonas aeruginosa populations. PLoS Pathog. 4(9), e1000166
(2008)

11. Hazan, R., He, J., Xiao, G., Dekimpe, V., Apidianakis, Y., Lesic, B., Astrakas,
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Abstract. The elucidation of sources of heterogeneity in cell popu-
lations is crucial to fully understand biological processes. A suitable
method to identify causes of heterogeneity is reaction rate equation
(RRE) constrained mixture modeling, which enables the analysis of sub-
population structures and dynamics. These mixture models are cali-
brated using single cell snapshot data to estimate model parameters
which are not measured or which cannot be assessed experimentally.
In this manuscript, we evaluate different optimization methods for esti-
mating the parameters of RRE constrained mixture models under the
normal distribution assumption. We compare gradient-based optimiza-
tion using sensitivity analysis with two other optimization methods
– gradient-based optimization with finite differences and a stochastic
optimization method – for simulation examples with artificial data. Fur-
thermore, we compare different numerical schemes for the evaluation of
the log-likelihood function. We found that gradient-based optimization
using sensitivity analysis outperforms the other optimization methods in
terms of convergence and computation time.

Keywords: Parameter estimation · Reaction rate equations · Mixture
models · Sensitivity analysis

1 Introduction

In the past years, methods for studying biological processes on a single cell level
have been developed and improved. It is possible to quantify the (relative) abun-
dance of molecular species in single cells using, e.g. flow cytometry [2] or single cell
microscopy [11]. With these techniques, it is possible to also detect heterogeneity
in expression for cells of a same cell population. This heterogeneity has been shown
to play an important role for e.g. cancer cells or neurons [10,14]. For homogeneous
cell populations, dynamic mathematical models are convenient tools to study bio-
logical systems [8]. However, they only capture the dynamic of the mean response
in the cell population and cannot account for possible subpopulations. To exploit
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the information available in single cell data, dynamical models that are able to
account for subpopulation structures of the cells are needed.

A suitable method to study subpopulation structures of heterogeneous cell
populations is the method of RRE constrained mixture modeling introduced
by Hasenauer et al. [5]. These models can in principle be fitted to experimen-
tal single cell data to estimate unknown parameters of the biological system,
such as kinetic rates, initial conditions or subpopulation weights. Subsequently,
hypotheses about mechanistic differences between individual subpopulations can
be tested. However, it has not yet been discussed how the parameters of RRE
constrained mixture models can be estimated in an efficient and accurate way
and there is no comparison of methods available.

In this manuscript, we consider maximum likelihood methods for parameter
estimation. For this, a likelihood function which provides a measure of how well
the data is explained by the current parametrization of the model is maximized.
This maximization can be performed using e.g. local deterministic or global sto-
chastic optimization techniques [3,12,15]. Most deterministic optimizers employ
information about the gradient of the likelihood function. This gradient with
respect to the parameters can be approximated by finite differences or, if possi-
ble, calculated with sensitivity analysis [12,13]. An example of a global stochastic
optimizer is particle swarm optimization presented in [15]. This optimizer does
not rely on information about the gradient and has been shown to outperform
other global optimizers [15].

We describe the concept of RRE constrained mixture models and provide
the likelihood function and the sensitivity equations for the calculation of its
gradient with respect to the parameters. Additionally, we explain the standard
and a robust approach for the evaluation of a mixture likelihood. We compare the
deterministic optimization using sensitivities to the deterministic method using
finite differences and to the stochastic particle swarm optimization algorithm for
artificial single cell snapshot data of a one stage and three stage cascade.

2 Methods

In this section, we outline the method of RRE constrained mixture modeling for
single cell snapshot data and the corresponding likelihood formulation for the
parameter estimation. We establish the gradient of the likelihood with respect
to the model parameters and the sensitivity equations. Further, a numerically
robust evaluation of the log-likelihood is presented.

2.1 RRE Constrained Mixture Models

RRE modeling provides the temporal evolution for the mean concentrations
x = (x1, . . . , xnx

) of nx chemical species involved in a biological process, which
is stimulated by an external stimulus u. These RREs can be written as

ẋ = f(x,ψ, u), x(0) = x0(ψ, u), (1)
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an ODE system with initial conditions x0(ψ, u) and vector field f . The para-
meter vector ψ comprises e.g. kinetic rates, initial concentrations or observa-
tion parameters. Often, the concentrations x of the species cannot be measured
directly or only a subset of them can be observed. In most experiments, only a
single property is assessed. Therefore, we considered an observable

y = h(x,ψ, u),

with h denoting the mapping. The observation process depends on observation
parameters included in ψ such as scaling and offset constants.

Mixture models enable the depiction of subpopulations within an overall
population. The probability distribution is described by the weighted sum of
probability density functions φ for individual mixture components, i.e., subpop-
ulations

p(y|ws, μs, σs) =
ns∑

s=1

wsφ(y|μs, σ
2
s).

In this manuscript, we assumed φ to be a normal distribution, which is parame-
trized by its mean μ and variance σ2.

Combining these, every subpopulation is treated as a mixture component for
which the mean concentration is simulated using RREs [5]. This yields the fol-
lowing model for the distribution of an observable y for some given parameters θ
at a time point tk,

p(y|θ, tk) =
ns∑

s=1

ws(θ)φ
(
y|μs, σ

2
s(θ, tk)

)

with ẋs = f (xs,ψs(θ), u) , xs(0) = x0(ψs(θ), u),
μs = h (xs,ψs(θ), u) .

Fig. 1. Illustration of RRE constrained mixture modeling for an example of two sub-
populations. The means of measurement y for the individual subpopulations are calcu-
lated with RREs and plotted as purple and orange lines for the high and low responsive
subpopulation, respectively. The overall cell distribution Φ is plotted as black curve and
is calculated by a weighted mixture of the individual distributions for the subpopula-
tions (purple and orange areas). (Color figure online)
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The parameter vector can comprise e.g. θ = ({ws, σs, ξs}ns
s=1, ξ), the subpopu-

lation specific mixture weights ws, standard deviations σs and mechanistic para-
meters ξs as well as mechanistic parameters ξ that are shared across subpopu-
lations. The mean of the mixture distribution is linked to the RREs, while the
mixture weights and standard deviations do not depend on the RREs. The para-
meters for the RREs of an individual subpopulation as defined in (1) are thus given
by ψs = (ξs, ξ). The concept of RRE constrained mixture models is illustrated in
Fig. 1. For a more detailed explanation of these models, we refer to [5].

2.2 Single Cell Snapshot Data

We considered single cell snapshot data

D =
{{

yk
j

}nc

j=1

}nt

k=1
.

These data contain the measurements y for nc cells, indexed by j, at nt time
points, indexed by k. In the case considered, the data captures the dynamics of
the population on a single cell level after stimulation with some input u.

2.3 Parameter Estimation for RRE Constrained Mixture of Normal
Distributions

To obtain the parameters of a RRE constrained mixture model, the model needs
to be fitted to experimental data D. This is done by maximum likelihood estima-
tion. A likelihood function L(θ) describes the probability of observing the data
D given the parameters θ. For the case of RRE constrained mixture models, this
function is given by

L(θ) :=
∏

k,j

ns∑

s=1

ws(θ)φ
(
yk

j |μs, σ
2
s(θ, tk)

)

with ẋs = f (xs,ψs(θ), u) , xs(0) = x0(ψs(θ), u),
μs = h (xs,ψs(θ), u) .

The mixture parameters μs implicitly depend on the parameter vector θ. A
different variance parameter σs can be used for every measured time point tk
and subpopulation s. Since the number of parameters increases with the number
of measured time points and the number subpopulations, an efficient method for
parameter estimation is required. Due to its better numerical properties, we used
the negative log-likelihood function

J(θ) = − log L (θ)

= −
∑

k,j

log
ns∑

s=1

ws(θ)φ
(
yk

j |μs, σ
2
s(θ, tk)

)

in the optimization, which has the same extrema as the likelihood function. In the
following, we derive the gradient of J with respect to θ, which can be employed
by deterministic local optimization methods.
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Gradient of Negative Log-Likelihood Function. For a simpler notation,
we neglect the arguments of ws and σs. The gradient of the log-likelihood with
respect to parameters θ = (θ1, . . . , θnθ

), with θ denoting an entry of the vector,
is given by

dJ

dθ
= −

∑

k,j

d

dθ
log

(
ns∑

s=1

ws φ
(
yk

j |μs, σ
2
s

)
)

= −
∑

k,j

1
∑ns

s=1 ws φ
(
yk

j |μs, σ2
s

)
d

dθ

ns∑

s=1

ws φ
(
yk

j |μs, σ
2
s

)

= −
∑

k,j

1
∑ns

s=1 ws φ
(
yk

j |μs, σ2
s

)
ns∑

s=1

(
dws

dθ
φ

(
yk

j |μs, σ
2
s

)
+ ws

dφ
(
yk

j |μs, σ
2
s

)

dθ

)

.

Under the assumption that φ is a normal distribution, it holds that

dφ
(
yk

j |μs, σ
2
s

)

dθ
=

1
σs

φ
(
yk

j |μs, σ
2
s

)
⎛

⎝
yk

j − μs

σs

dμs

dθ
+

⎛

⎝

(
yk

j − μs

σs

)2

− 1

⎞

⎠ dσs

dθ

⎞

⎠,

with

dσk
s

dθ
=

{
1 θ = σk

s

0 otherwise
,

dws

dθ
=

{
1 θ = ws

0 otherwise
.

The gradient of the objective function comprises dμs

dθ , which can be calculated using

sensitivity analysis. The sensitivities zxs =
(

∂xs,1
∂θ , . . . ,

∂xs,nx

∂θ

)
are defined by

∂zxs

∂t
=

∂f

∂xs
zxs +

∂xs

dθ
, zxs(0) =

∂x0

∂θ
,

zμs =
∂h

∂xs
zxs +

∂h

∂θ
,

with ∂f
∂xs

=
(

∂fm

∂xs,l

)

m,l
∈ R

nx×nx and ∂h
∂xs

=
(

∂hm

∂xs,l

)

m,l
∈ R

nx×ny . For the case

of RRE constrained mixture models, we obtain μs and dμs

dθ = zμs by simulating
an ODE system comprising the RREs and sensitivity equations.

Robust Evaluation of the Log-Likelihood Function and Its Gradient.
We explain and tackle the problem occuring when numerically evaluating (log-)
likelihood functions of mixture distributions. For this, we formulate the stan-
dard and robust approach to evaluate the log-likelihood function following [9].
As already mentioned, rather the log-likelihood than the likelihood function is
calculated due to numerical properties. This means, instead of the probability
density p, the logarithm log(p) is evaluated. For the assumption of a normal
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distribution this circumvents e.g. exponentiation of the difference between mea-
surement and simulation. This is especially advantageous for high differences,
since e−x might be numerically evaluated to zero for finite values of x. However,
for mixture models, if ns > 1 and ps := φ(y|μs, σ

2
s), it holds that

log(p) = log

(
ns∑

s=1

wsps

)

�=
ns∑

s=1

log (wsps) ,

i.e., for these cases it is not possible to use the logarithm of the probability
density of an individual mixture component directly. This problem also occurs
in the calculation of the gradient. We refer to this approach of evaluating the
likelihood function as standard approach.

A more robust approach for the log-likelihood calculation is given in the
following. With qs = log(ps) and ŝ = argmaxsqs, we reformulate

log(p) = log

(
ns∑

s=1

wse
qs

)

= log

⎛

⎝1 +
∑

s �=ŝ

ws

wŝ

(
eqs−qŝ

)
⎞

⎠ + log(wŝ) + qŝ. (2)

Considering ps to be a normal distribution it follows that

log(ps) = qs = −1
2

(
y − μs

σs

)2

− log(
√

2π) − log(σs).

Regarding the calculation of the gradient it holds that

d log(p)
dθ

=
1
p

dp

dθ
=

ns∑

s=1

ps∑ns

j=1 wjpj
Hs

=
1

∑ns

j=1 wjeqj−qŝ

ns∑

s=1

eqs−qŝHs, (3)

with Hs defined by

Hs =
1
ps

dwsps

dθ
=

dws

dθ
+

ws

ps

dps

dθ
.

Under the assumption that ps is a normal distribution this is

Hs =
dws

dθ
+

ws

σs

(
y − μs

σs

dμs

dθ
+

((
y − μs

σs

)2

− 1

)
dσs

dθ

)

.

The proposed reformulations (2) and (3) are used for the robust evaluation of
the log-likelihood function and its gradient. For further details we refer to [9].
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2.4 Implementation

The RRE constrained mixture models were implemented in MATLAB. The sen-
sitivity equations were derived and simulated using the toolbox CERENA [7].
For parameter estimation with deterministic optimization, we used the toolbox
PESTO1, which employs the MATLAB function fmincon. For stochastic global
optimization we employed a toolbox for the algorithm PSwarm [15].

3 Results

We compared the different optimizers in terms of convergence and computation
time for artificial data of a one stage and a three stage cascade.

3.1 One Stage Cascade

For a first comparison of the optimizers we considered a small example of a one
stage cascade comprising a conversion between two species A and B.

Model and Artificial Data. A conversion process describes a reversible reac-
tion between two species, A and B that have the concentrations [A] and [B],
respectively. In our example, we assumed that the conversion from A to B takes
place with a basal rate k2[A] and is additionally increased by external stimulus
u. Furthermore, B is converted back to A with kinetic parameter k3 yielding the
reactions

R1 : A → B, rate = k1u
[
A

]
,

R2 : A → B, rate = k2
[
A

]
,

R3 : B → A, rate = k3
[
B

]
.

We considered that there exist two subpopulations, s1 and s2, differing in the
stimulus-dependent conversion from A to B. This is described by the kinetic
parameter k1, i.e., the subpopulations share the parameters k2 and k3 but have
individual parameters k1,s1 and k1,s2 with s1 and s2 indicating the kinetic para-
meters of subpopulation 1 and 2, respectively. The system is in steady state
before stimulation (u = 0 for t < 0). To generate the artificial data we used
the parameters (k1,s1 , k1,s2 , k2, k3, w) = (0.1, 0.75, 0.5, 1.5, 0.7) and assumed that
only the concentration of species B can be measured, yielding the observation
model y = h(x,ψ, u) = x2, with x = (x1, x2)T = ([A), [B])T . An illustration
of the system including the subpopulations is given in Fig. 2A. This system
was simulated using the stochastic simulation algorithm [4], which models ran-
dom births and deaths of individual molecules. We considered a system size of
Ω = 1000 and divided the number of molecules by Ω to obtain the concentra-
tion of the species. Moreover, the external stimulus is set to u = 1 at t ≥ 0 and
1 Available at https://github.com/ICB-DCM/PESTO.

https://github.com/ICB-DCM/PESTO
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Fig. 2. Artificial data of a conversion process. (A) Illustration of a conversion
process between chemical species A and B in a cell population. The conversion from
A to B is enhanced by a stimulus u. 30 % of the cells show a higher response to the
external stimulus u than the other cells. Only the concentration of B denoted by [B]
is measured. (B) Artificial data for the conversion process. The system is stimulated
with u = 0 for t < 0 and u = 1 for t ≥ 0.

measurements of the concentration of B are recorded at t = 0, 0.1, 0.2, 0.3, 0.5, 1
minutes. The data are shown in Fig. 2B: For t = 0, the system is in steady
state and no subpopulation structure is visible, since the subpopulations differ
only in the response to stimulation. For t = 0.1, the subpopulation structure
becomes visible, but the subpopulations still highly overlap. However, for later
time points the subpopulations are clearly separated.

The mean of the stochastic single cell trajectories can be described by RREs,
i.e., the temporal evolution of x2 can be described by the ODE

ẋ2 = k1u + k2 − (k1u + k2 + k3) x2, x2(0) =
k2

k2 + k3
,

using mass conservation, [A] + [B] = 1. We then assumed the parameters θ =
(k1,s1 , k1,s2 , k2, k3, w, {{σs(tk)}2s=1}6k=1) to be unknown and estimated them from
the data. Since the data comprised six time points and we accounted for two
subpopulations, 12 parameters for the standard deviation σs(tk) need to be
estimated.

Convergence of Optimization Methods. To evaluate the optimizers, we
compared deterministic gradient-based optimization using sensitivities with
deterministic gradient-based optimization using finite differences and a stochas-
tic particle swarm algorithm [15]. For all optimizers, the parameter values for
the kinetic rates ki were restricted to the interval [10−6, 104], the mixture weight
w to [0, 1] and the parameters for the standard deviation of the normal dis-
tributions σs(tk) to [10−2.5, 102.5]. Each algorithm was started 100 times and
the deterministic optimizers were started from the same randomly drawn start
points.



194 C. Loos et al.
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Fig. 3. Comparison of optimization methods. (A) Convergence plot for the final
negative log-likelihood values for 100 starts. The values are sorted from lowest to highest
implying a decreasing goodness of fit. (B) Data and fit for the optimal value, which
was found by all methods. Percentage of starts for which the initial value was ∞ (C)
and converged starts (D).

The final negative log-likelihood values for every start are sorted with decreas-
ing goodness of fit and shown in Fig. 3A. The data and fit, which correspond to
the optimal value found by all methods, are shown in Fig. 3B. The model shows a
good agreement with the data. For a detailed comparison of the results obtained
by the different optimization methods, we assessed the percentage of failed starts,
i.e., the starts for which the log-likelihood function was infinite at the start point
(Fig. 3C). For almost 20% of all drawn start points the log-likelihood has an infi-
nite value when using the standard evaluation of the log-likelihood. However, the
log-likelihood can be evaluated for all start points when using the robust calcula-
tion approach. Since for PSwarm an initial particle population is used instead of
a single initial value, there are no failed starts and it is not possible to compare
this property with the deterministic optimizers. We expect the percentage of
failed log-likelihood evaluations for the initial particle population to be similar
to the percentages found for the failed starts in the deterministic optimization
using the standard approach. The likelihood was numerically evaluated to zero
for all start points. For the log-likelihood, we counted the number of objective
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function values that are close to the minimal objective function value found,
i.e., below a statistical threshold according to a likelihood ratio test [6]. These
starts are then likely to have converged to the global optimum. The percentage
of converged starts determined for each optimizer is depicted in Fig. 3D. Clearly,
the best convergence is obtained by deterministic local optimization with an
analytical gradient that is calculated with sensitivities. For this optimizer, the
robust calculation of the log-likelihood and the gradient yielded better conver-
gence compared to the standard approach. For both approaches, standard and
robust evaluation of the log-likelihood function, deterministic local optimiziation
with finite difference approximation to the gradient shows less convergence than
when using sensitivites. The stochastic optimization with PSwarm has even less
converged runs than the deterministic optimization with finite differences.

Computation Time of Optimization Methods. We compared the perfor-
mance of the optimizers in terms of computation time (Fig. 4A). The best com-
putation time was achieved for the deterministic optimization with sensitivities,
while the highest computation time is needed for stochastic optimization. Also
regarding the number of function evaluations, the stochastic optimization needed
most function evaluation and the deterministic optimization with sensitivities
performed best (Fig. 4B). Furthermore, regarding the average computation time
needed per converged start shown in Fig. 4C, the deterministic optimizer using
sensitivities outperforms the other optimizers. However, there were almost no
additional computational costs when using the robust approach instead of the
standard approach to evaluate the log-likelihood function for all optimizers.

Fig. 4. Performance comparison of optimization methods. (A) Time needed
for one optimization start. (B) Number of objective function evaluations for one opti-
mization start. (C) Average computation time needed per converged start.
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3.2 Three Stage Cascade

To validate the results obtained for the simple conversion process, we studied
artificial data of a three stage cascade, namely the Raf/Mek/Erk cascade.

Model and Artificial Data. The considered pathway comprises the protein
kinases Raf, Mek and Erk and their corresponding phosphorylated/active forms
pRaf, pMek and pErk. Raf is activated with a stimulus-dependent rate k1u

[
Raf

]

and a basal rate k2
[
Raf

]
. The activation rate of Mek is proportional to the

amount of phosphorylated Raf, while active Mek in turn phosphorylates Erk.
These reactions and the dephosphorylation of the active kinases are given by

R1 : Raf → pRaf, rate = k1u
[
Raf

]
,

R2 : Raf → pRaf, rate = k2
[
Raf

]
,

R3 : pRaf → Raf, rate = k3
[
pRaf

]
,

R4 : Mek → pMek, rate = k4
[
pRaf

][
Mek

]
,

R5 : pMek → Mek, rate = k5
[
pMek

]
,

R6 : Erk → pErk, rate = k6
[
pMek

][
Erk

]
,

R7 : pErk → Erk, rate = k7
[
pErk

]
,

with mass conservation
[
Raf

]
+

[
pRaf

]
=

[
Raf

]
0
,

[
Mek

]
+

[
pMek

]
=

[
Mek

]
0
,

[
Erk

]
+

[
pErk

]
=

[
Erk

]
0
.

For the data generation, we assumed to observe y = h(x,ψ, u) = s
[
pErk

]
. To

circumvent structural non-identifiabilities, we consider the reformulations

x1 = k4
[
pRaf

]
,

x2 = k6
[
pMek

]
,

x3 = s
[
pErk

]
.

This yields the ODE system

ẋ1 = (k1u + k2)(k4
[
Raf

]
0

− x1) − k3x1, x1(0) =
k2k4

[
Raf

]
0

k3+k2
,

ẋ2 = x1(k6
[
Mek

]
0

− x2) − k5x2, x2(0) =
x1(0)k6

[
Mek

]
0

x1(0)+k5
,

ẋ3 = x2(s
[
Erk

]
0

− x3) − k7x3, x3(0) =
x2(0)s

[
Erk

]
0

x2(0)+k7
,

with y = x3 and parameters (k1, k2, k3, k5, k7, k4
[
Raf

]
0
, k6

[
Mek

]
0
, s

[
Erk

]
0
). For

details regarding the model we refer to [5]. In this example, we considered two
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Fig. 5. Artificial data of the Raf/Mek/Erk cascade. (A) Illustration of the con-
sidered signaling pathway, which comprises the kinases Raf, Mek and Erk and its cor-
responding actived forms. The model comprises two subpopulations differing in their
response to stimulus u. (B) Artificially generated data of the Raf/Mek/Erk cascade
for measurements of pErk levels.

subpopulations that differ in their response to stimulus u, captured by para-
meter k1 (Fig. 5A). We generated measurements of 1000 cells by simulating the
ODE system for log10(k1,s1 , k1,s2 , k2, k3, k5, k7, k4

[
Raf

]
0
, k6

[
Mek

]
0
, s

[
Erk

]
0
) =

(−2,−1,−2,−0.15,−0.15,−0.15,−2, 2, 3), w = 0.7 and normally-distributed
measurement noise (Fig. 5B). The stimulus u is set to 0 for t < 0 and to 1
for t ≥ 0.

Convergence of Optimization Methods. For parameter estimation, the
intervals for the parameters were set to [10−3, 105] for the kinetic parameters, to
[0, 1] for the mixture weight and to [10−3, 102] for σs(tk). The resulting objec-
tive function values for 100 runs of the optimization procedures are shown in
Fig. 6A, and a zoom in of the five best runs in Fig. 6B. The optimization with
sensitivities and a robust evaluation of the log-likelihood function converged to
the optimal value 44 times. This optimal value yields a good fit to the data
(Fig. 6C). Using deterministic optimization with sensitivities and the standard
evaluation of the log-likelihood function the same optimal value as with the
robust evaluation was found only once. The other optimizers were not able to
find the optimal value at all. For the deterministic optimization and the standard
evaluation of the log-likelihood function, only three out of 100 initial parame-
ter values yielded a finite log-likelihood value. Consequently, the remaining runs
could not be started. These findings indicate that for higher-dimensional esti-
mation problems, the use of sensitivity-based methods and robust log-likelihood
evaluation becomes increasingly important.

Performance of Optimization Methods. We compared the computation
times and needed function evaluations of the different optimization methods
(Fig. 7). Since only the deterministic optimization with sensitivities and robust
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Fig. 6. Comparison of optimization methods. (A) Final negative log-likelihood
values for 100 runs, sorted according to a decreasing goodness of fit. (B) Zoom for the
five best starts. The black line indicates the statistical threshold according to a likeli-
hood ratio test, which was used to obtain the number of converged starts. (C) Data
and fit for the optimal parameter value found by deterministic optimization with sen-
sitivities and a robust evaluation of the log-likelihood function.

Fig. 7. Performance of optimization methods. (A) CPU time needed for one
optimization start. (B) Number of objective function evaluations for one optimization
start. The representation is based on three starts for deterministic optimization with
the standard approach to evaluate the log-likelihood (grey shaded), while it is based
on 100 starts for the other optimizers.
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evaluation reached a sufficient number of converged starts, we did not compare
the optimizers in terms of average computation time per converged starts. The
analysis for the deterministic optimization with standard evaluations is only
based on three starts that have not failed and is therefore not meaningful for
the comparison. Among the optimizers for which 100 starts could be analyzed in
terms of their computation time and number of function evaluations, the opti-
mization with sensitivities and the robust evaluation of the log-likelihood func-
tion performs best. The proposed approach therefore yields better optimization
results and is also more efficient than the other optimizers.

4 Conclusion

In this manuscript, we summarized the concept of RRE constrained mixture
modeling and studied the calibration of those models to experimental data under
the normal distribution assumption. An often used approach to estimate the
parameters of mixture models in general is the Expectation-Maximization (EM)
algorithm (see e.g. [1]). This algorithm highly depends on the initialization of the
mixture components, which is challenging for RRE constrained mixture models
since the components depend on the dynamic parameters of the model. In pre-
liminary studies the EM algorithm showed poor convergence. Therefore, we did
not consider the EM algorithm in this manuscript and focused on a maximum
likelihood approach.

We derived the log-likelihood function and its gradient, which can be used to
perform gradient-based deterministic optimization. Additionally, a robust app-
roach of numerically evaluating these terms has been provided. We compared
three optimization schemes, two deterministic gradient-based methods, one using
the analytical gradient and one using an approximation of the gradient by finite
differences, and a stochastic particle swarm algorithm. For each optimizer, we
assessed performance and convergence for the standard and robust approach to
evaluate the log-likelihood function. The comparison was carried out for exam-
ples of artificial single cell snapshot data of a one stage and a three stage cascade.
We found that deterministic gradient-based optimization with sensitivities and
robust calculation of the mixture probability outperformed all other methods
in terms of robustness and convergence. This is especially important, since the
complexity of RRE constrained mixture models increases with the number of
measured time points. For the example of the three stage cascade only gradient-
based optimization with sensitivites and a robust evaluation of the log-likelihood
function yielded a reasonable calibration of RRE constrained mixture models
to the data. We expect this also to hold when considering even more compli-
cated systems. Accordingly, the proposed approach facilitates a robust and effi-
cient calibration of RRE constrained mixture models to elucidate the sources of
heterogeneity.
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Abstract. Reaction networks can be simplified by eliminating linear
intermediate species in partial steady states. In this paper, we study the
question whether this rewrite procedure is confluent, so that for any given
reaction network, a unique normal form will be obtained independently
of the elimination order. We first contribute a counter example which
shows that different normal forms of the same network may indeed have
different structures. The problem is that different “dependent reactions”
may be introduced in different elimination orders. We then propose a
rewrite rule that eliminates such dependent reactions and prove that the
extended rewrite system is confluent up to kinetic rates, i.e., all normal
forms of the same network will have the same structure. However, their
kinetic rates may still not be unique, even modulo the usual axioms of
arithmetics. This might seem surprising given that the ODEs of these
normal forms are equal modulo these axioms.

1 Introduction

Chemical reaction networks are widely used in systems biology for modeling the
dynamics of biochemical molecular systems [1,4,6,11]. A chemical reaction net-
work has a graph structure that can be identified with a Petri net [2]. Beside of
this, it assigns to each of its reactions a kinetic rate that models the reaction’s
speed. Chemical reaction networks can either be given a deterministic semantics
in terms of ordinary differential equations (ODEs), which describes the evolu-
tion of the average concentrations of the species of the network over time, or a
stochastic semantics in terms of continuous time Markov chains, which defines
the evolution of molecule distributions of the different species over time. In this
paper, we focus on the deterministic semantics.

Reaction networks may become very large when modeling molecular biologi-
cal systems in sufficient detail, see e.g. the examples in the BioModels database
[8]. Therefore much effort has been spent on their simplification (see [18] for an
overview). The traditional approach is by reducing the ODEs of the network by
symbolic rewriting techniques [9,10]. While clearly beneficial, such approaches
have the disadvantage that the simplified ODEs cannot always be translated

c© Springer International Publishing AG 2016
E. Bartocci et al. (Eds.): CMSB 2016, LNBI 9859, pp. 201–215, 2016.
DOI: 10.1007/978-3-319-45177-0 13
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back to a reaction network [3], so that these simplifications cannot be under-
stood directly as simplifications of biological systems.

Another major problem with large biological reaction networks is that precise
kinetic rates are rarely available [14,16]. In the worst case, no kinetic information
is available, so that no ODEs can be derived. The only simplifications that are
possible in this case rely purely on the graph structure of the reaction network
[12,17]. In a less extreme setting, the kinetic rates are given by arithmetic expres-
sions with unknown parameters. In this case, the purely structural methods must
be lifted so that they can properly account for the kinetic rates.

The common objective of the structural simplification methods is to eliminate
intermediate species that are irrelevant to the external behaviour of the system.
This can be done in an exact manner – when assuming partial steady states – so
that the solutions of the ODEs of reaction networks are preserved [13,19,21]. It
should be noticed that any structural reduction algorithm preserving the ODE’s
solutions necessarily induces an exact reduction method on the underlying ODE
level. Indeed the above methods are based on the same idea, which is to resolve the
partial steady state equation of some intermediate species along its concentration
variable, so that this variable can be eliminated from the ODEs. The restriction
that makes this possible is that the kinetic rates of the network’s reactions are
linear in the concentration of the intermediate species.

The structural reduction method for intermediate elimination from [13]
removes the intermediates stepwise one by one. The approach of [21] is simi-
lar with an extension to rapid equilibrium assumption. The alternative method
of [19] removes several intermediates simultaneously. We verified that both meth-
ods perform the same reductions when restricted to a single intermediate, even
though these are computed by quite differently algorithms. The yet independent
method from [17,18] also performs simultaneous elimination of intermediates,
but not necessarily in a unique manner. The intermediates are eliminated from
the reaction graph by computing elementary modes in a first step, and in a sec-
ond, appropriate kinetic rates are assigned to reduced graph. Their method can
also be applied in the nonlinear case, but then with some approximations.

In this paper, we study the question of whether the stepwise elimination
of linear intermediates is confluent, so that for any given reaction network, a
unique normal form will be obtained independently of the elimination order. If
confluence would hold, one could compare reaction networks for equivalence, by
computing and comparing their normal forms. Furthermore, the unique normal
form would be the natural target for simultaneous reduction methods such as
[18,19]. Indeed, a confluence statement was claimed in Sect. 5 of [19] (for the
case without conservation laws), but without proof.

We first contribute a counter example which shows that the elimination of
linear intermediates on the same network may lead to normal forms with dif-
ferent graph structure. This example contradicts the confluence statement from
[19]. The problem is that different “dependent reactions” may be introduced
in different elimination orders. We then propose a rewrite rule that eliminates
such dependent reactions and prove that the extended rewrite system is conflu-
ent up to kinetic rates, so that all normal forms of a same network will have
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the same structure. This yields a method to eliminate linear intermediates from
a reaction graph in a unique manner, while no uniqueness result was stated
in [17,18]. However, the kinetic rates may still not be unique, even not mod-
ulo the usual axioms of arithmetics. This might seem surprising given that the
ODEs of these normal forms are equal modulo these axioms. Finally, we present
an example reaction network from systems biology for the failure of confluence
with respect to kinetic rates, that we found in the BioModels SBML database
[8] with an implementation of our rewrite rules.

Our positive confluence result shows that the graph structure of reaction net-
works after intermediate and dependency reduction is unique, and thus poten-
tially meaningful biologically. The two negative confluence results show that the
situation may be different without dependency reduction, and also for the kinetic
rates that can be assigned to the reactions of the reduced network.

All proofs and missing parts are available in the Appendix of the long version.

2 Confluence Notions

We recall confluence notions and their relationships from the literature.
Let (S,∼) be a set with an equivalence relation and → ⊆ S × S a binary

relation. We define →0 = ∼ and →k = → ◦ →k−1 for all k > 0. The relation
→∗ = ∪k≥0 →k is called the reflexive transitive closure of →. We write →ε =
→1 ∪ →0, and ← = {(s, s′) | s′ → s}.

Definition 1 (Confluencemodulo).We say that a binary relation → on (S,∼)
is confluent if ←∗ ◦ →∗ ⊆ →∗ ◦ ∗←, locally confluent if ← ◦ → ⊆ →∗ ◦ ∗←,
strongly confluent if ← ◦ → ⊆ →ε ◦ ∼ ◦ ε←, and uniformly confluent if ← ◦ →
⊆ ∼ ∪ (→ ◦ ∼ ◦ ←).

Clearly, uniform confluence implies strong confluence, and strong confluence
implies local confluence. It is also folklore that there exist locally confluent rela-
tions that are not confluent, while strong confluence implies confluence [7]. Uni-
form confluence implies for any s ∈ S that all complete reduction sequences
starting with s have the same length [15], which may be ∞ though.

In this paper, we will always use binary relations that are terminating, i.e.,
for any s ∈ S there exists a k ≥ 0 such that {s′ | s →k s′} = ∅, i.e., the length
reduction sequences starting with s is bounded. It is well known that locally
confluent and terminating relations are confluent (Newman’s lemma).

We say that ∼ commutes with → if ∼ ◦ → ⊆ → ◦ ∼.

Lemma 1. If → is confluent for (S,∼) and commutes with ∼, then the relation
∼ ◦ → ◦ ∼ is confluent for (S,=S).

3 Simplification of Systems of Equations

In this section, we recall the definition of arithmetic expressions and ordinary
differential equations. It is well known that such systems can be inferred from
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reaction networks with deterministic semantics and partial steady state assump-
tions. We will then show how to simplify such systems in a confluent manner by
eliminating intermediate variables.

Systems of Equations. Let R+ be the set of non-negative real numbers, and
N0 ⊆ R+ the set of natural numbers including 0. Denote by Vars a countable set
of variables for functions of type R+ → R+, and by Param a set of parameters.
We define the set of arithmetic expression as the terms e, e′ ∈ Expr with the
following abstract syntax:

e, e′ ∈ Expr :: = x | k | n | e + e′ | e ∗ e′ | 1/e | −e

where x ∈ Vars, k ∈ Param, n ∈ R. In the following, the expression 1/e is
permitted only if e can never become zero, as explained below. For convenience,
we will write ee′ for e ∗ e′; e/e′ for e ∗ (1/e′), e − e′ for e + (−e′) and en for
e ∗ . . . ∗ e with n repetitions of e.

We map variables to functions on non-negative real numbers, and para-
meters to positive numbers (different from 0), which are identified with pos-
itive constant functions on non-negative real numbers. Given an assignment
α : (Vars → (R+ → R+)) ∪ (Param → R

∗
+), any expression e ∈ Expr can

be interpreted as a function �e�α : R+ → R+ in the usual way.
A system of equations S is a combination of equations and constraints, with

some existential variables, defined as follows:

S:: = dx/dt = e | x = e | nzero(e) | cst(e) | S ∧ S′ | ∃x. S.

dx/dt = e is an ordinary differential equation (ODE), and x = e an arithmetic
equation, for the variable x and with an expression e ∈ Expr. The non-zero
constraint nzero(e) is satisfied by an assignment α if e is never equal to zero,
that is ∀t. �e�α(t) �= 0. The positive constant constraint cst(e) is satisfied by a
variable assignment α if �e�α is a positive constant function. And ∃x.S allows
us to existentially quantify some variables, that we actually want to remove to
simplify S. We denote by Vars(e) the set of variables of an expression e and by
Vars(S) the set of free variables of a system S. The set of solutions of a system
of equations S is the set of assignments on the free variables of S that make S
true, that is sol(S) = {α | �S�α = true}.

Example 1. The system of equations in Fig. 1 contains 4 ODEs for the variables
{xA, xB, xC, xD}, and two arithmetic equations and positive constant constraints
for the existentially quantified variables x̃ = {xY, xZ}.

Similar Systems. We now define a syntactic notion of similarity between sys-
tems of equations, so that similar systems will have the same solutions. The sim-
ilarity relation ∼ on arithmetic expressions is the least congruence that includes
the usual arithmetic axioms of a field: commutativity and associativity of + and
∗, removal of neutral elements 0 in sums and 1 in products, uniqueness and laws
of inverses for −, distributivity, and simplification of real numbers. Similarity is



Normalizing Chemical Reaction Networks 205

Fig. 1. The system of equations S(NX).

decidable, by rewriting expressions to a fraction of polynomials, with the same
denominator, and comparing the numerators.

We always identify arithmetic expressions up to similarity (rather than syn-
tactic equality), i.e., we rewrite modulo ∼. Given an assignment α, two similar
expressions e ∼ e′ have trivially the same interpretation �e�α = �e′

�α. The simi-
larity relation is lifted to systems of equations in the obvious manner.

Safe Linear Systems. We will consider only valid systems of equations in
which there is exactly one arithmetic equation per quantified variable and at
most one ODE for all others. We also assume that the systems are linear in
the existentially quantified variables as defined below, but not necessarily in the
others:

Definition 2. Given a sequence of variables x̃ = x1, . . . , xn, an expression e′ is
called x̃-linear if e′ is similar to some expression e +

∑
1≤i≤n xiei, where e and

ei do not contain any variables from x̃. We call a system ∃x̃.S linear (in the
quantified variables) if for any quantified variable x ∈ Vars(x̃), the system S is
similar to some system x = e ∧ S′ where e is an x̃-linear expression.

In order to always avoid division by zero during the repeated elimination of
quantified variables to come (see Lemmas 2 and 3), we introduce the following
safety restriction of linear systems, which will be satisfied most of the time in
the applications. Without this restriction, the simplification procedure could be
shown to be only partially correct, similarly to [19].

Definition 3. Let S be a system ∃x1, . . . , xn. S′ that is linear in the quantified
variables, such that S′ has the form

∧
1≤i≤n xi = ei+

∑
1≤j≤n xje

i
j ∧ S′′. We

define a set expression LS′ in which x and y are fresh variables:

LS′ =df { (x, y) |
∨

1≤i,j≤n

x = xi ∧ y = xj ∧ nzero(ej
i ) }.

