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Abstract. Machine learning approaches have had some success in pre-
dicting conversion to Alzheimer’s Disease (AD) in subjects with mild
cognitive impairment (MCI), a less serious condition that nonetheless
is a risk factor for AD. Predicting conversion is clinically important as
because novel drugs currently being developed require administration
early in the disease process to be effective. Traditionally training data
are labelled with discrete disease states; which may explain the limited
accuracies obtained as labels are noisy due to the difficulty in providing
a definitive diagnosis of Alzheimer’s without post-mortem confirmation,
and ignore the existence of a continuous spectrum of disease severity.
Here, we dispense with discrete training labels and instead predict the
loss of brain volume over one year, a quantity that can be repeatably and
objectively measured with the boundary shift integral and is strongly
correlated with conversion. The method combines MRI and PET image
data and cerebrospinal fluid biomarker levels in an Bayesian multi-kernel
learning framework. The resulting predicted atrophy separates convert-
ing and non-converting MCI subjects with 74.6 % accuracy, which com-
pares well to state of the art methods despite a small training set size.
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1 Introduction

In the study of AD, in recent years an increasing emphasis has been placed on
the importance of early diagnosis. This is because while currently available treat-
ments are only able to mitigate the downstream effects of the disease process,
pending ones are focused on actually disrupting the disease process itself, by
interfering with the amyloid cascade that is thought to be one of the under-
lying causes of AD [1]. To be effective, such treatments would have to begin
c© Springer International Publishing AG 2016
I. Rish et al. (Eds.): MLINI 2014, LNAI 9444, pp. 122–128, 2016.
DOI: 10.1007/978-3-319-45174-9 13



An Oblique Approach to Prediction of Conversion to Alzheimer’s Disease 123

before the patient is showing the full symptoms of AD. This involves studying
patients who have mild cognitive impairment (MCI). Clinically, MCI is defined
as having isolated memory deficits that are not severe enough to affect normal
living [2]. MCI patients convert to AD at an annual rate of 10–15% per year
[3], although some develop other diseases or remain stable. As stable and con-
verting MCI (MCI-s and MCI-c) patients by definition have similar symptoms,
standard cognitive tests used to diagnose AD are by themselves of little help for
this problem; instead, imaging and other biomarkers can be used with machine
learning methods to detect subtle differences between the groups. A classifier
can be trained on labeled examples of MCI-s and MCI-c images, or alternatively
on examples of AD patients and healthy controls (HC), under the assumption
that MCI-s subjects are more HC like and MCI-c subjects are more AD like.
Most such studies use magnetic resonance imaging (MRI), from which a variety
of features can be extracted. However the results can be improved by combining
MRI features with imaging data measuring metabolic activity using fluorodex-
oxyglucose positron emission tomography (FDG-PET) and biomarkers measured
in a sample of cerebrospinal fluid (CSF) or genetic information in a multi-kernel
framework [4,5].

A limiting factor in the accuracy these studies may be mislabeling of training
subjects. The gold standard for diagnosis of AD is autopsy, but most studies use
subjects whose diagnosis has been determined by standard clinical testing, which
has been shown to have an error rate of at least 10 % [6]. This is an issue than has
not been widely adressed; Aksu et al. [7] point out that training labels for MCI-s
and MCI-c are uncertain and go on to generate their own MCI training labels
by following the classification of MCI subjects by an HC versus AD classifier
across multiple timepoint. However even this neglects the uncertainty in the HC
and AD labels this scheme ultimately depends on.

Our proposed method follows [8] in abandoning discrete disease state labels
for training altogether. We also perform a regression to predict a continuous
proxy for disease status, but instead of age we use atrophy over a period of one
year as measured by the boundary shift integral (BSI) [9]. This then provides
a predicted atrophy rate for each test subject. We use Gaussian process (GP)
regression [10], with a multiple kernel framework to optimally combine MRI,
FDG-PET and CSF data. This results in a measure that can predict MCI con-
version within 3 years with a balanced accuracy of 74.6 %, as good as state of
the art techniques having a much larger training set, including our own previous
work using multikernel GPs for classification [5].

