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Abstract. Brain effective connectivity aims to detect causal interac-
tions between distinct brain units and it can be studied through the
analysis of magneto/electroencephalography (M/EEG) signals. Methods
to evaluate effective connectivity belong to the large body of literature
related to detecting causal interactions between multivariate autoregres-
sive (MAR) data, a field of signal processing. Here, we reformulate the
problem of causality detection as a supervised learning task and we pro-
pose a classification-based approach for it. Our solution takes advantage
of the MAR model by generating a labeled data set that contains trials of
multivariate signals for each possible configuration of causal interactions.
Through the definition of a proper feature space, a classifier is trained to
identify the causality structure within each trial. As evidence of the effi-
cacy of the proposed method, we report both the cross-validated results
and the details of our submission to the causality detection competition
of Biomag2014, where the method reached the 2nd place.

1 Introduction

A main part of neuroscience research concerns brain connectivity and aims
to investigate the pattern of interactions between distinct units within the
brain [10]. The concept of brain units is strongly related to the level of the
adopted scale. Thus, brain connectivity can be studied from the microscopic level
of single synaptic connections to the macroscopic level of brain regions. Depend-
ing on the type of interactions that we focus on, the topic of brain connectivity
is divided into structural, functional and effective connectivity. In the first case
the connectivity patterns are referred to anatomical links i.e. neural pathways, in
the second case to the statistical dependences between brain activity in different
units and in the last one to the causal interactions between them [15].

In particular, effective connectivity provides information about the direct
influence that one or more units exert over another and aims to establish causal
interactions among them [7]. To achieve this goal the usefulness of brain sig-
nals measured by magneto/electroencephalography (M/EEG) has been largely
shown [3]. In fact, M/EEG record high temporal resolution signals that directly
measure the brain activity. A large body of work was developed about methods
to quantify the effective connectivity, mainly in the field of signal processing
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where it is known as the problem of inferring causality among time series. An
overview of the literature is provided below.

A first distinction that can be made in the available methods for causality
detection, is between linear and nonlinear methods. Linear approaches are largely
used both in time and frequency domain. An example of time domain technique
is the Granger causality index. Granger causality is one of the most widespread
measure to estimate the direction of causal influence in time series and its basic
assumption, that a cause has to precede its effect, has been adopted in many
other methods [8]. More precisely, if one or more time series x0(t), . . . , xk(t)
are causing the time series y(t), then a future value of y(t) is better predicted
by considering also the past values of x0(t), . . . , xk(t) than only those of y(t).
Most of the other time domain methods have the property that their multivari-
ate extension is based on the partial auto- and cross-spectra estimation done by
frequency-domain methods [16]. Thus, these latter have great adoption in causal-
ity assessment [5]. Examples are: the direct transfer function (DTF) [11,12], the
direct coherence (DC) [2] and the partial direct coherence [1].

In situations in which the nonlinear component of the causal interaction
is expected to be important, nonlinear multivariate methods are used [14]. A
first attempt to deal with nonlinearity was done by the local application of
linear multivariate methods in order to perform nonlinear prediction [6]. Further
approaches are based on information theory [9], phase synchronization [4] and
state space synchronization [13].

The intricate structure of interconnections, the enormous amount of depen-
dence that brain units can exert over each other and, last but not least, the
lack of a ground truth, make the assessment of the causal interactions a very
complex problem. In general new methods to estimate causal interactions are
assessed and validated on a limited set of signals and often by using data sim-
ulated by multivariate autoregressive (MAR) model. This is a common premise
that allows researchers to analyse the performance of their techniques in the
fully controlled environment of the MAR model. An example of the interest that
has been addressed to causality in multivariate time series is the Biomag2014
Causality Challenge (Causal2014)1. The purpose of the contest was to estimate
the direct causal interactions in a data set of simulated trials. One trial is meant
as three multivariate time series, generated by a known MAR model, that is
expected to simulate the behaviour of three neuronal populations.

