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Abstract. Diffusion magnetic resonance imaging (dMRI) and tractog-
raphy provide means to study the anatomical structures within the white
matter of the brain. When studying tractography data across subjects, it
is usually necessary to align, i.e. to register, tractographies together. This
registration step is most often performed by applying the transformation
resulting from the registration of other volumetric images (T1, FA). In
contrast with registration methods that transform tractographies, in this
work, we try to find which streamline in one tractography correspond to
which streamline in the other tractography, without any transformation.
In other words, we try to find a mapping between the tractographies. We
propose a graph-based solution for the tractography mapping problem
and we explain similarities and differences with the related well-known
graph matching problem. Specifically, we define a loss function based on
the pairwise streamline distance and reformulate the mapping problem
as combinatorial optimization of that loss function. We show preliminary
promising results where we compare the proposed method, implemented
with simulated annealing, against a standard registration techniques in
a task of segmentation of the corticospinal tract.

1 Introduction

Diffusion magnetic resonance imaging (dMRI) [1] is a modality that provides
non-invasive images of the white matter of the brain. DMRI measures the local
the diffusion process of the water molecules in each voxel. That process repre-
sents structural information of neuronal axons. From dMRI data, tracking algo-
rithms [9,14] allow to reconstruct the 3D pathways of axons within the white
matter of the brain as a set of streamlines, called tractography. A streamline
is a 3D polyline representing thousands of neuronal axons in that region of the
brain, and a tractography is a large set streamlines, usually ≈ 3 × 105.

Current neuroscientific analyses of white matter tractography data are lim-
ited to qualitative intra-subject comparisons. Thus, it is quite difficult to use
the information for direct inter-subject comparisons [2,5]. This leads to the
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need of initial alignment, or registration, of tractographies via some methods
before doing further study. Registration is most often performed by applying
the transformation resulting from the registration of other images, such as T1
or fractional anisotropy (FA), to tractography [5,6,12]. Recently, [10] proposed
group-wise registration using the trajectory data of the streamlines. The idea to
work on deterministic tractography rather than other images is quite innovative.
And, it may be advantageous to directly align the streamlines because the result
would be closely related to the final goal of registration.

Similar to [10], in this work, we explore the idea of working on determinis-
tic tractography rather than other images. However, in contrast to all current
tractography registration methods, which are based on rigid or non-rigid shape
transformation of one tractography into another, our approach tries to find which
streamline of one tractography corresponds to which streamline in the other trac-
tography, without transformations. This correspondence is a mapping from one
tractography to the other.

In this work we propose to solve the problem of finding the mapping between
two tractographies through a graph-based approach similar to that of the well-
known graph matching problem [3,13]. In the graph matching problem the aim
is to find which node of one graph corresponds to which node of another graph,
under the assumption that graphs have the same number of nodes and that the
correspondence is one-to-one.

Given a tractography of N streamlines T = {s1, . . . , sN} and a distance
function d between streamlines, we can create an undirected weighted graph by
considering each streamline as a vertex and the edge connecting vertex si and sj
as the distance between the two streamlines, d(si, sj). Then, intuitively, the prob-
lem of tractography mapping becomes very similar to that of graph matching,
but with some key differences. Firstly, the size of the two tractographies/graphs
is in general not the same. Global differences in the anatomy of the brains,
e.g. different volume, motivates this difference. Secondly, in general there is not
a one-to-one correspondence between the streamlines/nodes but a many-to-one
correspondence. This is anatomically likely if we consider that a given anatomical
structure (tract), e.g. the cortico-spinal tract (CST), whose streamlines should
have direct correspondence across subjects, may have different thickness, i.e.
different number of streamlines. In this case, for example, multiple streamlines
of one CST would correspond to a single streamline in the other CST. Because
of these differences, it is generally not possible to directly apply efficient graph
matching algorithms to the problem of mapping tractographies.