For any assignment of the free variables in the subexpressions ei
j, the set expres-

sion LS′ denotes a binary relation, that we call the linking relation of S′. We
call the system S safe if S′ entails the following formula:

S′ |=
n∧

i=1

n∨

k=1

L∗
S′(xi, xk) ∧ nzero(ek) ∧ ( ei ≥ 0 ∧

n∧

j=1

ei
j ≥ 0 ).

We denote by SafeLin the set of safe linear systems of equations.
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Fig. 2. Elimination of an existentially quantified variable x in a system of equations.

Simplifying Safe Linear Systems. We want to simplify safe linear systems
of equations by removing existentially quantified variables, while preserving the
solutions. To do that, given an expression x = e for a quantified variable x, we
will substitute x by e, as described in the simplification rule in Fig. 2.

A substitution [x1 := e] is the replacement of any occurrences of x1 by the
expression e. Additionally, we also want to preserve the linearity and safety.
Therefore, we define a linear substitution, that rewrites arithmetic expressions
into linear ones after the substitution. Formally, given a x̃-linear expression e ∼
e1 +x2e

1
2 +

∑
3≤i≤n xie

1
i and an equation E2 = (x2 = e2 +x1e

2
1 +

∑
3≤i≤n xie

2
i ),

with x̃ = {x1, . . . , xn}, the linear substitution of x1 by e in E2 is:

E2[x1 := e]l = (x2 =
e1e21 + e2

1 − e21e
1
2

+
∑

3≤i≤n

xi
e1i e

2
1 + e2i

1 − e21e
1
2

) ∧ nzero(1 − e21e
1
2)

The idea is to a) substitute x1 by e in the equation of x2, b) bring the factor
e21e

1
2x2 from the right to the left, c) factorize the x2, and d) divide by the factor

1 − e21e
1
2 of x2 we obtained.

Lemma 2. If S is safe and with the above equations then S |= nzero(1 − e21e
1
2).

We define S[x1 := e]l by replacing x1 by e in the ODEs and the constraints of
S and by performing the linear substitution as above to all nondifferential equa-
tions of S. The relation S ⇒ S′ defined in Fig. 2 simplifies a safe linear system
S to S′: a quantified variable is eliminated by applying a linear substitution.

Lemma 3. The simplification of a safe linear system is a safe linear system.

Lemma 4. The simplification preserves the solutions of safe linear systems: if
S ⇒ S′, then sol(S) = sol(S′).

Example 2. For instance, in the system from Example 1, we can substitute the

intermediate variable xY by e =
k1

k3 + k5
xA +

k6
k3 + k5

xZ. Since we still have the

constraint cst(xZ), the constraint cst(e) can be simplified into cst(xA). The never-

zero constraint nzero(1− k5k6
(k3 + k5)k6

) is similar to nzero((k3+k5)k6−k5k6) and

then nzero(k3k6), and therefore is always true , and can be removed. We obtain
the system depicted in Fig. 3 (left). By doing the same with the variable xZ, we
obtain the system in Fig. 3 (right). Note that we used the fact that k6/k6 ∼ 1,
that is always true, since parameters are assigned to positive numbers.

For safe linear systems, this simplification modulo similarity is confluent,
implying that whatever the order adopted for the elimination of quantified vari-
ables, it is always possible to find the same fully simplified system, modulo simi-
larity. We actually establish uniform confluence, implying that any simplification
leading to the fully simplified system will have the same number of steps.
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Fig. 3. Simplifications of S(NX).

Theorem 1. The binary relation ⇒ on (SafeLin,∼) is uniformly confluent.

4 Reaction Networks

In this section, we introduce reaction networks, intermediate species, and the
interpretation of a network as a system of equations.

Let Spec be a countable set of molecular species ranged over by A. We asso-
ciate to each species A a concentration variable xA, and denote the set of these
variables by Vars = {xA | A ∈ Spec}. A kinetic expression is a non-negative
arithmetic expression on variables Vars, i.e. for any non-negative assignment α
for the concentrations, �e�α(t) ≥ 0 for all t.

We define a (chemical) solution s ∈ Sol : Spec → N0 as a multiset of molecular
species, i.e. a function from species to natural numbers, with finite support.
Given numbers n1, . . . , nk, we denote by n1A1 + · · · + nkAk the solution that
contains ni molecules of species Ai for 1 ≤ i ≤ k, and 0 molecules of others
species. Given s1, s2 ∈ Solutions, their intersection is defined for any A by
(s1 ∩ s2)(A) = min(s1(A), s2(A)). A kinetic reaction r = (s1 A s2; e) is a pair
composed of a reaction s1 A s2 and a kinetic expression e ∈ Expr. The reaction
transforms the solution s1, called reactants, into the solution s2, called products.
The reaction vector vrr of the reaction r is defined for any A ∈ Spec by vrr(A) =
s2(A) − s1(A). We denote by kin(r) = e the kinetic expression of r.

Given a reaction r = (s1 A s2; e) and the solution s = s1 ∩s2, the normaliza-
tion of r is the reaction (s1 − s A s2 − s; e). In the following, we always assume
that every reaction is normalized, and normalization is implicitly applied after
every simplification. A reaction network N is composed of normalized kinetic
reactions, constraints, and bound species (that we want to remove):

N:: = r | cst(e) | N ∧ N ′ | ∃X. N

We assume the usual structural congruence rules for conjunction and existential
quantification. We denote by C(N) the set of constraints of N.

Once again, we need to add some conditions on the bound species, called
intermediate species, in order to be able to fully remove them in a confluent way.
We usually denote by U the intermediate species, and by Ū the other species.
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Given a set U of molecules, and a reaction r = (s1 A s2; e), we define the
consumption ConsU (r) = s1 ∩ U (resp. production ProdU (r) = s2 ∩ U) of r with
respect to U as the molecules of U that are consumed (resp. produced) by r.

A molecule X ∈ U is output-connected (resp. input-connected) in N with
respect to U if ∃r ∈ N with ConsU (r) = {X} (resp. ProdU (r) = {X})
and either ProdU (r) = ∅ (resp. ConsU (r) = ∅), or ProdU (r) = {Y } (resp.
ConsU (r) = {Y }) with Y output-connected (resp. input-connected). This prop-
erty will correspond to the safety property of quantified variables in linear sys-
tems of equations.

A reaction network ∃U . N is linear if the following properties hold:

– connectivity: for any X ∈ U , X is output and input-connected in N,
– U-stoichiometry: ∀r ∈ N, |ConsU (r)| ≤ 1 and |ProdU (r)| ≤ 1,
– U-linearity: ∀r ∈ N. ConsU (r) = {X} ⇒ kin(r) = xXe, with ∀Y ∈ U .xY /∈ e,
– kinetic non-interaction: ∀r ∈ N, ConsU (r) = ∅ and ProdU (r) �= ∅ implies

xX /∈ kin(r) for any X ∈ U ,
– partial steady-state: ∀X ∈ U , cst(xX) ∈ C(N).

In the following, we will only consider linear networks, and denote by Nets the
set of linear reaction networks.

Given a linear network N ∈ Nets, we can define the interpretation of N in
terms of a system of equations S(N), as described in Fig. 4.

Lemma 5. For any N ∈ Nets, the interpretation S(N) is a (valid) safe linear
system.

Example 3. We consider the reaction network NX in Fig. 5, with the reac-
tions on the left and the reaction graph on the right. The set of species is
{A,B,C,D,Y,Z}, where Y and Z are considered intermediates, and the set of

Fig. 4. Definition of the system of equations S(N), for the network N , with interme-
diate species U and with x̃ = {xX | X ∈ U}.

Fig. 5. The reaction network NX .
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Fig. 6. Intermediate simplification rule, with C(N) the constraints of N .

reactions is {r1, . . . , r6}. The parameters in the rates are some positive reals
k1, . . . , k6. All reactions have mass action kinetics, except for reaction r4 which
is activated by Y. Its associated system is S(NX), described in Example 1.

Given a network N, we can compute its system of equations S(N), and then
simplify it in a confluent way, as explained in Sect. 3. But we might sometimes
be more interested in the network itself, rather than its system of equations and
unfortunately, rebuilding a reaction network from the equations can be difficult,
and the network obtained is not unique [3]. It seems then more appropriate to
proceed with the simplification directly on the reaction network.

5 Elimination of Intermediate Species

In this section, we introduce the Intermediate simplification rule for reaction
networks, and apply it to an example.

The (intermediate) rule presented in Fig. 6 aims at removing an interme-
diate species X ∈ U : any reaction rprod that produces X is combined with any
reaction rcons that consumes X, and xX is replaced by its value at steady state
in the other reactions. This merging operation is achieved by the operator �e:

(s1 A s2; e) �e′′ (s′
1 A s′

2; e′) = (s1 + s′
1 A s2 + s′

2;
ee′

e′′ ).

Since we only consider normalized reactions, in merged reactions the intermedi-
ate molecule is implicitly discarded.

The interpretation S(N) is a simulation from (Nets,�Inter) to (SafeLin,⇒):

Lemma 6. Given a network N ∈ Nets, if N �Inter N ′, then S(N) ⇒ S(N ′).

This implies as expected that both a network and its simplification have the
same deterministic dynamics.

The next example shows that the rewriting system given by the elimination
of intermediate species alone is not confluent, given that different dependent
reactions may be produced for different elimination orders.

Example 4. Starting from network NX from Fig. 5, we can either remove Y or Z
and obtain the networks depicted in Fig. 7. If we first remove Z, then we obtain
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Fig. 7. Two elimination strategies to simplify NX of Fig. 5: either first eliminate Z
to obtain the network NXZ and then Y to obtain NXZY , or swap the elimination
order to obtain first NXY and then NXY Z . Simplified networks NXZY and NXY Z

are structurally different since the latter has the additional reaction r1356. The new
parameters are K1 = k3 + k5 and K2 = k1k5 + k2K1.

the reaction network NXZ . From NXZ we can eliminate the intermediate Y and
obtain NXZY . This network cannot be simplified any further. Alternatively, we
can eliminate Y from NX in a first step, obtain NXY , and then remove Z and
obtain the network NXY Z .

Unfortunately, NXY Z and NXZY do not have the same structure, since NXY Z

has an additional reaction r1356, which is a combination of r13 and r56. Such
dependent reactions can be removed, as we will show in the next section.

6 Elimination of Dependent Reactions

In this section we clarify the notion of dependency between reactions, and intro-
duce an additional simplification rule based on this notion. The addition of this
rule is sufficient to establish confluence for the structure of simplified networks.
However, we will show that this modification is not enough, in general, to guar-
antee full confluence.

We formalize the notion of dependency with respect to an initial set of reac-
tions with the notion of flux. Flux vectors at steady state are a standard tool for
computing elementary modes [5], that correspond to the unique set of reactions
in the network normal form that we obtain with the techniques of this paper.
Our simplification method, unlike the elementary modes approach, deals with
the impact of the simplification on kinetic rates as well as the network structure.
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Given an ordered set of m reactions R = {r1, . . . , rm} called reaction basis, a
flux is a pair w = (v; e) of a flux vector v ∈ R

m and an expression e ∈ Expr. The
function reactR maps fluxes to reactions w.r.t. a reaction basis R as follows:

reactR(v; e) = (
∑

1≤i≤m

visi A

∑

1≤i≤m

vis
′
i; e).

Consequently, the i-th vector ui of the standard basis is mapped to the i-th
reaction ri of the reaction basis R. Now, instead of simplifying reaction networks,
we directly simplify flux networks W defined as reaction networks but with fluxes
in place of reactions:

W :: = w | cst(e) | W ∧ W ′ | ∃X. W.

We lift reactR to map flux networks to reaction networks as follows:

reactR(cst(e)) = cst(e), reactR(W ∧ W ′) = reactR(W ) ∧ reactR(W ′),
reactR(∃X. W ) = ∃X. reactR(W ).

We denote FNetsR the set of flux networks W such that reactR(W ) is a linear
reaction network for U . The interpretation of W ∈ FNetsR in terms of system
of equations is defined as SR(W ) = S(reactR(W )). Finally, we translate some
previous definitions to the context of flux networks:

ProdR(w) = Prod(reactR(w)), ConsR(w) = Cons(reactR(w)),
kin(v; e) = e, (v; e) �e′′ (v′; e′) = (v + v′; ee′

e′′ ).

We then define two simplification rules for flux networks in Fig. 8. First,
(Intermediate) is simply a reformulation of the one in Fig. 6 but in the termi-
nology of flux networks. The new rule (Dependent) removes a dependent flux,
that is one whose flux vector can be written as a positive linear combination
of the flux vectors of some other fluxes. The rate of the removed flux is added
to the rate of the fluxes that it depends on. This guarantees that the system of
ordinary differential equations associated to the reaction network is unchanged:

Fig. 8. Simplification rules of flux networks.
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Lemma 7. Given W ∈ FNetsR, if W �Dep
R W ′, then SR(W ) ∼ SR(W ′).

Two fluxes are structurally similar, denoted (v, e) ∼struc (v′, e′), if they have
the same flux vector, that is v = v′. Two vector networks are structurally similar,
denoted W ∼struc W ′ if they have structurally similar fluxes.

We can now state the Theorem on the structural confluence for this simplifi-
cation system. We denote by �R= (�Inter

R ∪ �Dep
R ) the simplification of vector

networks with the rules of Fig. 8.

Theorem 2. The relation �R on (FNetsR,∼struc) is confluent.

Proof (Scetch). The outline of the proof is as follows:

1. the simplification relation �R preserves the set of intermediate species,
2. the local confluence holds for �R,
3. the binary relation is terminating, so by Newman’s lemma, it is confluent.

Note that adding a rule that eliminates reactions whose reaction vectors
can be written as sums of the reaction vectors of other reactions in the same
network (instead of using a reaction basis) does not guarantee the confluence for
the network structure.

Example 5. In Example 4, the elimination of the intermediates Y and Z in
two different orders was shown to generate two different networks NXZY and
NXY Z the latter having the additional reaction r1356. Let us take {r1, . . . , r6}
as a reaction basis. If we translate the simplifications to flux networks, the flux
vector associated to reaction rij is ui + uj . Also, the flux vector associated to
r1356 is u1 +u3 +u5 +u6, that is the sum of the flux vectors of r13 and r56. Thus,
the application of the (Dependent) rule to the flux associated to r1356 results
in a flux network W such that reactR(W ) = N ′

XY Z . Since r1356 is eliminated, the
networks NXZY and N ′

XY Z have the same structure. The rate of reaction r13 in
N ′

XY Z is given by the rate of r13 in NXY Z , plus the rate of r1356 in NXY Z , and
is therefore equal to k1k3

K1
xA + k1k5

K1
xA ∼ k1xA, that is the rate of r13 in NXZY .

Similarly, one can show that the rates of r56 in the two networks also coincide,
and both networks have the same kinetics.

The following variation on the same example shows that confluence of the
kinetics is not in general guaranteed.

Example 6. Now we shall examine again the simplifications performed in
Example 4, but this time we look at the reaction networks as simplifications
of the larger network Nε in Fig. 9 from which NX results after elimination of
X. The reaction basis is now R′ = {r1′ , r2′ , r3, r4′ , r5′ , r6} and the reaction r1 in
NX is obtained from Nε by merging r1′ and r2′ (that, following our convention,
we denote r1′2′) and is thus associated to the flux (u1 + u2, k1xA) w.r.t. R′. Sim-
ilarly, r2 = r1′4′ is associated to (u1 + u4, k2xA), r4 = r2′5′ to (u2 + u5, k4xY),
and r5 = r4′5′ to (u4 + u5, k5xY).

The eliminations of Z first and Y after, represented in Fig. 7, generate the
reactions r26, r56, r13 and r236 (with flux vectors respectively u1 + u4 + u6,
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Fig. 9. Initial network (Nε) and network (N ′
XY Z) obtained after elimination of X, Y ,

dependent rule r15 and then Z. We have K1 = k3 + k5.

u4 + u5 + u6, u1 + u2 + u3 and u1 + u3 + u4 + u6), with no dependent reac-
tions. Consider now the elimination of Y from NX . Reaction r15 has flux
(u1 + u2 + u4 + u5,

k1k5
K1

xA) in network NXY and is dependent on reactions r2
and r4. If we choose to eliminate reaction r15 using the (dependent) rule and
apply the (intermediate) rule on Z we obtain the network N ′

XY Z in Fig. 9.
No further simplification rule can be applied. Notice that this network is struc-
turally the same as network NXZY in Fig. 7, but all reactions have different
kinetic rates.

7 Normalization Modulo Kinetic Rates

We now present the principal result of this paper, about confluence of the sim-
plification system modulo the kinetic rates. In other words, whatever the order
of simplification, we can always obtain a fully simplified network with the same
structure and with similar system of equations, but the kinetic rates associated
to the fluxes can be different, as illustrated before in the Example 6.

Given a fixed set of intermediate species U and an initial reaction basis R,
two networks are similar, denoted W ∼R W ′, if they are structurally similar
(W ∼struc W ′), and their systems of equations are similar (SR(W ) ∼ SR(W ′)).

Theorem 3. The relation �R on (FNetsR,∼R) is confluent.

8 An Example from the BioModels Database

We have shown that the simplification system that we presented can exhibit non-
confluence of the rates, even in a simple scenario with a small number of interme-
diates. To find if such a situation occurs in practice, we investigated the SBML
models in the curated BioModels database [8]. For each mass-action model, we
created the graph of complexes and searched it for cycles of intermediates, to
identify possible candidates for non-confluence. Then, with an implementation
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Fig. 10. Subnetwork of the Smad signal transduction network in [20].

of the simplification rules, we considered the elimination of triples or quadruples
of intermediates in different orders, and compared the resulting networks.

We were thus able to identify two different reduced networks for model
BIOMD0000000173. This is a model of the Smad-based signal transduction
mechanisms from the cell membrane to the nucleus, presented in [20]. A sub-
network of this model is represented in Fig. 10. It includes all reactions involv-
ing cytoplasmic and nuclear Smad4 and Smad2/Smad4 complexes (abbreviated
S4c, S4n, S24c and S24n): shuttling of Smad4, formation of Smad2/Smad4
complex, import of Smad2/Smad4 into the nucleus, and formation of EGFP-
Smad2/Smad4 complex. This network is linear for the four intermediate species
S4c, S4n, S24c, S24n. The different orders of elimination yield simplified net-
works with the same structure but different kinetics. This confirms that the or
of simplifying a biological network may indeed affect the result.

Conclusion

We have shown that the elimination of linear intermediate species is not confluent
in general. We provided a new simplification rule to remove dependent reactions,
and proved that the extended rewrite system is confluent up to kinetic rates, that
is, all normal forms of the same network will have the same structure and similar
systems of equations, but can have different kinetic rates. Future research efforts
is needed to characterize networks that possess a unique normal form.
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Abstract. As an important mathematical modelling framework, prob-
abilistic Boolean networks (PBNs) are widely used for modelling and
analysing biological systems. PBNs are suited for modelling large bio-
logical systems, which more and more often arise in systems biology.
However, the large system size poses a significant challenge to the analy-
sis of PBNs, in particular, to the crucial analysis of their steady-state
behaviour. Numerical methods for performing steady-state analyses suf-
fer from the state-space explosion problem, which makes the utilisation
of statistical methods the only viable approach. However, such meth-
ods require long simulations of PBNs, rendering the simulation speed
a crucial efficiency factor. For large PBNs and high estimation precision
requirements, a slow simulation speed becomes an obstacle. In this paper,
we propose a structure-based method for fast simulation of PBNs. This
method first performs a network reduction operation and then divides
nodes into groups for parallel simulation. Experimental results show that
our method can lead to an approximately 10 times speedup for comput-
ing steady-state probabilities of a real-life biological network.

1 Introduction

Systems biology aims to model and analyse biological systems from a holistic
perspective in order to provide a comprehensive, system-level understanding of
cellular behaviour. Computational modelling of a biological system plays a key
role in systems biology. It connects the field of traditional biology with math-
ematics and computational science, providing a way to organize and formalize
available biological knowledge in a mathematical model and to identify miss-
ing biological information using formal means. Together with biochemical tech-
niques, computational modelling promotes the holistic understanding of real-life
biological systems, leading to the study of large biological systems. This brings
a significant challenge to computational modelling in terms of the state-space
size of the system under study. Among the existing modelling frameworks, prob-
abilistic Boolean networks (PBNs) is well-suited for modelling large-size biolog-
ical systems. It is first introduced by Shmulevich et al. [7,13] as a probabilistic
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generalisation of the standard Boolean networks (BNs) to model gene regulatory
networks (GRNs). The framework of PBNs incorporates rule-based dependen-
cies between genes and allows the systematic study of global network dynamics;
meanwhile, it is capable of dealing with uncertainty, which naturally occurs at
different levels in the study of biological systems.

Focusing on the wiring of a network, PBNs is essentially designed for reveal-
ing the long-run (steady-state) behaviour of a biological system. Comprehensive
understanding of the long-run behaviour is vital in many contexts. For exam-
ple, attractors of a GRN are considered to characterise cellular phenotypes [1].
There have been a lot of studies in analysing the long-run behaviour of biologi-
cal systems for better understanding the influences of genes or molecules in the
systems [10]. Moreover, steady-state analyses have been used in gene interven-
tion and external control [9,11], which is of special interest to cancer therapists
to predict the potential reaction of a patient to treatment. In the context of
PBNs, many efforts have been devoted to computing their steady-state prob-
abilities. In [6,12], efficient numerical methods are provided for computing the
steady-state probabilities of small-size PBNs. Those methods utilise an impor-
tant characteristics of PBNs, i.e., a PBN can be viewed as a discrete-time Markov
chain (DTMC) and its dynamics can be studied with the use of the rich theory
of DTMCs. The key idea of those methods relies on the computation of the tran-
sition matrix of the underlying DTMC of the studied PBN. They perform well
for small-size PBNs. However, in the case of large-size PBNs, the state-space
size becomes so huge that the numerical methods are not scalable any more.

Many efforts are then spent on addressing the challenge of the huge state-
space in large-size PBNs. In fact, the use of statistical methods and Monte
Carlo methods remain the only feasible approach to address the problem. In
those methods, the simulation speed is an important factor in the performance
of these approaches. For large PBNs and long trajectories, a slow simulation
speed could render these methods infeasible as well. In our previous work [3],
we have considered the two-state Markov chain approach and the Skart method
for approximate analysis of large PBNs. Taking special care of efficient simu-
lation, we have implemented these two methods in the tool ASSA-PBN [2] and
successfully used it for the analysis of large PBNs with a few thousands of nodes.
However, the required time cost is still expected to be reduced. This requirement
is of great importance for the construction of a model, e.g., parameter estimation,
and for a more precise and deep analysis of the system. In this work, we propose
a structure-based method to speed up the simulation process. The method is
based on analysing the structure of a PBN and consists of two key ideas: first,
it removes the unnecessary nodes in the network to reduce its size; secondly,
it divides the nodes into groups and performs simulation for nodes in a group
simultaneously. We show with experiments that our structure-based method can
significantly reduce the computation time for approximate steady-state analyses
of large PBNs. To the best of our knowledge, our proposed method is the first
one to apply structure-based analyses for speeding up the simulation of a PBN.
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2 Preliminaries

2.1 Probabilistic Boolean Networks (PBNs)

A PBN G(X,F ) models elements of a biological system with a set of binary-
valued nodes X = {x1, x2, . . . , xn}. For each node xi ∈ X, the update of its
value is guided by a set of predictor functions Fi = {f

(i)
1 , f

(i)
2 , . . . , f

(i)
�(i)}, where

�(i) is the number of predictor functions for node xi. Each f
(i)
j is a Boolean

function whose inputs are a subset of nodes, referred to as parent nodes of xi.
For each node xi, one of its predictor functions will be selected to update the
value of xi at each time point t. This selection is in accordance with a probability
distribution Ci = (c(i)1 , c

(i)
2 , . . . , c

(i)
�(i)), where the individual probabilities are the

selection probabilities for the respective elements of Fi and they sum to 1. The
value of node xi at time point t is denoted as xi(t) and the state of the PBN at
time point t is denoted as s(t) = (x1(t), x2(t), . . . , xn(t)). The state space of the
PBN is S = {0, 1}n and it is of size 2n. There are several variants of PBNs with
respect to the selection of predictor functions and the synchronisation of nodes
update. In this paper, we consider the independent synchronous PBNs, i.e., the
choice of predictor functions for each node is made independently and the values
of all the nodes are updated synchronously. The transition from state s(t) to
state s(t + 1) is performed by randomly selecting a predictor function for each
node xi from Fi and by applying those selected predictor functions to update
the values of all the nodes synchronously. We denote f(t) the combination of all
the selected predictor functions at time point t. The transition of state s(t) to
s(t + 1) can then be denoted as s(t + 1) = f(t)(s(t)).

Perturbations of a biological system are introduced by a perturbation rate
p ∈ (0, 1) in a PBN. The dynamics of a PBN is guided with both per-
turbations and predictor functions: at each time point t, the value of each
node xi is flipped with probability p; and if no flip happens, the value of
each node xi is updated with selected predictor functions synchronously. Let
γ(t) = (γ1(t), γ2(t), . . . , γn(t)), where γi(t) ∈ {0, 1} and P(γi(t) = 1) = p for all t
and i ∈ {1, 2, . . . , n}. The transition of s(t) to s(t+1) in PBNs with perturbations
is given by s(t + 1) = s(t) ⊕ γ(t) if γ(t) �= 0, and s(t + 1) = f(t)(s(t)) other-
wise, where ⊕ is the element-wise exclusive or operator for vectors. According to
this equation, perturbations allow the system to move from a state to any other
state in one transition, hence render the underlying Markov chain irreducible
and aperiodic. Thus, the dynamics of a PBN with perturbations can be viewed
as an ergodic DTMC [7]. Based on the ergodic theory, the long-run dynam-
ics of a PBN with perturbations is governed by a unique limiting distribution,
convergence to which is independent of the choice of the initial state.

The density of a PBN is measured with its predictor function number and par-
ent nodes number. For a PBN G, its density is defined as D(G) = 1

n

∑NF

i=1 φ(i),
where n is the number of nodes in G, NF is the total number of predictor func-
tions in G, and φ(i) is the number of parent nodes for the ith predictor function.
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2.2 Simulating a PBN

A PBN can be simulated via two steps based on its definition. First, perturbation
is verified for each individual node and its value is flipped if there is a pertur-
bation. Second, if no perturbation happens for any of the nodes, the network
state is updated by selecting predictor functions for all the nodes and applying
them. For efficiency reason, the selection of predictor functions for each node xi

is performed with the alias method [14], which allows to make a selection among
choices in constant time irrespective of the number of choices. The alias method
requires the construction of an alias table of size proportional to the number of
choices, based on the selection probabilities of Ci.

3 Structure-Based Parallelisation

The simulation method described in the above section requires to check per-
turbations, make a selection and perform updating a node for n times in each
step. In the case of large PBNs and huge trajectory (sample) size, the simula-
tion time cost can become prohibitive. Intuitively, the simulation time can be
reduced if the n-time operations can be speeded up, for which we propose two
solutions. One is to perform network reduction such that the total number of
nodes is reduced. The other is to perform node-grouping in order to parallelise
the process for checking perturbations, making selections, and updating nodes.
For the first solution, we analyse the PBN structure to identify those nodes
that can be removed and remove them to reduce the network size; while for the
second solution, we analyse the PBN structure to divide nodes into groups and
perform the operations for nodes in a group simultaneously. We combine the two
solutions together and refer to this simulation technique as structure-based par-
allelisation. We formalise the two solutions in the following three steps: the first
solution is described in Step 1 and the second solution is described in Steps 2
and 3.

Step 1. Remove unnecessary nodes from the PBN.
Step 2. Parallelise the perturbation process.
Step 3. Parallelise updating a PBN state with predictor functions.

We describe these three steps in the following subsections.

3.1 Removing Unnecessary Nodes

We first identify those nodes that can be removed and perform network reduc-
tion. When simulating a PBN without perturbations, if a node does not affect
any other node in the PBN, the states of all other nodes will not be affected
after removing this node. If this node is not of interest of the analysis, e.g., we
are not interested in analysing its steady-state, then this node is dispensable in
a PBN without perturbations. We refer to such a dispensable node as a leaf node
in a PBN and define it as follow:
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Algorithm 1. Checking perturbations of leaf nodes in a PBN
1: procedure CheckLeafNodes(p, �)
2: t = pow(1 − p, �); // the probability that no perturbation happens in leaves
3: if rand() > t then return true;
4: else return false;
5: end if
6: end procedure

Definition 1 (Leaf node). A node in a PBN is a leaf node (or leaf for short)
if and only if either (1) it is not of interest and has no child nodes or (2) it is
not of interest and has no other children after iteratively removing all its child
nodes which are leaf nodes.

According to the above definition, leaf nodes can be simply removed without
affecting the simulation of the remaining nodes in a PBN without perturbations.
In the case of a PBN with perturbations, perturbations in the leaf nodes need to
be considered. Updating states with Boolean functions will only be performed
when there is no perturbation in both the leaf nodes and the non-leaf nodes.
Perturbations of the leaf nodes can be checked in constant time irrespective
of the number of leaf nodes as describe in Algorithm 1. The input p is the
perturbation probability for each node and � is the number of leaf nodes in the
PBN. Then, the probability that no perturbation happens in all the leaf nodes
is given by t = (1 − p)�. With the consideration of their perturbations, the leaf
nodes can be removed without affecting the simulation of the non-leaf nodes
also in a PBN with perturbations. Since the leaves are not of interest, results
of analyses performed on the simulated trajectories of the reduced network, i.e.,
containing only non-leaf nodes, will be the same as performed on trajectories of
the original network, i.e., containing all the nodes.

3.2 Performing Perturbations in Parallel

The second step of our method speeds up the process of determining pertur-
bations. Normally, perturbations are checked for nodes one by one. In order
to speed up the simulation of a PBN, we perform perturbations for k nodes
simultaneously instead of one by one. For those k nodes, there are 2k different
perturbation situations. We calculate the probability for each situation and con-
struct an alias table based on the resulting distribution. With the alias table, we
make a choice c among 2k choices and perturb the corresponding nodes based
on the choice. The choice c is an integer in [0, 2k) and for the whole network the
perturbation can then be performed k nodes by k nodes using the logical bitwise
exclusive or operation, denoted | . To save memory, the alias table can be reused
for all the groups since the perturbation probability p for each node is the same.
It might happen that the number of nodes in the last perturbation round will
be less than k nodes. Assume there is k′ nodes in the last round and k′ < k. For
those k′ nodes, we can reuse the same alias table to make the selection in order
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to save memory. After getting the choice c, we perform c = c&m, where & is
a bitwise and operation and m is a mask constructed by setting the first k′ bits
of m’s binary representation to 1 and the remaining bits to 0.

Theorem 1. The above process for determining perturbations for the last k′

nodes guarantees that the probability for each of the k′ nodes to be perturbed is
still p.

Proof. Without loss of generality, we assume that in the last k′ nodes, t nodes
should be perturbed and the positions of the t nodes are fixed. The probability for
those t fixed nodes to be perturbed is pt(1−p)k′−t. When we make a selection from
the alias table for k nodes, there are 2k−k′

different choices corresponding to the
case that t fixed position nodes in the last k′ nodes are perturbed. The sum of the
probabilities of the 2k−k′

different choices is [pt(1−p)k′−t]·
∑k−k′

i=0 pi(1−p)k−k′−i =
pt(1 − p)k′−t. ��

We present the procedures for constructing groups and performing perturba-
tions based on the groups in Algorithm 2, where n is the given number of nodes,1

k is the maximum number of nodes that can be perturbed simultaneously and
s is the PBN’s current state which is represented by an integer. To obtain more
balanced groups, k can be decreased in line 2. As perturbing one node equals to
flipping one bit of s, perturbing nodes in a group is performed via a logical bit-
wise exclusive or operation, denoted ⊕ (see line 13 of Algorithm 2). Perturbing k
nodes simultaneously requires 2k double numbers to store the probabilities of 2k

different choices. The size of k is therefore restricted by the available memory.2

3.3 Updating Nodes in Parallel

The last step to speed up PBN simulation is to update a number of nodes
simultaneously in accordance with their predictor functions. For this step, we
need an initialisation process to divide the n nodes into m groups and construct
combined predictor functions for each group. After this, we can select a combined
predictor function for each group based on a sampled random number and apply
this combined function to update the nodes in the group simultaneously.

We first describe how predictor functions of two nodes are combined. The
combination of functions for more than two nodes can be performed iteratively.
Let xα and xβ be the two nodes to be considered. Their predictor functions are
denoted as Fα = {f

(α)
1 , f

(α)
2 , . . . , f

(α)
�(α)} and Fβ = {f

(β)
1 , f

(β)
2 , . . . , f

(β)
�(β)}. Fur-

ther, the corresponding selection probability distributions are denoted as Cα =
{c

(α)
1 , c

(α)
2 , . . . , c

(α)
�(α)} and Cβ = {c

(β)
1 , c

(β)
2 , . . . , c

(β)
�(β)}. After the grouping, due to

1 In our methods, it is clear that Step 2 and Step 3 are independent of Step 1. Thus,
we consistently use n to denote the number of nodes in a PBN.

2 For the experiments, we set k to 16 and k could be bigger as long as the memory
allows. However, a larger k requires larger table to store the 2k probabilities and the
performance of a CPU drops when accessing an element of a much larger table due
to the large cache miss rate.
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Algorithm 2. The group perturbation algorithm
1: procedure PreparePerturbation(n, k)
2: g = �n/k�; k = �n/g�; k′ = n − k ∗ (g − 1);
3: construct the alias table Ap; mask = 0; i = 0;
4: repeat mask = mask | (1 << i); i + +;
5: until i = k′;
6: return [Ap, mask];
7: end procedure
8: procedure Perturbation(Ap, mask, s)
9: perturbed = false;

10: for (i = 0; i < g; i + +) do
11: c = Next(Ap); //Next(Ap) returns a random integer based on Ap

12: if c �= 0 then
13: s = s ⊕ (c << (i ∗ k)); //shift c to flip only the bits of current group
14: perturbed = true;
15: end if
16: end for
17: c = Next(Ap) & mask;
18: if c �= 0 then
19: s = s ⊕ (c << (i ∗ k)); perturbed = true;
20: end if
21: return [s, perturbed];
22: end procedure

the assumed independence, the number of combined predictor functions is �(α) ∗
�(β). We denote the set of combined predictor functions as F̄αβ = {f

(α)
1 ·f (β)

1 , f
(α)
1 ·

f
(β)
2 , . . . , f

(α)
�(α) · f

(β)
�(β)}, where for i ∈ [1, �(α)] and j ∈ [1, �(β)], f

(α)
i · f

(β)
j is

a combined predictor function that takes the input nodes of functions f
(α)
i and

f
(β)
j as its input and combines the Boolean output of functions f

(α)
i and f

(β)
j

into integers as output. The combined integers range in [0, 3] and their 2-bit
binary representations (from right to left) represent the values of nodes xα and
xβ . The selection probability for function f

(α)
i · f

(β)
j is c

(α)
i ∗ c

(β)
j . It holds that

∑�(α)
i=1

∑�(β)
j=1 c

(α)
i ∗ c

(β)
j = 1. With the selection probabilities, we can compute the

alias table for each group so that the selection of combined predictor function in
each group can be performed in constant time.

We now describe how to divide the nodes into groups. Our aim is to have
as few groups as possible so that the updating of all the nodes can be finished
in as few rounds as possible. However, fewer groups lead to many more nodes
in a group, which will result in a huge number of combined predictor functions
in the group. Therefore, the number of groups has to been chosen properly so
that the number of groups is as small as possible, while the combined predictor
functions can be stored within the memory limit of the computer performing the
simulation. Besides, nodes with only one predictor function should be considered
separately since selections of predictor functions for those nodes are not needed.
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In the rest of this section, we first formulate the problem for dividing nodes
with more than one predictor function and give our solution afterwards; then we
discuss how to treat nodes with only one predictor function.

Problem formulation. Let S be a list of n items {μ1, μ2, . . . , μn}. For i ∈ [1, n],
item μi represents a node in a PBN with n nodes. Its weight is assigned by
a function ω(μi), which returns the number of predictor functions of node μi.
We aim to find a minimum integer m to distribute the nodes into m groups such
that the sum of the numbers of combined predictor functions of the m groups
will not exceed a memory limit θ. This is equivalent to finding a minimum m and
an m-partition S1, S2, . . . , Sm of S, i.e., S = S1 ∪ S2 ∪ · · · ∪ Sm and Sk ∩ S� = ∅
for k, � ∈ {1, 2, . . . ,m}, such that

∑m
i=1

(∏
μj∈Si

ω(μj)
)

≤ θ.

Solution. The problem has two outputs: an integer m and an m-partition. We
first try to estimate a potential value of m, i.e., the lower bound of m that could
lead to an m-partition of S which satisfies

∑m
i=1

(∏
μj∈Si

ω(μj)
)

≤ θ. With this
estimate, we then try to find an m-partition satisfying the above requirements.

Denote the weight of a sub-list Si as wi, where wi =
∏

μj∈Si
ω(μj). The

inequality in the problem description can be rewritten as
∑m

i=1 wi ≤ θ. We first
compute the minimum value of m̂, denoted as m̂min, satisfying the following
inequality:

m̂ · m̂

√
√
√
√

n∏

i=1

ω(μi) ≤ θ. (1)

Theorem 2. m̂min is the lower bound on m that allows a partition to satisfy∑m
i=1 wi ≤ θ.