In this paper we propose a new approach for the causality detection in time
series by attacking the problem from a different prospective. Instead of develop-
ing a solution in the context of signal processing, as in the previous literature, we
faced the problem from the machine learning point of view. Since modelling causal
interactions with a MAR model is a common practice in the literature, we used the
competition MAR model to create a set of trials for each possible causal configura-
tion among the time series. Then a classifier was trained on those data in order to

1 http://www.biomag2014.org/competition.shtml, see “Challenge 2: Causality Chal-
lenge”.

http://www.biomag2014.org/competition.shtml
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discriminate between causal configurations. Finally, it was applied to the compe-
tition data set providing a solution that reached the second place of Causal2014.

2 Materials

The competition organizers provided the code of the MAR model together with
the data set of which to estimate the direct causal interactions. Here, we will
describe them both.

The final output of the MAR model is the multivariate time series X =
{X(t), t = 0, 1, . . . , N−1},X(t) ∈ R

M×1 that is defined as the linear combination
of two M -dimensional multivariate time series Xs and Xn

X = (1 − γ)Xs + γXn (1)

Xs carries the causal information, Xn represents the noise corruption and
γ ∈ [0, 1] tunes the signal-to-noise ratio. Each time point of Xs and Xn is
computed by following the MAR model

Xs(t) =
min(P,t)∑

τ=1

A(τ)�
s Xs(t − τ) + εs(t)

Xn(t) =
min(P,t)∑

τ=1

A(τ)�
n Xn(t − τ) + εn(t)

(2)

where P is the order of the MAR model and represents the maximal time lag.
εs(t) and εn(t) are realizations from a M -dimensional standard normal distri-
bution. And A

(τ)
s , A

(τ)
n ∈ R

M×M , τ = 1, 2, . . . , P are the coefficient matrices
modelling the influence of the signal values at time t − τ on the current signal
values, i.e. at time t. The coefficient matrices {A

(τ)
s }τ are involved in the process

of causal-informative data generation. They are computed by randomly corrupt-
ing the non-zero elements of the M × M binary matrix A, called configuration
matrix. In essence, the configuration matrix A contains the causal structure that
leads the MAR model. Specifically Ai,j = 1 means signal i causes the signal j.
On the other hand, coefficient matrices A

(τ)
n lead the noisy part of the signals and

they are obtained by randomly generating P diagonal matrices. The diagonality
of these latter matrices is needed to avoid noise regressive dependencies across
signals. After that, if both sets of matrices A

(τ)
s and A

(τ)
n fulfil the stationarity

condition, each time point of Xs and Xn can be generated by Eq. 2.
In essence, given P , γ and A, it is possible to generate X following Eqs. 1

and 2. The goal of the competition is to reconstruct A given X.
The competition data set was built by generating 1000 trials with the follow-

ing parameter assignments: the number of time series in each trial is M = 3, the
MAR model order is P = 10 and the time series length is N = 6000. The trial-
specific parameters γ and A were randomly sampled from a standard uniform
distribution for each trial and kept secret by the organizer of the competition.
From now on, we will refer to the competition data set as C.
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3 Methods

The solution that we propose to the causality detection problem is based on a
supervised approach. Indeed, this task to reconstruct A from the data can be
formulated as a classification problem. In a general setting, each trial is com-
posed by M time series and the final goal is to estimate its M × M binary
configuration matrix A. Thus, there are M(M − 1) free binary parameters and
2M(M−1) possible causal configurations2.

Our supervised approach aims to train a classifier in order to discriminate
between trials that were generated by different configuration matrices. And since
we aim to predict A given a trial, the classifier is going to treat A as the trial’s
class label.

The training of the classifier is done on a new simulated data set generated
by the MAR model described in Sect. 2. This new data set, that we will call L,
is meant to better represent the entire population of causal configurations that
can be obtained by the adopted model. Therefore, L contains multiple trials for
each of the possible 2M(M−1) causal configurations.

Before the training, a proper feature space has to be defined in order to
extract the causal structure that led the generation of the trial. And once L has
been mapped on that feature space, a classifier f is trained on it.

The classifier f and the benefit that the feature space provides, are evalu-
ated by estimating the discriminative power of f through cross-validation. The
discriminative power can be maximized by trying different types of classifiers,
by tuning the related parameters and also by adjusting the feature space. Such
way of proceeding does not introduce circularity because we are not using C.