2 Materials and Methods

2.1 Image and Biomarker Data

All data were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database1. The MRI images were T1 weighted structural scans from

1 http://adni.loni.ucla.edu/.

http://adni.loni.ucla.edu/


124 J. Young et al.

1.5T scanners taken at baseline and 12 month follow-up. All were subjected
to quality control and automatically corrected for spatial distortion caused by
gradient nonlinearity and B1 field inhomogeneity.

FDG-PET images were acquired according to the ADNI protocol: acquired
30–60 min post-injection, averaged, spatially aligned, interpolated to a standard
voxel size, intensity normalized, and smoothed to a common resolution of 8-mm
full width at half maximum.

CSF samples were obtained from subjects by a lumbar puncture around the
time of their baseline scan. Levels of the proteins amyloid-β42 (aβ42), tau, and
phosphorylated tau were measured and recorded.

The original ADNI project collected baseline structural MRI scans for all
subjects. However FDG-PET scanning and collection of CSF data were only
done on subsets of these subjects. Furthermore, calculation of BSI requires a
12-month follow-up structural MRI, which were also missing for some subjects.
As our method requires FDG-PET and CSF and a 12-month BSI as well as
structural MRI data, only 129 subjects could be included in the study. The
details of these are shown in Table 1. Subjects were classified as HC, AD or MCI
by neuropsychological and clinical testing at the time of the baseline scan, with
MCI conversion status decided by whether subjects were subsequently diagnosed
as AD at any stage during the 36 month follow-up period.

Table 1. Subject groups and demographics

Disease status Number Female Mean age (sd)

HC 28 19 74.1 (4.5)

MCI-s 38 22 75.3 (7.3)

MCI-c 29 18 75.1 (7.4)

AD 34 23 75.1 (6.8)

2.2 Image Processing

Probabilistic grey matter (GM) maps were produced from the native space base-
line scans using the NiftySeg tool [11]. The native space images were also anatom-
ically parcelated into 83 regions with a novel label fusion algorithm [12] in a
multi-atlas label propagation scheme. The resulting parcelations were used to
mask out the brainstem and cerebellum from the native space GM segmenta-
tions.

Also, a custom template was produced, performing all registrations using the
NiftyReg toolkit [13]. The native GM space segmentations were then warped into
the groupwise space. Finally, the groupwise space, masked GM segmentations
were modulated by the Jacobian determinants of this final deformation. This
step ensures the total mass of tissue remains constant. Hence the MRI features
used were voxel level GM probabilities.
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The native space anatomical parcelations were also rigidly transferred to the
space of the FDG-PET images for the corresponding subjects. The parcelation
was used to normalise each FDG-PET image by its mean cerebellar activity, and
then to calculate the mean activity within each anatomical region, generating a
set of 83 features for each FDG-PET image.

2.3 Boundary Shift Integral

The BSI is a method for robustly assessing volume loss of whole brains or brain
regions from structural MRI. It calculates a change in volume by integrating
across the longitudinal change in position of the boundary between CSF and
GM surrounding the region of interest. Preprocessing is needed to extract the
region of interest (which in our case is the whole brain) from each image, linearly
align the baseline and follow-up images, and correct for intensity inhomogeneity
between scans. We use the latest version of BSI [9] which uses a symmetric regis-
tration scheme to minimise bias and maximise desirable qualities for an atrophy
measurement such as inverse consistency and transitivity between multiple time-
points.

We normalise the resulting volume changes by the baseline brain volumes
and by the exact interval between baseline and follow-up scans, and multiply
by 100. This produces a normalised brain atrophy rate (BAR) in percentage of
original brain volume per year for each subject. These are then used as targets
in the following regression analysis.

2.4 Gaussian Process Regression

Gaussian processes (GPs) provide a Bayesian, kernelised framework for solving
both regression and classification problems. As an in depth explanation of GPs
is beyond the scope of this paper, we refer the reader to [10] for a theoretical
treatment and our previous work [5] for an application of multi-kernel GPs to
predicting conversion to AD.

Briefly, however, a GP is a multivariate Gaussian forming the prior on the
value of a latent function, on top of which is put a Gaussian noise model. The
covariance of the prior is a function of the covariance between instances of train-
ing data X , and a set of hyperparameters θ that control the overall form of the
prior and the noise variance. During the training phase, the hyperparameters
are learned from the training data X and targets y by type-II maximum likeli-
hood. Once the hyperparameters have been set, predictions on unseen data are
made by integrating across this prior, which can be calculated analytically for
the regression case.