Proof. We proceed by showing that for any k ∈ {1, 2, . . . , m̂min − 1}, m̂min − k

will make the inequality unsatisfied, i.e.,
∑m̂min−k

i=1 w
′
i > θ, where w

′
i is the

weight of the ith sub-list in an arbitrary partition of S into m̂min − k sub-lists.
Since m̂min is the minimum value of m̂ that satisfies Inequality (1), we have
(m̂min − k) · (m̂min−k)

√∏n
i=1 ω(μi) > θ. Hence,

(m̂min − k) · (m̂min−k)

√
√
√
√

m̂min−k∏

i=1

w
′
i > θ. (2)

Based on the inequality relating arithmetic and geometric means, we have

m̂min−k∑

i=1

w
′
i ≥ (m̂min − k) · (m̂min−k)

√
√
√
√

m̂min−k∏

i=1

w
′
i. (3)

Combining Inequality (2) with Inequality (3) gives
∑m̂min−k

i=1 w
′
i > θ. ��



224 A. Mizera et al.

Algorithm 3. The greedy algorithm
1: procedure FindPartitions(S, m)
2: sort S with descending orders based on the weights of items in S;
3: initialise A, an array of m lists; //initially, each A[i] is an empty list
4: for (j = 0; j < S.size(); j + +) do//S.size() returns the number of items in S
5: among the m elements of A, //the weight of A[i] is wi =

∏
µj∈A[i] ω(μj)

6: find the one with the smallest weight and add S[j] to it;
7: end for
8: return A;
9: end procedure

Starting from the lower bound, we try to find a partition of S into m sub-lists
that satisfies

∑m
i=1 wi ≤ θ. Since the arithmetic and geometric means of non-

negative real numbers are equal if and only if every number is the same, we get
the heuristic that the weight of the m sub-lists should be as equal as possible so
that the sum of the weights is as small as possible. Our problem then becomes
similar to the NP-hard multi-way number partition problem: to divide a given
set of integers into a collection of subsets, so that the sum of the numbers in
each subset are as nearly equal as possible. We adapt the greedy algorithm (see
Algorithm 3 for details) for solving the multi-way number partition problem, by
modifying the sum to multiplication, to solve our partition problem.3 If the m-
partition we find satisfies the requirement

∑m
i=1 wi ≤ θ, then we get a solution

to our problem. Otherwise, we need to increase m by one and try to find a new
m-partition. We repeat this process until the condition

∑m
i=1 wi ≤ θ is satisfied.

The whole partition process for all the nodes is described in Algorithm 4.
Nodes with only one predictor function are treated in line 8. We divide such

nodes into groups based on their parent nodes, i.e., we put nodes sharing the
most common parents into the same group. In this way, the combined predictor
function size can be as small as possible such that the limited memory can
handle more nodes in a group. The number of nodes in a group is also restricted
by the combined predictor function size, i.e., the number of parent nodes in this
group.4 The partition is performed with an algorithm similar to Algorithm 3.
The difference is that in each iteration we always add a node into a group which
shares most common parent nodes with this node.

3.4 The New Simulation Method

We describe our new method for simulating PBNs in Algorithm 5. The proce-
dure Preparation describes the whole preparation process of the three steps
3 There exist other algorithms to solve the multi-way number partition problem and

we choose the greedy algorithm for its efficiency.
4 In our experiments, the maximum number of parent nodes in one group is set to

18. Similar to the value of k in Step 2, the number can be larger as long as the
memory can handle. However, the penalty from large cache miss rate will diminish
the benefits by having fewer groups when the number of parent nodes is too large.
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Algorithm 4. Partition n nodes into groups.
1: procedure Partition(G, θ) //S′ contains nodes with
2: compute two lists S and S′ based on G; // one predictor function
3: compute the lower bound m̂ according to Inequality (1); m = m̂;
4: repeat
5: A1 = FindPartitions(S, m);

6: sum =
∑m

i=1

(∏
µj∈A1[i]

ω(μj)
)
; m = m + 1; //compute the sum of

7: until sum < θ; //weights
8: divide S′ into A2; //using modified Algorithm 3: in each iteration, a node is
9: merge A1 and A2 into A; //put in a list which shares most common parent

10: return A; //nodes with this node
11: end procedure

(network reduction for Step 1, and node-grouping for Step 2 and Step 3). The
three inputs of the procedure Preparation are the PBN network G, the mem-
ory limit θ, and the maximum number k of nodes that can be put in a group
for perturbation. The Preparation procedure performs network reduction and
node grouping. The reduced network and the grouped nodes information are
then provided for the ParallelSimulation procedure via seven parameters:
Ap and mask are the alias table and mask used for performing perturbations
of non-leaf nodes as explained in Algorithm 2; l is the number of leaf nodes;
p is the perturbation rate; A is an array containing the alias tables for predic-
tor functions in all groups; F is an array containing predictor functions of all
groups; and cum is an array storing the cumulative number of nodes in each
group, i.e., cum[0] = 0 and cum[i] =

∑i−1
j=0 τj for i ∈ [1,m], where m is the

number of groups and τj is the number of nodes in group j. Procedure Par-
allelSimulation simulates one step of a PBN by first checking perturbation
and then updating PBNs with combined predictor functions. Perturbations for
leaf nodes and non-leaf nodes have been explained in Algorithms 1 and 2. We
now explain how nodes in a group are simultaneously updated with combined
predictor function. It is performed via the following three steps: 1) a random
combined predictor function is selected from F based on the alias table A; 2)
the output of the combined predictor function is obtained according to the cur-
rent state s; 3) the nodes in this group are updated based on the output of the
combined predictor function. To save memory, states are stored as integers and
updating a group of nodes is implemented via a logical bitwise or operation. To
guarantee that the update is performed on the required nodes, a shift operation
is needed on the output of the selected function (line 22). The number of bits to
be shifted for the current group is in fact the cumulative number of nodes of all
its previous groups, which is stored in the array cum.

4 Evaluation

The evaluation of our new simulation method is performed on both randomly
generated networks and a real-life biological network. All the experiments are
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Algorithm 5. Structure-based PBN simulation.
1: procedure Preparation(G, θ, k)
2: perform network reduction for G and store the reduced network in G′;
3: get the number of nodes n and perturbation probability p from G;
4: get the number of nodes n′ from G′; � = n − n′;
5: [Ap, mask] =PreparePerturbation(n′, k);
6: PA =Partition(G′, θ);
7: for each group in PA, compute its combined functions
8: and put them as a list in array F , and compute its alias table in array A;
9: compute cum as cum[0] = 0 and cum[i] =

∑i−1
j=0 τj for i ∈ [1, m], where m is

10: the number of groups in PA and τj is the number of nodes in group j;
11: return [Ap, mask, �, p,A, F, cum];
12: end procedure
13: procedure ParallelSimulation(Ap, mask,A, F, cum, �, p, s)
14: [s, perturbed ] =Perturbation(Ap, mask, s); //perturb by group
15: if perturbed || CheckLeafNodes(p, �) then //check perturbations of leaves
16: return s;
17: else s′ = 0; count = size(A); //size(A): the number of elements in array A

18: for (i = 0; i < count − 1; i + +) do
19: index = Next(A[i]); //select a random integer based on the alias table
20: f = F [i].get(index ); //obtain the predictor function at the given index
21: v = f [s]; //f [s] returns the integer output of f based on state s
22: s′ = s′ | (v << cum[i]); // update only nodes in the current group
23: end for
24: end if
25: return s′;
26: end procedure

performed on high performance computing (HPC) machines, each of which con-
tains a CPU of Intel Xeon X5675 @ 3.07 GHz. The program is written in Java
and the initial and maximum Java virtual machine heap size is set to 4 GB and
5.89 GB, respectively.

4.1 Randomly Generated Networks

With the evaluation on randomly generated networks, we aim not only to show
the efficiency of our method, but also to answer how much speedup our method
is likely to provide for a given PBN.

The first step of our new simulation method performs a network reduction
technique, which is different from the node-grouping techniques in the later
two steps. Therefore, we evaluate the contribution of the first step and the
other two steps to the performance of our new simulation method separately.
We consider the original simulation method as the reference method and we
name it Methodref . The simulation method applying the network reduction
technique is referred to as Methodreduction and the simulation method apply-
ing both the network reduction and node-grouping techniques as Methodnew .
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Methodreduction and Methodnew require pre-processing of the PBN under study,
which leads to a certain computational overhead. However, the proportion of
the pre-processing time in the whole computation decreases with the increase of
the sample size. In our evaluation, we first focus on comparisons without taking
pre-processing into account to evaluate the maximum potential performance of
our new simulation method; we then show how different sample sizes will affect
the performance when pre-processing is considered.

How does our method perform? Intuitively, the speedup due to the net-
work reduction technique is influenced by how much a network can be reduced
and the performance of node-grouping is influenced by both the density and
size of a given network. Hence, the evaluation is performed on a large number
of randomly generated PBNs covering different types of networks. In total, we
use 2307 randomly generated PBNs with different percentages of leaves ranging
between 0 % and 90 %; different densities ranging between 1 and 8.1; and different
network sizes from the set {20, 50, 100, 150, 200, 250, 300, 350, 400, 450, 500, 550,
600, 650, 700, 750, 800, 850, 900, 950, 1000}. The networks are generated randomly
using the tool ASSA-PBN [2], by providing the following information: the number
of nodes, the maximum (minimum) number of predictor functions for the nodes,
and the maximum (minimum) number of parent nodes for the predictor functions.
Thus, the generation of these networks’ density and percentage of leaves cannot
be fully controlled. In other words, density and percentage of leaves for these 2307
PBNs are not uniformly distributed. We simulate 400 million steps for each of
the 2307 PBNs with the three different simulation methods and compare their
time costs. For the network reduction technique the speedups are calculated as
the ratio between the time of Methodreduction and the time of Methodref , where
the pre-processing time of the former method is excluded. The obtained speedups
are between 1.00 and 10.90. For node-grouping, the speedups are calculated as the
ratio between the time of Methodnew and the time of Methodreduction without con-
sidering the required pre-processing times. We have obtained speedups between
1.56 and 4.99. We plot in Fig. 1 the speedups of the network reduction and node-
grouping techniques with respect to their related parameters. For the speedups
achieved with network reduction, the related parameters are the percentage of
leaves and the density. In fact, there is little influence from density to the speedup
resulting from network reduction as the speedups do not change much with the
different densities (see Fig. 1a). The determinant factor is the percentage of leaves.
The more leaves a PBN has, the more speedup we can obtain for the network. For
the speedups obtained from node-grouping, the related parameters are the den-
sity and the network size after network reduction, i.e., the number of non-leave
nodes. Based on Fig. 1b, the speedup with node-grouping is mainly determined
by the network density: a smaller network density could result in a larger speedup
contributed from the node-grouping technique. This is mainly due to the fact that
sparse network has a relatively small number of predictor functions in each node
and therefore, the nodes will be partitioned into fewer groups. Moreover, while the
performance of network reduction is largely influenced by the percentage of leaves,
the node-grouping technique tends to provide a rather stable speedup. Even for
large dense networks, the technique can reduce the time cost almost by half.
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(a) Simulation time of Methodreduction
over simulation time of Methodref .

(b) Simulation time of Methodnew over
simulation time of Methodreduction.

Fig. 1. Speedups obtained with network reduction and node-grouping techniques. The
pre-processing time is excluded from the analysis.

Fig. 2. Speedups of Methodnew with respect to Method ref .

The combination of these two techniques results in speedups (time of
Methodnew over time of Methodref ) between 1.74 and 41.92. We plot in Fig. 2 the
speedups in terms of the percentage of leaves and density. The figure shows a very
good performance of our new method on sparse networks with large percentage
of leaves.

What is the influence of sample size? We continue to evaluate the influence
of sample size on our proposed new PBN simulation method. The pre-processing
time for the network reduction step is relatively very small. Therefore, our eval-
uation focuses on the influence of the total pre-processing time of all the three
steps on the speedup of Methodnew with respect to Methodref . We select 9 rep-
resentative PBNs from the above 2307 PBNs, with respect to their densities,
percentages of leaves and the speedups we have obtained. We simulate the 9
PBNs for different sample sizes using both Methodref and Methodnew . We show
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Table 1. Influence of sample sizes on the speedups of Methodnew with respect to
Method ref .

network # size percentage density average pre-processing speedup with different
of leaves time (second) sample sizes (million)

1 10 100 400

1 900 1.11 6.72 28.12 0.65 1.49 1.71 1.73

2 950 0.84 6.96 32.35 0.59 1.47 1.73 1.75

3 1000 0.30 7.00 33.72 0.58 1.45 1.71 1.73

4 600 67.83 4.25 162.21 0.13 1.08 4.51 6.89

5 800 68.38 3.94 43.17 0.66 3.05 6.75 7.69

6 900 68.00 3.89 36.58 0.69 3.56 6.90 7.70

7 450 89.78 1.60 0.23 21.44 37.59 41.62 41.84

8 550 88.55 1.72 0.24 20.26 35.94 36.47 36.62

9 1000 89.10 1.75 1.08 10.04 31.83 35.09 37.19

the average pre-processing time of Methodnew and the obtained speedups with
Methodnew (taking into account pre-processing time costs) with different sample
sizes in Table 1. As expected, with the increase of the sample size, the influence of
pre-processing time becomes smaller and the speedup increases. In fact, in some
cases, the pre-processing time is relatively so small that its influence becomes
negligible, e.g., for networks 7 and 8, where the sample size is equal or greater
than 100 million. Moreover, often with a sample size larger than 10 million, the
effort spent in pre-processing can be compensated by the saved sampling time
(simulation speedup).

Performance prediction. To predict the speedup of our method for a given
network, we apply regression techniques on the results of the 2307 PBNs to fit
a prediction model. We use the normalised percentage of leaves and the network
density as the predictor variables and the speedup of Methodnew with respect
to Methodref as the response variable in the regression model. We do not con-
sider network size as based on the plotted figures it does not directly affect the
speedup. In the end, we obtain a polynomial regression model shown in Equation
(4), which can fit 90.9% of the data:

y = b1 + b2 ∗ x1 + b3 ∗ x2
1 + b4 ∗ x2 + b5 ∗ x2

2, (4)

where [b1, b2, b3, b4, b5] = [2.89, 2.71, 2.40,−1.65, 0.71], y represents the speedup,
x1 represents the percentage of leaves and x2 represents the network density.
The result of a 10-fold cross-validation of this model supports this prediction
rate. Hence, we believe this model does not overfit the given data. Based on
this model, we can predict how much speedup is likely to be obtained with our
proposed method for a given PBN.
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4.2 An Apoptosis Network

In this section, we evaluate our method on a real-life biological network, i.e.,
an apoptosis network of 91 nodes [5]. This network has a density of 1.78 and
37.5% of the nodes are leaves, which is suitable for applying our method to gain
speedups. The network has been analysed in [3]. In one of the analyses, i.e., the
long-term influences [8] on complex2 from each of its parent nodes: RIP-deubi,
complex1, and FADD, seven steady-state probabilities of the network need to
be computed. In this evaluation, we compute the seven steady-state probabil-
ities using our proposed structure-based simulation method (Methodnew ) and
compare it with the original simulation method (Methodref ). The precision and
confidence level of all the computations, as required by the two-state Markov
chain approach [4], are set to 10−5 and 0.95, respectively. The results of this com-
putation are shown in Table 2. The computed probabilities using both methods
are comparable, i.e., for the same set of states, the differences of the computed
probabilities are within the precision requirements. The sample sizes required
by both methods for computing the same steady-state probabilities are very
close to each other. Note that the speedups are computed based on the accurate
data, which are slightly different from the truncated and rounded data shown
in Table 2. We have obtained speedups (Methodnew with respect to Methodref )
between 7.67 and 10.28 for computing those seven probabilities. In total, the
time cost is reduced from 1.5 hours to about 10 min.

Table 2. Performance of Method ref and Methodnew on an apoptosis network.

# Methodref Methodnew speedup

sample size time (m) probability pre-processing sample size total probability
(million) time (s) (million) time (m)

1 147.50 9.51 0.003243 4.57 147.82 1.05 0.003236 9.09

2 452.35 28.65 0.990049 3.10 452.25 2.79 0.990058 10.28

3 253.85 14.88 0.005583 3.42 253.99 1.74 0.005587 8.54

4 49.52 2.96 0.001087 3.38 50.39 0.36 0.001078 8.31

5 315.06 17.73 0.993293 4.40 305.43 2.05 0.993298 8.39

6 62.22 3.69 0.001088 3.13 50.28 0.39 0.001087 7.67

7 255.88 16.74 0.005621 4.01 256.61 1.70 0.005623 9.88

5 Conclusion

We propose a structure-based method for speeding up simulations of PBNs.
Using network reduction and node-grouping techniques, our method can signif-
icantly improve the simulation speed of PBNs. We show with experiments that
our method is especially efficient in the case of analysing sparse networks with
a large number of leaf nodes.

The node-grouping technique gains speedups by using more memory. The-
oretically, as long as the memory can handle, the group number can be made
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as small as possible. However, this causes two issues in practice. First, the pre-
processing time increases dramatically with the group number decreasing. Sec-
ond, the performance of the method drops a lot when operating on large mem-
ories due to the increase of cache miss rate. Therefore, in our experiments we
do not explore all the available memory to maximise the groups. Reducing the
pre-processing time cost and the cache miss rate would be two future works to
further improve the performance of our method. We plan to apply our method
for the analysis of real-life large biological networks.
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Abstract. Chemical organisation theory is a framework developed to
simplify the analysis of long-term behaviour of chemical systems. An
organisation is a set of objects which are closed and self-maintaining. In
this paper, we build on these ideas to develop novel techniques for formal
quantitative analysis of chemical reaction networks, using discrete sto-
chastic models represented as continuous-time Markov chains. We pro-
pose methods to identify organisations, to study quantitative properties
regarding movement between these organisations and to construct an
organisation-based coarse graining of the model that can be used to
approximate and predict the behaviour of the original reaction network.

1 Introduction

In this paper, we study reaction networks and chemical organisation theory, in
particular, investigating the applicability of probabilistic model checking to their
analysis. Reaction networks are widely used in modelling chemical phenomena.
They describe the dynamical interaction between processes of living systems in
a formal way. Reaction networks can be difficult to understand and analyse since
they can represent complex interaction behaviour over large state spaces.

Chemical organisation theory [7,9] provides a way to analyse complex dynam-
ical networks and reason about the long-term behaviour of chemical systems.
The complex network is decomposed into a set of sub-networks called “organisa-
tions”. An organisation is a set of objects (for example, the species or molecules
in a reaction system) which are closed and self-maintaining. Informally, closed
means that no new object can be produced by the interactions within the set,
and self-maintaining means that no object of the set disappears from the system,
i.e., every consumed object of the set can be generated within the set. The con-
cept of organisation allows us to lift the complex reaction network to a hierarchic
structure including all stable states and states depicting accumulating molecules
regarding to the organisations. The dynamics of the complex state space of the
reaction network can then be mapped to movements among the set of organ-
isations. Building a chemical organisation-based model thus helps us to model
the structure and behaviour of complex reaction networks, and to simplify the
dynamical analysis of the overall system.

In order to study the evolution of reaction networks, we apply probabilistic
model checking, a formal verification technique for modelling and analysis of
c© Springer International Publishing AG 2016
E. Bartocci et al. (Eds.): CMSB 2016, LNBI 9859, pp. 232–251, 2016.
DOI: 10.1007/978-3-319-45177-0 15
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systems with stochastic behaviour. It has been used to study models across a
wide range of application domains, including chemical and biological systems.
Probabilistic model checking is based on the exhaustive construction and analysis
of a state-based probabilistic model, typically a Markov chain or variant. In
this work, we model the reaction networks as continuous-time Markov chains.
Quantitative properties of interest about the system being analysed are formally
specified using temporal logic. Here we use CSL (Continuous Stochastic Logic) [2]
with rewards, a quantitative extension of the temporal logic CTL.

Specifically, in this work, we use CSL model checking of continuous-time
Markov chains to investigate connections between chemical organisations using
model decompositions into strongly connected components (SCCs). We develop
an algorithm to automatically find organisations, and then perform a quantita-
tive dynamical analysis in terms of organisations, asking, for example, “what is
the probability of moving from one organisation to another?” or “what is the
expected time to leave an organisation?” A coarse grained Markov chain model
of hierarchic organisations for a given reaction network is then constructed as a
result. We implement our techniques as an extension of the probabilistic model
checking tool PRISM [15], and illustrate the approach on a set of example reac-
tion networks. Approximating and predicting the system behaviour over time
evolution is a direct application of our coarse grained model.

Related work. There are various approaches to modelling the dynamics of reac-
tion networks. Feinberg and Horn [8] proposed methods to identify positive sta-
tionary states in which all molecular species are present in a network. Heinrich
and Schuster [12] studied network structure based on flux modes, each of which
specifies a set of reaction rules that can take place at a steady state and thus
implies a set of species participating in those reactions. Species regarding to a
flux modes were not required to be self-maintaining or closed however. We are
more interested in the stationary states in which a subset of species are present,
which is formalised in organisation theory [7]. In that area, the focus was typ-
ically on qualitative properties, and ODEs [6], approximating the evolution of
reaction networks in continuous dynamical systems. Kreyssig et al. [14] studied
the effects of small particle numbers on long-term behaviours in discrete bio-
chemical systems. We build on their notion of discrete organisation but focus on
quantitative analysis of the transitive dynamics among the organisations, which
was not considered in [14]. Other approaches for approximate analysis of discrete
models of reaction networks include the use of Linear Noise Approximation [4],
the Central Limit Approximation [3] and “sliding window” abstractions [17].

2 Probabilistic Model Checking

Probabilistic model checking is a variant of model checking [5], a well-established
formal method to automatically verify the correctness of real-life systems. Clas-
sical model checking answers the question of whether the behaviour of a given
system satisfies a property or not. It thus requires two inputs: a description of
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the system and a specification of one or more required properties of that system,
normally in temporal logic (such as CTL or LTL).

In probabilistic model checking, the models are extended with information
about the likelihood that transitions take place. In practice, these models are
usually Markov chains or Markov decision processes. In this work, we model the
reaction systems as continuous-time Markov chains (CTMCs), which are widely
used in fields such as performance analysis or systems biology to model systems
with stochastic real-time behaviour. Formally, we define them as follows.

Definition 1 (CTMC). A CTMC is a tuple A = (Q,Q0,Δ, L), where: Q is a
finite set of states; Q0 ⊆ Q is the set of initial states; Δ : Q × Q → R≥0 is the
transition rate matrix; L : Q → 2AP is a labelling function assigning, to each
state q ∈ Q, a set of atomic propositions, from a set AP , that are true in q.

The transition rate matrix Δ assigns a rate to each pair of states in the CTMC,
which is used as the parameter of an exponential distribution.

In this work, the probabilistic temporal logic CSL (Continuous Stochastic
Logic) is used to formally represent properties of reaction networks. It was origi-
nally introduced by Aziz et al. [1] and extended by Baier et al. [2]. The extended
version allows for the specification of reward (or cost) properties, to reason about
rewards (or costs) that have been attached to a CTMC. The extended version
of CSL that we use allows us to represent properties such as “the probability of
all of species A degrading within t time units is at most 0.1” or “the expected
time elapsed before a B molecule first appears is at most 10”.

Definition 2 (CSL syntax). An (extended) CSL formula is an expression Ψ
derived from the grammar:

Ψ ::= true | p | ¬Ψ | Ψ ∧ Ψ | P��λ(Ψ U I Ψ) | R��r[♦Ψ ]

where p ∈ AP an atomic proposition, λ ∈ [0, 1] is a probability threshold, r ∈ R≥0

is a reward threshold, ��∈ {<,≤,≥, >} and I is an interval of R≥0.

CSL formulas are described over the states of a Markov chain. A state q satisfies
P��λ(ψ) if the probability of taking a path from q satisfying ψ is in the interval
specified by �� λ. Here, the path formula ψ is an “until” operator: Ψ U I Ψ ′

asserts that Ψ ′ is satisfied at some future time point within interval I, and that
Ψ is true up until that point. We omit the interval I when I = [0,∞). Common
derived operators include: “eventually” ♦IΨ := true U I Ψ and “always” �IΨ :=
¬♦I¬Ψ . For example, P≤λ(�IΨ) ≡ P≥1−λ(♦I¬Ψ). The R operator is used for
reward properties: R��r[♦Ψ ] is true from state q if the expected reward cumulated
before a state satisfying Ψ is reached meets the bound �� r. We also use numerical
queries, e.g., R=?[♦Ψ ], which return the actual expected reward (or probability),
rather than check it against a bound. Rewards and costs are treated identically:
here, we will use the R operator to formalise properties about the expected time
elapsing before an event’s occurrence. We omit a full definition of the semantics of
CSL with respect to a Markov chain. Full details can be found in, for example, [2].
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3 Modelling Reaction Networks with CTMCs

A reaction network consists of a set of molecules (or, molecular species to be
more precise) and a set of reaction rules.

Definition 3. A reaction network is a pair (M,R) consisting of a set of possible
molecular species M, and a set R ⊆ PM (M) × PM (M) of possible reactions
among those species, where PM (C) denotes the set of all multisets of elements
over the set C. For a reaction (R,P ) ∈ R, the multisets R and P denote the
reactants and products of the reaction, respectively, and we write R(s) and P (s)
for the number of molecules of species s consumed by (reactants) and produced
by (products) the reaction, respectively.

For simplicity, we write s1 + s2 + · · · + sn → s′
1 + s′

2 + · · · + s′
n′ instead of

({s1, s2, . . . , sn}, {s′
1, s

′
2, . . . , s

′
n′}) ∈ R to denote the existence of a reaction.

There are multiple ways in which we can obtain a dynamical model given
a reaction network. One way is to consider (real-valued) concentrations of each
molecular species and then represent the (deterministic) behaviour of the reac-
tions as a set of ordinary differential equations. Here, we take a discrete, stochas-
tic view of the network, modelling the (integer-valued) population count of each
species and considering its evolution as a stochastic process, and in particular as
a continuous-time Markov chain [11]. The latter is particularly appropriate when
the numbers of molecules can be assumed to be relatively small in practice, and
is the approach that we take in this work.

Furthermore, we will assume also that the reaction network is executing
within a finite volume, which is modelled by limiting the total number Nmax ∈ N

of molecules that can be present at any given time [14]. We also need to define the
rates at which reaction events occur in the CTMC. To retain a general approach,
we allow an arbitrary function rater from reactant populations to rate values
for each reaction r.

Definition 4 (CTMC for reaction network). Given a reaction network
〈M,R〉, a volume limit Nmax ∈ N and a rate function rater : N

M → R≥0

for each r ∈ R, we define the corresponding CTMC A = (Q,Q0,Δ, L) where:

– Q = {q : M → N |
∑

s∈M q(s) ≤ Nmax}

is the set of population counts of M and Δ is defined as follows. For states
q, q′ ∈ Q and reaction (R,P ) ∈ R, we write q

(R,P )−−−−→ q′ if and only if, for each
species s ∈ M, we have q(s) ≥ R(s) and q′(s) = q(s) − R(s) + P (s), and∑

s∈M q′(s) ≤ Nmax. Then, for any q, q′ ∈ Q, we have:

– Δ(q, q′) =
∑

{| rater(q) | r ∈ R and q
r−→ q′}, and we call r the transition

label of q
r−→ q′.

Q0 can be any subset of Q representing initial configurations of interest, and L
can be any labelling function over Q that identifies states with relevant properties.
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Fig. 1. State transition graph of the CTMC for Example 1. State labels show index
and population count, e.g., 11 : 2a2b denotes that there are 2a and 2b in state 11.

For our examples we usually follow the general law of mass-action by setting
rater(q) = λr ·

∏
s∈R q(s) with λr being a kinetic rate constant for reaction r

(and assuming the stoichimetric coefficient of each reactant is at most one).
Each state q ∈ Q of the CTMC gives the number q(s) of molecules of each

species s ∈ M that are currently present. For a state q, we also write φ(q) to
denote the set of molecular species that are present, i.e., φ(q) = {s | q(s) > 0},
and define φ(Q′) = ∪q∈Q′ φ(q) for a set of states Q′ ⊆ Q. We let Acc(q) ⊆ Q
denote the set of states that are reachable from q.

Example 1. Consider the reaction network A with species M = {a, b} and reac-
tions R = {a + b → a + 2b, a → 2a, b → 2b, a → ∅, b → ∅}. Assume the volume
of the system is Nmax = 4, and the rate of each reaction is of second order, i.e.,
	a · 	b, 	a · 	a, 	b · 	b, 	a · 	a, 	b · 	b, respectively, where 	a denotes the number of
molecules of species a. We obtain a CTMC with 15 states (Fig. 1). Note that
throughout this work, without loss of generality, we use second-order kinetic laws
in order to avoid any complicated issues regarding units and scaling.

4 Chemical Organisation Theory and SCC Decomposition

Chemical organisation theory [7] provides a way to cope with the complex “con-
structive” dynamics of a reaction network by deriving a set of organisations [10],
and then mapping the movement through state space to a movement between
organisations. Such an abstract view allows us to analyse and predict the dynam-
ical behaviour of a complex reaction network more easily. An organisation is a set
of molecules that is algebraically closed and self-maintaining. A subset C ⊆ M
is called “closed” if no molecules outside C can be produced by applying all reac-
tions possible in C to multisets over C; a subset S ⊆ M is “self-maintaining”
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if all reactions that are able to fire in S can occur at certain strictly positive
rates without reducing the amount of any species of S. We say that a reaction
(R,P ) ∈ R can fire in a set of species S, if S contains each reactant species
from R.

Definition 5 (Organisation [7]). A subset of O ⊆ M is a chemical organi-
sation if it is closed and self-maintaining, that is, if for all (R,P ) ∈ R, R ⊆ O
implies P ⊆ O (closure), and there exists a strictly positive flux vector v > 0
such that NO · v ≥ 0 with NO being the stoichiometric matrix of the reactions
that can fire in O (self-maintenance). An entry ni,r of the stoichiometric matrix
NO = (ni,r) denotes the number of molecules of species i ∈ M produced when
firing reaction r once. The product with a flux vector, N · v, results in a vector
of the net-production rates for each species for the respective reaction rates v.

Note that the set of organizations is defined with respect to a reaction network
and thus independent from an initial state. However, given an initial state, there
is in general only a subset of organizations reachable.

As discussed above, we model the dynamics of a reaction network as a Markov
chain. A state is defined as the number of each molecular species and, with a
limited total number of molecules, cases of both too few or too many molecules
can prevent reaction rules being fired. As a consequence, we need to define
discrete organisations, and the states contributing to generate them. From now
on, Rq denotes the reactions firing in any state reachable from a state q.

Definition 6 (Discrete organisation and internal generator [14]). Let
(M,R) be a reaction network. A subset of species D ⊆ M is called a discrete
organisation if there is a state q ∈ Q such that: (i) φ(Acc(q)) = D (closure); and
(ii) there is a sequence of transition labels (r1, . . . , rk) where ri ∈ R such that
∪k

i=1{ri} = Rq and q′ = (rk ◦ · · · ◦ r1)(q) satisfies ∀s ∈ D : q′(s) ≥ q(s) (self-
maintenance), where ◦ denotes a composition operator, i.e., rj ◦ ri(qi) = rj(qj)
for qj = ri(qi). Such a state q is called an internal generator of the discrete
organisation.

Definition 7 (Generator). A state q′ ∈ Q is called a generator of organisation
D iff ∃q ∈ Acc(q′) such that q is an internal generator of D.

Note that, in general, the organisation D generated by a state q′ is not unique.
However, if q is an internal generator, there is only one organisation it generates.
Unless specifically stated otherwise, we say organisation rather than discrete
organisation in the rest of the paper.

Example 2. The discrete organisations for Example 1 are: {a, b}, {a}, {b}, {}
and the corresponding generators are, respectively (cf. Fig. 1):

{6, 7, 8, 10, 11, 13}, {5, 6, 7, 8, 9, 10, 11, 12, 13, 14}, {1, 2, 3, 4, 6, 7, 8, 10, 11, 13},
{0, 1, . . . , 14}.

In order to analyse the system behaviour and perform an organisation-based
quantitative analysis of the reaction network, we study the connections between
chemical organisations and the decompositions into strongly connected compo-
nents (SCCs) of the Markov chain.
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Definition 8 (SCC [13]). A strongly connected component (SCC) of a Markov
chain is a maximal set of states T such that, for every pair of states q and q′,
there is a path from q to q′.

Intuitively, in the Markov chain for a reaction network, SCCs are important for
an organisation-based analysis. However, some but not all SCCs correspond to
organisations. In the next section, we will describe an algorithm to find organ-
isations based on a decomposition into SCCs and then identifying those self-
maintaining a set of species. We first note that bottom strongly connected com-
ponents do relate to organisations.

Definition 9 (BSCC). A bottom strongly connected component (BSCC) is an
SCC T from which no state outside T is reachable from T .

Proposition 1. Each BSCC corresponds to a (unique) organisation, which is
generated (uniquely) by any state of that BSCC.

However, there are organisations whose internal generators are not contained
in any BSCC. In order to also include such organisations, we call SCCs that
correspond to an organisation good SCCs.

Definition 10 (Good SCC). An SCC T is called good if it contains a cycle of
the firing of every “possible” reaction rule, i.e., those whose reactants R appear
in the SCC (R ⊆ {φ(q) | q ∈ T}).

Example 3. All SCCs are good in Example 1.

Clearly, some generators can contribute to multiple organisations. This makes
it more difficult to decompose the Markov into its sets of generators. However,
internal generators located in good SCCs contribute uniquely to an organisation.

Proposition 2. A generator g is an internal generator of organisation D iff it
is located in a good SCC T such that: g ∈ T ∧

⋃
q∈T φ(q) = D.

Proposition 3. Given a good SCC T , let A = φ(T ), if A is closed, then A is a
discrete organisation, then {q | q ∈ T} is the set of internal generators of A.

Example 4. In Example 1, the internal generators of organisations {a, b}, {a},
{b} and {} are {6, 7, 8, 10, 11, 13}, {5, 9, 12, 14}, {1, 2, 3, 4} and {0}, respectively.

5 Organisation-Based Analysis of Reaction Networks

In this section, we propose techniques for quantitative organisation-based analy-
sis of reaction networks. We first introduce an algorithm to find the set of organi-
sations for a specific reaction network. We then use probabilistic model checking
to analyse quantitative properties regarding the dynamics of the network with
respect to its organisations. Such organisation-based quantitative analyses can
be used to construct the structure of organisation-based coarse-grained model,
and provide a framework to approximate the complex dynamical behaviours of
the original reaction networks in our next step.
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5.1 Finding Organisations

Computing the organisations of a reaction network requires an analysis of
the strongly connected components of its Markov chain’s underlying transition
graph. Since every state in a good SCC is an internal generator of an organisa-
tion, we identify good SCCs to find the organisations of the reaction network.
Algorithm 1 presents the procedure for finding organisations of a given reaction
network modelled as a CTMC. It is based on the following procedures:

– Tarjan(A) returns the set of strongly connected components of the Markov
chain A, using Tarjan’s SCC algorithm [16] on the underlying digraph;

– findGoodSCCs(SCC) returns the “good” part SCCG of A in which each possible
reaction rule is able to be fired;

– find a set of closed molecules appearing in each scc ∈ SCCG, and its relevant
internal generators i.e., states in scc which generate the organisation.

Algorithm 1. Finding organisations of a reaction network
Data: CTMC A of reaction network (M, R)
Result: O as a set of organisations, G : O → P(Q) as a mapping from

organisations to sets of internal generators
O = {};
G = {};
SCC ← Tarjan(A);
SCCG ← findGoodSCCs(SCC) ∪ BSCC;
for scc ∈ SCCG do

Mg ← {φ(q) | q ∈ scc} ;
if Mg is closed then

if Mg �∈ O then
O ← O ∪ Mg /* add new organisation */ ;
G(Mg) ← {q|q ∈ scc} /* add new internal generators */ ;

else
G(Mg) ← G(Mg) ∪ {q|q ∈ scc} /* update generators */ ;

end

end

end
return O, G.

5.2 Organisation-Based Probabilistic Analysis

We now illustrate, via several examples, how we derive quantitative organisation-
based properties of reaction networks. We implemented the organisation and gen-
erator detection process described above in the PRISM model checker, along with
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a translator that converts descriptions of reaction networks into the PRISM mod-
elling language to allow construction of the corresponding CTMC. Organisation-
based properties of the network, such as probabilities (bounds or average) of the
movements among organisations, or the expected time to leave or stay at an
organisation, are computed using CSL formulae.

Example 5. Consider the reaction network with molecular species M = {a, b}
and reactions rules include: {a + b → a, a → 2a, b → 2b, a → ∅, b → ∅} with
stochastic rates: 	a · 	b, (	a)2, (	b)2, (	a)2, (	b)2 respectively.

Letting Nmax = 10, the resulting CTMC has 66 states and 201 transitions,
and there are 4 SCCs ({a > 0, b > 0}, {a > 0, b = 0}, {a = 0, b > 0}, {a = b = 0})
with 1 BSCC ({a = b = 0}). For reference, we show both the PRISM language
model and the CTMC for this example in the Appendix (Figs. 5 and 6).

The first property we consider is the probability of moving between organi-
sations. Specifically, the probability of moving from O1 to O2 can be specified in
CSL as: P=?[ o1 U o2 ], where o1 and o2 are atomic propositions labelling states
which represent internal generators of organisations O1 and O2. In this example,
all SCCs are good and each (good) SCC generates exactly one organisation. To
visualise the movement between organisation, we analyse the property above for
each pair of organisations and construct the abstract transition graph shown in
Fig. 2 (left). Blocks are labelled with organisations and, for each possible tran-
sition between organisations, we show the range of probabilities (over all states
in the source organisation) and the average value (over the same set of states).

We also consider the expected time to leave (the generators of) each organisa-
tion. The CSL property to specify this, for some organisation Oi, is: R=?[♦¬oi ],
where oi is an atomic proposition as above, ¬ denotes negation and we assign a
state reward of 1 to every state of the CTMC, indicating the amount of reward
that is accumulated per unit time until ¬oi is satisfied. This value is also shown
for each organisation in Fig. 2 (left), inside the block for the corresponding organ-
isation.

Finally, we consider the effect of making some constructive perturbation to
the reaction network, by adding rules to create species with a small rate. Figure 2
(right) shows the results of the same analysis described above for the following
constructive perturbation: {∅ → a, ∅ → b} both with reaction rate γ = 0.01.
The result shows that, generating a and b with a small rate can cause an upward
movement and slightly affect the system’s behaviour. Note that the upward flow
introduced by the constructive perturbation leads to a smoother flow.