In the end, f is applied to the competition data set C to predict the config-
uration matrix of each trial.

The feature space that we built, is strongly based on the concept of Granger
causality. Indeed, it is a collection of measures that quantifies the ability to
predict the value at a given time point of a certain time series (effect) from the
past values of each possible subset of the M time series in the trial (causes).
The pair, made by causes and effect, is called causality scenario and, for M time
series, there are

∑M
i=1

(
M
i

)
M scenarios. In the case of the competition, where

M = 3, the possible causality scenarios are 21, and they are summarized in
Table 1, where xi(t), i = 0, 1, 2, denotes each of the time series that defines a
trial.

For each causality scenario, a plain linear regression problem was built by
selecting, as dependent variable, a set of time points from the signal in the effect
column. Each of these dependent variables has a regressor vector composed by
the P previous time points selected from the signals in the causes column. Table 2
shows how the regression problems were defined when M = 3, by specifying
from which time series and time points, regressors and dependent variables are
extracted. In the following, in order to simplify the notation, we will use xt

i

instead of xi(t), i = 0, 1, 2 and t ∈ T,T ⊆ {P, P +1, . . . , N−1}. Figure 1 explains

2 The diagonal is not relevant since by definition the time series are autoregressive.
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Table 1. The possible causality scenarios for three time series xi(t), i = 0, 1, 2.

Causes Effect

x0(t) xi(t)

x1(t) xi(t)

x2(t) xi(t)

x0(t), x1(t) xi(t)

x0(t), x2(t) xi(t)

x1(t), x2(t) xi(t)

x0(t), x1(t), x2(t) xi(t)

how, for the specific time point t = 30, the input of the regression problem is
built in the case of the last causality scenario of the Table 2 with i = 2. More
precisely, this example shows how the input of the regression problem is defined
in order to quantify the plausibility of the causality scenario: “x0, x1 and x2 are
causing x2”.

Table 2. Description of how the 21 linear regression problems are defined for each
trial. xt

i, i = 0, 1, 2 and t ∈ T,T ⊆ {10, 11, . . . , N − 1}, are the three time series of a
trial.

Regressors (causes) Dependent variable (effect)

[xt−10
0 , . . . , xt−1

0 ] xt
i

[xt−10
1 , . . . , xt−1

1 ] xt
i

[xt−10
2 , . . . , xt−1

2 ] xt
i

[xt−10
0 , . . . , xt−1

0 , xt−10
1 , . . . , xt−1

1 ] xt
i

[xt−10
0 , . . . , xt−1

0 , xt−10
2 , . . . , xt−1

2 ] xt
i

[xt−10
1 , . . . , xt−1

1 , xt−10
2 , . . . , xt−1

2 ] xt
i

[xt−10
0 , . . . , xt−1

0 , xt−10
1 , . . . , xt−1

1 , xt−10
2 , . . . , xt−1

2 ] xt
i

The regression problem of each causality scenario was cross-validated and
its performance was quantified through multiple regression metrics, e.g. mean
square error. The ensemble of the regression metrics of each causality scenario
defined the initial feature vector of the trial. We then applied standard feature
engineering techniques on the initial feature vector to enrich the feature space.
The choice of using multiple regression metrics and in particular which ones
including in the initial feature vectors, as well the choice of the feature engineer-
ing techniques, are driven by the goal to maximize the discriminative power of
f . See Sect. 4 for further details.
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Fig. 1. Example of how the sample associated at the time point t = 30 is built in order
to form the input of the last regression problem of the Table 2, for the case i = 2.

4 Experiments

In this section we present the technical details and results of the experiments
that were conducted to evaluate the method described in Sect. 3. In particu-
lar, we show two different types of results. The first one is an estimate of the
discriminative power of a classifier trained on the L data set and it provides a
quantification of how well the defined feature space is able to express the causal
structure behind a trial. The second result is the competition score obtained by
our submission, which gives us insights into how our approach works compared
to the ones adopted by the other participants.