2.5 Gaussian Processes as Multimodal Kernel Methods

GP regression is based on a covariance kernel K, a symmetric positive definite
matrix where entry Kij is given by a covariance kernel function k of the feature
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vectors for the ith and jth subject x i and x j and a hyperparameter or hyperpa-
rameters θ. We use a linear kernel function, which is simply the scalar product
of x i and x j . As GPs belongs to the family of kernel methods, a positive sum of
valid kernels is a valid kernel, and a valid kernel multiplied by a positive scalar
is also a valid kernel. This implies that to do multimodal classification, we can
define our kernel function as the weighted sum of a number of subkernels, each
of which has been calculated from a the feature vectors representing a particular
type of data or modality for each subject. Each subkernel has a scaling hyperpa-
rameter α representing the modality’s weight in the overall kernel. A bias term
β is also included in the sum. So in the case of multimodal classification using
information derived from the MRI, PET and CSF data for each subject the
overall kernel is

Kij = αMRI(x i,MRI.x j,MRI) + αPET(x i,PET.x j,PET) + αCSF(x i,CSF.x j,CSF) + β (1)

giving a total of four covariance hyperparameters to set.

3 Results

To generate predicted BARs for all 129 subjects, we perform a leave-one-out cross
validation (LOOCV) across the entire set. The correlation coefficient between
predicted and measured BARs for the subjects is 0.38 (p < 0.0001) and the root
mean squared error is 0.61. However our primary focus is not on the predicted
brain atrophy rates themselves, but on whether they can be used to predict
conversion in MCI subjects. Figures 1 and 2 show the spread of both measured
and predicted BAR values for all four disease groups (HC, MCI-s, MCI-c, AD).
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Fig. 1. Measured BAR across groups
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Fig. 2. Predicted BAR across groups

As shown in Figs. 1 and 2, while the mean predicted BARs for each group are
similar to the corresponding means for measured BARs, each clinical group occu-
pies a much tighter cluster of values, even allowing for a few outliers (marked as
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Table 2. Accuracy of discrimi-
nation between MCI-s and MCI-c
with predicted BAR

Modalities Accuracy (%) AUC

MRI 59.7 0.595

PET 73.1 0.777

CSF 52.2 0.545

MRI, PET, CSF 74.6 0.725

Table 3. Accuracy of discrimination
between MCI-s and MCI-c with training on
binary diagnostic class labels

Training Accuracy (%) AUC

MCI (CV) 40.3 0.401

HC, MCI, AD (CV) 52.2 0.569

HC, AD 55.2 0.661

a +). This results in reduced overlap between the clinical groups, which is espe-
cially noticeable between the MCI-s and MCI-c groups. The resulting accuracy
is 74.6 %, which is similar to the best previously reported results. The balanced
accuracy and area under the ROC curve (AUC) are shown in Table 2. This
also shows results for single modalities, demonstrating the benefit of combining
sources of data with multikernel learning.

We also compare our method to performing direct binary classification on
the conversion status again using GPs. This can be done by training on the MCI
subjects only in an LOOCV loop, by training on all subjects, again with an
LOOCV loop and grouping HC subjects with MCI-s and MCI-c subjects with
AD, and finally by training on the HC and AD subjects, and testing on the MCI
subjects. The results are given in Table 3.

4 Discussion

These results show a clear advantage for our method of training on a well-
characterised proxy for MCI conversion, rather than the diagnostic status itself.
Training on BAR enables us to reach accuracies of up to 74.6 %, whereas training
on diagnostic labels struggles to perform better than chance. It therefore appears
that the use of BAR bypasses the problems caused by binary diagnostic labels.
Data is made better use of as subjects can be used for training regardless of
diagnostic label, and as parameters are learned automatically there is no need
to set subjects aside for tuning. We also show an advantage for multimodal
regression. Although direct comparisons between methods are difficult [5], the
resulting accuracy in forecasting MCI conversion is among the best yet achieved.
The main drawback of our the proposed method is that all three types of data
are all required for the best results (although FDG-PET alone does almost as
well) which limits the number of subjects that can be included. However we
intend to further evaluate this method as much greater numbers of subjects
with all modalities become available in ADNI 2. Finally, while 12-month follow-
up scans are also required to calculate BSI values for training data, it should be
emphasised they are not needed for testing data.
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