Example 6. Consider now the reaction network with M = {a, b, c, d} and R =
{a + b → a + 2b, a + d → a + 2d, b + c → 2c, c → b, b + d → c, b → ∅, c →
∅, d → ∅}. We will consider two groups of rates for a purpose of comparison in
Sect. 7: R2:: 	a ∗ 	b, 	b ∗ 	c, 	c ∗ 	c, 	b ∗ 	d, 	b ∗ 	b, 	c ∗ 	c, 	d ∗ 	e and R1:: 	a ∗ 	b,
	b ∗ 	c, 	c, 	b ∗ 	d, 	b ∗ 	b, 	c, 	d. We only use R1 in this section. Figure 7 (in the
Appendix) shows the structure of the CTMC for Nmax = 5. Even for a small
volume Nmax = 5, the structure is quite complex: 126 states, 386 transitions, 28
SCCs and 6 BSCCs.
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Fig. 2. Organisation-based transition model without/with constructive perturbation

Figure 8 (in the Appendix) illustrates, in the same fashion as above, the
transition probabilities between all SCCs of the CTMC, and the expected time to
leave them. Note that not all SCCs are good SCCs in this example: we highlight
good SCCs in colour in Fig. 8. For instance, the SCC labelled as (99, 105; 0.25)
is not a good one. There are two states in this SCC: state 99 (a = 2, b = 0, c =
1, d = 1) and state 105 (a = 2, b = 1, c = 1, d = 1). The set of molecules
appearing in this node is closed, but reaction rules such as c → ∅ and d → ∅
cannot be fired within the SCC and it is therefore not good. In addition, the
SCC labelled as (12, 27; 0.25) is also not a good one. It contains state 12 (a =
0, b = 0, c = 2, d = 1) and state 27 (a = 0, b = 1, c = 1, d = 1). The set of
molecules appeared in this node is closed, but reaction rule c → ∅ is unable to
be fired locally, i.e., this decay will only introduce transitions to other SCCs.
Similar cases can happen for some of the other reaction rules.

Fig. 3. Transition probabilities
(bounds and average) between
generators of organisations for
Example 6 with Nmax = 5 and the
expected time to leave them.

Figure 9 (in the Appendix) presents the
transition probabilities between good SCCs
only, and the expected time to leave them.
Note that multiple good SCCs can contribute
to the generation of one organisation. For
instance, both good SCCs labelled 65 . . .
and 98 . . . contribute to organisation {a, b, c}.
Based on this graph, we can build up the
transition graph over organisations. Figure 3
presents the transition probabilities between
(internal generators of) organisations, and
the expected time to leave each of them.
It helps us to understand the movement
between organisations and can be viewed
as an abstract model capturing the behav-
iour of the reaction network at the level of
organisations.

In addition, we also present transition
graphs over the lattice of molecules (states
in which a set of molecules in the lattice with positive numbers) for a quan-
titative analysis for organisations from a different point of view, see Fig. 10
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in the Appendix. The transition probabilities are given in bound. Specifi-
cally, the probability of movement from {a, b, c} to {a, b} can be specified as:
P=?[(a > 0 ∧ b > 0 ∧ c > 0) U (a > 0 ∧ b > 0 ∧ c = 0)]. Note that Figs. 3, 10 can
be used to build coarse-grained model from different view.

6 Organisation-Oriented Interval Markov Chain

The organisation-oriented transition graph generated by the quantitative analy-
sis can be used to build a coarse-grained model (with either interval based or
average based probabilistic transitions). Such a coarse-grained model can mimic
the complex reaction behaviours of the reaction network in an abstract way,
whose state space and movement structure are much smaller. We can then
perform approximation, prediction, and quantitative analysis upon the coarse-
grained model instead of the complex concrete model. This section focuses on for-
malising the interval-based organisation coarse-grained model. Specifically, our
quantitative analysis computes an organisation-oriented interval Markov chain,
in which each abstract state is specified by a set of internal generators of an
organisation, and the abstract transition provides the information about the
uncertainty of the abstract behaviours of the system. Probabilities of moving
from one abstract state to another are given by the lower and upper bounds,
which provides the under and over approximation of the concrete probabilities.

Definition 11 (Organisation-oriented interval Markov chain). An
organ-isation-oriented interval Markov chain is a tuple A�

I = (Q�, Q�
0,Δ

�, L),
where

– Q� is a finite set of abstract states,
each of which q� ∈ Q� is a set of internal generators of an organisation o:
q� ⊆ GI(o);

– Q�
0 ⊆ Q� is the set of initial abstract states;

– Δ� : Q� × Q� → [lb, ub] is the abstract transition matrix, s.t. Δ�(q�, q�′) =
[lb, ub], where lb and ub are the lower and upper bound of a set of concrete
probabilistic transitions: {Δ(q, q′) | q ∈ q�, q′ ∈ q�′} specified in the relevant
concrete model A respectively;

– L : Q� → 2AP is a labelling function over Q� that identifies properties of
interest.

An abstract path is an execution of the organisation-oriented interval Markov
chain.

Definition 12 (Abstract path). An abstract path ω� is a non-empty sequence
of states q�

0q
�
1 . . . , where q�

i ∈ Q� and ∀i.Δ�(q�
i , q

�
i+1) ⊆ (0, k] where 0 < k ≤ 1.

The set of all finite and infinite paths of A�
I starting in state q� are denoted as:

Path
A�

I
fin(q�) and PathA�

I (q�) respectively.
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Definition 13 (Probability bounds of abstract paths). The lower (Prob−)
and upper bound (Prob+) of the probability of a finite abstract path ω�

fin starting
from state q� are respectively:

Prob−
q�(ω

�
fin) �

{
1 if n = 0
Prob−

q�(ω
�
0, ω

�
1) × · · · × Prob−

q�(ω
�
n−1, ω

�
n) otherwise

Prob+
q�(ω

�
fin) �

{
1 if n = 0
Prob+

q�(ω
�
0, ω

�
1) × · · · × Prob+

q�(ω
�
n−1, ω

�
n) otherwise

where n denotes the length of the abstract path, ω�
i denotes the ith element of ω�.

We focus on the reachability properties, for instance, the probability bounds of
reaching or moving to an organisation of interests from another.

Definition 14 (Reachability properties). Let A�
I be an organisation-based

interval Markov chain. The lower and upper bound of the probability of reaching
an abstract state q�′ from q� are computed by:

Reach−
A�

I

(q�, q�′)

� min

⎧
⎪⎪⎨

⎪⎪⎩

∑

ω�∈Path
A�

I
fin (q

�)

{Prob−
q�(ω�) | ω�

0 = q� ∧ ∃i ≥ 0.ω�
i = q�′}, 1

⎫
⎪⎪⎬

⎪⎪⎭

Reach+A�
I

(q�, q�′)

� min

⎧
⎪⎪⎨

⎪⎪⎩

∑

ω�∈Path
A�

I
fin (q

�)

{Prob+
q�(ω�) | ω�

0 = q� ∧ ∃i ≥ 0.ω�
i = q�′}, 1

⎫
⎪⎪⎬

⎪⎪⎭

.

Our organisation-oriented interval Markov chain should safely approximate the
concrete CTMC describing the probabilistic behaviours of the system.

Theorem 1 (Soundness of the abstract semantics). Let A�
I and A be

the coarse-grained model and the relevant concrete model of a reaction network
respectively, ∀q� = Q, q�′ = Q′ ∈ Q� ⊆ Q, we have:

Reach−
A�

I

(q�
1, q

�
2) ≤ Reach−

A(Q,Q′), Reach+A�
I

(q�
1, q

�
2) ≥ Reach+A(Q,Q′).

Proof. Let ω� denote an abstract path starting from q� and reaching q�′. For any
ω� ∈ PathA�

I
(q�, q�′), such as ω�

0 = q�, ω�
|ω�| = q�′, assume |ω�| = n ∈ N, and let

ω ∈ PathA(q, q′) denote a concrete path starting from a state in Q and reaching
a state Q′, we have:
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Reach
−(q�, q�′) =

∑

ω�

Prob
−
q�(ω

�) =
∑

ω�

(
Prob

−(ω�
0, ω

�
1) × · · · × Prob

−(ω�
n−1, ω

�
n)
)

=
∑

ω�

(
n−1∏

i=0

inf{Prob(qi, qi+1)|qi ∈ ω�
i , qi+1 ∈ ω�

i+1}
)

≤
∑

ω�

inf{Prob(q0, qn)|q0 ∈ ω�
0, qn ∈ ω�

n}

=
∑

ω

inf{Prob(ω0, ωn)|ω0 ∈ Q, ωn ∈ Q′} = Reach
−(Q, Q′).

Similarly, we have Reach+(q�, q�′) ≥ Reach+(Q,Q′). �

Example 7. Consider again the reaction network described in Example 6:

– by applying the coarse-grained model shown in Fig. 3, we can calculate the
probability of movement from q�

{a,b,c,d} to q�
{a,b} is: [0.1506, 1]; the probability

of movement from q�
{a,b,c,d} to q�

{a} is: [0.2314, 1];
– by applying the concrete model shown in Fig. 7, we obtain the probability

of movement from Q{a,b,c,d} to Q{a,b} is: [0.1776, 0.8268]; the probability of
movement from Q{a,b,c,d} to Q{a} is: [1, 1].

Note that our abstract model safely approximates the concrete one.

7 An Application of the Coarse-Grained Model

This section presents an application of our organisation-oriented coarse grained
model. We address the following problem: given a reaction network and a fixed
number of the maximum population of the system, construct the average-based
organisation coarse-grained model Ā� (focus on the average transition probabil-
ities between abstract states for simplicity and intuition, this can be replaced by
interval-based transitions directly), can we predict the behaviour of the system
at any future time using Ā�?

Āt

¯At+ t

At At+ t

f

go go

f

The diagram to the left captures the idea of using
the organisation-based coarse grained model to approxi-
mate the concrete one. In the concrete world, At denotes
the concrete model at time t, f denotes the dynamical
transition function over At, and At+Δt denotes the con-
crete model after Δt time units; go denotes the organ-
isation based coarse graining function, which maps the
concrete model At (c.f. At+Δt) to the average coarse-
grained model Ā�

t (c.f. ¯A�
t+Δt); f � denotes the coarse-

graining dynamical transition function on Ā�
t.

We apply the traditional “master equation” approach to calculate the sto-
chastic time evolution of the reaction network. We briefly review the main
features of the master equation formalism for our purpose of calculating the
prediction of an reaction network at any future time. The probability function
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P (X1,X2, . . . , Xn; t) defines the probability of number of Xi molecules of species
Si for i ∈ {1, . . . , n} at time t. This function thus describes the “stochastic state”
of the system at time t. The master equation is the time-evolution equation for
the function P (t). Function P (X1, . . . , Xn; t+dt) can be viewed as the sum of the
probabilities of different ways that the system can reach the state X1, . . . , Xn at
time t+dt: P (X1, . . . , Xn; t+dt) = P (X1, . . . , Xn; t)(1−

∑m
i=1 αidt)+

∑n
j=1 βjdt,

where the quantity βjdt denotes the probability that the system is entering the
state (X1, . . . , Xn) at time t + dt, and the quantity αidt denotes the proba-
bility that is leaving (X1, . . . , Xn) at time t. To avoid confusion, we use P (t)
as a short notation of P (X1, . . . , Xn; t). Consider a coarse-grained model Ā�,
and any abstract state q�

i , let αi denote the average rate of leaving state q�
i ,

i.e., dPi(t)
dt = −αiPi(t), Ei denote the expected time to leave state q�

i , we have:
Ei =

∫ ∞
0

Pi(t)dt =
∫ ∞
0

e−αitdt = 1
αi

, i.e., αi = 1
Ei

is the rate of leaving q�
i .

In addition, for any j �= i and Δ�(q�
j , q

�
i ) > 0, similarly, βj = 1

Ej
is the rate of

coming to q�
i from q�

j . Therefore, for all i ∈ {1, . . . , n}, we have:

dPi(t)
dt

= − 1
Ei

Pi(t) +
n∑

j=0,j �=i,Δ�(q�
j ,q�

i )>0

1
Ej

Pj(t).

We therefore build a set of equations for all i. By solving the set of equations,
we can obtain the distributions of the system at any future time.

Example 8. Consider again Example 6. Due to the coarse-grained model shown
in Fig. 3 (Nmax = 5), we construct the master equations as follows:
⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

dP{a,b,c,d}(t)

dt
= − 1

0.59
P{a,b,c,d}(t)

dP{a,b,c}(t)

dt
= − 1

0.66
P{a,b,c}(t) + 0.34 ∗ 1

0.59
P{a,b,c,d}(t)

dP{a,b}(t)

dt
= − 1

3.46
P{a,b}(t) + 0.217 ∗ 1

0.59
P{a,b,c,d}(t) + 0.78 ∗ 1

0.66
P{a,b,c}(t)

dP{a,d}(t)

dt
= − 1

3.46
P{a,d}(t) + 0.356 ∗ 1

0.59
P{a,b,c,d}(t)

dP{a}(t)

dt
= 0.087

0.59
P{a,b,c,d}(t) + 0.22

0.66
P{a,b,c}(t) + 1

3.46
P{a,b}(t) + 1

3.46
P{a,d}(t)

By solving the above equation systems, Fig. 4 presents a comparison between the
time evolution of the reaction network via master equation simulation through
the organisation-based average coarse-grained model (left) and the exact evolu-
tion of the system through the original concrete model (right).

Figures 11 and 12 (in Appendix) present experimental results for the case of
Nmax = 10 with rates R1 and R2 respectively. Note that our prediction produces
a similar pattern of the concrete behaviours with time evolution for this case.
We focus on the average-based approximation here for the purpose of present-
ing and comparing the pattern of the system behaviours with time evolution
more clearly and intuitively. Our further experiments also demonstrate that the
interval-based prediction can safely approximate the concrete model. The preci-
sion of the results varies regarding to different models and rates of reaction rules,
however the basic pattern of behaviours can be captured. Further note that the
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O1 = 
O2 = a

O3 = a,b
O4 = a,d 

O5 = a,b,c
O6 = a,b,c,d

O1 = 
O2 = a

O3 = a,b
O4 = a,d

O5 = a,b,c
O6 = a,b,c,d

Fig. 4. Organisation dynamics predication via the average coarse-grained model(left)
and the concrete model(right) of Example 6, for Nmax = 5. (Color figure online)

coarse-grained model can be used to predict qualitative dynamical properties of
the original model, like the absence (or presence) of asymptotically stable attrac-
tors inside organizations that have small (or large) time to leave probabilities.

8 Conclusions

This paper investigates the combination of chemical organisation theory and
probabilistic model checking for the analysis of reaction networks modelled as
continuous-time Markov chains. We use model decompositions into strongly con-
nected components (SCCs), and study the problem of how to analyse the model
in terms of organisations. We have presented an algorithm to compute a coarse-
grained Markov chain model of hierarchic organisations for a given reaction
network. The algorithm computes chemical organisations by identifying a set of
good SCCs which can contribute to generating organisations, and building an
interval Markov chain based on the organisation-based quantitative analysis.

Experiments with our method on a set of example reaction network models
demonstrate that the movements between organisations and the expected time
spent in them can approximate the concrete long-term behaviour of the reaction
network. The organisation-based coarse grained model helps to summarise and
reason about the structure and behaviour of the complex model by focusing on
stable states featuring accumulating species.

We also demonstrate how our model can be used to approximate the system
behaviour with time evolution. The experiments show that our prediction can
mimic the main pattern of concrete behaviour in the long run, but the interval-
based organisation coarse graining may suffer from over-estimation. We apply
an average-based organisation coarse graining and compute its stochastic time
evolution. Our experiments show that the precision of the prediction and approx-
imation varies regarding to different models and rates of their reaction rules.
As future work, to improve the precision of the approximation and predictions,
we plan to develop algorithms to selectively refine the coarse-grained models.
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APPENDIX: Supplementary Details for Examples 5 and 6

Fig. 5. Example 5 in the PRISM modelling language
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Fig. 6. Example 5: CTMC model with 4 SCCs and 1 BSCC



248 C. Mu et al.

0
(0,0,0,0)

1

1
(0,0,0,1)

1

2
(0,0,0,2)

2

3
(0,0,0,3)

3

4
(0,0,0,4)

4

5
(0,0,0,5)

5

6
(0,0,1,0)

1
21

(0,1,0,0)

1

1

7
(0,0,1,1)

1 1
22

(0,1,0,1)

1

1 1

1

8
(0,0,1,2)

1 2
23

(0,1,0,2)

1

1 2

2

9
(0,0,1,3)

1 3
24

(0,1,0,3)

1

1 3

3

10
(0,0,1,4)

1 4
25

(0,1,0,4)

1

1 4

4

11
(0,0,2,0)

2
26

(0,1,1,0)

2

1

1

1

36
(0,2,0,0)

1

12
(0,0,2,1)

2 1
27

(0,1,1,1)

2

1

1

1

1

1

37
(0,2,0,1)

1

13
(0,0,2,2)

2 2
28

(0,1,1,2)

2

1

1

2

2

1

38
(0,2,0,2)

1

14
(0,0,2,3)

2 3

29
(0,1,1,3)

2

1

1

3

3

1

39
(0,2,0,3)

1

15
(0,0,3,0)

3
30

(0,1,2,0)

3

1

2

2

40
(0,2,1,0)

2

16
(0,0,3,1)

3 1

31
(0,1,2,1)

3

1

2

1

1

2

41
(0,2,1,1)

2

17
(0,0,3,2)

3

2

32
(0,1,2,2)

3

1

2 2

2

2

42
(0,2,1,2)

2

18
(0,0,4,0)

4

33
(0,1,3,0)

4

1

3

3

43
(0,2,2,0)

3

19
(0,0,4,1)

4 1

34
(0,1,3,1)

4

1

3

1

13

44
(0,2,2,1)

3

20
(0,0,5,0)

5

35
(0,1,4,0)

5

1

4

4

45
(0,2,3,0)

4

2

2 2

1

2 4

2

2 6

3

2

2

1
46

(0,3,0,0)

1

2 2

2

1 1

47
(0,3,0,1)

1

2

4

2

1

2

48
(0,3,0,2)

1

2

4

2

49
(0,3,1,0)

2

2 2

4

2 1

50
(0,3,1,1)

2

2

6

3
51

(0,3,2,0)

3

3

3 3

1

3

6

2

3

3

1

52
(0,4,0,0)

1

3 3

3

1 1
53

(0,4,0,1)

1 3

6

2
54

(0,4,1,0)

2

4

4 4

1

4

4

1
55

(0,5,0,0)

1

5

56
(1,0,0,0)

1

57
(1,0,0,1)

1

58
(1,0,0,2)

12

59
(1,0,0,3)

2 3

60
(1,0,0,4)

34

61
(1,0,1,0)

1
71

(1,1,0,0)

1

1

81
(1,2,0,0)

1

62
(1,0,1,1)

1

1

63
(1,0,1,2)

1

72
(1,1,0,1)

1

1

2

64
(1,0,1,3)

2

73
(1,1,0,2)

1

1

1

1

1

82
(1,2,0,1)

1

1

3

74
(1,1,0,3)

1

1

2

2

2

83
(1,2,0,2)

1

1

3

3

65
(1,0,2,0)

2

75
(1,1,1,0)

2

1

1

1

1

84
(1,2,1,0)

1

66
(1,0,2,1)

2

1

67
(1,0,2,2)

1

76
(1,1,1,1)

2

2

2

77
(1,1,1,2)

2

1

1

1

1

1

1

1
85

(1,2,1,1)

11

1

2

1

2

1

68
(1,0,3,0)

3

78
(1,1,2,0)

3

1

2

2

2

86
(1,2,2,0)

1

69
(1,0,3,1)

3

1

79
(1,1,2,1)

3

1

2

1

1

2

2

70
(1,0,4,0)

4

80
(1,1,3,0)

4

1

3

3

3

2

87
(1,3,0,0)

2

2

2

1

1

88
(1,3,0,1)

2

2

4

2

2

2

1

1

89
(1,3,1,0)

2

2

2

2 1

1

1

2

4

2

2

3

90
(1,4,0,0)

3

3

3

1

3

3

1

1

4

91
(2,0,0,0)

1

92
(2,0,0,1)

1

93
(2,0,0,2)

2 2

94
(2,0,0,3)

4 3

95
(2,0,1,0)

1
101

(2,1,0,0)

1

1

107
(2,2,0,0)

2

96
(2,0,1,1)

1

1

97
(2,0,1,2)

2

102
(2,1,0,1)

1

1

2

103
(2,1,0,2)

1

1

1

1

2

108
(2,2,0,1)

2

1

2

2

98
(2,0,2,0)

2

104
(2,1,1,0)

2

1

1

1

1

109
(2,2,1,0)

2

99
(2,0,2,1)

2

1

105
(2,1,1,1)

2

1

1

1

1

1

1

100
(2,0,3,0)

3

106
(2,1,2,0)

3

1

2

2

2

2

110
(2,3,0,0)

4

2

2

1

2

2

1

1

3

111
(3,0,0,0)

1

112
(3,0,0,1)

1
113

(3,0,0,2)

32

114
(3,0,1,0)

1
117

(3,1,0,0)

1

1

120
(3,2,0,0)

3

115
(3,0,1,1)

1 1
118

(3,1,0,1)

1

1 1

1

116
(3,0,2,0)

2

119
(3,1,1,0)

2

1

1

1

1

2

121
(4,0,0,0)

1

122
(4,0,0,1)

1

123
(4,0,1,0)

1
124

(4,1,0,0)

1

1

125
(5,0,0,0)

1

Fig. 7. CTMC for the reaction network from Example 6, with 28 SCCs and 6 BSCCs.

Fig. 8. Transition probabilities (bounds/averages) between all SCCs of the CTMC for
Example 6 and expected leaving times.
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Fig. 9. Transition probabilities (bounds and average) between good SCCs for
Example 6 and the expected time to leave them.

Fig. 10. Example 6: transition probabilities in bounds among the lattice of molecules
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Fig. 11. Organisation dynamics predication via master equation simulation over the
average coarse-grained model(left) and the original model(right) of Example 6, for
Nmax = 10 with rates: �a ∗ �b, �b ∗ �c, �c, �b ∗ �d, �b ∗ �b, �c, �d for each reaction rule
respectively. (Color figure online)
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Fig. 12. Organisation dynamics predication via master equation simulation over the
average coarse-grained model(left) and the original model(right) of Example 6, for
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Abstract. We consider networks of finite-state machines having local
transitions conditioned by the current state of other automata. In this
paper, we introduce a reduction procedure tailored for reachability prop-
erties of the form “from global state s, there exists a sequence of transi-
tions leading to a state where an automaton g is in a local state �”. By
analysing the causality of transitions within the individual automata,
the reduction identifies local transitions which can be removed while
preserving all the minimal traces satisfying the reachability property.
The complexity of the procedure is polynomial with the total number
of local transitions, and exponential with the maximal number of local
states within an automaton. Applied to Boolean and multi-valued net-
works modelling dynamics of biological systems, the reduction can shrink
down significantly the reachable state space, enhancing the tractability
of the model-checking of large networks.

1 Introduction

Automata networks model dynamical systems resulting from simple interactions
between entities. Each entity is typically represented by an automaton with
few internal states which evolve subject to the state of a narrow range of other
entities in the network. Richness of emerging dynamics arises from several factors
including the topology of the interactions, the presence of feedback loop, and the
concurrency of transitions.

Automata networks, which subsume Boolean and multi-valued networks, are
notably used to model dynamics of biological systems, including signalling net-
works or gene regulatory networks (e.g., [1,10,15,21,31–33,38]). The resulting
models can then be confronted with biological knowledge, for instance by check-
ing if some time series data can be reproduced by the computational model. In
the case of models of signalling or gene regulatory networks, such data typically
refer to the possible activation of a transcription factor, or a gene, from a par-
ticular state of the system, which reflects both the environment and potential
perturbations. Automata networks have also been used to infer targets to control
the behaviour of the system. For instance, in [1,32], the author use Boolean net-
works to find combinations of signals or combinations of mutations that should
alter the cellular behaviour.

From a formal point of view, numerous biological properties can be expressed
in computation models as reachability properties: from an initial state, or set
c© Springer International Publishing AG 2016
E. Bartocci et al. (Eds.): CMSB 2016, LNBI 9859, pp. 252–272, 2016.
DOI: 10.1007/978-3-319-45177-0 16
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of states, the existence of a sequence of transitions which leads to a desired
state, or set of states. For instance, an initial state can represent a combination
of signals/perturbations of a signalling network; and the desired states the set of
states where the concerned transcription factor is active. One can then verify the
(im)possibility of such an activation, possibly by taking into account mutations,
which can be modelled, for instance, as the freezing of some automata to some
fixed states, or by the removal of some transitions.

Due to the increasing precision of biological knowledge, models of networks
become larger and larger and can gather hundreds to thousands of interact-
ing entities making the formal analysis of their dynamics a challenging task:
the reachability problem in automata networks/bounded Petri nets is PSPACE-
complete [7], which limits its scalability.

Facing a model too large for a raw exhaustive analysis, a natural app-
roach is to reduce its dynamics while preserving important properties. Multiple
approaches, often complementary, have been explored since decades to address
such a challenge in dynamical and concurrent systems [22,24,36]. In the scope of
rule-based models of biological networks, efficient static analysis methods have
been developed to lump numerous global states of the systems based on the frag-
mentation of interacting components [14]; and to a posteriori compress simulated
traces to obtain compact witnesses of dynamical properties [12]. Reductions pre-
serving the attractors of dynamics (long-term/steady-state behaviour) have also
been proposed for chemical reaction networks [25] and Boolean networks [26].
The latter approach applies to formalisms close to automata networks but does
not preserve reachability properties. On Petri nets, different structural reduc-
tions have been proposed to reduce the size of the model specification while
preserving bisimulation [34], or liveness and LTL properties [4,17]. Procedures
such as the cone of influence reduction [5] or relevant subnet computation [37]
allow to identify variables/transitions which have no influence on a given dynam-
ical property. Our work has a motivation similar to the two latter approaches.

Contribution. We introduce a reduction of automata networks which identifies
transitions that do not contribute to a given reachability property and hence
can be ignored. The considered automata networks are finite sets of finite-state
machines where transitions between their local states are conditioned by the
state of other automata in the network. We use a general concurrent semantics
where any number of automata can apply one transition within one step. We
call a trace a sequential interleaved execution of steps.

Our reduction preserves all the minimal traces satisfying reachability prop-
erties of the form “from state s there exist successive steps that lead to a state
where a given automaton g is in local state g�”. A trace is minimal if no step
nor transition can be removed from it and resulting in a sub-trace that sat-
isfies the concerned reachability property. The complexity of the procedure is
polynomial in the number of local transitions, and exponential in the maximal
size of automata. Therefore, the reduction is scalable for networks of multiple
automata, where each have a few local states.
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The identification of the transitions that are not part of any minimal trace
is performed by a static analysis of the causality of transitions within automata.
It extends previous static analysis of reachability properties by abstract inter-
pretation [28,29]. In [29], necessary or sufficient conditions for reachability are
derived, but they do not allow to capture all the (minimal) traces towards a
reachability goal. In [28], the static analysis extracts local states, referred to as
cut-sets, which are necessarily reached prior to a given reachability goal. The
results presented here are orthogonal: we identify transitions that are never part
of a minimal trace for the given reachability property. It allows us to output
a reduced model where all such transitions are removed while preserving all
the minimal traces for reachability. Hence, whereas [28] focuses on identifying
necessary conditions for reachability, this article focuses on preserving sufficient
conditions for reachability.

The effectiveness of our goal-oriented reduction is experimented on actual
models of biological networks and show significant shrinkage of the dynamics
of the automata networks, enhancing the tractability of a concrete verification.
Compared to other model reductions, our goal is similar to the cone of influ-
ence reduction [5] or relevant subnet computation [37] mentioned above, which
identify variables/transitions that do not impact a given property. Here, our app-
roach offers a much more fine-grained analysis in order to identify the sufficient
transitions and values of variables that contribute to the property, which leads
to stronger reductions.

Outline. Section 2 sets up the definition and semantics of the automata networks
considered in this paper, together with the local causality analysis for reachabil-
ity properties, based on prior work. Section 3 first depicts a necessary condition
using local causality analysis for satisfying a reachability property and then intro-
duce the goal-oriented reduction with the proof of minimal traces preservation.
Section 4 shows the efficiency of the reduction on a range of biological networks.
Finally, Sect. 5 discusses the results and motivates further work.

Notations. Integer ranges are noted [m;n] Δ= {m,m + 1, · · · , n}. Given a finite
set A, |A| is the cardinality of A; 2A is the power set of A. Given n ∈ N,
x = (xi)i∈[1;n] is a sequence of elements indexed by i ∈ [1;n]; |x| = n; xm..n is
the subsequence (xi)i∈[m;n]; x ::e is the sequence x with an additional element e
at the end; ε is the empty sequence.

2 Automata Networks and Local Causality

2.1 Automata Networks

We declare an Automata Network (AN) with a finite set of finite-state machines
having transitions between their local states conditioned by the state of other
automata in the network. An AN is defined by a triple (Σ,S, T ) (Definition 1)
where Σ is the set of automata identifiers; S associates to each automaton a
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finite set of local states: if a ∈ Σ, S(a) refers to the set of local states of a; and
T associates to each automaton its local transitions. Each local state is written
of the form ai, where a ∈ Σ is the automaton in which the state belongs to, and
i is a unique identifier; therefore given ai, aj ∈ S(a), ai = aj if and only if ai and
aj refer to the same local state of the automaton a. For each automaton a ∈ Σ,

T (a) refers to the set of transitions of the form t = ai
�−→ aj with ai, aj ∈ S(a),

ai �= aj , and � the enabling condition of t, formed by a (possibly empty) set
of local states of automata different than a and containing at most one local
state of each automaton. The pre-condition of transition t, noted •t, is the set
composed of ai and of the local states in �; the post-condition, noted t• is the
set composed of aj and of the local states in �.

Definition 1 (Automata Network (Σ,S, T )). An Automata Network (AN)
is defined by a tuple (Σ,S, T ) where

– Σ is the finite set of automata identifiers;
– For each a ∈ Σ, S(a) = {ai, . . . , aj} is the finite set of local states of automa-

ton a; S
Δ=

∏
a∈Σ S(a) is the finite set of global states;

LS Δ=
⋃

a∈Σ S(a) denotes the set of all the local states.
– T = {a �→ Ta | a ∈ Σ}, where ∀a ∈ Σ,Ta ⊆ S(a) × 2LS\S(a) × S(a) with

(ai, �, aj) ∈ Ta ⇒ ai �= aj and ∀b ∈ Σ, |� ∩ S(b)| ≤ 1, is the mapping from
automata to their finite set of local transitions.

We note ai
�−→ aj ∈ T

Δ⇔ (ai, �, aj) ∈ T (a) and ai → aj ∈ T
Δ⇔ ∃� ∈

2LS\S(a), ai
�−→ aj ∈ T . Given t = ai

�−→ aj ∈ T , orig(t) Δ= ai, dest(t) Δ= aj,

enab(t) Δ= �, •t Δ= {ai} ∪ �, and t• Δ= {aj} ∪ �.

At any time, each automaton is in one and only one local state, forming the
global state of the network. Assuming an arbitrary ordering between automata
identifiers, the set of global states of the network is referred to as S as a shortcut
for

∏
a∈Σ S(a). Given a global state s ∈ S, s(a) is the local state of automaton

a in s, i.e., the a-th coordinate of s. Moreover we write ai ∈ s
Δ⇔ s(a) = ai; and

for any ls ∈ 2LS, ls ⊆ s
Δ⇔ ∀ai ∈ ls, s(a) = ai.

In the scope of this paper, we allow, but do not enforce, the parallel appli-
cation of transitions in different automata. This leads to the definition of a step
as a set of transitions, with at most one transition per automaton (Definition 2).
For notational convenience, we allow empty steps. The pre-condition (resp. post-
condition) of a step τ , noted •τ (resp. τ•), extends the similar notions on transi-
tions: the pre-condition (resp. post-condition) is the union of the pre-conditions
(resp. post-conditions) of composing transitions. A step τ is playable in a state
s ∈ S if and only if •τ ⊆ s, i.e., all the local states in the pre-conditions of tran-
sitions are in s. If τ is playable in s, s · τ denotes the state after the applications
of all the transitions in τ , i.e., where for each transition ai

�−→ aj ∈ τ , the local
state of automaton a has been replaced with aj .
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Definition 2 (Step). Given an AN (Σ,S, T ), a step τ is a subset of local
transitions T such that for each automaton a ∈ Σ, there is at most one local
transition T (a) in τ (∀a ∈ Σ, |(τ ∩ T (a))| ≤ 1).
We note •τ Δ=

⋃
t∈τ

•t and τ• Δ=
⋃

t∈τ t• \ {orig(t) | t ∈ τ}.
Given a state s ∈ S where τ is playable (•τ ⊆ s), s · τ denotes the state where
∀a ∈ Σ, (s · τ)(a) = aj if ∃ai → aj ∈ τ , and (s · τ)(a) = s(a) otherwise.

Remark that τ• ⊆ s · τ and that this definition implicitly rules out steps
composed of incompatible transitions, i.e., where different local states of a same
automaton are in the pre-condition.

A trace (Definition 3) is a sequence of successively playable steps from a state
s ∈ S. The pre-condition •π of a trace π is the set of local states that are required
to be in s for applying π (•π ⊆ s); and the post-condition π• is the set of local
states that are present in the state after the full application of π (π• ⊆ s · π).

Definition 3 (Trace). Given an AN (Σ,S, T ) and a state s ∈ S, a trace π is
a sequence of steps such that ∀i ∈ [1; |π|], •πi ⊆ (s · π1 · · · · πi−1).
The pre-condition •π and the post-condition π• are defined as follows: for all
n ∈ [1; |π|], for all ai ∈ •πn, ai ∈ •π Δ⇔ ∀m ∈ [1;n−1], S(a)∩•πm = ∅; similarly,
for all n ∈ [1; |π|], for all aj ∈ πn•, aj ∈ π• Δ⇔ ∀m ∈ [n + 1;m], S(a) ∩ πm• = ∅.
If π is empty, •π = π• = ∅.
The set of transitions composing a trace π is noted tr(π) Δ=

⋃|π|
n=1 πn.

Given an automata network (Σ,S, T ) and a state s ∈ S, the local state
g� ∈ LS is reachable from s if and only if either g� ∈ s or there exists a trace
π with •π ⊆ s and g� ∈ π•.

We consider a trace π for g� reachability from s is minimal if and only if
there exists no different trace reaching g� having each successive step being a
subset of a step in π with the same ordering (Definition 4). Say differently, a
trace is minimal for g� reachability if no step or transition can be removed from
it without breaking the trace validity or g� reachability.

Definition 4 (Minimal trace for local state reachability). A trace π is
minimal w.r.t. g� reachability from s if and only if there is no trace � from s,
� �= π, |�| ≤ |π|, g� ∈ �•, such that there exists an injection φ : [1; |�|] →
[1; |π|] with ∀i, j ∈ [1; |�|], i < j ⇔ φ(i) < φ(j) and �i ⊆ πφ(i).

Automata networks as presented can be considered as a class of 1-safe Petri
Nets [3] (at most one token per place) having groups of mutually exclusive places,
acting as the automata, and where each transition has one and only one incom-
ing and out-going arc and any number of read arcs. The semantics considered in
this paper where transitions within different automata can be applied simulta-
neously echoes with Petri net step-semantics and concurrent/maximally concur-
rent semantics [19,20,30]. In the Boolean network community, such a semantics
is referred to as the asynchronous generalized update schedule [2].
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2.2 Local Causality

Locally reasoning within one automaton a, the reachability of one of its local
state aj from some global state s with s(a) = ai can be described by a (local)
objective, that we note ai �aj (Definition 5).

Definition 5 (Objective). Given an automata network (Σ,S, T ), an objec-
tive is a pair of local states ai, aj ∈ S(a) of a same automaton a ∈ Σ and is

denoted ai � aj. The set of all objectives is referred to as Obj Δ= {ai � aj |
(ai, aj) ∈ S(a) × S(a), a ∈ Σ}.

Given an objective ai � aj ∈ Obj, local-paths(ai � aj) is the set of local
acyclic paths of transitions T (a) within automaton a from ai to aj (Definition 6).

Definition 6 (local-paths). Given ai � aj ∈ Obj, if i = j, local-paths(ai �
ai)

Δ= {ε}; if i �= j, a sequence η of transitions in T (a) is in local-paths(ai �aj)
if and only if |η| ≥ 1, orig(η1) = ai, dest(η|η|) = aj, ∀n ∈ [1; |η| − 1], dest(ηn) =
orig(ηn+1), and ∀n,m ∈ [1; |η|], n > m ⇒ dest(ηn) �= orig(ηm).

As stated by Property 1, any trace reaching aj from a state containing ai

uses all the transitions of at least one local acyclic path in local-paths(ai �aj).
Property 1. For any trace π, for any a ∈ Σ, ai, aj ∈ S(a), 1 ≤ n ≤ m ≤ |π| where
ai ∈ •πn and aj ∈ πm•, there exists a local acyclic path η ∈ local-paths(ai �aj)
that is a sub-sequence of πn..m, i.e., there is an injection φ : [1; |η|] → [n;m] with
∀u, v ∈ [1; |η|], u < v ⇔ φ(u) < φ(v) and ηu ∈ πφ(u).

A local path is not necessarily a trace, as transitions may be conditioned
by the state of other automata that may need to be reached beforehand. A
local acyclic path being of length at most |S(a)| with unique transitions, the
number of local acyclic paths is polynomial in the number of transitions T (a)
and exponential in the number of local states in a.

Example 1. Let us consider the automata network (Σ,S, T ), graphically repre-
sented in Fig. 1, where:

Σ = {a, b, c, d}

S(a) = {a0, a1} T (a) = {a0
{b0}−−−→ a1, a1

∅−→ a0}

S(b) = {b0, b1} T (b) = {b0
{a1}−−−→ b1, b1

{a0}−−−→ b0}

S(c) = {c0, c1, c2} T (c) = {c0
{a1}−−−→ c1, c1

{b1}−−−→ c0, c1
{b0}−−−→ c2, c0

{d1}−−−→ c2}

S(d) = {d0, d1} T (d) = ∅

The local paths for the objective c0 � c2 are local-paths(c0 � c2) = {c0
{a1}−−−→

c1
{b0}−−−→ c2, c0

{d1}−−−→ c2}. From the state , A0, b0, c0, d0, instances of traces are

{a0 {b0}−−−→ a1} ::{b0 {a1}−−−→ b1, c0
{a1}−−−→ c1} ::{a1 ∅−→ a0} ::{b1 {a0}−−−→ b0} ::{c1 {b0}−−−→ c2};

{a0 {b0}−−−→ a1} ::{c0 {a1}−−−→ c1} ::{c1 {b0}−−−→ c2};

the latter only being a minimal trace for c2 reachability.
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Fig. 1. An example of automata network. Automata are represented by labelled boxes,
and local states by circles where ticks are their identifier within the automaton – for
instance, the local state a0 is the circle ticked 0 in the box a. A transition is a directed
edge between two local states within the same automaton. It can be labelled with a set
of local states of other automata. In this example, all the transitions are conditioned
by at most one other local state.

