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Abstract. Recently, multi-task feature selection methods have been
applied to jointly identify the disease-related brain regions for fus-
ing information from multiple modalities of neuroimaging data. How-
ever, most of those approaches ignore the complementary label informa-
tion across modalities. To address this issue, in this paper, we present
a novel label-alignment-based multi-task feature selection method to
jointly select the most discriminative features from multi-modality data.
Specifically, the feature selection procedure of each modality is treated
as a task and a group sparsity regularizer (i.e., �2,1 norm) is adopted to
ensure that only a small number of features to be selected jointly. In addi-
tion, we introduce a new regularization term to preserve label related-
ness. The function of the proposed regularization term is to align paired
within-class subjects from multiple modalities, i.e., to minimize their dis-
tance in corresponding low-dimensional feature space. The experimental
results on the magnetic resonance imaging (MRI) and fluorodeoxyglucose
positron emission tomography (FDG-PET) data of Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset demonstrate that our proposed
method can achieve better performances over state-of-the-art methods
on multimodal classification of Alzheimer’s disease (AD) and mild cog-
nitive impairment (MCI).
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1 Introduction

Alzheimer’s disease (AD) is the most common form of dementia in people over
65 years of age. It is reported that there are 26.6 million AD sufferers worldwide,
and 1 in 85 people will be affected by 2050 [1]. Thus, effective and accurate
diagnosis of AD and its prodromal stage (i.e., mild cognitive impairment, MCI),
is very important for possible delay and early treatment of the brain disease.
Lots of efforts have been made for possible identification of such changes at the
early stage by leveraging neuroimaging data [3,13]. At present, several modali-
ties of biomarkers have been proved to be sensitive to AD and MCI, such as the
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brain atrophy measured in magnetic resonance imaging (MRI) [7] and the cere-
bral metabolic rates of glucose measured in fluorodeoxyglucose positron emission
tomography (FDG-PET) [8].

As multiple features are extracted from different imaging modalities, there
may exist some irrelevant or redundant features. So, feature selection, which can
be considered as the biomarker identification for AD and MCI, is commonly
used to remove these redundant and irrelevant features. Some feature selection
methods based on multi-modality data have been proposed for jointly selecting
the most discriminative features relevant to disease. For example, Zhang et al.
[12] proposed a multi-modal multi-task learning for joint feature selection for AD
classification and regression. Liu et al. [5] proposed inter-modality relationship
constrained multi-task feature selection for AD/MCI classification. Jie et al. [4]
presented a manifold regularized multi-task feature selection method for classifi-
cation of AD, and achieved the state-of-the-art performance on Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database. However, those methods ignore
the label information of data from multiple modalities, i.e., the subjects from
the same class across multiple modalities should be closer in the low-dimensional
feature space.

In this paper, to address this issue, we propose a novel label-alignment-based
multi-task feature selection method that considers the intrinsic label relatedness
among multi-modality data and preserves the complementary information con-
veyed by different modalities. We formulate the classification of multi-modality
data as a multi-task learning (MTL) problem, where each task focuses on the
classification of each modality. Specifically, two regularization items are included
in the proposed model. The first item is a group Lasso regularizer [11], which
ensures only a small number of features to be jointly selected across different
tasks. The second item is a label-alignment regularization term, which can min-
imize the distance of within-class subjects from multiple modalities after projec-
tion to low-dimensional feature space leading to the selection of more discrimi-
native features. Then, we use a multi-kernel support vector machine to fuse the
above-selected features from each individual modality. The proposed method has
been evaluated on ADNI dataset and obtained promising results.

The rest of this paper is organized as follows. In Sect. 2, we present the
proposed label-alignment-based multi-task feature selection method in detail.
Experimental results on ADNI dataset using MRI and FDG-PET biomarkers
are given in Sect. 3. Finally, Sect. 4 concludes this paper and indicates points for
future work.

2 Methods

2.1 Label-Alignment-Based Multi-Task Feature Selection

In this paper, we treat feature selection as a multi-task regression problem
that incorporates the relationship between different modalities. Suppose we
have M supervised learning tasks (i.e., the number of modalities). Denote
Xm = [xm

1 ,xm
2 , . . . ,xm

N ]T ∈ R
N×d as a N × d matrix that represents d
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features of N training samples on the m-th task (i.e., m-th modality), and
Y = [y1, y2, . . . , yN ]T ∈ R

N as the response vector from these training subjects,
where xm

i represents feature vector of the i-th subjects of the m-th modality,
and yi is the corresponding class label (i.e., patient or normal control). Sup-
pose wm ∈ R

d is the regression coefficient vector of the m-th task. Then the
multi-task feature selection (MTFS) model is to solve the following objective
function:

min
W

M∑

m=1

‖Y − Xmwm‖22 + λ1‖W ‖2,1 (1)

where W = [w1,w2, . . . ,wM ] ∈ R
d×M is the weight matrix whose row wj is

the vector of coefficients associated with the j-th feature across different tasks.
‖W ‖2,1 is the �2,1-norm of matrix W defined as ‖W ‖2,1 =

∑d
j=1‖wj‖2 which is

the sum of the �2-norms of the rows of matrix W [11]. The first term of Eq. (1)
measures the empirical error on the training data while the �2,1-norm encourages
matrix with many zero rows. So the �2,1-norm combines multiple tasks and
ensures that a small number of common features will be selected across different
tasks. λ1 is a regularization parameter which balances the relative contributions
of the two terms.