In the following we formally describe the tractography mapping problem
starting from the graph matching problem and define the details of the opti-
mization problem to solve. We provide a preliminary algorithmic solution, based
on simulated annealing, to minimize the proposed loss function. Then, we apply
our proposed solution to a tractography segmentation task in order to compare
a standard registration-based method to our proposed method on a fair ground.
We conclude the paper with a brief discussion of the preliminary encouraging
results.
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2 Methods

An undirected weighted graph G = (V,E) of size N is a finite set of vertices
V = {1, . . . , N} and edges E ⊂ V × V . The graph matching problem can be
described as follows. Given two graphs GA to GB with the same number of
vertices N , the problem of matching GA and GB is to find the correspondence
between vertices of GA and vertices of GB , which allows to align, or register,
GA and GB in some optimal way. The correspondence between vertices of GA

and of GB is defined as a permutation P of the N vertices, i.e. there a one-
to-one correspondence between the two set of vertices. P is usually represented
as a binary N × N matrix where Pij is equal to 1, if the ith vertex of GA is
matched to the jth vertex of GB , otherwise 0. Given A and B, i.e. the N × N
adjacency matrices of the two graphs, the quality of the matching is assessed by
the discrepancy, or loss, between the graphs after matching as:

L(P ) = ‖A − PBP�‖2 (1)

where ‖A‖2 =
√∑N

ij A2
ij is the Frobenius norm. Therefore, the graph matching

problem becomes the problem of finding P ∗ that minimize L over the set of
permutation matrices P:

P ∗ = argmin
P∈P

‖A − PBP�‖2 (2)

which is a combinatorial optimization problem. The exact solution to this prob-
lem is NP-complete and only approximate solutions are available in practical
cases [3,13].

Let TA = {sA1 , . . . , sAN} and TB = {sB1 , . . . , sBM}, where s = {x1, . . . , xns
} is a

streamline and x ∈ R
3, be the tractographies of two subjects. Let d be a distance

function between streamlines. We define two graphs GA and GB with adjacency
matrix A ∈ R

N×N and B ∈ R
M×M where Aij = d(sAi , sAj ) and Bij = d(sBi , sBj ).

Our current choice of d is discussed in Sect. 3, however any common streamline
distance from the literature can be used.

The loss function of a mapping Q from TA to TB is then:

L(Q) = ‖A − QBQ�‖2 (3)

where the mapping Q is a binary N × M matrix and Qij is equal to 1, if sAi of
TA is mapped to sBj of TB and 0 otherwise. Note that, in general, Q is not a
permutation matrix, because multiple streamlines can be mapped into the same
one. In order to find the optimal mapping Q∗, we minimize L so that TB is most
similar to TA:

Q∗ = argmin
Q∈Q

‖A − QBQ�‖2 (4)

where Q is the set of all possible mappings. Because in general N �= M and
because Q is a mapping and not just a permutation, the tractography map-
ping problem has a larger search space than the graph matching problem,
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i.e. |Q| = MN � N ! = |P| when M ≈ N , is much larger than P. As a con-
sequence, the efficient solutions available in the literature of graph matching,
e.g. [13], are not applicable, because they heavily rely on the assumptions that
we violate here. In Sect. 3 we implemented a simple preliminary solution to the
combinatorial optimization problem by means of the Simulated Annealing meta-
heuristic [8].

2.1 Comparison

In order to compare the proposed method against a standard registration proce-
dure on a fair ground, we cannot rely on the value of the loss function L, because
it is defined only in the case of mapping. For this reason, we compared the two
approaches on the practical task of automatic tractography segmentation, i.e.
finding a given tract of interest in TB given its segmentation in TA. Our hypoth-
esis is that reducing L leads to better overlap between tractographies, which
is important for practical applications like segmentation. In Sect. 3 we describe
an experiment to test this hypothesis and provide the necessary details. Here
we introduce the metric that we use for comparing registration and mapping.
As proposed in [5], we compare the set of voxels crossed by the streamlines of
each tractography after mapping or after registration. As measure of the overlap
between TA and Q(TB)1, we adopt the Jaccard index:

J(TA, TB |Q) =
|TA ∩ Q(TB)|

min{|TA|, |Q(TB)|} (5)

Note that in the above equation, |T | is the volume computed as number of voxels
that any streamline s ∈ T goes through, and |TA ∩Q(TB)| indicates the number
of voxels in common between TA and Q(TB).