3 Goal-Oriented Reduction

Assuming a global AN (Σ,S, T ), an initial state s ∈ S and a reachability goal
g� where g ∈ Σ and g� ∈ S(g), the goal-oriented reduction identifies a subset
of local transitions T that are sufficient for producing all the minimal traces
leading to g� from s. The reduction procedure takes advantage of the local
causality analysis both to fetch the transitions that matter for the reachability
goal and to filter out objectives that can be statically proven impossible.

3.1 Necessary Condition for Local Reachability

Given an objective ai � aj and a global state s ∈ S where s(a) = ai, prior
work has demonstrated necessary conditions for the existence of a trace lead-
ing to aj from s [28,29]. Those necessary conditions rely on the local causality
analysis defined in previous section for extracting necessary steps that have to
be performed in order to reach the concerned local state.

Several necessary conditions have been established in [29], taking into account
several features captured by the local paths (dependencies, sequentiality, partial
order constraints, . . . ). The complexity of deciding most of these necessary con-
ditions is polynomial in the total number of local transitions and exponential in
the maximum number of local states within an automaton.

In this section, we consider a generic reachability over-approximation predi-
cate valids which is false only when applied to an objective that has no trace con-
cretizing it from s: aj is reachable from s with s(a) = ai only if valids(ai �aj).

Definition 7 (valids). Given any objective ai � aj ∈ Obj, valids(ai � aj) if
there exists a trace π from s such that ∃m,n ∈ [1; |π|] with m ≤ n, ai ∈ •πm,
and aj ∈ πn•.

For the sake of self-consistency, we give in Proposition 1 an instance imple-
mentation of such a predicate. It is a simplified version of a necessary condition
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for reachability demonstrated in [29]. Essentially, the set of valid objectives Ω is
built as follows: initially, it contains all the objectives of the form ai �ai (that
are always valid); then an objective ai � aj is added to Ω only if there exists
a local acyclic path η ∈ local-paths(ai � aj) where all the objectives from the
initial state s to the enabling conditions of the transitions are already in Ω: if
bk ∈ enab(ηn) for some n ∈ [1; |η|], then the objective b0 � bk is already in the
set, assuming s(b) = b0.

Proposition 1. For all objective P ∈ Obj, valids(P ) Δ⇔ P ∈ Ω where Ω is the
least fixed point of the monotonic function F : 2Obj → 2Obj with

F(Ω) Δ= {ai �aj ∈ Obj | ∃η ∈ local-paths(ai �aj) :
∀n ∈ [1; |η|],∀bk ∈ enab(ηn), s(b)�bk ∈ Ω}.

Applied to the AN of Fig. 1, if s = 〈a0, b0, c0, d0〉, valids(c0 � c2) is true
because c0

a1−→ c1
b0−→ c2 ∈ local-paths(c0 � c2) with valids(a0 � a1) true and

valids(b0�b0) true. On the other hand, valids(d0�d1) is false.

Note that Proposition 1 is an instance of valids implementation; any other
implementation satisfying Definition 7 can be used to apply the reduction pro-
posed in this article. In [29], more restrictive over-approximations are proposed.

3.2 Reduction Procedure

This section depicts the goal-oriented reduction procedure which aims at iden-
tifying transitions that do not take part in any minimal trace from the given
initial state to the goal local state g�. The reduction relies on the local causality
analysis to delimit local paths that may be involved in the goal reachability: any
local transitions that is not captured by this analysis can be removed from the
model without affecting the minimal traces for its occurrence.

The reduction procedure (Definition 8) consists of collecting a set B of objec-
tives whose local acyclic paths may contribute to a minimal trace for the goal
reachability. To ease notations, and without loss of generality, we assume that
any automaton a is in state a0 in s. Given an objective, only the local paths where
all the enabling conditions lead to valid objectives are considered (local-pathss).
The local transitions corresponding to the objectives in B are noted tr(B).

Initially starting with the main objective g0 �g� (Definition 8(1)), the pro-
cedure iteratively collects objectives that may be involved for the enabling con-
ditions of local paths of already collected objectives. If a transition bj

�−→ bk is
in tr(B), for each ai ∈ �, the objective a0 � ai is added in B (Definition 8(2));
and for each other objective b	 � bi ∈ B, the objective bk � bi is added in B
(Definition 8(3)). Whereas the former criteria references the objectives required
for concretizing a local path from the initial state, the later criteria accounts for
the possible interleaving and successions of local paths within a same automaton:
e.g., g� reachability may require to reach bk and bi in some (undefined) order,
we then consider 4 objectives: b0�bk, bk �bi, b0�bi, and bi �bk.
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Definition 8 (B). Given an AN (Σ,S, T ), an initial state s where, without loss
of generality, ∀a ∈ Σ, s(a) = a0, and a local state g� with g ∈ Σ and g� ∈ S(g),
B ⊆ Obj is the smallest set which satisfies the following conditions:

1. g0�g� ∈ B
2. bj

�−→ bk ∈ tr(B) ⇒ ∀ai ∈ �, a0�ai ∈ B
3. bj

�−→ bk ∈ tr(B) ∧ b	 �bi ∈ B ⇒ bk �bi ∈ B

with tr(B) Δ=
⋃

P∈B
tr(local-pathss(P )), where,∀P ∈ Obj,

local-pathss(P ) Δ= {η ∈ local-paths(P ) | ∀n ∈ [1; |η|],
∀bk ∈ enab(ηn),valids(b0�bk)},

enab(t) being the enabling condition of local transition t (Definition 1).

Theorem 1 states that any trace which is minimal for the reachability of g�
from initial state s is composed only of transitions in tr(B). The proof is given
in AppendixA. It results that the AN (Σ,S, tr(B)) contains less transitions but
preserves all the minimal traces for the reachability of the goal.

Theorem 1. For each minimal trace π reaching g� from s, tr(π) ⊆ tr(B).

Figure 2 shows the results of the reduction on the example AN of Fig. 1 for
the reachability of c2 from the state where all automata start at 0. Basically,
the local path from c0 to c2 using d1 being impossible to concretize (because
valids(d0 � d1) is false), it has been removed, and consequently, so are the
transitions involving b1 as b1 is not required for c2 reachability. In this example,
the subnet computation for reachability properties proposed in [37] would have
removed only the transition c0

d1−→ c2 from Fig. 1.
Because the number of objectives is polynomial (|Obj| =

∑
a∈Σ |S(a)|2), the

computation of B and tr(B) is very efficient, both from a time and space com-
plexity point of view. The sets B ⊆ Obj and tr(B) ⊆ T can be built iteratively,
from the empty sets: when a new objective b	 �bi is inserted in B, each transi-
tion in tr(local-pathss(b	 �bi)) is added in tr(B), if not already in; and for each

Fig. 2. Reduced automata network from Fig. 1 for the reachability of c2 from initial
state indicated in grey.
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transition bj → bk currently in tr(B), the objective bk �bi is added in B, if not

already in. When a new transition bj
�−→ bk is added in tr(B), for each ai ∈ �, the

objective a0 �ai is added in B, if not already in; and for each objective b	 �bi

currently in B, the objective bk �bi is added in B, if not already in.
Putting aside the tr(local-pathss) computation, the above steps require a

polynomial time and a linear space with respect to the number of transitions
and objectives. The computation of tr(local-pathss(ai � aj)) requires a time
exponential with the number of local states in automaton a (|S(a)|), due to
the number of acyclic local paths (Sect. 2.2), but a quadratic space: indeed,
each individual local acyclic path does not need to be stored, only its set of local
transitions, without conditions. Then, valids is called at most once per objective.
We assume that the complexity of valids is polynomial with the number of
automata and transitions and exponential with the maximum number of local
states within an automaton (it is the case of the one presented in Sect. 3.1)

Overall, the reduction procedure has a polynomial space complexity (|Obj|+
|T |) and time complexity polynomial with the total number of automata and
local transitions, and exponential with the maximum number k of local states
within an automaton (k = maxa∈Σ |S(a)|). Therefore, assuming k � |Σ|, the
goal-oriented reduction offers a very low complexity, especially with regard to a
full exploration of the k|Σ| states.

4 Experiments

We experimented the goal-oriented reduction on several biological networks and
quantify the shrinkage of the reachable state space. Then, we illustrate potential
applications with the verification of simple reachability, and of cut sets. In both
cases, the reduction drastically increases the tractability of those applications.

4.1 Results on Model Reduction

We conducted experiments on Automata Networks (ANs) that model dynamics
of biological networks. For different initial states, and for different reachability
goals, we compared the number of local transitions in the AN specifications (|T |),
the number of reachable states, and the size of the so-called complete finite prefix
of the unfolding of the net [13]. This latter structure is a finite partial order
representation of all the possible traces, which is well studied in concurrency
theory. It aims at offering a compact representations of the reachable state spaces
by exploiting the concurrency between transitions: if t1 and t2 are playable in
a given state and are not in conflict (notably when •t1 ∩ •t2 = ∅), a standard
approach would consider 4 global transitions (t1 then t2, and t2 then t1), whereas
a partial order structure would simply declare t1 and t2 as concurrent, imposing
no ordering between them. Hence, unfoldings drop part of the combinatorial
explosion of the state space due to the interleaving of concurrent transitions.
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The selected networks are models of signalling pathways and gene regulatory
networks: two Boolean models of Epidermal Growth Factor receptors (EGF-r)
[32,33], one Boolean model of tumor cell invasion (Wnt) [10], two Boolean mod-
els of T-Cell receptor (TCell-r) [21,31], one Boolean model of Mitogen-Activated
Protein Kinase network (MAPK) [15], one multi-valued model of fate determina-
tion in the Vulval Precursor Cells (VPC) in C. elegans [38], one Boolean model
of T-Cell differentiation (TCell-d) [1], and one Boolean models of cell cycle reg-
ulation (RBE2F) [11]. The ANs result from automatic translation from the log-
ical network specifications in the above references; for most models using the
logicalmodel tool [16]. Note that the obtained ANs are bisimilar to the logical
networks [6]. For each of these models, we selected initial states and nodes for
which the activation will be the reachability goal1. Typically, the initial states
correspond to various input signal combinations in the case of signalling cascades,
or to pluripotent states for gene networks; and goals correspond to transcrip-
tion factors or genes of importance for the model (output nodes for signalling
cascades, key regulators for gene networks).

Table 1 sums up the results before and after the goal-oriented reduction. The
number of reachable states is computed with its-reach [23] using a symbolic
representation, and the size of the complete finite prefix (number of instances of
transitions) is computed with Mole [35]. The goal-oriented reduction is performed
using Pint [27]. In each case, the reduction step took less than 0.1s, thanks to
its very low complexity when applied to logical networks.

There is a substantial shrinkage of the dynamics for the reduced models,
which can turn out to be drastic for large models. In some cases, the model is
too large to compute the state space without reduction. For some large models,
the unfolding is too large to be computed, whereas it can provide a very com-
pact representation compared to the state space for large networks exhibiting a
high degree of concurrency (e.g., TCell-d, RBE2F). In the case of first profile of
TCell-d and EGF-r (104) the reduction removed all the transitions, resulting in
an empty model. Such a behaviour can occur when the local causality analysis
statically detect that the reachability goal is impossible, i.e., the necessary condi-
tion of Sect. 3.1 is not satisfied. On the other hand, a non-empty reduced model
does not guarantee the goal reachability. AppendixB show additional results
with the reduction made without the filtering valids (Sect. 3.1).

4.2 Example of Application: Goal Reachability

In order to illustrate practical applications of the goal-oriented model reduction,
we first systematically applied model-checking for the goal reachability on the
initial and reduced model (Table 1).

We compared two different softwares: NuSMV [8] which combines Binary Deci-
sion Diagrams and SAT approaches for synchronous systems, and its-reach [23]
which implements efficient decision diagram data structures [18]. In both cases,
the transition systems specified as input of these tools is an exact encoding of the

1 Scripts and models available at http://loicpauleve.name/gored-suppl.zip.

http://loicpauleve.name/gored-suppl.zip
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Table 1. Comparisons before (normal font) and after (bold font) the goal-oriented
AN reduction. Each model is identified by the system, the number of automata (within
parentheses), and a profile specifying the initial state and the reachability goal. |T |
is the number of local transitions in the AN specification; “#states” is the number
of reachable global states from the initial state; “—unf—” is the size of the complete
finite prefix of the unfolding. “KO” indicates an execution running out of time (30 min)
or memory. When applied to goal reachability, we show the total execution time and
memory used by the tools NuSMV and its-reach. Computation times where obtained
on an Intel R© CoreTM i7 3.4 GHz CPU with 16 GB RAM. For each case, the reduction
procedure took less than 0.1 s

asynchronous semantics of the automata networks, where steps (Definition 2) are
always composed of only one transition. For NuSMV, the reachability property is
specified with CTL [9] (“EF g�”, g� being the goal local state, and EF the exists
eventually CTL operator). It is worth noting that NuSMV implements the cone
of influence reduction [5] which removes variables not involved in the property.
its-reach is optimized for checking if a state belongs to the reachable state
space, and cannot perform CTL checking.
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Experiments show a remarkable gain in tractability for the model-checking of
reduced networks. For large cases, we observe that the dynamics can be tractable
only after model reduction (e.g., TCell-r (94), RBE2F (370)). its-reach is sig-
nificantly more efficient than NuSMV because it is tailored for simple reachability
checking, whereas NuSMV handles much more general properties.

Because the goal-reduction preserves all the minimal traces for the goal reach-
ability, it preserves the goal reachability: the results of the model-checking is
equivalent in the initial and reduced model.

4.3 Example of Application: Cut Set Verification

The above application to simple reachability does not requires the preservation
of all the minimal traces. Here, we apply the goal-oriented reduction to the cut
sets for reachability, where the completeness of minimal traces is crucial.

Given a goal, a cut set is a set of local states such that any trace leading to
the goal involves, in some of its transitions, one of these local states. Therefore,
disabling all the local states of a cut set should make the reachability of the
goal impossible. This disabling could be implemented by the knock-out/in of
the corresponding species in the biological system: cut sets predict mutations
which should prevent a concerned reachability to occur (e.g., active transcription
factor). Such cut sets have been studied in [28,32] and are close to intervention
sets [21] (which are not defined on traces but on pseudo-steady states).

We focus here on verifying if a (predicted) set of local states is, indeed, a cut
set for the goal reachability. In the scope of this experiment, we consider cut sets
that are disjoint with the initial state. The cut set property can be expressed
with CTL: {a1, b1} is a cut set for g� reachability if the model satisfies the CTL
property not E [ (not a1 and not b1) U g� ] (U being the until operator). The
property states that there exists no trace where none of the local state of the
cut set is reached prior to the goal. It is therefore required that all the minimal
traces to the goal reachability are present in the model: if one is missing, a set
of local states could be validated as cut set whereas it may not be involved in
the missed trace.

Table 2 compares the model-checking of cut sets properties using NuSMV and
its-ctl [23] on a range of the biological networks used in the previous sec-
tions. Because the dynamical property is much more complex, its-reach cannot
be used. The cut sets have been computed beforehand with Pint. Because the

Table 2. Comparisons before (normal font) and after (bold font) the goal-oriented
AN reduction for CTL model-checking of cut sets.

Wnt (32) TCell-r (40) EGF-r (104) TCell-d (101) RBE2F (370)

NuSMV 44 s 55Mb KO KO KO KO

9.1 s 27Mb 2.4 s 34Mb 13 s 33Mb 600 s 360Mb 6 s 29Mb

its-ctl 105 s 2.1 Gb 492 s 10Gb KO KO KO

16 s 720Mb 11 s 319Mb 21 s 875Mb KO 179 s 1.8Gb
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goal-oriented reduction preserves all the minimal traces to the goal, the results
are equivalent in the reduced models. Similarly to the simple reachability, the
goal-oriented reduction drastically improves the tractability of large models.

5 Discussion

This paper introduces a new reduction for automata networks parametrized by
a reachability property of the form: from a state s there exists a trace which
leads to a state where a given automaton g is in state g�.

The goal-oriented reduction preserves all the minimal traces satisfying the
reachability property under a general concurrent semantics which allows at each
step simultaneous transitions of an arbitrary number of automata. Those results
straightforwardly apply to the asynchronous semantics where only one transition
occurs at a time: any minimal trace of the asynchronous semantics is a minimal
trace in the general concurrent semantics.

Its time complexity is polynomial in the total number of transitions and expo-
nential with the maximal number of local states within an automaton. Therefore,
the procedure is extremely scalable when applied on networks between numerous
automata, but where each automaton has a few local states.

Applied to logical models of biological networks, the goal-oriented reduction
can lead to a drastic shrinkage of the reachable state space with a negligible
computational cost. We illustrated its application for the model-checking of sim-
ple reachability properties, but also for the validation of cut sets, which requires
the completeness of minimal traces in the reduced model. It results that the
goal-oriented reduction can increase considerably the scalability of the formal
analysis of dynamics of automata networks.

The goal is expressed as a single local state reachability, which also allows to
to support sequential reachability properties between (sub)states using an extra
automaton. For instance, the property “reach a1 and b1, then reach c1” can be

encoded using one extra automaton g, where g0
{a1,b1}−−−−−→ g1 and g1

{c1}−−−→ g�.
Further work consider performing the reduction on the fly, during the state

space exploration, expecting a stronger pruning. Although the complexity of the
reduction is low, such approaches would benefit from heuristics to indicate when
a new reduction step may be worth to apply.

A Proof of Minimal Traces Preservation

We assume a global AN (Σ,S, T ) where g ∈ Σ, g� ∈ S(g), and s ∈ S with
s(g) �= g�.

From Property 1 and Definition 7, any trace reaching first ai and then aj uses
all the transitions of at least one local path in local-pathss(ai �aj).

We first prove with Lemma 2 that the last transition of a minimal trace π for
g� reachability, of the form π|π| = {gi → g�}, is necessarily in tr(B). Indeed, by
definition of B, g0 �g� ∈ B; and by Lemma 1, gi → g� /∈ local-pathss(g0 �g�)
implies that reaching gi requires to reach g� beforehand.



266 L. Paulevé

Lemma 1. Given aj → ai ∈ T , if aj → ai /∈ tr(local-pathss(a0�ai)), then for
any trace π from s with aj ∈ πv• and ai ∈ πw• for some v, w ∈ [1; |π|], there
exists u < v with ai ∈ πu•.

Proof. Let η ∈ local-pathss(a0 � aj) be an acyclic local path such that ∀n ∈
[1; |η|], ai �= dest(ηn). The sequence η ::aj → ai is then acyclic and, by definition,
belongs to local-pathss(a0�ai), which is a contradiction. ��

Lemma 2. If π is a minimal trace for g� reachability from state s, then, nec-
essarily, π|π| ⊆ tr(B).

Proof. As π is minimal for g� reachability, without loss of generality, we can
assume that π|π| = {gi → g�}. By definition, tr(local-pathss(g0�g�)) ⊆ tr(B).
By Lemma 1, if gi → g� /∈ tr(local-pathss(g0 � g�)), then there exists u < |π|
such that g� ∈ πu•; hence, π would be non minimal. ��

The rest of the proof of Theorem 1 is derived by contradiction: if a transition
of π is not in tr(B), we can build a sub-trace of π which preserves g� reachability,
therefore π is not minimal.

Given a transition ai → aj in the q-th step of π that is not in tr(B), removing
ai → aj from πq would imply to remove any further transition that depend
causally on it. Two cases arise from this fact: either all further transitions that
depend on aj must be removed; or ai → aj is part of loop within automaton a,
and it is sufficient to remove the loop from π.

Lemma 3 ensures that if az �ak is in B and if az occurs before the q-th step
and ak after the q-th step of π, then ai → aj /∈ tr(local-pathss(az � ak)) only
if ai → aj is part of a loop, i.e., there are two steps surrounding q where the
automaton a is in the same state before their application.

Lemma 3. Given a ∈ Σ and u, q, v ∈ [1; |π|], u ≤ q < v, with az ∈ •πu,
ak ∈ •πv ∪ πv•, and ai → aj ∈ πq \ tr(B), if az � ak ∈ B then ∃m,n ∈ [u; v],
m ≤ q ≤ n such that (π1..m−1)• ∩S(a) = (π1..n)• ∩S(a); and ak ∈ •πv ⇒ n < v.

Proof. If ai → aj /∈ tr(B) and az � ak ∈ tr(B), necessarily ai → aj /∈
tr(local-pathss(az � ak)). Therefore ai → aj belongs to a loop of a local path
from az (at index u in π) to ak (at index v in π). Hence, ∃m,n ∈ [u; v] with
m ≤ q ≤ n and ah, ax, ay ∈ S(a) such that ah → ax ∈ πm and ay → ah ∈ πn;
therefore (π1..m−1)• ∩ S(a) = (π1..n)• ∩ S(a) = ah. In the case where ak ∈ •πv,
ak �= ah, hence n < v. ��

Intuitively, Lemma3 imposes that π has the following form:

a
z

∈ /∈
tr

(B
)

a
k

∈

π = · · · ::πu :: · · · ::ah → ax :: · · · ::ai → aj :: · · · ::ay → ah :: · · · ::πv :: · · ·
u m q n v

given that az �ak ∈ B.
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The idea is then to remove the transitions forming the loop within automaton
a. However, transitions in other automata may depend causally on the transitions
that compose the local loop in automaton a within steps m and n, following the
notations in Lemma 3.

Lemma 4 establishes that we can always find m and n such that none of the
transitions within these steps with an enabling condition depending on automa-
ton a are in tr(B). Indeed, if a transition in tr(B) depends on a local state of a,
let us call it ap, the objectives a0 �ap and ap �ak are in B, due to the second
and third condition in Definition 8. Lemma 3 can then be applied on the subpart
of π that contains the transition ai → aj not in tr(B) and that concretizes either
a0�ap or ap �ak to identify a smaller loop containing ai → aj .

Lemma 4. Let us assume a ∈ Σ and q ∈ [1; |π|] with ai → aj ∈ πq\tr(B). There
exists m,n ∈ [1; |π|] with m ≤ q ≤ n such that ∀t ∈ tr(πm+1..n), enab(t)∩S(a) �=
∅ ⇒ t /∈ tr(B), and, if a = g or ∃t ∈ tr(πn+1..|π|)∩ tr(B) with enab(t)∩S(a) �= ∅,
then (π1..m−1)• ∩ S(a) = (π1..n)• ∩ S(a).

Proof. First, let us assume that a �= g and for any t ∈ πq+1..|π|, enab(t)∩S(a) �=
∅ ⇒ t /∈ tr(B): the lemma is verified with m = q and n = |π|.

Then, let us assume there exists v ∈ [q + 1; |π|] such that ∃t ∈ tr(πv) ∩ tr(B)
with ak ∈ enab(t). By Definition 8, this implies a0 � ak ∈ B. By Lemma 3,
there exists m,n ∈ [1; v − 1] with m ≤ q ≤ n such that (π1..m−1)• ∩ S(a) =
(π1..n)• ∩ S(a).

Otherwise, a = g, and by Lemma 3 with ak = g�, there exists m,n ∈ [1; |π|]
with m ≤ q ≤ n and m �= n such that (π1..m−1)• ∩ S(a) = (π1..n)• ∩ S(a).
Remark that it is necessary that n < |π|: if n = |π|, g� ∈ (π1..m−1)•, so π would
be not minimal.

In both cases, if there exists r ∈ [m + 1;n] such that ∃ap ∈ S(a) and ∃t ∈ πr

with ap ∈ enab(t), then t ∈ tr(B) implies that a0 � ap ∈ B and ap � ak ∈ B
(Definition 8). If r > q, by Lemma 3 with ak = ap and v = r, there exists m′, n′ ∈
[m+1;n] such that m′ ≤ q ≤ n′ < r ≤ n with (π1..m′−1)•∩S(a) = (π1..n′

)•∩S(a).
If r ≤ q, by Lemma 3 with a0 = ap and u = r, there exists m′, n′ ∈ [m+1;n] such
that r ≤ m′ ≤ q ≤ n′ with (π1..m′−1)• ∩ S(a) = (π1..n′

)• ∩ S(a). Therefore, by
induction with Lemma 3, there exists m,n ∈ [1; |π|] such that ∀t ∈ tr(πm+1..n),
enab(t) ∩ S(a) �= ∅ ⇒ t /∈ tr(B). ��

Using Lemma 4, we show how we can identify a subset of transitions in π
that can be removed to obtain a sub-trace for g� reachability. In the following,
we refer to the couple (m,n) of Lemma 4 with cb(π, a, q) (Definition 9).

Definition 9 (cb(π, a, q)). Given a ∈ Σ, q ∈ [1; |π|] with t ∈ πq \ tr(B) and
Σ(t) = a, we define cb(π, a, q) = (m,n) where m,n ∈ [1; |π|] such that:

– ∀t ∈ tr(πm+1..n), enab(t) ∩ S(a) �= ∅ ⇒ t /∈ tr(B);
– a = g∨∃t ∈ tr(πn+1..|π|)∩tr(B) with enab(t)∩S(a) �= ∅ =⇒ (π1..m−1)•∩S(a) =

(π1..n)• ∩ S(a). Moreover, if a = g, then n < |π|.

We use Lemma 4 to collect the portions of π to redact according to each
automaton. We start from the last transition in π that is not in tr(B): if tr(π) �⊆



268 L. Paulevé

tr(B), there exists l ∈ [1; |π|] such that πl �⊆ tr(B) and ∀n > l, πn ⊆ tr(B). By
Lemma 2, we know that l < |π|. Let us denote by bi → bj one of the transitions
in πl which is not in tr(B).

We define Ψ ⊆ Σ × [1; |π|] × [1; |π|] the smallest set which satisfies:

– (b,m, n) ∈ Ψ if cb(π, l, b) = (m,n)
– ∀(a,m, n) ∈ Ψ , ∀q ∈ [m+1;n], ∀t ∈ πq, enab(t)∩S(a) �= ∅ =⇒ (Σ(t),m′, n′) ∈

Ψ where cb(π, q,Σ(t)) = (m′, n′).

Finally, let us define the sequence of steps � as the sequence of steps π where
the transitions delimited by Ψ are removed: for each (a,m, n) ∈ Ψ , all the transi-
tions of automaton a occurring between πm and πn are removed. Formally, |�| =
|π| and for all q ∈ [1; |π|], �q Δ= {t ∈ πq | �(a,m, n) ∈ Ψ : a = Σ(t)∧m ≤ q ≤ n}.

From Lemma 4 and Ψ definition, � is a valid trace. Moreover, by Lemma 4,
there is no q ∈ [1; |π|] such that (g, q, |π|) ∈ Ψ , hence g� ∈ �•. Therefore, π is
not minimal, which contradicts our hypothesis. ��
Example 2 Let us consider the reachability of c2 in the AN of Fig. 1 from state
〈A0, b0, c0, d0〉. The transitions tr(B) preserved by the reduction for that goal are
listed in Fig. 2.

Let π be the following trace in the AN of Fig. 1:

π = {a0
{b0}−−−→ a1} ::{b0

{a1}−−−→ b1, c0
{a1}−−−→ c1} ::{a1

∅−→ a0} ::{b1
{a0}−−−→ b0}

::{c1
{b0}−−−→ c2}.

The latest transition not in tr(B) is b1
{a0}−−−→ b0 at step 4. One can compute

cb(π, 4, b) = (2, 4), and as there is no transition involving b between steps 3 and
4, Ψ = {(b, 2, 4)}; therefore, the sequence

� = {a0
{b0}−−−→ a1} ::{c0

{a1}−−−→ c1} ::{a1
∅−→ a0} ::{} ::{c1

{b0}−−−→ c2}

is a valid sub-trace of π reaching c2, proving π non-minimality.

In conclusion, if π is a minimal trace for g� reachability from state s, then,
tr(π) ⊆ tr(B).

B Experiments with Partial Reduction

The goal-oriented reduction relies on two intertwined analyses of the local causal-
ity in ANs: (1) the computation of potentially involved objectives (Sect. 3.2) and
(2) the filtering of objective that can be proven impossible (Sect. 3.1). The second
part can be considered optional: one could simply define the predicate valids to
be always true. In order to appreciate the effect of this second part, we show here
the intermediary results of model reduction without the filtering of impossible
objectives. It is shown in table below, in the lines in italic. As we can see, for
some models it has no effect on the reduction, for some others the filtering parts
is necessary to obtained important reduction of the state space (e.g., MAPK,
TCell-r (94), TCell-d).
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Model # tr # states |unf |
EGF-r (20) 68 4,200 1,749

43 722 336

43 722 336

Wnt (32) 197 7,260,160 KO

134 241,060 217,850

117 241,060 217,850

TCell-r (40) 90 ≈ 1.2 · 1011 KO

46 25,092 14,071

46 25,092 14,071

MAPK (53) profile 1 173 ≈ 3.8 · 1012 KO

147 ≈ 9 · 1010 KO

113 ≈ 4.5 · 1010 KO

MAPK (53) profile 2 173 8,126,465 KO

148 1,523,713 KO

69 269,825 155,327

VPC (88) 332 KO KO

278 ≈ 2.9 · 1012 185,006

219 1.8 · 109 43,302

TCell-r (94) 217 KO KO

112 KO KO

42 54.921 1,017

TCell-d (101) profile 1 384 ≈ 2.7 · 108 257

275 ≈ 1.1 · 108 159

0 1 1

TCell-d (101) profile 2 384 KO KO

253 ≈ 2.4 · 1012 KO

161 75,947,684 KO

EGF-r (104) profile 1 378 9,437,184 47,425

120 12,288 1,711

0 1 1

EGF-r (104) profile 2 378 ≈ 2.7 · 1016 KO

124 ≈ 2 · 109 KO

69 62,914,560 KO

RBE2F (370) 742 KO KO

56 2,350,494 28,856

56 2,350,494 28,856
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Abstract. Computational models of cellular physiology are often too
complex to be analyzed with currently available tools. By model reduc-
tion we produce simpler models with less variables and parameters, that
can be more easily simulated and analyzed. We propose a reduction
method that applies to ordinary differential equations models of volt-
age and ligand gated ion channels coupled to signaling and metabolism.
These models are used for studying various biological functions such as
neuronal and cardiac activity, or insulin production by pancreatic beta-
cells. Models of ion channels coupled to cell biochemistry share a com-
mon structure. For such models we identify fast and slow sub-processes,
driving and slaved variables, as well as a set of reduced models. Var-
ious reduced models are valid locally and can change on a trajectory.
The resulting reduction is hybrid, implying transitions from one reduced
model (mode) to another one.

1 Introduction

Ion channels are essential in biological processes that involve fast modifications
of cell physiology. They control the flows and the gradients of ions across the
plasma membrane, as well as the membrane potential. Ion channels can open and
close as a function of the membrane potential and/or of the concentrations of
ligands such as ATP. The multiple control of ion channels implies positive and
negative feed-back loops that are responsible for rapid bursts and oscillations
of the electrical activity of the cells. Excitability of parts or of entire plasma
membrane allows the generation and propagation of action potentials needed for
communication between neurons, for muscle contraction, or for endocrine secre-
tion by specialized cells such as pancreatic beta cells [6,7,10]. The dynamics of
ion channels can be very intricate. Firstly, there are many types of interacting
ion channels, each channel having several subunits that react to voltage and lig-
ands. Secondly, ion channels are integrated in the cell’s physiology and interact
c© Springer International Publishing AG 2016
E. Bartocci et al. (Eds.): CMSB 2016, LNBI 9859, pp. 273–288, 2016.
DOI: 10.1007/978-3-319-45177-0 17
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strongly with metabolism and signaling. For these reasons, models of virtual
cells and organs should necessarily include ion channels especially for functions
such as nervous impulse transmission, muscle and cardiac activity [13], or insulin
secretion by pancreatic islets [8]. Biological function is often not a property of
a single cell but an emerging property of interacting cells. Therefore, realistic
models of physiology are necessarily multicellular and should contain hundreds
or thousands of cells that are coupled together electrically and biochemically.
Such models can be computationally expensive if the dynamics of single cells
contain many variables and parameters. Model reduction is useful for building
virtual physiology models that are both realistic and computationally tractable.
By model reduction, one can coarse grain fast variables dynamics whose com-
putation is expensive, while keeping accurate descriptions of the dynamics of
slower, driving variables. Such a strategy has already been used to model spiral
wave dynamics in cardiac tissue [2].

Several model reduction methods where proposed to reduce ion channel mod-
els [1,9,18,26]. All these methods contain at least one ad hoc stage in the
choice of fast parameters or of small parameters needed for singular pertur-
bation approximations. Some attempts to develop automatic model reduction
techniques based on sensitivity analysis were proposed in [3,4]. In previous work,
we have developed model reduction methods for biochemical reactions networks,
based on tropical geometry [19–25] allowing the automatic determination of time
scales and of small parameters. These methods work for polynomial or rational
ordinary differential equations and need to be extended in order to cope with
ion channel models that contain transcendental functions.

In this paper we propose an extension to ion channels models of reduction
methods based on equilibration and time scales. The concept of equilibration
of polynomial dominant terms used in model reduction by tropical approaches
is generalized to situations when these terms are rational or even transcenden-
tal functions. The possibility of such reductions follows from the property of
ion channels dynamics to have multiple time scales ranging from milliseconds
to minutes (or even to hours in models involving changes of gene expression)
[15]. As is the case for polynomial systems [22], the time scales of variables
are state dependent and can change on a trajectory. Therefore, a hybrid reduc-
tion is appropriate: the coarse grained dynamics consists in piecewise smooth
reduced modes and discrete transitions between modes. The definition of the
modes and the transitions between them can be justified in the framework of
matched asymptotic expansions from singular perturbations.

To obtain such approximations we will employ a mathematical technique
called matched-asymptotic expansion. This singular perturbation technique pro-
vides several approximations, neither of which is uniformly valid, but which
have overlapping domains of validity [12,16]. The lack of uniformity could pose
problems when the solutions of the full and reduced models are compared. For
instance, the reduction can slightly change the period of periodic solutions, which
leads to large differences at large times. In order to compare the full and reduced
model solutions it is therefore appropriate to minimize such discrepancies via
parameter optimization of the reduced model. The same method can be used for
learning the parameters of the reduced model from a given data set.
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2 Ion Channels Coupled with Cell Biochemistry Models

These models contain several types of variables.

Voltage-gated channel variables. These variables are needed for ion channel
dynamics. They include gating variables as well as the voltage across the plasma
membrane, which controls opening and closing of channels. The simplest case is
a channel that has only two states: an open state O letting current pass, and
a closed state C which allows for no current. For voltage gated channels, the
probabilities per unit time α, β that a channel opens (its state changes from C
to O) or closes (its state changes from O to C), respectively, are functions of
the membrane potential V . As a consequence, the probability p that the chan-
nel is open (p also gives the proportion of open channels) obeys the differential
equation

dp

dt
= α(V )(1 − p) − β(V )p. (1)

Ion channels can have several identical subunits, each of which can be closed
or open. The number of different states for a channel with m identical subunits
is m + 1 (with each state being represented by a number k between 0 and m,
where k is the number of subunits that are open). The closing and opening
of subunits is modeled as a Markov process with a finite number of states. The
Markovian dynamics are described by a system of ordinary differential equations,
known as the master equation. For a two-state channel, the master equation
is (1). When the channels are identical, the master equation has permutation
symmetries. These symmetries can be exploited to obtain exact reductions of
the channels dynamics [14]. As a result of the exact reduction, the probabilities
pi that i channels are open (pi also represents the proportion of channels with
i subunits open) are polynomial functions of a smaller number of variables that
satisfy linear differential equations [14,15]. For instance, a channel with two
identical subunits has three states corresponding to 0,1,or 2 subunits open. The
corresponding probabilities are derived from the binomial distribution, namely
p0 = (1 − n)2, p1 = 2n(1 − n) and p2 = n2, where n is a probability satisfying
the ordinary differential equation

dn

dt
= α(V )(1 − n) − β(V )n, (2)

where α(V ), β(V ) are, respectively, the probabilities per unit time that a subunit
opens or closes.

Ion currents induce changes of the membrane voltage according to the clas-
sical equation

C
dV

dt
= I(t) −

∑

i

Ii(t) (3)

where I is an input and output current, the variables Ii are currents through
channels of type i, and C is the membrane capacitance.

The current-voltage characteristics of a channel of a given type i is affine,
the current Ii being proportional to the difference between voltage V and the
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rest potential Vi (defined as the equilibrium voltage corresponding to the zero
current; these depend only on the type of ion and are the same for different
channels of the same ion):

Ii = gipi(V − Vi), (4)

where gi, pi are, respectively, the open channel conductance and the proportion
of channels of type i that are open.

Metabolic and signaling variables. Metabolic and signaling pathways can be mod-
eled as networks of biochemical reactions. The coupling between metabolic path-
ways and ion channel dynamics can be performed using the metabolite concen-
trations. For instance, an increase of the ATP/ADP ratio leads to closure of ATP
sensing potassium channels, which in turn triggers plasma membrane depolar-
ization and opening of calcium voltage gated channels. This leads to an increase
in cytoplasmic calcium, which triggers important physiological responses such as
insulin release in pancreatic beta cells. A few signaling or metabolic and signal-
ing variables (e.g. calcium) have contributions to their dynamics coming from
the fluxes fed into and out of the cell by ion channels.

In summary, a general model of ion channels coupled to cell biochemistry is
described by the following equations:

dV

dt
= (V − V∞)/τV (h)

dhi

dt
= (hi − hi,∞(V, c))/τhi

(V, c)

dck

dt
=

∑

j

SkjRj(c) +
∑

i∈I(k)

gipi(hi)(V − Vi) (5)

where V∞(h, c) =
∑

i Vigipi(hi, c), τV (h, c) =
∑

i gipi(hi, c), hi,∞(V ) =
αi(V )/(αi(V ) + βi(V )), and τhi

(V ) = 1/(αi(V ) + βi(V )). The Rj are multi-
variate polynomial or rational functions of the metabolite concentrations c, the
pi are polynomials of the gating variables hi, the functions αi(V ), βi(V ) are
combinations of exponential functions of V , the Skj are the entries of the stoi-
chiometric matrix, and the set valued function I(k) denotes the channels feeding
the variable ck.

The voltage V can take negative or positive values but its variations are
bounded −V1 < V < V2. The gating variables hi are also bounded 0 ≤ hi ≤ 1.
The metabolic variables are unbounded, positive concentrations 0 < ck; these
variables can have various orders of magnitude, from very small to very large.