The MTFS model using a linear mapping function transforms the data from
the original high-dimensional space to one-dimensional space. The limitation of
the model is that only the relationship between data and class label for each
task is considered, while the mutual dependence among data and the comple-
mentary information conveyed by different modalities are ignored, which may
result in large deviations even for very similar data after mapping. To address
this problem, we introduce a new regularization term called label-alignment regu-
larization term which minimizes the distance between feature vectors of multiple
modalities of the within-class subjects after feature projection:

Ω =
N∑

i,j

M∑

p,q(p≤q)

‖(wp)Txp
i − (wq)Txq

j‖22Sij (2)

where xp
i and xq

j are the feature vectors of the i-th and the j-th subjects in the
p-th and q-th modalities respectively. Sij denotes the element of the similarity
matrix S across different subjects. Here, the similarity matrix can be defined as:

Sij =

{
1, ifxp

i andxq
j are from the same class

0, otherwise.
(3)

The regularization term Eq. (2) can be explained as follows. ‖(wp)Txp
i −

(wq)Txq
j‖22Sij measures the distance between xp

i and xq
j in the projected space.

It implies that, if xp
i and xq

j are from the same class, the distance between them
should be as small as possible. Otherwise, the distance between them should
be as large as possible. When p = q, the local geometric structrue of the same
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modality data are preserved during the mapping and when p < q, the com-
plementary information provided from different modalities are preserved after
projection of feature vectors onto the one-dimensional feature space. By incor-
porating the regularizer Eq. (2) into Eq. (1), we can obtain the objective function
of our label-alignment-based multi-task feature selection model:

min
W

M∑

m=1

‖Y −Xmwm‖22+λ1‖W ‖2,1+λ2

N∑

i,j

M∑

p,q(p≤q)

‖(wp)Txp
i −(wq)Txq

j‖22Sij

(4)

where λ1 and λ2 are the two positive constants that control the sparseness and
the degree of preserving the distance between subjects, respectively. To optimize
the problem in Eq. (4), we use Accelerated Proximal Gradient (APG) method
[6] and only those features with non-zero regression coefficients are used for final
classification.

2.2 Multi-modality Data Fusion and Classification

In this paper, we adopt a multi-kernel based support vector machine (SVM)
method to integrate features from different modalities for classification [13].
Specifically, we calculate the linear kernels based on the features selected by
the above-proposed feature selection method by using multi-modal biomarkers.
Then, a combined kernel matrix is constructed by linearly combining kernels
from different modalities and used in multi-kernel based SVM. The optimal para-
meters used for combining different kernels are determined by using a coarse-grid
search through cross-validation on the training samples.

We conduct standard 10-fold cross-validation to evaluate classification per-
formance. For each of the 10 trials, within the training data, an internal 10-fold
cross-validation is performed to fine tune the parameters, i.e., the regulariza-
tion parameters λ1, λ2 and the kernel combination parameter. The model that
reaches the best performance during the inner cross-validation stage is consid-
ered as the optimal model and is adopted to classify unseen testing samples.
This process is repeated 10 times independently to avoid any bias introduced
by randomly partitioning dataset in the 10-fold cross-validation and the average
results are reported.

Figure 1 gives a schematic illustration of our multimodal data fusion and
classification pipeline, where two modalities of data (e.g., MRI and FDG-PET)
are used for jointly selection features corresponding to different tasks.
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Fig. 1. Schematic diagram of the proposed method

3 Experiments

In this section, we perform a series of experiments on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu) to evaluate
the effectiveness of the proposed method.

3.1 Subjects and Settings

We use a total of 202 subjects with corresponding baseline MRI and FDG-PET
data from ADNI dataset: 51 AD patients, 99 MCI patients (including 43 MCI con-

http://adni.loni.usc.edu
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verters who had converted to AD within 18 months and 56 MCI non-converters),
and 52 normal controls (NC). Standard image pre-processing is carried out for all
MRI and FDG-PET images, including spatial distortion, skull-stripping, removal
of cerebellum. Then for structural MR images, we partition each subject image
into 93 manually labeled regions-of-interest (ROIs) [9] with atlas wraping. The
gray matter tissue volume of these 93 ROIs is used as features extracted by the
FSL package [14]. FDG-PET image of each subject is aligned onto its correspond-
ing MR image using a grid transformation and the average intensity of each ROI
in the FDG-PET image is calculated as features. Therefore, we can finally acquire
93 features from MRI image and other 93 features from PET image.