3 Experiments

We designed an experiment to provide empirical evidence that reducing the loss
in Eq. 3 is related to an increase of the Jaccard index, i.e. of the overlap between
tractographies.

The dataset used for the experiment is based on dMRI data recorded with a
3T scanner at Utah Brain Institute, 65 gradients (64 + b0); b-value = 1000;
anatomical scan (2 × 2 × 2 mm3). The tractography was reconstructed with
the EuDX algorithm [4] using the dipy2 toolbox. We considered 4 healthy sub-
jects and focused the analysis on the corticospinal tract (CST). CST is a set of
streamlines projecting from the lateral medial cortex associated with the motor
homunculus. This tract is of main interest for the characterization of neurode-
generative diseases, like the amyotrophic lateral sclerosis (ALS). The CST tracts
were segmented by the expert neuroanatomists using a toolbox [11] that sup-
ports an interactive selection of streamlines. The size of the segmented tracts is
reported in Table 1 (see column size).
1 For sake of brevity we denote as Q(TB) the result of applying mapping Q to TB .
2 http://www.dipy.org.

http://www.dipy.org
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The reference method, against which we compared mapping, is the affine
registration of the tractographies in a common MNI space using the voxel-based
FLIRT method [7]. The registration is defined as follows: First, FA images were
registered to the MNI-FMRIB-58 FA template, then the affine transformation
was applied to the tractographies. The Jaccard index computed between the
CSTA and CSTB in common space is reported in Table 1 (see column FLIRT).

We then used mapping to compute the same quantity. The first step was
encoding the tractographies as graphs, which required to define a distance
between streamlines. We refer to the commonly used Mean Average Minimum
distance (MAM) [14], based on the Hausdorff distance:

dMAM (s, s′) =
1
2
(D(s, s′) + D(s′, s)) (6)

where D(s, s′) = 1
ns

∑ns

i=1 d(xi, s
′), and d(x, s′) = minj=1,...,ns′ ||x − x′

j ||2.
Mapping a tract such as the CST, which usually comprises 102 stream-

lines, to an entire tractography TB , which usually consist of 107 streamlines,
is computationally extremely expensive because the space of all possible map-
pings Q has size |TB ||CST |. For this reason, we introduced a heuristic to retain
some of the streamlines in TB . The intuitive idea was to define a superset
of streamlines of the CST for subject B, denoted CST+

B . The heuristic is
in two steps: first, we computed the medoid sm of CSTB , and the radius
r = max{d(sm, si),∀si ∈ CSTB}. Second, we filtered the streamlines in TB

such that CST+
B = {sj ∈ TB |d(sm, sj) ≤ α · r}, where α = 3. See Table 1,

column CSTB?, for the actual sizes of the supersets.
Computing the optimal mapping Q∗ requires to solve, even in an approximate

way, the minimization problem of Eq. 4. As a preliminary strategy to approxi-
mate the optimal mapping Q∗, we implemented the simulated annealing (SA) [8]
meta-heuristic, a reference method for combinatorial optimization. SA requires
the definition of a function to move from the current state, i.e. the current map-
ping Q, to a (potentially better) neighbouring one. As transition function we used
a stochastic greedy one where, given the current mapping Q, one streamline of
CSTA is selected at random and then it is greedily re-mapped to the streamline
in CST+

B providing the greatest reduction in the loss of Eq. 3. As starting point
of the annealing process, we used the 1-nearest neighbour of CSTA with respect
to CST+

B after the registration of TA and TB . We ran the simulated annealing
for 1000 iterations, which required a few minutes on a standard computer3.