3 Matched Asymptotic Method

The natural framework for approximations of systems with multiple time scales is
the theory of singular perturbations [12]. The classical presentation of this theory
starts with the identification of a small parameter η in the problem. We then ask:
what are the asymptotic behaviors of the solutions when η → 0? In certain cases,
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this small parameter η can be obtained by nondimensionalization [27]. Variables
and parameters are rescaled via division by other variables and parameters such
that the resulting quotient is unitless. A smallest parameter can be chosen among
unitless parameters. However, the nondimensionalization can be done in several
different ways, and the smallest unitless parameter is not guaranteed to be the
correct small singular perturbations parameter (extra conditions are needed to
guarantee validity of the approximation). For the time being we suppose that
the small parameter has been identified. We will provide automatic methods to
do this in the next sections.

The rescaled equations of a system with fast variables x and slow variables
y read:

dx

dt
=

1
η
f(x, y),

dy

dt
= g(x, y), (6)

where η is a small positive parameter representing the ratio of fast and slow time
scales.

The trajectory of a slow/fast system is typically composed of an alternating
sequence of slow parts and fast parts. Let us suppose that the slow segments are
defined by the time intervals (t0, t1), (t1, t2), . . .. The fast segments are interlaced
between successive slow segments and can be considered as inner layer solutions
placed at t1, t2, . . .. In order to describe the fast inner layer solutions, let us
define the variable τ = (t − ti)/η, i = 1, 2, . . .. Note that τ changes by one when
t changes by η, hence τ corresponds to short time scales inside the inner layers
at t = ti. Using this new time variable, the differential equations (6) become

dx

dτ
= f(x, y),

dy

dτ
= ηg(x, y). (7)

The inner layer approximation is a solution

X(τ) = X0(τ) + ηX1(τ) + . . . ,

Y (τ) = Y0(τ) + ηY1(τ) + . . .

of the Eq. (7). We find that, at the lowest order in η, the inner layer solution
satisfies

dX0

dτ
= f(X0, Y0),

dY0

dτ
= 0, (8)

which is to say that Y0 is constant.
The outer layer approximation is a solution

x(t) = x0(t) + ηx1(t) + . . . ,

y(t) = y0(t) + ηy1(t) + . . .

of the Eq. (6). At the lowest order in η we find

0 = f(x0, y0),
dy0
dt

= g(x0, y0). (9)
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In other words, in outer layers the fast variables are “slaved” by the slow vari-
ables. At lower order in η, outer layers are thus described by the quasi-stationary
approximation. Indeed, the outer layer solution lies on a surface which can be
approximated at lowest order by the equation f(x0, y0) = 0. Provided that
the stability condition Re(Spec(∂f

∂x (x0, y0))) < 0 is fulfilled (∂f
∂x is the Jacobian

matrix of f with respect to rapid variables x) the validity of the quasi-stationarity
approximation is guaranteed by the Tikhonov theorem [28]. The surface defined
by f(x0, y0) = 0 also represents the lowest order approximation of an invariant
manifold (low dimensional surface that contains the reduced dynamics). The
existence of the invariant manifold is guaranteed by Fenichel’s results [5]. An
invariant manifold can be stable (attractive) or unstable; furthermore, the same
invariant manifold can have stable parts that become unstable at bifurcations
(for instance of the saddle-node type), when one or several eigenvalues of the
Jacobian ∂f

∂x vanish or touch the pure imaginary axis of the complex plane. The
(slow) outer solutions correspond to dynamics on the same or on different sta-
ble parts of the invariant manifold. We should emphasize that more complex
behaviour can occur as a result of the so-called canard phenomena when part
of the trajectory can lie for some time on the unstable manifold. Such mecha-
nisms, identified in the Morris-Lecar and FitzHugh-Nagumo models of excitable
systems, [29] will not be discussed here.

As well known in singular perturbation theory [16], neither the inner nor the
outer solution has uniform validity. However, their domains of validity overlap.
As a matter of fact, the two solutions must agree for intermediate time scales
(t − ti) = −ηα, 0 < α < 1. Hence, Y (i)(−ηα−1) = y(i)(ti − ηα), X(i)(−ηα−1) =
x(i)(ti − ηα). By taking the limit η → 0, we obtain the matching conditions

lim
τ→−∞ Y

(i)
0 (τ) = y

(i)
0 (ti), lim

τ→−∞ X
(i)
0 (τ) = x

(i)
0 (ti), (10)

where (Y (i)
0 ,X

(i)
0 ), and (y(i)

0 , x
(i)
0 ) are the lowest orders of the inner and outer

layer solutions at ti and on (ti−1, ti), respectively. For a more formal treatment
of this result, the reader may consult [16].

Similarly,

lim
τ→∞ Y

(i)
0 (τ) = y

(i+1)
0 (ti), lim

τ→∞ X
(i)
0 (τ) = x

(i+1)
0 (ti), (11)

where (y(i+1)
0 , x

(i+1)
0 ) are the lowest orders of the outer layer solutions on (ti, ti+1).

In other words the boundary conditions of the outer layer solutions are the
asymptotic states of the inner layer solutions (corresponding to given fixed values
of the slow variables).

A composite lowest order approximation combines inner and outer layers and
has to subtract common terms:

y(t) ∼
∑

[(y(i)
0 (t) − y

(i)
0 (ti))1(ti−1,ti] + Y i

0 ((t − ti)/η)],

x(t) ∼
∑

[(x(i)
0 (t) − x

(i)
0 (ti))1(ti−1,ti] + Xi

0((t − ti)/η)], (12)

where 1(ti−1,ti] is the indicator function for the interval (ti−1, ti].
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In this paper we will use only the lowest order of the matched asymptotic
expansion. However, higher order expansions can be also obtained with this
method [12,16].

The solution (12) can be seen as a hybrid approximation. The local dynam-
ics are reduced with respect to the full model and, at lowest order, are given
either by the inner layer (solution of (8)) or by the outer layer (solution of (9))
approximation.

4 Algorithm for the Hybrid Reduction

The matched asymptotic expansion method justifies the possibility of hybrid
approximations but is not a reduction algorithm per se. Several steps, namely
the detection of slow/fast variables and the determination of the inner layer
positions need further development.

Numerical determination of time scales and outer layers. In the full (un-reduced)
model, each variable satisfies an ordinary differential equation (ODE) dxi

dt =
fi(xi, x

(i)), where x(i) denotes all of the variables other than xi. Let us denote by
x∗

i (t) the solution of fi(xi, x
(i)(t)) = 0 that is closest to xi(t), where (xi(t), x(i)(t))

is a solution of the given ODE system. We then define two positive indices

τi(t) = (|fi(xi(t), x(i)(t))/(xi(t) − x∗
i (t))|)−1

and si(t) = |xi(t) − x∗
i (t)|/xi,s,

(13)

where xi,s is a positive normalizing value (a typical choice is xi,s = max |xi(t) −
x∗

i (t)|). The index τi is an estimate of the time scale characteristic of the
variable xi. Note that the voltage and gating variables of the generic ion channel
model described by Eq. (5) are τi = τV and τi = τhi

, respectively. The index
s(t) is a measure of the distance between the value of xi on a trajectory and the
imposed value x∗

i that xi would have as fast variable in an outer layer solution.
A low value of si indicates that xi is a fast slaved variable in an outer layer.
Variables can be fast, but not slaved, in the inner layers.

Detection of fast species via sorting of timescales. The value si(t) is used to
determine the intervals of time where fast variables are slaved; these intervals
are the outer layer modes. Suppose that an outer layer starts at ti and ends
at ti+1. The values ti, ti+1 depend on the trajectory and will change if initial
conditions are changed. We should therefore look for another way to define the
limits of the outer layers. A convenient way to do this is to define exit from
an outer layer as a condition on the values of one or several variables of the
model, using ordinary differential equations together with events that trigger
transitions between the modes. This is possible because outer layer solutions
belong to invariant manifolds, and the end of a given outer layer is characterized
by loss of stability of the invariant manifold (which can be written as a condition
on the model’s variables).

Let us consider that the species time scales are sorted, so that τ1(t) ≤ τ2(t)
≤ . . . ≤ τn(t). The subscripts indexing the values τi may change order, depending
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on time. Suppose that, for a given time t, there is an index k such that the value
η = τk(t)/τk+1(t) is much smaller than one. Then, we can use k to separate
fast and slow timescales, and take η as the singular perturbation parameter.
Let us note that the multiple timescales situation η = τk(t)/τk+1(t) → 0 is
covered by the second theorem of Tikhonov [28] and also leads to the outer layer
approximation (9).

The reduction algorithm is summarized by the following steps:

1. Detect fast species. These have small values of τi(t), separated from the rest
of the variables by a gap. To be precise, choose a number g larger than one.
This number g shall be called the gap width. Define a threshold function τth(t)
such that
(a) τth(t) = (τk(t)τk+1(t))1/2,
(b) τk+1(t)/τk(t) = η−1 > g, and
(c) for each t, k is the smallest index satisfying the condition (b).
Then all species such that τk(t) < τth(t) are declared fast.

2. Detect outer layers. These are defined by small values of si, smaller than a
fixed threshold.

3. Slow, outer layer modes are defined by Eq. (9). Fast, inner layer modes are
described by Eq. (8). A slow mode is followed and/or preceded by a fast mode.

4. Define conditions for exit from outer layers. These conditions depend on the
values of variables, and can be implemented as ODE system events triggering
the transition between modes.

5. The last step of the algorithm consists in parameter optimization of the
reduced model by simulated annealing or by other optimization method. This
step is needed for comparison of the full and reduced model solutions, or for
learning parameters of the reduced model from data.

5 A Hybrid Approximation of the Hodgkin-Huxley
Model

We have applied our algorithm to several ion channel models. To keep the pre-
sentation short, we illustrate our results on the well-known Hodgkin-Huxley
(HH) model. This model is a four-variable system (14) of ordinary differential
equations, fitting into the general framework of Eq. (5) above.

dV

dt
=

V − V ∗(hm, hw, hn)
τV (hm, hw, hn)

dhm

dt
=

hm − h∗
m(V )

τm(V )
dhw

dt
=

hw − h∗
w(V )

τh(V )
dhn

dt
=

hn − h∗
n(V )

τn(V )
,

(14)

where hm is the sodium channel activation, hw is the sodium channel inac-
tivation, and hn is the potassium channel activation. For each gating variable x
in the set {m,w, n}, the timescale τx and the imposed value h∗

x are defined by

τx(V ) = αx(V ) + βx(V ) and h∗
x(V ) = αx(V )/(αx(V ) + βx(V )),

respectively, where αx and βx are as given below.
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αm(V ) =
0.32(V + 54)

1 − exp(−(V + 54)/4)
βm(V ) =

0.28(V + 27)
exp((V + 27)/5) − 1

αw(V ) =
0.128

exp((V + 50)/18)
βw(V ) =

4
exp(−(V + 27)/5) + 1

αn(V ) =
0.032(V + 52)

1 − exp(−(V + 52)/5)
βn(V ) =

0.5
exp((V + 57)/40)

The timescale τV and the imposed value V ∗ for the voltage variable are
defined below.

τV (hm, hn) =
C

gmhwh3
m + gnh4

n + gL
,

V ∗(hm, hn) =
gmhwh3

mVm + gnh4
nVn + gLVL + gIhI

gmhwh3
m + gnh4

n + gL
.

The conductances gx are defined by gm(t) = 100 · hw(t), gn = 80, gL = 0.1, and
gI = 0.32. The capacitance was taken to be C = 1. Finally, the constants Vx and
hI are set as follows: Vm = 50, Vn = −100, VL = −67, and hI = 1 The units of
conductance are mS/cm2, those of voltage are mV , those of current are μA/cm2,
and those of capacitance are μF/cm2. This model contains only a voltage variable
V and three gating variables hx, with x in {m,w, n}. In essence, the equations
above are the same as those used in the seminal paper of Hodgkin and Huxley
[11] describing action potentials in the squid giant axon; the organization of the
equations and parameter values used are adopted from [3].

The analysis and reduction of this model was performed using MATLAB [17].

5.1 Trajectory of the HH Model

The system of ODEs described above will quickly converge to a limit cycle (see
Fig. 2(a)). We will see that the voltage V is slow except for during the spikes.
Figure 2(a) plots all four variables over one period of this limiting cycle (Fig. 1).

0 50 100 150 200 250 300 350
−100

−50

0

50

Time

V

Fig. 1. Above, left: A plot of the voltage variable V from the (non-reduced) HH model,
obtained by forward numerical simulation of the Eq. (14). With parameters as above,
this limiting cycle has an approximate period of Δt ≈ 49.5.
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Fig. 2. Above, left: One period of the limiting cycle for the HH model. The voltage
variable is plotted on the upper axes, the middle axis displays the trajectories of the
gating variables, and the timescales τx are plotted on the lower axis. A larger timescale
means that the given variable x is slower to follow its imposed value x∗. Above, right:
A comparison of each variable xi from the (non-reduced) HH model with its imposed
value x∗

i , in a short window of time surrounding the spike. The imposed value of x is
given by the steady state of the equation dxi

dt
= fi(xi, x

(i)) with x(i) held fixed.

5.2 Determination of the Imposed Values

It is convenient that in the HH model, the imposed value x∗
i of each variable xi

can be found as a closed-form function of the variables other than xi, which are
collectively denoted x(i). A comparison of each variable’s trajectory with that of
its imposed value can be found in Fig. 2(b).

In the case of a more complex model, it may be possible to find some of the
imposed values x∗

i via computer algebra methods (this is the usual case, where
fi is a polynomial in xi having small degree). Alternatively, the computation
of the imposed values can be performed via numerical solution of the equation
0 = fi(x∗

i , x
(i)). In the case of multiple solutions to this equation, we choose the

solution which provides the smallest index si and which satisfies the physical
variables constraints, i.e. whose chemical concentrations are positive and whose
gating variables fall in the interval [0, 1].
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5.3 Detection of Fast Species

According to Eq. (13), the timescale τxi
is defined as the absolute value of the

ratio x∗
i −xi

dxi/dt . Intuitively, τxi
is an amount of time required for the variable xi

to move “significantly” in the direction of its imposed value x∗
i . Indeed, if we

hold constant the distance x∗
i − xi between xi and its imposed value, then the

timescale τxi
varies inversely with the derivative dxi

dt . Thus the “fast” variables
are those x’s such that τx is smaller than some given threshold, whereas the
“slow” variables are the variables x whose timescales τx are large.

The timescale threshold τth(t), which distinguishes between the slow and fast
variables, will be allowed to change with time. Following the algorithm in Sect. 4,
we assign a number between 1 and 4 to each of the timescales τV (t), τm(t), τw(t)
and τn(t), so that the inequality

τ1(t) ≤ τ2(t) ≤ τ3(t) ≤ τ4(t)

is satisfied for each point in time. At a given point t, we write k for the smallest
integer such that 1 ≤ k ≤ 4 and such that the ratio τk+1(t)

τk(t)
is larger than a chosen

value g; we have chosen g = 3.5. Thus, τk is the slowest of the fast variables, and
τk+1 is the fastest among the slow variables. The threshold τth is defined as the
geometric mean (τk(t)τk+1(t))1/2, so that a variable x is fast if and only if τx is
smaller than τth.

See the top axis of Fig. 3 for a plot of the timescales τx and the timescale
threshold τth. Note that the variable hm is always fast, the variables hw and hn

are always slow, and the voltage variable V is fast only during the spike (from
t = 37.4915 to t = 38.3835).

5.4 Detection of Outer Layers

The slowness index sx of each variable x is obtained by normalizing the differ-
ence between xi and x∗

i , as per Eq. (13). The bottom axis of Fig. 3 displays a
plot of the slowness indices sV and sm corresponding to fast variables V and
hm, respectively. We have chosen sth = 0.2 as the threshold for distinguishing
between slaved and unslaved fast variables: say that xi is slaved at time t if and
only if the inequality si(t) ≤ sth is satisfied.

The position of the outer layer solution is characterized by small values si

for each of the fast variables xi. Referring to the solution of the full HH model
in Fig. 3, the outer layer occurs from 37.627 to 38.0055 and from 38.2630 to
38.3835 (during which times both V and hm are fast), as well as before 37.4915
and after 38.3835 (during which times only hm is fast). See Table 1 for a summary
of information concerning the different modes (inner and outer) as well as the
transitions between them.

At this point we can compare our results with similar approximations of the
HH model. Like [26], we identify the variable hm as fast everywhere. However,
contrary to our approach, [26] considers that hm is slaved everywhere, which
is not true at least for the parameters values that we use (similar to theirs).
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Fig. 3. Delineation of modes of the (non-reduced) HH model. The top axes show
timescales τxi of each of the variables in a short window of time surrounding the voltage
spike. The dotted line (marked as τth in the legend) is the moving threshold used for
distinguishing slow variables from fast ones. This timescale threshold τth is calculated
as the geometric mean (τk(t)τk+1(t))

1/2 of the smallest two adjacent timescales whose
ratio is larger than a chosen constant value g. The vertical dotted lines mark time-
points where variables change between slow and fast or between slaved and unslaved.

Thus, with respect to more conventional singular perturbations methods, our
approach has two advantages: it detects automatically which type of approxi-
mation should be applied and it considers the possibility of inner layers where
fast variables are not slaved.

The approach used in [3,4] identifies slow and fast regimes which are equiv-
alent to our outer and inner layers, respectively. However, the method in [3,4] is
based on a sensitivity study of the inputs of each variable rather than on direct
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Table 1. Summary of the regions and ODEs defining the modes of the hybrid sim-
plification of the HH model. The type I stands for inner layer and O for outer layer.
Slaved variables are set to their quasi-stationary values. Unslaved variables follow ODE
dynamics. In inner layers slow variables are constant at lowest order approximation and
fast variables are unslaved. In outer layers fast variables are slaved and slow variables
are unslaved.

Region Type V hm hw hn Exit event

1 O slow fast/slaved slow slow V > V1

2 I fast/unslaved fast/unslaved slow slow m > m1

3 O fast/slaved fast/slaved slow slow h < h1

4 I fast/unslaved fast/unslaved slow slow m < m2

5 O fast/slaved fast/slaved slow slow h > h2

Region 1 hm = h∗
m ẋ = (x − x∗)/τx for x ∈ {V, hw, hn}

Regions 2 and 4 hw and hn constant ẋ = (x − x∗)/τx for x ∈ {V, hm}

Regions 3 and 5 hm = h∗
m and V = V ∗ ẋ = (x − x∗)/τx for x ∈ {hw, hn}

testing of quasi-stationarity as in our approach. The former method requires a
complex heuristic to consolidate the results, whereas in our case the mode decom-
position is simply controlled by the two thresholds g and sth. We therefore expect
the method presented in this paper to be better terms of robustness and preci-
sion of the approximation. Indeed, for the HH model, [4] finds six regimes, and
the agreement between trajectories simulated with the full and hybrid model is
only qualitative.

5.5 Differential Equations of Modes, Exit Events and Parameter
Optimization

As discussed in Sect. 4, triggering transitions between modes of the reduced
model is performed via thresholds, listed under “Exit event” in Table 1. For
example, the event “V > V1” is used to trigger exit from region 1, meaning that
there is a threshold V1 such that exit from region 1 is signaled by the value of V
surpassing that of V1. For each region, the thresholded variable was chosen from
the active ones, i.e. slow variables trigger exit from outer layers and fast variables
trigger exit from inner layers. If several variables are active at a given time, we
chose the variable whose logarithmic time derivative has the largest absolute
value. The thresholds were refined in order to minimize the L2 distance between
the trajectories generated by the full and hybrid models. Furthermore, the period
of the reduced model was adjusted to match that of the full model; this was
achieved by adding C to the list of optimized parameters. Local optimization
using the function lsqnonlin of MATLAB (trust-region-reflective least square
algorithm) was enough to obtain a good fit. After optimization, we arrived at
the following parameter values: V1 = −46.99973, m1 = 0.99496, h1 = 0.03597,
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Fig. 4. The trajectory of each of the four variables of the full and reduced HH models.

m2 = 0.16298, h2 = 0.72711, C = 1.00117. For completeness, the equations
governing the model’s evolution in each of the five regions are detailed in Table 1.
A juxtaposition of the trajectories of the reduced and full models can be found
in Fig. 4.

6 Conclusion and Future Work

We have shown how to obtain hybrid reduced models for differential equations
models of ion channels dynamics. These hybrid reductions can be used as sim-
plified units of multiscale models of tissues or organs. In certain cases, hybrid
simplifications can relate biochemical parameters to physiological properties ana-
lytically. For instance, a matched asymptotic simplification of the HH model with
one dimensional description of the slowest outer layer (coarser than the one pre-
sented here) can be used to find an approximate analytic expression relating the
period of bursting to the model parameters. The details of this application will
be presented elsewhere.

In this paper we have presented a trajectory based method for reduction.
This method has the advantage of generality and simplicity of implementation,
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but could, in certain situations, provide a reduction that is valid only locally
in the phase and parameter spaces. Tropical geometry approaches, currently
applied to polynomial and rational differential equations, do not use trajec-
tory simulations and their robustness is guaranteed by replacing positive real
numbers by orders of magnitude, i.e. valuations. In this work we borrowed equi-
libration ideas from tropical methods but we have not used orders yet. The
main difficulty in computing orders is the transcendental nature of some voltage
dependent terms. This will be overcome in future work by using an elimination
method in which valuations are computed as a function of voltage (considered
as a parameter).
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Abstract. The focus of pancreatic cancer research has been shifted from
pancreatic cancer cells towards their microenvironment, involving pan-
creatic stellate cells that interact with cancer cells and influence tumor
progression. To quantitatively understand the pancreatic cancer microen-
vironment, we construct a computational model for intracellular signal-
ing networks of cancer cells and stellate cells as well as their intercellular
communication. We extend the rule-based BioNetGen language to depict
intra- and inter-cellular dynamics using discrete and continuous variables
respectively. Our framework also enables a statistical model checking
procedure for analyzing the system behavior in response to various per-
turbations. The results demonstrate the predictive power of our model by
identifying important system properties that are consistent with existing
experimental observations. We also obtain interesting insights into the
development of novel therapeutic strategies for pancreatic cancer.

1 Introduction

Pancreatic cancer (PC), as an extremely aggressive disease, is the seventh lead-
ing cause of cancer death globally [3]. For decades, extensive efforts were made
on developing therapeutic strategies targeting at pancreatic cancer cells (PCCs).
However, the poor prognosis for PC remains largely unchanged. Recent studies
have revealed that the failure of systemic therapies for PC is partially due to the
tumor microenvironment, which turns out to be essential to PC development
[13,15,16,25]. As a characteristic feature of PC, the microenvironment includes
pancreatic stellate cells (PSCs), immune cells, endothelial cells, nerve cells, lym-
phocytes, dendritic cells, the extracellular matrix, and other molecules surround-
ing PCCs, among which, PSCs play key roles during the PC development [25].
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In this paper, to obtain a system-level understanding of the PC microenviron-
ment, we construct a multicellular model including intracellular signaling net-
works of PCCs and PSCs respectively, and intercellular interactions among them.

Boolean Networks (BNs) [36] has been widely used to model biological net-
works [4]. A Boolean network is an executable model that characterizes the
status of each biomolecule by a binary variable that related to the abundance
or activity of the molecule. It can capture the overall behavior of a biological
network and provide important insights and predictions. Recently, it has been
found useful to study the signaling networks in PCCs [18,19]. Rule-based mod-
eling language is another successfully used formalism for dynamical biological
systems, which allows molecular/kinetic details of signaling cascades to be spec-
ified [10,14]. It provides a rich yet concise description of signaling proteins and
their interactions by representing interacting molecules as structured objects and
by using pattern-based rules to encode their interactions. The dynamics of the
underlying system can be tracked by performing stochastic simulations. In this
paper, to formally describe our multicellular and multiscale model, we extend
the rule-based language BioNetGen [14] to enable the formal specification of not
only the signaling network within a single cell, but also interactions among mul-
tiple cells. Specifically, we represent the intercellular level dynamics using rules
with continuous variables and use BNs to capture the dynamics of intracellular
signaling networks, considering the fact that a large number of reaction rate
constants are not available in the literature and difficult to be experimentally
determined. Our extension saves the virtues of both BNs and rule-based kinetic
modeling, while advancing the specification power to multicellular and multi-
scale models. We employ stochastic simulation NFsim [35] and statistical model
checking (StatMC) [24] to analyze the systems properties. The formal analy-
sis results show that our model reproduces existing experimental findings with
regard to the mutual promotion between pancreatic cancer and stellate cells.
The model also provides insights into how treatments latching onto different
targets could lead to distinct outcomes. Using the validated model, we predict
novel (poly)pharmacological strategies for improving PC treatment.

Related work. Various mathematical formalisms have been used for the can-
cer microenvironment modeling (see a recent review [6]). In particular, Gong [17]
built a qualitative model to analyze the intracellular signaling reactions in PCCs
and PSCs. This model is discrete and focuses on cell proliferation, apoptosis, and
angiogenesis pathways. While, our model is able to make quantitative predictions
and also considers pathways regulating the autophagy of PCCs and the activation
and migration of PSCs, as well as the interplay between PCCs and PSCs. In terms
of the modeling language, the ML-Rules [30] is a multi-level rule-based language,
which can consider multiple biological levels of organization by allowing objects
to be able to contain collections of other objects. This embedding relationship can
affect the behavior of both container and contents. ML-Rules uses continuous rate
equations to capture the dynamics of intracellular reactions, and thus requires all
the rate constants to be known. Instead, our language models intracellular dynam-
ics using BNs, which reduces the difficulty of estimating the values of hundreds of
unknown parameters often involved in large models.
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The paper is organized as follows. In Sect. 2, we present the multicellular
model for the PC microenvironment. We then introduce our rule-based modeling
formalism extended from the BioNetGen language in Sect. 3. In Sect. 4, we briefly
introduce StatMC that is used to carry out formal analysis of the model. The
analysis results are given and discussed in Sect. 5. Section 6 concludes the paper.

2 Signalling Networks Within Pancreatic Cancer
Microenvironment

We construct a multicellular model for pancreatic cancer microenvironment
based on a comprehensive literature search. The reaction network of the model
is summarized in Fig. 1. It consists of three parts that are colored with green,
blue, and purple respectively: (i) the intracellular signaling network of PCCs,
(ii) the intracellular signaling network of PSCs, and (iii) the signaling mole-
cules (such as growth factors and cytokines) in the extracellular space of the
microenvironment, which are ligands of the receptors expressed in PCCs and
PSCs. Note that → denotes activation/promotion/up-regulation, and –• repre-
sents inhibition/suppression/down-regulation.

2.1 The Intracellular Signaling Network of PCCs

Pathways regulating proliferation

KRas mutation enhances proliferation [8]. Mutations of the KRas oncogene
occur in the precancerous stages with a mutational frequency over 90 %. It can
lead to the continuous activation of the RAS protein, which then constantly
triggers the RAF→MEK cascade, and promotes PCCs’ proliferation through
the activation of ERK and JNK.

EGF activates and enhances proliferation [32]. Epidermal growth factor
(EGF) and its corresponding receptor (EGFR) are expressed in ∼95 % of PCs.
EGF promotes proliferation through the RAS→RAF→MEK→JNK cascade. It
can also trigger the RAS→RAF→MEK→ERK→cJUN cascade to secrete EGF
molecules, which can then quickly bind to overexpressed EGFR again to promote
the proliferation of PCCs, which is believed to confer the devastating nature
on PCs.

HER2/neu mutation also intensifies proliferation [8]. HER2/neu is
another oncogene frequently mutated in the initial PC formation. Mutant HER2
can bind to EGFR to form a heterodimer, which can activate the downstream
signaling pathways of EGFR.

bFGF promotes proliferation [9]. As a mitogenic polypeptide, bFGF can
promote proliferation through both RAF→MEK→ERK and RAF→MEK→JNK
cascades. In addition, bFGF molecules are released through RAF→MEK→ERK
pathway to trigger another autocrine signaling pathway in the PC development.
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Fig. 1. The pancreatic cancer microenvironment model

Pathways regulating apoptosis
Apoptosis is the most common mode of programmed cell death. It is executed
by caspase proteases that are activated by death receptors or mitochondrial
pathways.

TGF β1 initiates apoptosis [34]. In PCCs, transforming growth factor β 1
(TGFβ1) binds to and activates its receptor (TGFR), which in turn activates
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receptor-regulated SAMDs that hetero-oligomerize with the common SAMD3
and SAMD4. After translocating to the nucleus, the complex initiates apoptosis
in the early stage of the PC development.

Mutated oncogenes inhibit apoptosis. Mutated KRas and HER2/neu can
inhibit apoptosis by downregulating caspases (CASP) through PI3K→AKT →
NFκB cascade and by inhibiting Bax (and indirectly CASP) via the PI3K→
PIP3→AKT→· · · →BCL-XL pathway.

Pathways regulating autophagy. Autophagy is a catabolic process involv-
ing the degradation of a cell’s own components through the lysosomal machin-
ery. This pro-survival process enables a starving cell to reallocate nutrients
from unnecessary processes to essential processes. Recent studies indicate that
autophagy is important in the regulation of cancer development and progression
and also affects the response of cancer cells to anticancer therapy [21,26].

mTOR regulates autophagy [31]. The mammalian target of rapamycin
(mTOR) is a critical regulator of autophagy. In PCCs, the upstream pathway
PI3K→PIP3→AKT activates mTOR and inhibits autophagy. The MEK→ERK
cascade downregulates mTOR via cJUN and enhances autophagy.

Overexpression of anti-apoptotic factors promotes autophagy [28].
Apoptosis and autophagy can mutually inhibit each other due to their crosstalks.
In the initial stage of PC, the upregulation of apoptosis leads to the inhibition of
autophagy. Along with the progression of cancer, when apoptosis is suppressed by
the highly expressed anti-apoptotic factors (e.g. NFκB and Beclin1), autophagy
gradually takes the dominant role and promotes PCC survival.

2.2 Intracellular Signaling Network of PSCs

Pathways regulating activation. PCCs can activate the surrounding inactive
PSCs by cancer-cell-induced release of mitogenic and fibrogenic factors, such as
PDGFBB and TGFβ1. As a major growth factor regulating cell functions of
PSCs, PDGFBB activates PSCs [20] through the downstream ERK→AP1
signaling pathway. The activation of PSCs is also mediated by TGFβ1 [20]
via TGFR→SAMD pathway. The autocrine signaling of TGFβ1 maintains the
sustained activation of PSCs. Furthermore, the cytokine TNFα, which is a major
secretion of tumor-associated macrophages (TAMs) in the microenvironment, is
also involved in activating PSCs [29] through binding to TNFR, which
indirectly activates NFκB.

Pathways regulating migration. Migration is another characteristic cell func-
tion of PSCs. Activated PSCs move towards PCCs, and form a cocoon around
tumor cells, which could protect the tumor from therapies’ attacks [7,16].

Growth factors promote migration. Growth factors existing in the microen-
vironment, including EGF, bFGF, and VEGF, can bind to their receptors on
PSCs and activate the migration through the MAPK pathway.
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PDGFBB contributes to the migration [33]. PDGFBB regulates the migra-
tion of PSCs mainly through two downstream pathways: (i) the PI3K→PIP3 →
AKT pathway, which mediates PDGF-induced PSCs’ migration, but not prolif-
eration, and (ii) the ERK→AP1 pathway that regulates activation, migration,
and proliferation of PSCs.

Pathways regulating proliferation

Growth factors activate proliferation. In PSCs, as key downstream com-
ponents for several signaling pathways initiated by distinct growth factors, such
as EGF and bFGF, the ERK→AP1 cascade activates the proliferation of PSCs.
Compared to inactive PSCs, active ones proliferate more rapidly.

Tumor suppressers repress proliferation. Similar to PCCs, P53, P21, and
PTEN act as suppressers for PSCs’ proliferation.

Pathways regulating apoptosis

P53 upregulates modulator of apoptosis [23]. The apoptosis of PSCs can
be initiated by P53, whose expression is regulated by the MAPK pathway.

2.3 Interactions Between PCCs and PSCs

The mechanism underlying the interplay between PCCs and PSCs is complex.
In a healthy pancreas, PSCs exist quiescently in the periacinar, perivascular,
and periductal space. However, in the diseased state, PSCs will be activated
by growth factors, cytokines, and oxidant stress secreted or induced by PCCs,
including EGF, bFGF, VEGF, TGFβ1, PDGF, sonic hedgehog, galectin 3,
endothelin 1 and serine protease inhibitor nexin 2 [11]. Activated PSCs will
then transform from the quiescent state to the myofibroblast phenotype. This
results in their losinlipid droplets, actively proliferating, migrating, producing
large amounts of extracellular matrix, and expressing cytokines, chemokines,
and cell adhesion molecules. In return, the activated PSCs promote the growth
of PCCs by secreting various factors, including stromal-derived factor 1, FGF,
secreted protein acidic and rich in cysteine, matrix metalloproteinases, small
leucine-rich proteoglycans, periostin and collagen type I that mediate effects on
tumor growth, invasion, metastasis and resistance to chemotherapy [11]. Among
them, EGF, bFGF, VEGF, TGFβ1, and PDGFBB are essential mediators of
the interplay between PCCs and PSCs that have been considered in our model.

Autocrine and paracrine involving EGF/bFGF [27]. EGF and bFGF can
be secreted by both PCCs and PSCs. In turn, they will bind to EGFR and
FGFR respectively on both PCCs and PSCs to activate their proliferation and
further secretion of EGF and FGF.

Interplay through VEGF [39]. As a proangiogenic factor, VEGF is found to
be of great importance in the activation of PSCs and angiogenesis during the
progression of PCs. VEGF, secreted by PCCs, can bind with VEGFR on PSCs to
activate the PI3K pathway. It further promotes the migration of PSCs through
PIP3→AKT, and suppresses the transcription activity of P53 via MDM2.



Formal Modeling and Analysis of Pancreatic Cancer Microenvironment 295

Autocrine and paracrine involving TGFβ1 [27]. PSCs by themselves are
capable of synthesizing TGFβ1, suggesting the existence of an autocrine loop
that may contribute to the perpetuation of PSC activation after an initial exoge-
nous signal, thereby promoting the development of pancreatic fibrosis.

Interplay through PDGFBB [11]. PDGFBB exists in the secretion of PCCs,
whose production is regulated by TGFβ1 signaling pathway. PDGFBB can acti-
vate PSCs and initiate migration and proliferation as well.

3 The Modeling Language

Rule-based modeling languages are often used to specify protein-to-protein reac-
tions within cells and to capture the evolution of protein concentrations. BioNet-
Gen language is a representative rule-based modeling formalism [14], which con-
sists of three components: basic building blocks, patterns, and rules. In our
setting, in order to simultaneously simulate the dynamics of multiple cells, inter-
actions among cells, and intracellular reactions, we advance the specifying power
of BioNetGen by redefining basic building blocks and introducing new types of
rules for cellular behaviors as follows.

Basic building blocks. In BioNetGen, basic building blocks are molecules that
may be assembled into complexes through bonds linking components of different
molecules. To handle multiscale dynamics (i.e. cellular and molecular levels), we
allow the fundamental blocks to be also cells or extracellular molecules. Specif-
ically, a cell is treated as a fundamental block with subunits corresponding to
the components of its intracellular signaling network. Furthermore, extracellular
molecules (e.g. EGF) are treated as fundamental blocks without subunits.

As we use BNs to model intracellular signaling networks, each subunit of a
cell takes binary values (it is straightforward to extend BNs to discrete models).
The Boolean values - “True (T)” and “False (F)” - can have different biological
meanings for distinct types of components within the cell. For example, for
a subunit representing cellular process (e.g. apoptosis), “T” means the cellular
process is triggered, and “F” means it is not triggered. For a receptor, “T” means
the receptor is bound, and “F” means it is free. For a protein, “T” indicates this
protein has a high concentration, and “F” indicates that its concentration level
is below the value to regulate downstream targets.

Patterns. As defined in BioNetGen, patterns are used to identify a set of species
that share features. For instance, the pattern C(c1) matches both C(c1, c2 ∼ T )
and C(c1, c2 ∼ F ). Using patterns offers a rich yet concise description in specifying
components.

Rules. In BioNetGen, three types of rules are used to specified: binding/un-
binding, phosphorylation, and dephosphorylation. Here we introduce nine rules
in order to describe the cellular processes in our model and the potential thera-
peutic interventions. For each type of rules, we present its formal syntax followed
by examples that demonstrate how it is used in our model.
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Rule 1: Ligand-receptor binding

< Lig > + < Cell > (< Rec >∼ F ) →< Cell > (< Rec >∼ T ) < binding rate >

Remark : On the left-hand side, the “F” value of a receptor < Rec > indicates
that the receptor is free. When a ligand < Lig > binds to it, the reduction of
number of extracellular ligand is represented by its elimination. In the mean-
while, “< Rec >∼ T”, on the right-hand side, indicates that the receptor is not
free any more. Note that, the multiple receptors on the surface of a cell can be
modeled by setting a relatively high rate on the following downstream regulating
rules, which indicates the rapid “releasing” of bound receptors. An example in
our microenvironment model is the binding between EGF and EGFR for PCCs:
“EGF + PCC(EGFR ∼ F ) → PCC(EGFR ∼ T ) 1”.

Rule 2: Mutated receptors form a heterodimer

< Cell > (< Rec1 >∼ F,< Rec2 >∼ F ) →
< Cell > (< Rec1 >∼ T,< Rec2 >∼ T ) < mutated binding rate >

Remark : Unbound receptors can bind together and form a heterodimer. For
example, in our model, the mutated HER2 can activate downstream pathways
of EGFR by binding with it and forming a heterodimer: “’PCC(EGFR ∼
F,HER2 ∼ F ) → PCC(EGFR ∼ T,HER2 ∼ T ) 10”.

Rule 3: Downstream signaling transduction
Rule 3.1 (Single parent) upregulation (activation, phosphorylation, etc.)

< Cell > (< Act >∼ T,< Tar >∼ F ) →
< Cell > (< Act >∼ T,< Tar >∼ T ) < trate >

Rule 3.2 (Single parent) downregulation (inhibition, dephosphorylation, etc.)