In our experiments, we compare our proposed method with multi-modality
multi-kernel method [13] without feature selection (denoted as Baseline), single-
modality feature selection with Lasso integrated with multi-modality multi-kernel
SVM (denoted as SMFS) and multi-task feature selection method [12] (denoted
as MTFS). In addition, we also concatenate all features from MRI and FDG-PET
into one feature vector and perform Lasso-based feature selection and then use
the standard SVM with linear kernel for classification (denoted as CONFS). For
each comparison, different methods are evaluated on multiple binary classifica-
tion tasks, i.e., AD vs. NC, MCI vs. NC and MCI converters (MCI-C) vs. MCI
non-converters (MCI-NC), respectively. To evaluate the performances of differ-
ent methods, we use four performance measures, including classification accuracy,
area under receiver operating characteristic (ROC) curve (AUC), sensitivity (i.e.,
the proportion of patients that are correctly predicted), and specificity (i.e., the
proportion of normal controls that are correctly predicted).

3.2 Results

Table 1 shows the experimental results achieved by five different methods. As can
be seen from Table 1, the proposed feature selection method is always superior
to other methods on three classification tasks. Specifically, our method obtains
the classification accuracy of 95.51%, 82.15% and 70.50% for AD vs. NC, MCI
vs. NC and MCI-C vs. MCI-NC, respectively. On the other hand, the best clas-
sification accuracy of other methods are 92.25 %, 74.34 % and 61.67 % on three
tasks, respectively. Besides, we perform the standard paired t-test on the accu-
racies of our proposed and those of compared methods. It is shown that our

Table 1. Classification performance of all comparison methods

Method AD vs. NC MCI vs. NC MCI-C vs. MCI-NC

ACC

(%)

SEN

(%)

SPE

(%)

AUC ACC

(%)

SEN

(%)

SPE

(%)

AUC ACC

(%)

SEN

(%)

SPE

(%)

AUC

Baseline 91.65 92.94 90.19 0.9615 74.34 85.35 53.46 0.7764 59.67 46.28 69.64 0.6010

CONFS 91.02 90.39 91.35 0.9486 73.44 76.46 67.12 0.7802 58.44 52.33 63.04 0.6019

SMFS 92.25 92.16 92.12 0.9674 73.84 77.27 66.92 0.7745 61.67 54.19 66.96 0.6139

MTFS 92.07 91.76 92.12 0.9557 74.17 81.31 60.19 0.7758 61.61 57.21 65.36 0.6179

Proposed 95.51 97.06 93.85 0.9688 82.15 86.36 73.85 0.8317 70.50 66.98 72.50 0.6857



Label-Alignment-Based Multi-Task Feature Selection 57

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

ROC curve (AD VS. NC)

Baseline
CONFS
SMFS
MTFS
Proposed

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

ROC curve (MCI VS. NC)

Baseline
CONFS
SMFS
MTFS
Proposed

0 0.2 0.4 0.6 0.8 10

0.2

0.4

0.6

0.8

1

False positive rate

Tr
ue

 p
os

iti
ve

 ra
te

ROC curve (MCI−C VS. MCI−NC)

Baseline
CONFS
SMFS
MTFS
Proposed

Fig. 2. ROC curves of different methods for classifications

proposed method is significantly better than the comparison methods with p
values smaller than 0.05. In addition, Fig. 2 further plots the corresponding ROC
curves of different methods for three classification tasks. These results demon-
strate that considering the complementary label information of multi-modality
data can significantly improve the classification performance, with comparison
to traditional methods.

Furthermore, in Table 2, we compare our proposed method with several recent
start-of-the-art methods for multimodal AD/MCI classification. Gray et al. got
the classification accuracy of 89.0 %, 74.6 % and 58.0 % for AD vs. NC, MCI vs.

Table 2. Comparison on performance of different multi-modality classification methods

Method Modalities AD vs. NC MCI vs. NC MCI-C vs. MCI-NC

Gray et al. [2] MRI+PET+
CSF+genetic

89.0 % 74.6 % 58.0 %

Westman et al. [10] MRI+PET 91.8 % 77.6 % 68.5 %

Liu et al. [5] MRI+PET 94.4 % 78.8 % -

Jie et al. [4] MRI+PET 95.0 % 79.3 % 68.9 %

Proposed MRI+PET 95.5% 82.2% 70.5%
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NC, and MCI-C vs. MCI-NC, respectively with four different modalities (MRI
+ PET + CSF + genetic) [2]. When using two modalities of features (MRI
+ PET), Jie et al. [4] achieved the accuracy of 95.0 %, 79.3 % and 68.9 % for
classification of AD vs. NC, MCI vs. NC and MCI-C vs. MCI-NC, respectively,
which are inferior to our method. These results further validate the efficacy of
our proposed method for multimodal AD/MCI classification.

4 Discussion

This paper addresses the problem of integrating the complementary label infor-
mation to build the multi-task feature selection method for jointly selecting fea-
tures from multi-modality neuroimaging data to improve AD/MCI classification.
Specifically, we formulate the multi-modality classification as a multi-task learn-
ing framework and introduce the label-alignment regularization term to seek the
optimal features which preserve the discriminative information between within-
class subjects across multiple modalities. Experimental results demonstrate that
our proposed method can achieve better performance than all conventional meth-
ods. In future work, we will extend our method to include more modalities and
test other classifiers for further improvement of classification performance.
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