Results are presented both in terms of confusion matrices and competition
score. The competition score was defined in the following way. For each entry
Âij , i �= j, of each predicted Â, if Âij was 1 and correct, then +1 point was
given. If Âij was 1 but incorrect, then −3 points were given. If Âij was 0, then 0
points were given. In practice, false discoveries were punished three times more
than what true discoveries were rewarded.

In order to take into account the strong false positive penalisation, we added
a cost model to our predictions, by combining the probability of each of the 64
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classes with the cost of predicting one class instead of another. Given Sij the
cost of predicting i when the true class was j, the optimal way to assign the
class l to a trial is

l = argmax
i=1,2,...,64

64∑

j=1

Si,jpj (3)

where pj is the probability of class j for the trial, as estimated by the classifier.
The new simulated labeled data set L was generated by keeping the same

parameter initialization3 of C, except for the number of trials that was increased
to 64000 in order to have 1000 trials for each class. Indeed, since M = 3 the
amount of causal configurations is 26 = 64. The regression metrics used to build
the feature space are the mean square error and the coefficient of determination
r2. Both were included because we noticed a significant improvement in the
cross-validated score, although, intuitively, they could seem redundant. We also
added an estimate of the Granger causality coefficients4 to the feature space.

As a final step we increased the number of features through standard fea-
ture engineering techniques by applying simple basis functions. This consisted
in extracting the 2nd power, 3rd power and square root of the previously defined
features, together with the pairwise product of all features. Adding extracted fea-
tures was motivated both by the need to overcome the limitation of the adopted
linear classifier and because they proved to be effective in increasing the cross-
validated score.

Both the data sets, L and C, were mapped to the proposed feature space.
Then the performance of the logistic regression classifier5, with �2 regularisation,
was evaluated on L through 5-folds cross-validation. In this way we quantified
the discriminative capability of the proposed method.

Tables 3 and 4 show the cross-validated classification results in L by means of
confusion matrices. In particular, Table 3 is related to the percentage of causal
interactions predicted by assigning to each test trial the most probable class,
i.e. l = argmax pi, and its accuracy is 81 %. In Table 4 the assignments are
done by Eq. 3 according to the cost matrix, i.e. by penalizing the false positives,

Table 3. Confusion matrix computed by
assigning to each test trial the most proba-
ble class.

Predicted
1 0

True 1 79 % 21 %
0 17 % 83 %

Table 4. Confusion matrix in
which the test trial class labels are
computed by Eq. 3.

Predicted
1 0

True 1 56 % 44 %
0 1 % 99 %

3 Excluding the trial-specific parameter γ which was randomly uniformly generated
for each trail.

4 http://nipy.org/nitime.
5 http://scikit-learn.org.

http://nipy.org/nitime
http://scikit-learn.org
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and the related accuracy is 77.5 %. Through their comparison, the effect of S is
evident since in Table 4, false positives are strongly decreased, due to the score
penalization, but to the detriment of some true positives.

Finally logistic regression was trained on L and tested on C to predict the
configuration matrices of the competition. According to the number of trials in
C and the assumptions of the generative process, the expected range of the score
is [−9000, 3000]. The score of our submission was 1571, which reached the 2nd
place in the final ranking of the Causal2014 competition.

5 Discussion, Conclusion and Future Works

In this paper, we proposed a new approach to detect causal interactions in mul-
tivariate time series. Specifically, we developed a classification-based causality
detection method by defining a feature space based on the concept of Granger
causality and by exploiting the MAR model as data generator. Aside from the
novelty of the method itself, the interesting aspect of our solution is that it is
a supervised method. Thus, it belongs to the machine learning field and not to
the signal processing as traditionally was for that type of problem.

The proposed method was assessed by cross-validating the generated labeled
data set and it provided promising results, as shown in Tables 3 and 4 by means
of confusion matrices. Then, the submitted solution to the Causal2014 compe-
tition was computed by a classifier trained on the generated labeled data set.
The achieved results, both in terms of cross-validation and competition rank-
ing, are evidence that classification-based techniques are a feasible alternative to
the signal processing methods for inferring causality between time series. And
furthermore, that the defined feature space is able to well capture the causal
structures among signals.

As an improvement of our approach, we are working on a tractable extension
to the case of detecting causality in more than three time series.
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