< Cell > (< Inh >∼ T,< Tar >∼ T ) →
< Cell > (< Inh >∼ T,< Tar >∼ F ) < trate >

Rule 3.3 (Multiple parents) Downstream regulation

< Cell > (< Inh >∼ F,< Act >∼ T,< Tar >∼ F ) →
< Cell > (< Inh >∼ F,< Act >∼ T,< Tar >∼ T ) < trate >

< Cell > (< Inh >∼ T,< Tar >∼ T ) →
< Cell > (< Inh >∼ T,< Tar >∼ F ) < trate >

Remark : Instead of using kinetic rules (such as in ML-Rules), our language use
logical rules of BNs to describe intracellular signal cascades. Downsteam signal
transduction rules are used to describe the logical updating functions for all
intracellular molecules constructing the signaling cascades. For instance, Rule 3.3
presents the updating function < Tar >(t+1)= ¬ < Inh >(t) ×(< Act >(t)+ <
Tar >(t)), where “< Inh >” is the inhibitor, and “< Act >” is the activator. In
this manner, concise rules can be devised to handle complex cases, where there
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exists multiple regulatory parents. Note that our model follows the biological
assumption that inhibitors hold higher priorities than activators with respect to
their impacts on the target. “+” and “×” in logical functions represent logical
“OR” and “AND” respectively. An example in our model is that, in PCCs, STAT
can be activated by JAK1: “PCC(JAK1 ∼ T, STAT ∼ T ) → PCC(JAK1 ∼
F, STAT ∼ T ) 0.012” and “PCC(JAK1 ∼ T, STAT ∼ F ) → PCC(JAK1 ∼
F, STAT ∼ T ) 0.012”.

Rule 4: Cellular processes
Rule 4.1 Proliferation

< Cell > (Pro ∼ T ) →
< Cell > (Pro ∼ F )+ < Cell > (Pro ∼ F, · · · ) < pro rate >

Remark : When a cell proliferates, we keep the current values of subunits for the
cell that initiates the proliferation, and assume the new cell to have the default
values of subunits. The “· · · ” in the rule denotes the remaining subunits with
their default values.
Rule 4.2 Apoptosis

< Cell > (Apo ∼ T ) → Null() < apop rate >

Remark : A type “Null()” is declared to represent dead cells or degraded mole-
cules. In our model, the apoptosis of PSCs is described as “PSC(Apo ∼ T ) →
Null() 5e − 4”.
Rule 4.3 Autophagy

< Cell > (Aut ∼ T ) →< Mol > + · · · < auto rate >

Remark : The molecules on the right-hand side of this type of rules will be released
into the microenvironment due to autophagy. They are the existing molecules
expressed inside this cell when autophagy is triggered.

Rule 5: Secretion
< Cell > (< secMol >∼ T ) →

< Cell > (< secMol >∼ F )+ < Mol > < sec rate >

Remark : When the secretion of “< Mol >” has been triggered, its amount in
the microenvironment will be added by 1. Note that, we can differentiate the
endogenous and exogenous molecules by labeling the secreted “< Mol >” with
the cell name. In our model, we have “PCC(secEGF ∼ T ) → PCC(secEGF ∼
F ) + EGF 2.7e − 4”.

Rule 6: Mutation
< Cell > (< Mol >∼< unmutated >) →

< Cell > (< Mol >∼< mutated >) < mrate >

Remark : For mutant proteins that are constitutively active, we set a very high
value to the mutation rate “mrate”. In this way, we can almost keep the value
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of the mutated molecule as what it should be. For example, in our model, the
mutation of oncoprotein Ras in PCCs is captured by “PCC(RAS ∼ F ) →
PCC(RAS ∼ T ) 10000”.

Rule 7: Constantly over-expressed extracellular molecules

CancerEvn → CancerEvn+ < Mol > < sec rate >

Remark : We use this type of rules to mimic the situation that the concentration
of an over-expressed extracellular molecule stays in a high level constantly.

Rule 8: Degradation of extracellular molecules

< Mol >→ Null() < deg rate >

Remark : Here, “Null()” is used to represent dead cells or degraded molecules.
For instance, bFGF in the microenvironment will be degraded via “bFGF →
Null() 0.05”.

Rule 9: Therapeutic intervention

< Cell > (< Mol >∼< untreated >) →
< Cell > (< Mol >∼< treated >) < treat rate >

Remark : Given a validated model, intervention rules allow us to evaluate the
effectiveness of a therapy targeting at certain molecule(s). Also, the well-tuned
value of the intervention rate could, more or less, give indications when deciding
the dose of medicine used in this therapy, based on the Law of Mass Action.

Our extension allows the BioNetGen language to be able to model not only
the signaling network within a single cell, but also interactions among multiple
cells. It also allows one to simulate the dynamics of cell populations, which is
crucial to cancer study. Moreover, describing the intracellular dynamics using the
style of BNs improves the scalability of our method by overcoming the difficulty
of obtaining values of a large amount of model parameters from wet laboratory,
which is a common bottleneck of conventional rule-based languages and ML-
Rules. Note that, similar to other rule-based languages, our extended one allows
different methods for model analysis, since more than one semantics can be
defined for the same syntax.

4 Statistical Model Checking

Simulation can recapitulate a number of experimental observations and provide
new insights into the system. However, it is not easy to manually analyze a
significant amount of simulation trajectories, especially when there is a large set
of system properties to be tested. Thus, for our model, we employ statistical
model checking (StatMC), which is a fully automated formal analysis technique.
In this section, we provide an intuitive and brief description of StatMC. The
interested reader can find more details in [24].
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Given a system property expressed as a Bounded Linear Temporal Logic
(BLTL) [24] formula and the set of simulation trajectories generated by apply-
ing the NFsim stochastic simulation to our rule-based model, StatMC estimates
the probability of the model satisfying the property (see the supplementary
document [2] for a brief introduction of BLTL). In detail, since the underlying
semantic model of the stochastic simulation method NFsim that we used for our
model is essentially a discrete-time Markov chain, we need to verify stochastic
models. StatMC treats the verification problem for stochastic models as a statis-
tical inference problem, using randomized sampling to generate traces (or simu-
lation trajectories) from the system model, and then performing model checking
and statistical analysis on those traces. For a (closed) stochastic model and a
BLTL property ψ, the probability p that the model satisfies ψ is well defined
(but unknown in general). For a fixed 0 < θ < 1, we ask whether p ≤ θ, or what
the value of p is. In StatMC, the first question is solved via hypothesis testing
methods, while the second via estimation techniques. Intuitively, hypothesis tests
are probabilistic decision procedures, i.e., algorithms with a yes/no reply, and
which may give wrong answers. Estimation techniques instead compute (proba-
bilistic) approximations of the unknown probability p. The main assumption of
StatMC is that, given a BLTL property ψ, the behavior of a (closed) stochastic
model can be described by a Bernoulli random variable of parameter p, where
p is the probability that the system satisfies ψ. It is known that discrete-time
Markov chains satisfy this requirement [37]. Therefore StatMC can be applied
to our setting. More specifically, given σ is a system execution and ψ a BLTL
formula, we have that Prob{σ|σ |= ψ} = p, and the Bernoulli random variable
mentioned above is the following function M defined as follows: M(σ) = 1 if
σ |= ψ, or M(σ) = 0 otherwise. Therefore, M will be 1 with probability p and 0
with probability 1 − p. In general, StatMC works by first obtaining samples of
M , and then by applying statistical techniques to such samples to solve the veri-
fication problem. The whole checking process is illustrated in the supplementary
document [2].

5 Results and Discussion

In this section, we present and discuss formal analysis results for our pancre-
atic cancer microenvironment model. The model file is available at http://www.
cs.cmu.edu/∼qinsiw/mpc model.bngl. All the experiments reported below were
conducted on a machine with a 1.7 GHz Intel Core i7 processor and 8GBRAM,
running on Ubuntu 14.04.1 LTS. In our experiments, we use Bayesian sequential
estimation with 0.01 as the estimation error bound, coverage probability 0.99,
and a uniform prior (α = β = 1). The time bounds and thresholds given in fol-
lowing properties are determined by considering the model’s simulation results.
The parameters in our model include initial state (e.g. abundance of extracel-
lular molecules) and reaction rate constants. The initial state was provided by
biologists based on wet-lab measurements. The rate constants were estimated
based on the general ones in the textbook [5]. The results in scenario I & II

http://www.cs.cmu.edu/~qinsiw/mpc_model.bngl
http://www.cs.cmu.edu/~qinsiw/mpc_model.bngl
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demonstrate that using these parameters the model is able to reproduce key
observations reported in the literature. We also performed a sensitivity analysis
and the results show that the system behavior is robust to most of the parameters
(the two sensitive parameters have been labeled in our model file).

Scenario I: mutated PCCs with no treatments
In scenario I, we validate our model by studying the role of PSCs in the PC

development.

Property 1: This property aims to estimate the probability that the population
of PCCs will eventually reach and maintain in a high level.

Prob=? {(PCCtot = 10) ∧ F 1200 G100 (PCCtot > 200)}

First, we take a look at the impact from the presence of PSCs on the dynamics of
PCC population. As shown in Table 1, with PSCs, the probability of the number
of PCCs reaching and keeping in a high level (Pr = 0.9961) is much higher
than the one when PSCs are absent (Pr = 0.405). This indicates that PSCs
promote PCCs proliferation during the progression of PC. This is consistent
with experimental findings [7,11,39].

Property 2: This property aims to estimate the probability that the number
of migrated PSCs will eventually reach and maintain in a high amount.

Prob=? {(MigPSC = 0) ∧ F 1200 G100 (MigPSC > 40)}

We then study the impacts from PCCs on PSCs. As shown in Table 1, without
PCCs, it is quite unlikely (Pr = 0.1191) for quiescent PSCs to be activated.
While, when PCCs exist, the chance of PSCs becoming active (Pr = 0.9961)
approaches to 1. This confirms the observation [20] that, during the development
of PC, PSCs will be activated by growth factors, cytokines, and oxidant stress
secreted or induced by PCCs.

Property 3: This property aims to estimate the probability that the number
of PCCs entering the apoptosis phase will be larger than the number of PCCs
starting the autophagy process and this situation will be reversed eventually.

Prob=? {F 400 (G300 (ApoPCC > 50 ∧ AutoPCC < 50)

∧F 700 G300 (ApoPCC < 50 ∧ AutoPCC > 50))}
We are also interested in the mutually exclusive relationship between apoptosis
and autophagy for PCCs reported in [21,28]. In detail, as PC progresses, apop-
tosis firstly overwhelms autophagy, and then autophagy takes the leading place
after a certain amount of time. This situation is described as property 3 and its
estimated probability is close to 1 (see Table 1).

Property 4: This property aims to estimate the probability that, it is always
the case that, once the population of activated PSCs reaches a high level, the
number of migrated PSCs will also increase.

Prob=? {G1600 (ActPSC > 10 → F 100 (MigPSC > 10))}
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Table 1. Statistical model checking results for properties under different scenarios

Property Estimated prob # Succ # Sample Time (s) Note

Scenario I: mutated PCCs with no treatments

1 0.4053 10585 26112 208.91 w.o. PSCs

0.9961 256 256 1.83 w. PSCs

2 0.1191 830 6976 49.69 w.o. PCCs

0.9961 256 256 1.75 w. PCCs

3 0.9961 256 256 5.21 -

4 0.9961 256 256 4.38 -

Scenario II: mutated PCCs with different exsiting treatments

5 0.0004 0 2304 17.13 cetuximab and erlotinib

0.0012 10 9152 68.67 gemcitabine

0.7810 8873 11360 114.25 nab-paclitaxel

0.8004 7753 9686 73.83 ruxolitinib

Scenario III: mutated PCCs with blocking out on possible target(s)

6 0.0792 38363 484128 3727.99 w.o. inhibiting ERK in PSCs

0.9822 2201 2240 17.37 w. inhibiting ERK in PSCs

7 0.1979 3409 17232 136.39 w.o. inhibiting ERK in PSCs

0.9961 256 256 2.01 w. inhibiting ERK in PSCs

8 0.2029 2181 10752 92.57 w.o. inhibiting MDM2 in

PSCs

0.9961 256 256 2.18 w. inhibiting MDM2 in PSCs

9 0.0004 0 2304 15.77 w.o. inhibiting RAS in PCCs

and ERK in PSCs

0.9961 256 256 3.15 w. inhibiting RAS in PCCs

and ERK in PSCs

10 0.9797 1349 1376 11.98 w.o. inhibiting STAT in

PCCs and NFκB in PSCs

0.1631 1476 9056 81.61 w. inhibiting STAT in PCCs

and NFκB in PSCs

One reason why PC is hard to be cured is that activated PSCs will move towards
mutated PCCs, and form a cocoon for the tumor cells, which can protect tumor
from attacks caused by therapies [7,16]. We investigate this by checking prop-
erty 4, and obtain an estimated probability approaching to 1 (see Table 1).

Scenario II: mutated PCCs with different existing treatments

Property 5: This property aims to estimate the probability that the population
of PCCs will eventually drop to and maintain in a low amount.

Prob=? {(PCCtot = 10) ∧ F 1200 G400 (PCCtot < 100)}

Property 5 means that, after some time, the population of PCCs can be main-
tained in a comparatively low amount, implying that PC is under control.
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We now consider 5 different drugs that are widely used in PC treatments -
cetuximab, erlotinib, gemcitabine, nab-paclitaxel, and ruxolitinib, and estimate
the probabilities for them to satisfy property 5. As shown in Table 1, mono-
clonal antibody targeting EGFR (cetuximab), as well as direct inhibition of
EGFR (erlotinib) broadly do not provide a survival benefit in PCs. Inhibition
of MAPK pathway (gemcitabine) has also not been promising. These results are
consistent with clinical feedbacks from patients [1]. While, strategies aiming at
depleting the PSCs in PCs (i.e. nab-paclitaxel) can be successful (with an esti-
mated probability 0.7810). Also, inhibition of Jak/Stat can be very promising
(with an estimated probability 0.8004). These results are supported by [38] and
[22], respectively.

Scenario III: mutated PCCs with blocking out on possible target(s)
Scenario I and II have demonstrated the descriptive and predictive power of

our model. In scenario III, we use the validated model to identify new therapeutic
strategies targeting molecules in PSCs. Here we report 4 potential target(s) of
interest from our screening.

Property 6: This property aims to estimate the probability that the number
of PSCs will eventually drop to and maintain in a low level.

Prob=? {(PSCtot = 5) ∧ F 1200 G400 (PSCtot < 30)}

Property 7: This property aims to estimate the probability that the population
of migrated PSCs will eventually stay in a low amount.

Prob=? {(MigPSC = 0) ∧ F 1200 G100 (MigPSC < 30)}

The verification results of these two properties (Table 1) suggest that inhibiting
ERK in PSCs not only lowers the population of PSCs, but also inhibits PSC
migration. The former function can reduce the assistance from PSCs in the
progression of PCs indirectly. The later one can prevent PSCs from moving
towards PCCs and forming a cocoon to protect PCCs against cancer treatments.

Property 8: This property aims to estimate the probability that the number
of PSCs entering the proliferation phase will eventually be less than the number
of PSCs starting the apoptosis programme and this situation will maintain.

Prob=? {F 1200 G400 ((PSCPro − PSCApop) < 0)}

The increased probability (from 0.2029 to 0.9961 as shown in Table 1) indicates
that inhibiting MDM2 in PSCs may reduce the number of PSCs by inhibiting
PSCs’ proliferation and/or promoting their apoptosis. Similar to the former role
of inhibiting ERK in PSCs, it can help to treat PCs by alleviating the burden
caused by PSCs.

Property 9: This property aims to estimate the probability that the number
of bFGF will eventually stay in such a low level.

Prob=? {F 1200 G400 (bFGF < 100)}
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As mentioned in property 5, 6, and 7, inhibiting RAS in PCCs can lower the num-
ber of PCCs, and downregulating ERK in PSCs can inhibit their proliferation
and migration. Besides these, we find that, when inhibiting RAS in PCCs and
ERK in PSCs simultaneously, the concentration of bFGF in the microenviron-
ment drops (see Table 1). As bFGF is a key molecule that induces proliferation
of both cell types, targeting RAS in PCCs and ERK in PSCs at the same time
could synergistically improve PC treatment.

Property 10: This property aims to estimate the probability that the concen-
tration of VEGF will eventually reach and keep in a high level.

Prob=? {F 400 G100 (V EGF > 200)}

Furthermore, inhibiting STAT in PCCs and NFκB in PSCs simultaneously post-
pones and lowers the secretion of VEGF (see Table 1). VEGF plays an important
role in the angiogenesis and metastasis of pancreatic tumors. Thus, the combina-
tory inhibition of STAT in PCCs and NFκB in PSCs may be another potential
strategy for PC therapies.

6 Conclusion

We present a multicellular and multiscale model of the PC microenvironment.
The model is formally described using the extended BioNetGen language, which
can capture the dynamics of multiscale biological systems using a combination
of continuous and discrete rules. We carry out stochastic simulation and StatMC
to analyze system behaviors under distinct conditions. Our verification results
confirm the experimental findings with regard to the mutual promotion between
PCCs and PSCs. We also gain insights on how existing treatments latching onto
different targets can lead to distinct outcomes. These results demonstrate that
our model might be used as a prognostic platform to identify new drug targets.
We then identify four potentially (poly)pharmacological strategies for deplet-
ing PSCs and inhibiting the PC development. We plan to test our predictions
empirically. Another interesting direction is to extend the model by considering
spatial information [12] and TAMs in the PC microenvironment.
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Abstract. We present a major new release of ASSA-PBN, a software
tool for modelling, simulation, and analysis of probabilistic Boolean net-
works (PBNs). PBNs are a widely used computational framework for
modelling biological systems. The steady-state dynamics of a PBN is
of special interest and obtaining it poses a significant challenge due to
the state space explosion problem which often arises in the case of large
biological systems. In its previous version, ASSA-PBN applied efficient
statistical methods to approximately compute steady-state probabilities
of large PBNs. In this newly released version, ASSA-PBN not only speeds
up the computation of steady-state probabilities with three different real-
isations of parallel computing, but also implements parameter estimation
and techniques for in-depth analysis of PBNs, i.e., influence and sensi-
tivity analysis of PBNs. In addition, a graphical user interface (GUI) is
provided for the convenience of users.

1 Introduction

Probabilistic Boolean networks (PBNs) [9,12] are a modelling framework widely
used to model gene regulatory networks (GRNs). A PBN model is capable to
cope with uncertainties both on the data and model selection levels, allowing
for systematic analysis of global network dynamics in the context of discrete-
time Markov chains (DTMCs). It also provides means for quantifying relative
influences and sensitivities of genes in their interactions and for characterising
long-run behaviours of the whole genetic network. All these analyses are based
on the steady-state probability distribution of the associated DTMC. Therefore,
efficient computation of steady-state probabilities is a crucial foundation for
analysing a PBN. Due to restricted computational resources, statistical meth-
ods are practically the only viable way to deal with large PBNs. However, the
applicability of existing methods/tools for computing steady-state probabilities
of PBNs are still limited by the network size, e.g., less than 100 nodes [11].
Moreover, to make the PBN framework generally accepted for mathematical
modelling of biological systems, a user-friendly tool plays an important role but
currently is still missing.
c© Springer International Publishing AG 2016
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In this paper, we present a new release of ASSA-PBN, a tool designed for mod-
elling, simulation and analysis of PBNs. ASSA-PBN in its previous version [3] has
overcome the above mentioned network size limitation with the implementation
of an efficient simulator and state-of-the-art techniques for steady-state analysis,
e.g., the two-state Markov chain approach. The newly released version of ASSA-
PBN contributes mainly in three aspects. First, it speeds up the computation
of steady-state probabilities of a PBN by using either multiple CPU/GPU core
based parallelisation or structure-based parallelisation. Second, it implements
parameter estimation and it supports in-depth analysis of PBNs, i.e., long-run
influence and sensitivity analysis of PBNs. Third, it provides a graphical user
interface (GUI) to ease user interactions with the tool.

A brief overview of the current functionality of ASSA-PBN is presented below.
Items highlighted in bold are the new features added in version 2.0, and the tool
is publicly available at http://satoss.uni.lu/software/ASSA-PBN/:

– modelling of PBNs in high-level ASSA-PBN format and converting a model
from Matlab-PBN-toolbox format to ASSA-PBN format;

– random generation of PBNs;
– efficient simulation of a PBN;
– computation of steady-state probabilities of a PBN with either numerical

methods or statistical methods (the two-state Markov chain approach, the
Skart method, and the perfect-simulation method) [1,4];

– parallel computation of steady-state probabilities of a PBN with either the
two-state Markov chain approach or the Skart method;

– parameter estimation of a PBN;
– long-run influence and sensitivity analysis of a PBN;
– a command-line tool and a GUI.

2 Preliminaries

We briefly introduce the concept of PBN in this section. PBN models a sys-
tem such as a GRN with binary-valued nodes. For each node there is a certain
number of Boolean functions, known as predictor functions, which determine the
value of the node at the next time step. The selection of the predictor function
is governed by a probability distribution: a selection probability parameter is
associated with each predictor function of the node. Two variants of PBNs are
considered: instantaneous PBNs and context-sensitive PBNs. In the former vari-
ant, the selection of a predictor function is performed for each node at each time
step. In the latter variant, the PBN evolves in accordance with selected predic-
tor functions and new selection is performed only if indicated by an additional
random variable which is updated at each time step. Moreover, the so-called
PBNs with perturbations allow the system to transit to the next state due to
random perturbations that are governed by a perturbation rate parameter. We
focus on synchronous PBNs, where the values of all the nodes are updated simul-
taneously, while in asynchronous PBNs only one node is updated at a time step.
The dynamics of a PBN can be viewed as a DTMC. In the case of PBNs with

http://satoss.uni.lu/software/ASSA-PBN/
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perturbations, the underlying DTMC is ergodic, thus having a unique stationary
distribution, the so-called steady-state (or limiting) distribution, which governs
the long-run behaviour of the system. Due to the space limitation, we refer to [10]
and [12, page 4] for a detailed description of PBNs.

3 Tool Architecture and New Features

The architecture of ASSA-PBN consists of three main modules, i.e., a modeller,
a simulator, and an analyser. The modeller provides a simple way to construct
a PBN model of a real-life biological system, e.g., a GRN. The simulator takes the
PBN constructed in the modeller and performs simulation to produce trajectory
samples. Based on the constructed model and generated samples, the analyser
performs basic and in-depth analysis of the PBN. The analysis results can be
used either to interpret the original system or to optimise the fitting of the system
to experimental measurements. Figure 1 depicts the architecture of ASSA-PBN.
The analyser requires different input files depending on the analysis task. While
simulator and analyser rely on modeller as input, the simulation and analysis
results can be used to optimise model fitting.

Fig. 1. Architecture of ASSA-PBN.

The newly released ASSA-PBN preserves the original architecture while mak-
ing improvements to all the three modules. We proceed with describing the three
modules in more details, while focusing on the newly implemented features.

Modeller. The PBN modeller can either load a PBN from a specification file
or generate a random PBN (e.g., for benchmarking and testing purposes) com-
plying with a given parametrisation [3]. In ASSA-PBN 2.0, a high-level PBN
definition format is provided and visualisation of a PBN is supported in the
GUI. The high-level PBN definition format provides a way to define Boolean
function directly via its semantics instead of its truth table. The visualisation
allows the user to check the details of each function and to interactively change
the values of a predictor function. The modified PBN can then be used for the
long-run sensitivity with respect to function perturbation analysis.

Simulator. Statistical approaches are practically the only viable option for the
analysis of large PBNs. However, applications of such methods necessitate gener-
ation of trajectories of significant length. In order to make the analysis to execute
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in a reasonable amount of time, ASSA-PBN in its previous version applied the
alias method [13] to sample the predictor function in each node. In this new
version, the simulation process is sped up either with the use of the multiple
CPU/GPU core parallelisation technique or with the structure-based paralleli-
sation technique. The multiple core based technique [6] parallelises the simulation
with the use of more cores while the structure-based parallelisation [5] achieves
the same goal with the use of more memory. In order to parallelise the sam-
ple generation process, the algorithms for computing steady-state probabilities
in the analyser have to be adjusted. More details are provided in the analyser
section.

Moreover, visualisation of the simulation result is supported in ASSA-PBN
2.0 as well. Time-course evolution of selected node values can be displayed.

Analyser. The analyser of ASSA-PBN provides three main functionalities: basic
computation of steady-state probabilities of a PBN, in-depth computation of
long-run influences and sensitivities of a PBN, and parameter estimation of
a PBN. In ASSA-PBN 2.0, the basic computation is largely improved with dif-
ferent parallelisation and multi-core techniques, while the other two are newly
implemented.

Parallel computation of steady-state probabilities. The steady-state distributions
can be computed either in an exact way or in a statistical way. Two iterative
methods, i.e., the Jacobi method and the Gauss-Seidel method are implemented
for exact computation; while three statistical methods, i.e., the perfect simula-
tion, the two-state Markov chain approach, and the Skart method are imple-
mented for the approximate computation [3]. Due to their large memory and
time costs, the two iterative methods and the perfect simulation method are
only suitable for analysing small-size PBNs [3].

Based on incremental sampling, the two-state Markov chain approach and the
Skart method are capable of computing steady-state probabilities for large PBNs.
In ASSA-PBN 2.0, we provide two types of techniques to speedup steady-state
probability computation. Firstly, we implement our approach [6] of combining the
Gelman & Rubin method with the two incremental methods to parallelise steady-
state probability computation with multiple CPU/GPU cores. The Gelman &
Rubin method is used to monitor that all the simulated chains have approximately
converged to the steady-state distribution while the two-state Markov chain app-
roach and the Skart method are used to determine the sample size required for
computing the steady-state probabilities with specified precision. For a given pre-
cision, the lengths of trajectories used to estimate steady-state probabilities in
the parallel approach are virtually the same as in the original two incremental
methods. However, since the samples are generated with multiple cores in parallel,
the processing time is significantly reduced. Details on the combined algorithms
can be found in [6]. Secondly, we apply our structure-based parallel technique [5]
to speedup the computation. This technique contributes in two aspects: reducing
the network size by removing irrelevant nodes and by grouping nodes via merging
their predictor functions. The key idea of this technique is to gain faster simulation
speed with the use of larger memory.
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Long-run influence and sensitivity. In a GRN, it is often important to distinguish
which parent gene plays a major role in regulating a target gene and how sensi-
tive the system is with respect to certain changes. PBNs feature quantification of
the importances (formally known as long-run influences) and sensitivities [8–10].
ASSA-PBN 2.0 supports computation of long-run influences and sensitivities, i.e.,
the long-run influence of a gene on a specified predictor function, the long-run
influence of a gene on another gene, the long-run sensitivity of a gene in a PBN,
the long-run sensitivity of a gene with respect to function perturbation, and the
long-run sensitivity of a gene with respect to selection probability perturbation.
All these functionalities require the computation of several steady-state proba-
bilities. For each probability, a trajectory of certain length has to be generated.
Note that ASSA-PBN does not store the generated trajectory for the sake of
memory saving. Instead, ASSA-PBN verifies whether the next sampled state of
the PBN belongs to the set of states of interest and stores this information only.
Therefore, a new trajectory is required when computing the steady-state proba-
bility for a new set of states of interest. ASSA-PBN 2.0 implements computation
of steady-state probabilities of several sets of states in parallel with the two-
state Markov chain approach [6], allowing the reuse of a generated trajectory.
The crucial idea is that each time the next state of the PBN is generated, it is
processed for all state sets of interest simultaneously. Different sets require tra-
jectories of different lengths and the lengths are determined dynamically through
an iteration process. Whenever the trajectory is long enough for computing the
steady-state probability of a certain set of states, the steady-state probability of
this set will be computed and this set will not be considered in future iterations.

Parameter estimation. A key challenge in constructing a PBN model is the
determination of the model parameters which make the model match the behav-
iour of the real system. A few algorithms [2,7] have been proposed in literature
for parameter estimation of biological systems. ASSA-PBN 2.0 applies the par-
ticle swarm optimisation algorithm for estimating parameters for a PBN. This
algorithm is an iterative process for finding an optimal set of parameters. A set
of parameters is called a particle and its fit to the experimental data is verified
through a cost function. ASSA-PBN uses the mean square error (MSE) function,
i.e., MSE = 1

n

∑n
i=1(Ŷi − Yi)2, where n is the number of measurement data, Ŷi

is the ith measurement data point value, and Yi is the computed steady-state
probability corresponding to the ith data point. In each iteration, all the parti-
cles are updated and verified using the cost function. The particle that results
in the minimum cost function value is the optimal particle. Particle values are
updated based on the current values and the current best optimal particle values
so that each particle is moving towards the direction of the current best optimal
particle. Normally, the verification of the cost function for each particle requires
the computation of steady-state probabilities of several sets of states. To make
the computation as fast as possible, ASSA-PBN 2.0 provides the support for
computing several steady-state probabilities in parallel see [6] for details).
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4 Evaluation and Case Studies

As shown in [3], the first version of ASSA-PBN has shown a significant advan-
tage in terms of speed compared to the Matlab tool optPBN [12]. We proceed to
compare the performance of ASSA-PBN 2.0 with its previous version. This com-
parison is done both on randomly generated PBNs and a PBN constructed for
a real-life biological system. The newly released version supports three types of
parallelised computation of steady-state probabilities of a PBN. We show in [6]
that for the multiple CPU core based parallelisation, the speed-up is approxi-
mately linear with the number of cores in our hardware environment (CPU cores
up to 40). For the multiple GPU core based parallelisation, ASSA-PBN 2.0 can
approximately achieve a speed-up of 200; while the structure-based parallelisa-
tion shows a promising performance for sparse networks with large percentage
of leaves (for more details refer to [5]).

Moreover, we compared the performance of the three types of parallelisations
with the sequential approach on an analysis of a 96-node PBN of apoptosis using
the two-state Markov chain approach. In [4], the sequential version of the two-
state Markov chain approach has been used for the long-run influence analysis
on complex2 from each of its parent nodes. Seven steady-state probabilities are
required to be computed in order to perform the analysis. We re-perform this
computation with the three parallelised versions of the two-state Markov chain
approach. Speed-ups of approximately 200 (GPU), 20 (multiple CPUs) and 10
(structure-based parallelisation) are obtained with the use of the three different
parallel computations. Detailed comparison of both the random networks and the
real-life case-study can be found at http://satoss.uni.lu/software/ASSA-PBN/
benchmark.

5 Future Developments

First, we plan to implement a suite of parameter estimation algorithms, e.g.,
genetic algorithms. Second, user-friendly improvements, such as support for the
standard Systems Biology Markup Language (SBML) and graphical editing and
visualisation of PBN models, will be introduced in the future releases of ASSA-
PBN versions.

Acknowledgement. Qixia Yuan is supported by the National Research Fund, Lux-
embourg (grant 7814267). The authors also want to thank Gary Cornelius for his work
on ASSA-PBN.
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Abstract. E-cyanobacterium.org is an online platform providing tools
for public sharing, annotation, analysis, and visualization of dynamical
models and wet-lab experiments related to cyanobacteria. The platform
is unique in integrating abstract mathematical models with a precise
consortium-agreed biochemical description provided in a rule-based for-
malism. The general aim is to stimulate collaboration between exper-
imental and computational systems biologists to achieve better under-
standing of cyanobacteria.

1 Introduction

The complexity of dynamical processes occurring in biology is inherent due to the
fact that living cells must be responsive to a highly dynamic environment. This
applies especially to the family of photosynthetic organisms such as cyanobac-
teria in which the biophysical processes scale from electron transfers interacting
with metabolic biochemistry to genetic regulation and back. Remarkable effort
towards a consistent and coherent knowledge-base of cyanobacteria modelling is
one of the key activities of CyanoNetwork1, the international network of top-
leading experts on studying these unique bacteria. In cyanobacteria, biophysical
processes span in vastly different time scales from femtoseconds to seasons and
from individual molecules to aquatic and terrestrial ecosystems.

Such a community-wide modelling effort is notably accelerated by an inter-
active online platform. In particular, models need to be translated into a unified
format, formalised, and uniformly annotated. This allows the models to be fully
understood and re-used in the original form, compared with each other, and with
wet-lab experiments. To this end, one needs a unified and flexible framework to
fully represent partial models and the respective biological knowledge — the
involved components as well as their interactions.

An existing resource to inspire further expansion of cyanobacteria mod-
elling are the established web repositories of curated and well-annotated

This work has been supported by the Czech National Infrastructure grant
LM2015055 and by the Czech Science Foundation grant GA15-11089S.

1 http://www.cyanoteam.org.
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models traversing already through many branches of biology [3,12,17,19].
Unfortunately, cyanobacteria models are strongly under-represented in these
repositories, probably because of the natural differences that exist between com-
mon bacteria and phototrophic bacteria. There exist several online tools present-
ing biological networks or genome knowledge [1,4,12]. However, due to enormous
complexity of biological processes, it is a challenge to develop tools presenting
biological networks alongside with executable or mathematical models. Focusing
on domain-specific organisms allows us to integrate the knowledge and present it
in a concise and understandable form. This has been already proven on examples
of well-known model organisms such as E. coli [14] or C. elegans [7]. Neverthe-
less, these resources do not couple the presented knowledge with modelling.

In this tool paper, we present an online platform for cyanobacteria processes —
e-cyanobacterium.org2. The platform integrates several dedicated tools and is
distinct in the following aspects: formal rule-based representation of biochemi-
cal interactions facilitated by cyanobacteria biochemical entities; repository of
kinetic models providing basic analysis tools online (simulation, custom data sets,
basic static analysis); integration of models within the rule-based description and
export to SBML [10]; storage, maintenance and presentation of experimental data;
content visualisation (graphical presentation of models, biochemical space and
modelling/experimental data).

The presented release of e-cyanobacterium.org is implemented as an exten-
sion of our general database tool-kit — the so-called comprehensive modelling
platform [15]. Key updates are the formal rule-based language BCSL, wet-lab
experiments module, and improved analysis of models. Most importantly, several
well-annotated and curated models developed by the consortium are provided
within e-cyanobacterium.org including the formalisation of the respective part
of biochemical space in BCSL.

2 Web Platform Overview

The platform consists of several dedicated modules (Fig. 1) all connected to a
central module – Biochemical Space (BCS) [16] – that is the backbone of the
platform. BCS provides formal description of the biological problem and it is
based on the hierarchy of selected biological processes. It is accompanied with
schemas representing relevant biological processes in the context of cyanobacte-
ria. For each process, there are presented relevant models, chemical entities, and
rules. Presentation of every process includes detailed information and links to
relevant internal and external sources.

2.1 Biochemical Space

Biochemical Space is constructed from hierarchy of entities interacting in rules
formally specified in Biochemical Space Language (BCSL). The main advantage
of BCSL is the adoption of the most important aspects of rule-based features

2 http://www.e-cyanobacterium.org.

http://www.e-cyanobacterium.org
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Fig. 1. Scheme of interconnections between modules of E-cyanobacterium.org platform.

while still keeping the syntax human-readable and accessible to communities out-
side computer science. On the one hand, BCSL has executable semantics that
allows basic analysis and consistency checking. On the other hand, the language
includes constructs for detailed biological annotation reflecting the known bioin-
formatics databases and ontologies. BCSL is developed with the consideration
of new extensions in SBML level 3. Once the SBML rule-based support becomes
to be actively used in tools, our platform will provide relevant export filters.

Rule description provides details of rules, explicit enumeration of substrates
and products, and available annotations. Moreover, the rule is schematically
visualised (Sect. 3.2) and presented with appropriate links to the process hier-
archy.

Entity description provides information about associated models and rules.
Links to the process hierarchy and to external sources (UniProt [2], Kegg [12],
GeneOnthology [1], etc.) are available.

2.2 Model Repository

Model repository is a collection of implemented mathematical models describ-
ing particular parts of biological processes. Every model is represented as a set
of ordinary differential equations generated from the model reaction network.
Models are integrated within BCS. In particular, each model component should
be related to some BCS entity and each model reaction should be related to
some BCS rule. Moreover, a model is associated with some parameter value sets
(data sets) that enable simulation (Sect. 3.3) in a particular biologically-relevant
scenarios. Additionally, several basic non-parameter-specific static analysis tech-
niques (Sect. 3.4) based on model stoichiometry are also provided.

An implemented model then includes complete biological annotation
(Sect. 3.1) of all components and reactions that is provided by mapping to
BCS. This might help to find connections and overlaps among models. Further,
implemented model can be exported to SBML (level 2).

Currently, the repository contains two models describing circadian clock
(Miyoshi et al. 2007 [18], Hertel et al. 2013 [8]) and a kinetic model of metabolism
(Jablonsky et al. 2014 [11]). Two other models present unpublished results –
dynamics of carbon fluxes (Müller et al.) and photosynthesis (Plyusnina et al.).
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2.3 Experiments Repository

Experiments repository is a tool for storage and presentation of time-series data
from wet-lab experiments. Every experiment is well-grounded by precise descrip-
tion (device, medium, organism, etc.) and appropriate annotations. Experiments
are structured – several time series data can be attached to a single experiment.
Every time series targets a specific list of measured substances together with
time stamps of the individual measurements. Data can be imported/exported in
simple text formats. Time series are visualised in a chart (Sect. 3.3).

Registered users can add their own experiments while keeping the selected
experiments private or public. For repeated experiments, annotations and details
can be cloned from previously inserted experiments.

3 Website Features

E-cyanobacterium.org provides support for modelling and analysis of biological
systems. The most important fact is that all these parts are integrated within
the Biochemical Space. Therefore it is possible to reveal non-trivial relations
between biochemical substances and models.

3.1 Annotation

Annotation is an important task in modelling of biological systems. This is how
biological knowledge is mapped to the mathematical description. Our platform
considers annotation as an inherent and compulsory part of the modelling pro-
cedure. The following aspects of annotation are supported:

– BCS creation and maintenance,
– model annotation by mapping to BCS,
– experiment annotation.

BCS is being continuously extended and revised by the consortium.
Researchers supplying their models are required to integrate the models within
the current BCS. This gives good feedback to BCS maintainers. In the experi-
ments repository module, emphasis is given to description of conditions under
which an experiment has been performed, which is important for interpretation
of the data as well as the possibility of reconstructing the measurements.

3.2 Visualisation

Static visualisation is provided by means of schemas showing the process hier-
archy with most important objects from BCS. Graphical schemes are supplied
with detailed information on the visualised elements of BCS. This is achieved in
the information panel below the scheme. An accompanying feature is filtering
displayed data to All or Visible elements. The former option extends the content
to all relevant entities and rules that take the part in the displayed process but
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are not necessarily visualised (e.g., this applies to small “universal” molecules
such as ATP, ADP, etc.). Moreover, there is a special visualisation framework
for complex networks such as metabolism. This widget allows one to zoom in
a specific part of the complex network. This feature is currently employed for
metabolic map of cyanobacteria. Owing to requests coming out of the consor-
tium, we have decided to employ manually handled visualisation. In next release,
we plan to provide automatically generated SBGN representation of the schemes.

Rule details (Sect. 2.1) are enriched by means of automatically generated
visualisation. For every rule, a graphical scheme that displays all its substrates
and products is generated.