The results reported in Fig. 1 show the behaviour of the loss during the opti-
mization process for the mapping of CSTA (subject ID 205), with respect to
the tractography of three other subjects (subject IDs 204, 206 and 212). In all
cases, as the number of iterations increases, the value of loss function decreases.

3 We are aware that this method of combinatorial optimization can be significantly
improved, but we claim that the it was sufficient to do a preliminary investigation
of the relation between the loss L and the overlap between tractographies, by means
of the Jaccard index.
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Fig. 1. Plots of the normalized loss (Lnorm = L
|CSTA| ) as a function of number of

iterations with simulated annealing, when mapping the CST of subject 205 to those of
subjects 204, 206 and 212.

In Fig. 2 we show an example of experiment with the outcome of FLIRT regis-
tration and mapping which refers to subjects 204 and 206. In subfigure A, the
source tract CSTA is shown in blue, in subfigure B the target tract CSTB is
show in green and the related superset of streamlines CST+

B in red. In subfigure
C, the result of FLIRT registration is presented, both with respect to the super-
set CST+

B on the left and with respect to the target tract CSTB on the right.
On the right side, it is illustrated the set of streamlines (blue) from the source
tract CSTA associated to streamlines of target tract CSTB . The association
between streamlines of CSTA and CSTB is computed as nearest neighbour after
the FLIRT registration. The ratio between blue and green streamlines represents
the portion of target tract correctly detected. On the left side of subfigure C, blue
streamlines represents the portion of source tract CSTA not associated to target
tract CSTB . In subfigure D, the result of mapping is presented, with the same
strategy of presentation of subfigure C. On the right side the visualization shows
a greater amount of (blue) streamlines correctly mapped into target tract. Even
on the left side the amount of (blue) streamlines erroneously mapped is greater.
The sum of blue streamlines on the left and right side represents the portion
of streamlines projected from the source to the target. The registration based
on FLIRT doesn’t preserve after the alignment the same amount of streamlines
from the source tract.

In Table 1 are reported the results of the comparison between registration
and mapping methods, measured by the Jaccard index. The overlap between
CSTA and CSTB provided by FLIRT registration is generally quite poor. This
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Fig. 2. Example of registration vs. mapping of the corticospinal tract (CST). From
the left, the tract to be mapped (subfigure A, CSTA in blue), the second tract with
its superset (subfigure B, CSTB in green, CST+

B in red), the result of FLIRT affine
registration (subfigure C) and of mapping (subfigure D). (Color figure online)

Table 1. Comparison of registration vs. mapping. The subject IDs of CSTA and CSTB

are reported in the first two columns. Their sizes, together with that of CST+
B , are in

columns three to five. The last four columns report the overlap between CSTA and
CSTB in terms of Jaccard index (higher is better), for FLIRT registration (6th column)
and for mapping with simulated annealing at a different number of iterations (SA-0,
SA-100, SA-1000 columns).

A B size Jaccard index

subject ID subject ID |CSTA| |CSTB | |CST+
B | FLIRT SA-0 SA-100 SA-1000

205 204 60 124 682 0.18 0.55 0.52 0.59

206 60 100 550 0.15 0.77 0.81 0.82

212 60 68 374 0.10 0.74 0.77 0.90

is partly expected because even after the registration of TA and TB , CSTA and
CSTB may have a systematic displacement due to the variability of anatomy
across subjects. The results of mapping at different iterations of the optimization
process shows a remarkable global increase in the Jaccard index and a general
trend of improved alignment when more iterations are computed.

4 Discussion and Conclusion

In this work we addressed the challenge of finding an alignment between the
tractographies of two subjects. We recast the question as a problem of mapping
between two sets of streamlines and we provided the formulation of the corre-
sponding minimization problem. Preliminary results show that this approach is
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promising despite some limitations. The computational complexity represents a
major issue that may prevent to scale up to whole tractography.
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