3.3 Simulation

With every implemented model (Sect. 2.2) it is possible to execute simulations.
Registered users can change initial conditions and parameters of the model and
set the simulation options (the numerical solver and its parameters). To apply
such settings in the simulation, they have to be saved in terms of a custom
dataset (public or private). The simulation chart is generated for all available
datasets and the platform GUI allows one to switch between them. The chart is
interactive and allows one to change the axis type, zoom in the selected curves,
and show a focused value on a curve.

Simulation data are accessible by exporting them in several data formats.
Similar options are also available in charts visualising experimental data in the
experiments repository. Additionally, the simulated model including the selected
dataset can be downloaded as an Octave file [6]. Additionally, the platform
allows one to use different externally called numerical solvers for simulation. In
particular, model administrators can select either Octave (default), COPASI [9],
or remote simulation with COPASI web services [13].

3.4 Static Analysis

At the current stage, there are three static analysis tasks available. Matrix analy-
sis produces incidence matrix, Conservation analysis produces mass conserva-
tion analysis (moiety conservation), and Modes analysis produces elementary
flux modes. For these tasks, the well-acclaimed third party tool COPASI [9] is
used which allows one to download the task data by means of an SBRML file [5].

4 Conclusion

E-cyanobacterium.org provides several features that contribute to production
and presentation of models targeting cyanobacteria. The most principal effort is
to interlink biological knowledge with benefits of computational systems biology
tools. This is enabled by means of a novel formal notation – Biochemical Space –
which allows us to integrate computational models with the biological knowledge
and wet-lab experiments.
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For future work, we plan to improve the mapping between mathematics and
biology, to enhance the website with more analysis tools (currently we are imple-
menting an interface for existing property monitoring and robustness analysis
tools such as [20]), and to automatise the comparison of models against experi-
mental data. Moreover, biochemical space of cyanobacteria is continuously being
extended and improved with interactive visualisations of reaction networks based
on formal description provided in Biochemical Space Language.
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Abstract. A common approach for reverse engineering biological net-
works from data is to deduce the existence of interactions among nodes
from information theoretic measures. Estimating these quantities in a
multidimensional space is computationally demanding for large datasets.
This hampers the application of elaborate algorithms – which are crucial
for discarding spurious interactions and determining causal relationships –
to large-scale network inference problems. To alleviate this issue we
have developed PREMER, a software tool which can automatically run
in parallel and sequential environments, thanks to its implementation
of OpenMP directives. It recovers network topology and estimates the
strength and causality of interactions using information theoretic criteria,
and allowing the incorporation of prior knowledge. A preprocessing mod-
ule takes care of imputing missing data and correcting outliers if needed.
PREMER (https://sites.google.com/site/premertoolbox/) runs on Win-
dows, Linux and OSX, it is implemented in Matlab/Octave and Fortran
90, and it does not require any commercial software.

Keywords: Network inference · Information theory · Parallel
computing

1 Introduction

Many biological systems can be meaningfully represented as networks, that is,
as a set of nodes (variables) connected by links (interactions). In the context of
cellular networks the nodes are molecular entities such as genes, transcription
factors, proteins, metabolites, and so on [7]. The network inference problem con-
sists of learning the interconnection structure of the nodes, using as data the
values of the variables (e.g. their expression levels or concentrations) at different
situations and/or time instants. The concept of mutual information [12] can be
c© Springer International Publishing AG 2016
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used as a statistical measure for estimating the strength of the (possibly non-
linear) relations among nodes from a dataset. Indirect interactions, which take
place when an entity A exerts an influence in C by means of an intermediate
entity B (i.e. A → B → C), are difficult to detect, because a spurious interaction
may be deduced (not only A → B and B → C, but also A → C). The difficulty
of discriminating between them increases when dealing with higher-order inter-
actions, involving four or more entities. Although a few methods can cope with
this issue, their application to large-scale problems is computationally costly [6],
especially when dealing with time-series data. One such method, MIDER [13], is
a general purpose network inference tool which takes into account time delays.
It distinguishes between direct and indirect interactions using entropy reduction
[9] and assigns directionality to the predicted links using transfer entropy [11]. It
is implemented in Matlab, a widely used programming environment which nev-
ertheless has some drawbacks, mainly (i) the need of buying commercial licenses,
and (ii) low computational efficiency compared to other languages.

Here we present PREMER (Parallel Reverse Engineering with Mutual infor-
mation & Entropy Reduction), a tool that overcomes these issues. It includes an
advanced Fortran 90 implementation of the MIDER procedures, which allows for
faster computations than Matlab. Additionally, the use of OpenMP directives
enable it to run seamlessly in parallel environments, thus allowing for further
speedups in performance. Results obtained on different datasets show that PRE-
MER can be orders of magnitude faster than MIDER. Additionally, PREMER’s
Matlab code is fully compatible with the free Octave environment. Furthermore,
PREMER offers two important additional capabilities. One is the ability to take
prior knowledge into account, allowing to specify if a particular interaction is
known to be non-existent. This is of particular importance in applications such
as gene regulatory network (GRN) inference, where only a subset of the genes —
the transcription factors, TFs — can regulate other genes. The second one is the
ability to handle datasets with missing values and/or outliers, using statistical
techniques to impute new values which are coherent with the latent structure
of the data. PREMER’s work-flow is depicted in Fig. 1. More details about the
methodology are given in the supplementary information (user’s manual).

2 Implementation and Availability

PREMER is provided as a set of Matlab/Octave scripts and an executable file
which carries out the core computations. It has a number of options, which can
be tuned by editing the main file, runPremer. Executable files are provided for
Windows, Linux and OSX, and also as source code in Fortran (F90), which can
be compiled to run on any operating system. The executable can also be invoked
from the command line, thus avoiding the need for Matlab/Octave. A key feature
of PREMER is its ability to run sequentially or in parallel. Parallelization has
been implemented using OpenMP directives [3] and is entirely transparent to the
user, who only needs to specify the number of threads in the main file. Mutual
information and multidimensional entropies are estimated using an adaptive
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Fig. 1. Work-flow of the PREMER algorithm. First, a data curation module imputes
missing data [4] and detects and corrects outliers, thus allowing the use of faulty
datasets. Then PREMER calculates the distance between every possible pair of vari-
ables d(X,Y ) for several time delays. To this end it estimates the entropies of all vari-
ables H(∗), as well as the joint entropies H(∗, ∗) and the mutual information I(∗, ∗)
of all pairs of variables. The user can choose to estimate also the multi-dimensional
joint entropies of 3 and 4 variables (H(∗, ∗, ∗), H(∗, ∗, ∗, ∗)), in order to use them in
the subsequent entropy reduction step. The aim of this step is to determine whether
all the variation in a variable Y can be explained by the variation in another variable
X or, more generally, in a set of variables X [9]. By iterating through cycles of adding
a variable X that reduces H(Y |X,X) until no further reductions are obtained, the
entropy reduction step yields the complete set of variables that control the variation
in Y . Finally, directions are assigned to the links using transfer entropy, TX→Y , a non-
symmetric measure of causality [11] calculated from time-lagged conditional entropies.

partitioning algorithm inspired in [2]. The PREMER toolbox is released under
the free and open source GNU GPLv3. It is available at https://sites.google.
com/site/premertoolbox/. Its use does not require any commercial software.

3 Selected Experimental Results

We tested PREMER on the same set of seven benchmark problems that was used
for assessing the performance of MIDER. It has been shown elsewhere [13] that
MIDER performs well compared with other state-of-the-art methods in terms
of precision and recall of the inferred networks. We found that PREMER pre-
dicts the same networks as MIDER (in examples without missing data or prior
information) achieving large reductions in computation times, as shown in Fig. 2.
Panel A plots the accelerations obtained with PREMER’s sequential implemen-
tation (i.e. using only one processor) with respect to MIDER. The most com-
putationally costly problems give rise to the largest speed-ups: for example, for
benchmark B7 with 3 entropy reduction rounds the computation time decreases
from 42 h to roughly 1.5 h. This improvement is obtained using a single proces-
sor; additional speed-ups can be achieved in a parallel environment, as shown in
panel B. The combined effect of code acceleration and parallel speed-up results
in very significant reductions in computation time. For example, using a current
12-core desktop PC (hardware detailed in the caption of Fig. 2), PREMER runs
up to 170 times faster than MIDER.

https://sites.google.com/site/premertoolbox/
https://sites.google.com/site/premertoolbox/
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Fig. 2. [A]: Accelerations achieved by PREMER w.r.t. MIDER, for benchmarks B1–
B7 of [13]. For every benchmark three points are plotted, depending on the number
of entropy reduction rounds performed: 1, 2, or 3. [B]: Speed-up and efficiency of
the parallel vs sequential versions of PREMER (benchmark B7, 3 entropy reduction
rounds). Results obtained in a multi-core PC running Windows 7 64-bit with 16 GB
RAM and 12 cores, 2 processors/core, Intel Xeon 2.30 GHz. (Color figure online)

By going through several entropy reduction rounds it is possible to discover
additional links, but in this process errors may appear: since the accuracy of
every network inference method is limited by the information content of the
data, some of the extra links can in fact be false positives. Therefore in many
cases there is a trade-off between precision and recall: increasing the number of
entropy reduction rounds leads to increased recall and decreased precision, and
vice versa. Table 1 shows this trade-off for the average of the seven benchmark
problems considered in [13].

Table 1. Trade-offs between precision and recall for different numbers of entropy reduc-
tion rounds. The values shown are the averages of the seven benchmark problems
(B1–B7) considered in [13].

Entropy reduction rounds 1 2 3

Average precision (B1–B7) 0.7676 0.6958 0.6311

Average recall (B1–B7) 0.5267 0.5676 0.5819

Finally, we illustrate the performance improvement that can be obtained by
taking prior knowledge into account. With this aim we create a benchmark net-
work with GeneNetWeaver [10] consisting of 18 genes, out of which only 11 are
considered transcription factors, and we generate time course data of the expres-
sion of each gene at 24 different time points. We evaluate the performance of PRE-
MER using two different modes of including information (removing interactions
a priori or a posteriori) and we compare it to other network inference methods
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Fig. 3. Incorporating prior knowledge into network inference algorithms: (a) Reasoning
behind excluding interactions from gene regulatory networks. Only transcription factors
effectively serve as regulators in the network, hence interactions from the effector genes
to transcription factors or to other effectors can be excluded. (b) Regulatory interac-
tion matrix returned by PREMER without incorporating prior knowledge. The heat
map scale represents the strength of the predicted interaction (0 = no interaction, 1 =
strongly predicted interaction). (c) Regulatory interaction matrix returned by PRE-
MER incorporating prior knowledge by removing excluded interactions a posteriori.
(d) Regulatory interaction matrix returned by PREMER incorporating prior knowl-
edge by removing excluded interactions a priori. (e) Comparison of several network
inference methods without incorporating prior knowledge. (f) Comparison of network
inference methods incorporating prior knowledge either a posteriori (post) or a priori
(prior). In (e) and (f) horizontal dashed lines indicate the theoretical performance of a
random classifier.
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such as ARACNE, CLR, MRNET, MRNET Backward (MRNETB) (available in
the R package MINET [8]), Inferelator [1], and GENIE3 [5]. We report the corre-
sponding values of AUROC (Area Under Receiver Operating Characteristic) and
AUPR (Area Under the Precision-Recall curve) of each method in Fig. 3.e–f. In
panel (e) the set of regulators is assumed to be unknown (no prior knowledge),
and consequently none of the interactions can be excluded. Among all the meth-
ods, PREMER achieves the highest score in both AUROC and AUPR. Panel
(f) shows that the performance of all methods increases when prior knowledge
is taken into account. Since the methods in the MINET package do not allow
for excluding interactions a priori, they are evaluated by removing these inter-
actions a posteriori. As for PREMER, in order to show the difference between
both options we test both PREMER (post) and PREMER (prior), in which the
interactions known to be non-existent are removed respectively a posteriori and
a priori. It can be seen that excluding interactions a posteriori already increases
the performance of all methods. However, excluding interactions a priori results
in a further improvement of PREMER, as shown by the fact that PREMER
(prior) is outperforming PREMER (post), where interactions are removed a
posteriori, both in terms of AUROC and AUPR (Fig. 3.f).

Therefore, we conclude that (i) removing interactions based on prior knowl-
edge is a way of increasing the performance of network inference methods, and
that (ii) the improvement is bigger if this information is incorporated before
network inference (a priori) instead of as a post-processing step (a posteriori).
This is the solution adopted in PREMER.

4 Conclusions

PREMER is an open-source, multi-platform network inference tool based on
information theory. It predicts the existence of network links, estimates their rel-
ative strength and direction, and provides a visual representation of the inferred
system. It can take prior knowledge about the non-existence of specific interac-
tions into account, which improves the quality of the network reconstructions.
It also features a data preprocessing step which enables the use of datasets with
missing values and/or outliers. PREMER is freely available as a Matlab/Octave
toolbox. Core computations are performed in F90, achieving large speed-ups
which can be increased further if working on a parallel environment. PREMER
is geared towards ease of use, requiring minimum input from the user.
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Abstract. The mechanisms underlying complex biological systems are
routinely represented as networks, and their kinetics is widely studied. It
turns out that relationships between network structures can reveal simi-
larity of mechanism. We define morphisms (mappings) between reaction
networks that establish structural connections between them. Some mor-
phisms imply kinetic similarity, and yet their properties can be checked
statically on the structure of the networks. In particular we can deter-
mine statically that a complex network will emulate a simpler network:
it will reproduce its kinetics for all corresponding choices of reaction
rates and initial conditions. We use this property to relate the kinet-
ics of many common biological networks of different sizes, also relating
them to a fundamental population algorithm. Thus, structural similar-
ity between reaction networks can be revealed by network morphisms,
elucidating mechanistic and functional aspects of complex networks in
terms of simpler networks In recent joint work, we established a corre-
spondence between network emulation and a notion of backward bisim-
ulation for continuous systems. An emulation morphism establishes a
bisimulation relation over the union of two networks, and a bisimulation
relation over a network can be seen as an emulation morphism from the
full network to the reduced network of its equivalence classes. Along this
correspondence, we obtain minimization algorithms for chemical reaction
networks, which are of interest for model execution, and algorithms to
discover morphisms between networks, which are of interest for model
understanding.
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Abstract. In this talk I will present our journey during the past few
years within the very exciting area of neural networks. I will first start
with artificial neurones and neural networks and explain why we got
interested in such networks. I will then turn to the mathematical mod-
elling of biological neurones and neural networks. We will distinguish
between non-spiking neurones, such as the ones found in C. Elegans,
and spiking neurones, as found in most of the other larger organisms.
We will discuss our work in analysing the behaviour of such networks,
the use in control, and the challenges and opportunities in this area.
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Abstract. Formal modelling languages such as process algebras are
effective tools in computational biological modelling. However, handling
data and uncertainty in these representations in a statistically meaning-
ful way is an open problem, severely hampering the usefulness of these
elegant tools in many real biological applications. I will present ProPPA,
a process algebra which incorporates uncertainty in the model descrip-
tion, supporting the use of Machine Learning techniques to integrate
observational data in the modelling. I will explain how this is given a
semantics in terms of a generalisation of Constraint Markov Chains, and
demonstrate how this can be used to perform inference over biological
models.
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Abstract. The interaction of proteins and peptides with inorganic surfaces is
relevant in a wide array of technological applications, yet it is difficult to
characterize these interactions with high resolution experimentally. For this
purpose we have developed a computational protocol for efficient in silico
evaluation of the binding affinity of peptides for different inorganic surfaces.
With EISM we are able to reproduce and predict experimental results for Au
(111) binding peptides. EISM in future can propose peptides sequences func-
tionalizing the surfaces in a desired way.

Keywords: EISM � Peptide binding affinity � SIMONA

1 Introduction and Results

The interaction of proteins/peptides with inorganic surfaces is center to a wide
spectrum of biological and chemical phenomena in nature. Bio-selection techniques
such as cell/phage-display have been able to isolate peptides sequences that can bind to
different inorganic surfaces with high affinity. Unfortunately these experiments involve
multistep synthesis protocols and lack peptide specificity information, thus making it a
challenging task. Empirical force field based molecular modeling approaches can help
in principle to elucidate interaction mechanisms and to design peptides with specific
absorption profiles for relevant surfaces. However computational efforts are compli-
cated in part by the same complexities that limit experimental investigations for
example; the molecular structures of many inorganic surfaces are not known or may be
process-dependent. In addition interactions with the solvent and electrolytes can lead to
a strong modification of the surface properties which adds substantial additional
complexity. We have developed a new computational protocol, EISM, Effective
Implicit Surface Model, for fast and efficient in silico evaluation of the binding affinity
of peptides with inorganic surfaces. The energy term includes: EINT: Energy of the
peptide, ESLIM: SIMONA layered implicit membrane [1], ESASA: Solvent Accessible
Surface Area and ESLJ: Peptide-Surface Lennard-Jones interactions. ESASA corresponds
to the attractive and the repulsive interactions between the amino acid (aa) and surface
and is proportional to the SASA of the aa with a residue-specific surface tension,
denoted as ci (where i = 20aa’s). The ci values are fitted to the experimental or
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theoretical data for a given surface (for Au(111) [3]) and conditions like temperature
and pH. EISM model has been tested and validated against 12 Au(111) binding
peptides and Ag (111). All simulations are done using SIMONA [2]. The calculated
free energy of the peptides is then compared with the experimental data available in
literature [4]. Results suggest that EISM can differentiate between the strong and weak
peptide binders. Despite its simplicity, the EISM model is a powerful tool and it will
open new perspective for investigating a large number of different sequences and
analyzing whether and how the mutations and the length of the peptide sequence are
crucial for binding.

Acknowledgements. We thank Dr. Martin Brieg for model development and funding from
BMBF (Project no:031A173A).
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Abstract. In E. coli, transcription repression is essential in cellular functioning.
However, its failure rates are non-negligible. We measured the leakiness rate of
lacO3O1 promoter with single RNA sensitivity and its temperature dependence
in live cells. After finding strong temperature dependence, we dissected the
causes. While RNA polymerase numbers and kt, the rate of active transcription,
vary weakly with temperature, the repression strength (dependent on number of
repressors and binding and unbinding rates of repressors to the promoter) is
heavily temperature dependent. We conclude that the lacO3O1 leakiness at low
temperatures increases as the repression mechanism’s efficiency hampers.

Keywords: Transcription � Repression � Leakiness � lacO3O1 � MS2-GFP
RNA detection � Time-lapse confocal microscopy

To investigate Escherichia coli’s lacO3O1 leakiness from in vivo single-cell, single-
RNA measurements of transcription dynamics, we inserted a single-copy F-plasmid,
with lacO3O1 promoter controlling the expression of a synthetic RNA with multiple
binding sites for MS2-GFP and a multi-copy plasmid coding for MS2-GFP on E. coli
strain BW25113, which expresses the repressor for lacO3O1, LacI, in similar quantities
to the natural system [1]. Example images are shown in Fig. 1(left).

First, we compared lacO3O1 transcription kinetics when non-induced in live
individual cells at 24 °C and 37 °C (Fig. 1, right). From this data, we find that the rate
of leaky (non-induced) RNA production, (kRep) is * 8.5 times higher at 24 °C,
allowing concluding that the ‘efficiency’ of repression by LacI is temperature depen-
dent, being much weaker at lower temperatures.

To search for causes for the temperature-dependence of leakiness, we assume the
following models of repression (1) and transcription (2), respectively:

ProOFF :Rep�
kon

koff
ProON þRep ð1Þ

ProON þRNAp�!kt ProON þRNApþRNA ð2Þ
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where ‘Pro’ is a promoter and ‘Rep’ a repressor (LacI tetramer) [2], kon and koff are the
rates of binding and unbinding of the repressor, and kt is the rate at which an RNA
polymerase (RNAp) finds the promoter and produces an RNA. From (1) and (2):

kRNA ¼ kon � Rep� koff þ kon
� ��1

h i
� RNAp� kt ð3Þ

Next, by confocal microscopy, we measured relative RNAp concentrations of cells
expressing fluorescently tagged RpoC [3]. These concentrations are 1.19 times larger at
24 °C than 37 °C. This difference is too small to explain the differences in leakiness.

Next, from the RNA production rates under full induction (Fig. 1), we estimated kt.
We find it to be only 1.92 times faster at 37 °C, also not explaining the higher leakiness
at 24 °C. Finally, from the rate of RNA production in the absence of activators, kRep,
we calculated the change in repression strength, b ¼ Rep� koff þ kon

� �
=kon. We find b

to be 13.8 times higher at 37 °C, from which we conclude that the hampering of the
repression mechanism at low temperatures is the main cause for the increased leaki-
ness. Given this, we also expect the temperature-dependence of leakiness to vary
widely between promoters, as their repressions mechanisms also differ widely.

In the future, we aim to study the effects of low temperatures on the repression
mechanisms of various promoters. We expect greater robustness in those associated to
E. coli’s responses to low temperatures. Also, we aim to explore how the temperature-
dependence in leakiness affects gene circuits’ robustness to temperature changes.
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Fig. 1. (Left) MS2-GFP tagged RNAs in a cell over time. Unprocessed (top) and segmented
cells and RNA spots (bottom). (Right) RNA numbers resulting from the transcription activity of
lacO3O1 promoter as a function of IPTG concentration and temperature, 2.5 h after activation of
the production of MS2-GFP reporter molecules.
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Problem Statement. Steady-state computation is important for analysing bio-
logical systems modelled as probabilistic Boolean networks (PBNs). Since the
state-space is exponential in the number of nodes, the use of statistical meth-
ods and Monte Carlo methods remain the only feasible approach to address the
problem for large PBNs (e.g., with more than 50 nodes) [2, 5]. Such methods
usually rely on long simulations of a PBN; hence the simulation speed becomes
critical. For large PBNs with high precision requirements, a slow simulation
speed becomes an obstacle of computing the steady-state probabilities. Intu-
itively, parallelising the simulation process can be an ideal way to accelerate the
computation process.

Our Approach. We propose to parallel the simulation of PBNs using multiple
graphics processing unit (GPU) cores. A GPU usually contains hundreds or
thousands of cores. It uses data parallelism, i.e., the same instruction is run
in different cores with different data. The memories provided by GPU can be
divided into two types based on the access speed: fast-memory and slow-memory.
Accessing fast-memory is highly efficient, but the size of fast-memory is very
limited. A GPU program is executed in parallel by the GPU threads. Usually
thousands of threads are launched in parallel to hide latency. Due to the specific
architecture of GPUs, parallelising a process in a GPU has to be treated carefully.
A discussion of two particular issues follows.

Firstly, synchronisation between cores is very time expensive in a GPU. To
avoid it, we let each GPU core handle all the nodes in a PBN. Instead of sim-
ulating one trajectory, we simulate multiple trajectories in parallel. Samples
from multiple trajectories can be combined to compute steady-state probabilities
using a combination of the two-state Markov chain approach with the Gelman
&Rubin method [1, 3].

Secondly, the performance of a GPU is highly related to how well the latency
is hidden. Latency can be hidden via the use of more threads, more blocks,
and/or fast-memory. More threads/blocks require more fast-memory, but the
size of fast-memory is very limited. Therefore, a trade-off between the number
of threads/blocks and the use of fast-memory is required. We first optimize our
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data structure to minimize the use of memory and then follow the rule that the
frequently accessed information should be put in fast-memory whenever possi-
ble since the latency caused by accessing slow-memory is relatively large. To
better understand the optimization, we briefly review what a PBN is. A PBN
is composed of a set of binary-valued nodes, each of which has a certain num-
ber of Boolean functions. The process of simulating a PBN consists of select-
ing a Boolean function for each node and updating its value in accordance the
selected function (see [4, 6] for details). The state (value of all nodes) and the
Boolean functions (stored as a truth table) are repeatedly used in the simulation
process and require much memory to store, hence we optimize the data structure
to represent the state of a PBN and the truth table. We use the primitive integer
type (32 bits) instead of Boolean arrays to store a state of a PBN. The integer
type is used due to the following two reasons: (1) it reduces the memory usage
by 4 times comparing to Boolean arrays; (2) operations on 32 bits data are faster
than or equal to those on non-32 bits data in our GPU architecture. The truth
table is optimized similarly as the state, i.e., it is also stored using integers. After
optimization, we store the state in registers (fast-memory), if possible. In the
cases that a PBN is extremely large and registers are not enough, the slow global
memory is used. However, accessing this slow global memory is reduced by 32
times using an intermediate register. The truth table as well as other frequently
accessed arrays (e.g., the selection probabilities) are stored in shared memory
(fast-memory). Frequently accessed single variables are stored in registers. After
arranging all variables in memory, we compute the optimal number of threads
and blocks to be launched based on the usage of fast-memory to hide latency as
much as possible.

Table 1. GPU speedup for computing four steady-state probabilities.

node # CPU time (s) GPU time (s) speedup

100 635.27 1.84 345×
200 424.18 1.84 231×
500 1567.77 5.80 270×
91 905.10 3.54 256×

Preliminary Results. We have evaluated the proposed GPU-based simulation
of PBNs for computing steady-state probabilities of both randomly generated
networks and of a real biological network using the approach in [3]. On randomly
generated networks, our proposed GPU-based parallelised approach showed more
than two orders of magnitude speedups compared to the sequential CPU ver-
sion. The evaluation on a real biological network was performed by analysing an
apoptosis network with 91 nodes [2]. The speedups for computing steady-state
probabilities for 3 randomly generated networks and the real 91-node network
are shown in Table 1. All experiments were conducted on a high-performance
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computing (HPC) node, which contained Intel Xeon E5-2680 v3 @2.5 GHz and
a NVIDIA Tesla K80 Graphic Card with 2496 cores @824MHz.
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LRI UMR 8623, Univ. Paris-Sud – CNRS, Université Paris-Saclay,
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The software Pint1 is devoted to the formal analysis of the transient dynamics of
automata networks, which encompasses Boolean and logical networks. Its main
application domain is in systems biology for addressing models of signalling net-
works and gene regulatory networks. Pint implements formal approximations
of transient reachability-related properties, such as cut sets and model reduc-
tion which preserves all the traces that lead to a given goal (state). Pint has
been applied to numerous large biological networks. It has been experimentally
shown that it can address networks with hundreds and thousands of interacting
components, which are often intractable with standard approaches.

Input Formalism. Pint takes as input Asynchronous Automata Networks (ANs)
[4]. ANs are close to Boolean and multi-valued networks, with the major differ-
ence that ANs rely on explicit transitions rules, instead of function-centered spec-
ifications. Any logical network can be encoded in AN. The tool logicalmodel2

can export SBML-qual models [2] to the Pint format:

java -jar LogicalModel.jar sbml:an model.sbml model.an.

Static Analyses for Transient Dynamics. Pint implements various analysis rela-
ted to reachability properties. It relies on static analysis by abstract interpreta-
tion which provides algorithms with a low complexity and guaranteed results.

Formal approximations of reachability Necessary and sufficient conditions
for reachability have been derived in [4, 8]. They can be efficiently verified
on large ANs. The following command line checks those conditions for the
reachability of active BCL6 in a TCell differentiation model from [1]. Such a
model is too large for exact model-checking, but in this case, the sufficient
condition is satisfied (computation took around 1s):

$ pint-reach -i TCell-d.an BCL6=1

True

Cut-sets are set of component states which predict mutations that should pre-
vent a given reachability to occur. Pint implements a highly scalable formal
approximation of cut sets: all identified cut sets are correct, but some may
be missed or be non-minimal [7]. The following command computes cut sets
with at most 4 components which are not in the initial state for the transient

1 http://loicpauleve.name/pint.
2 https://github.com/colomoto/logicalmodel.
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reachability of BCL6 within the TCell differentiation model. Computation
took less than 0.05 s. Given the results, knocking down CD28 and IL6R should
prevent the transient activation of BCL6.

$ pint-reach --cutsets 4 --no-init-cutsets -i TCell-d.an BCL6=1

"GP130"=1

"STAT3"=1

"CD28"=1,"IL6R"=1

...

"IL6RA"=1,"TCR"=1

Goal-oriented model reduction removes transitions that do not contribute
to the reachability of the supplied goal state. The reduction can truncate
significantly the reachable state space, whereas it preserves all the (minimal)
traces to the goal. The following command line reduces the TCell differen-
tiation model for the reachability of BCL6 before using NuSMV to verify if
active IL2RA and IL6RA form a cut set for BCL6 (CTL property not E [
IL2RA!=1 and IL6RA!=1 U BCL6=1 ]). Without the model reduction, the
model-checking of this property was impossible [6].

$ pint-export -i TCell-d.an --reduce-for-goal BCL6=1 \

| pint-nusmv --is-cutset"IL2RA=1,IL6RA=1" BCL6=1

Interaction with Other Softwares. Bridges with other standard tools for dynam-
ical models have been developed, in particular for model-checking (NuSMV [3],
ITS [5], Mole [9]). It allows to take advantage of the static analyses of Pint
beforehand further exact dynamical analyses.
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The BioModelAnalyzer (BMA1) is a web based tool for the development of dis-
crete models of biological systems. Through a graphical user interface, it allows
rapid development of complex models of gene and protein interaction networks
and stability analysis without requiring users to be proficient computer pro-
grammers [1, 2]. Here I will present a new set of tools in the BMA that allow
users to perform complex queries over models in linear temporal logic, allowing
biologists to test specifications based on the dynamics observed in simulations.
In keeping with the core objective of tool, queries are constructed graphically
and results are presented to the users with examples of simulations. Alongside
stability analysis, this new tool allows biologists to verify complex specifications
to validate executable biological models.

Linear temporal logic queries are substantially more complex than stability
testing due to the fundamental requirement for users to construct the query
and select a path length. Biologists specifically face further problems; biological
models typically have many variables that may be included in a query, they may
not be familiar with complex operator precedence issues, and they must balance
parentheses. Whilst this is handled by NuSMV in other tools [3, 4], a design
principle of BMA is that computing proficiency is not required so necessarily
this must be achieved in the GUI.

We address these issues in the tool through a two-stage workflow (Fig. 1).
Users define LTL states; large conjunctions of variable assignments that may be

Fig. 1. The LTL state editor and the LTL query editor.

1 http://biomodelanalyzer.research.microsoft.com/.
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created by dragging and dropping from the model canvas, or through a drop-
down menu inspired by file browsers. These states are tansformed into an LTL
query in a second temporal and logical layer. Operators in this layer carry a
number of “sockets” into which operands (i.e. LTL states) or other operators
may be dragged and dropped. As such complex queries can be developed through
repeatedly nesting operators.

To aid users several default states are included. In addition to “True”, users
may also search for fixpoints or cycles in the system. These are valuable for
studying biological models as they allow users to study developmental end-points
specifically. The description of these states through other operators would be
difficult. For example, a self loop state is characterised by the formula

∧
v∈V v =

Xv. To the best of our knowledge, most LTL tools do not support such a direct
comparison between the value of a variable and its value in the next state.

User testing indicated that the LTL operator “until” confused unfamiliar
users, as the first operand need not hold. To address this we supplemented the
list of operators with the non-standard operator “upto”, which carries a similar
meaning in English but ensures that both operands hold (A upto B corresponds
to A and next A until B).

Fig. 2. An example trace from an LTL query.

On clicking the test button both the query and its negation are checked. This
produces three types of result- always true, never true, and true for some. The
user can then choose to see examples of simulations that satisfy, or fail to satisfy
the query (Fig. 2).
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Osmotic regulation is a hugely important homeostatic system in all cells. Cells
respond to osmotic stresses by activating or upregulating proteins involved in
the transportation of charged ions, primarily Chlorine, Potassium, Sodium, and
Calcium. Additionally, the movement of ions and osmotically obliged water are
necessary for many of the cellular hallmarks exhibited in the transformations
associated with disease states such as cancer. In particular, the aberrant expres-
sion of ion channels are hallmarks for increased proliferative and invasive behav-
iours [1, 2]. We present a formal model of the osmotic regulation machinery
within a mammalian cell. The model can provide a mechanistic explanation for
the behavioural changes observed in highly diverse cellular systems of murine
premetastatic Lymph Node stromal cells, and Lung Cancer Fibroblasts. The
model explains phenotypic transformations within each cell types, and predicts
behaviour from datasets not involved in its generation. Furthermore, we use
the model to predict key proteins involved in each transformation, and propose
experiments to alter the behaviour of cells in controllable ways.

Fig. 1. The model of osmoregulation as rendered by BMA. Phenotype nodes not shown
for clarity.
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A qualitative network of key channels, ions, and transporters was constructed
using the BioModelAnalzer (http://biomodelanalyzer.research.microsoft.com/,
[3, 4]). As osmoregulation achieves a homeostasis, the model was verified both
through stability analysis (which proves the existence of a global attractor) and
simulation. Initially a specification was constructed from the literature, and then
refined against microarray data from resting fibroblast reticular cells (FRCs) in
the lymph node [5].

To model the response of the FRCs to upstream tumuors at different time-
points, a subset of the ion channels and transporters were deregulated. This in
turn caused wide-spread, coordinated changes in other channels through osmotic
pressure alterations, and subsequent changes in cellular phenotypes. The model
was found to accurately predict the changes observed in the FRCs, and subse-
quent validation of expression changes supported the model findings.

References

1. Prevarskaya, N., Skryma, R., Shuba, Y.: Ion channels and the hallmarks of cancer.
Trends Mol. Med. 16, 107–21 (2010)

2. Djamgoz, M., Coombes, R., Schwab, A.: Ion transport and cancer: from initiation
to metastasis. In: Philosophical Transactions of the Royal Society of London. Series
B, Biological Sciences, vol. 369 (2014)

3. Benque, D., Bourton, S., Cockerton, C., Cook, B., Fisher, J., Ishtiaq, S., Piterman,
N., Taylor, A., Vardi, M.Y.: Bma: visual tool for modeling and analyzing biological
networks. In: Madhusudan, P., Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp.
686–692. Springer, Heidelberg (2012)

4. Chuang, R., Hall, B., Benque, D., Cook, B., Ishtiaq, S., Piterman, N., Taylor, A.,
Vardi, M., Koschmieder, S., Gottgens, B., Fisher, J.: Drug target optimization in
chronic myeloid leukemia using innovative computational platform. Sci. Rep. 5,
8190 (2015)

5. Riedel, A., Shorthouse, S., Haas, L., Hall, B., Shields, J.: Tumor-induced stromal
reprogramming drives lymph node transformation. Nat. Immunol. 17 (2016)

http://biomodelanalyzer.research.microsoft.com/


Game Theoretic Consideration of Transgenic
Bacteria in the Human Gut Microbiota
Converting Omega-6 to Omega-3 Fats

Ahmed M. Ibrahim1(B) and James Smith2,3,4

1 44 El-Geish St, Mansoura, Dakahlia, Egypt
wetawdt@gmail.com

2 Department of Applied Mathematics and Theoretical Physics,
Centre for Mathematical Sciences, Cambridge Computational Biology Institute,

Wilberforce Rd, Cambridge CB3 0WA, UK
3 MRC Elsie Widdowson Laboratory, MRC Human Nutrition Research,
University of Cambridge, 120 Fulbourn Rd, Cambridge CB1 9NL, UK

4 School of Food Science and Nutrition,
Faculty of Mathematics and Physical Sciences,

University of Leeds, Leeds LS2 9JT, UK
j.smith252@leeds.ac.uk

Abstract. Prophylactic use of functional foods and the design of
nutraceuticals has a far-reaching public health benefit. Understanding the
phenotypic manipulations needed to take advantage of gut microbial ecol-
ogy is fundamental to bioengineering and the food, diet and health indus-
tries. This work considers a hypothetical adjustment of gut microbiota
by an introduced transgenic bacterial strain that contributes to increased
exposure of essential omega-3 (n-3) poly-unsaturated fatty acids, the so-
called fish oils. Absorption of the essential poly-unsaturated fats from
food is dominated by the omega-6 (n-6) fats over the omega-3 (n-3) fats.
Unfortunately, long-term depleted levels of n-3-containing lipids in blood
plasma is a high-risk indicator for outcomes such as metabolic syndrome,
cardiovascular disease and diabetes-related conditions.

In our vignette, a genetically modified strain converts excessive
dietary n-6 into bioavailable n-3 in the gut. Maintaining a long-term
co-existence between indigenous gut bacteria and the transgenic strain
is the challenge. Game theory is an appropriate formalism for explor-
ing such conflicts. We show that long-term co-existence is predicted if
the two forms of bacteria engage in the Snowdrift game. Our model
explores putative mechanisms for addressing metabolic syndrome and
related conditions by locally increasing n-3 production by the transgenic
gut bacteria. Our model suggests long-term therapeutic supplementa-
tion by a functional probiotic food is possible without detriment to the
indigenous bacteria.

Keywords: Game theory · Snow drift game · Prisoners’ dilemma · Non-
linear behaviour · Gut microbiome · Fat metabolism
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Abstract. Lipids are key structural elements, energy sources, and com-
ponents for intracellular signalling and metabolic processes. Their con-
stituents are a small number of fatty acids (FAs), indicators of metabolic
health and nutrition and biomarkers for disease risk. Lipids contain
singlet, doublet and triplet combinations of FAs. Different combina-
tions of FAs can have equivalent configurations that in aggregate are
observed as lipid mixture pools. Traditionally, the lipid pools have been
considered to be biomarkers, however it is now recognised that sub-
populations of explicit lipid species are more informative. Lipid biomark-
ers for metabolic states, so far, come from the latent (hidden) structure
of sub-populations in the pools and this needs to be addressed.

Epidemiological high-resolution lipidomics data is required to derive
the mixtures of lipid species contributing to lipid pools. FA signals are
acquired using gas chromatography and lipid profiling performed by direct
infusion high resolution mass spectrometry. Profiling identifies lipid mix-
ture pools as spectral peaks separated by their m/z ratio. However, not all
constituent lipid sub-populations are easily distinguished. Furthermore,
the data generated is compositional with the signals of FAs and lipid pools
normalised separately.

Our approach to this problem uses both lipid pool and FA data.
Lipid data is re-scaled to account for the combinations of FAs required
in each observed pool. A linear algebra Gauss-Jordan reduction algo-
rithm is applied to the stoichiometry of FAs incorporated in the explicit
lipid species and the combinations of lipid species in every pool. The
method solves the contributing lipid species sub-populations, that is, the
representative combinations of FAs that form the pools. Abundances of
explicit FA combinations not only improve lipid biomarker identification
but also provide a more detailed picture of metabolic responses.

Keywords: Compositional mixture modelling · Optimisation · Bio-
markers · Metabolic states · Big data · Lipidomics
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