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Abstract. Group analysis of fMRI data via multivariate pattern meth-
ods requires accurate alignments between neuronal activities of differ-
ent subjects in order to attain competitive inter-subject classification
rates. Hyperalignment, a recent technique pioneered by Haxby and col-
laborators, aligns the activations of different subjects by mapping them
into a common abstract high-dimensional space. While hyperalignment
is very successful in terms of classification performance, its “anatomy
free” nature excludes the use of potentially helpful information inherent
in anatomy. In this paper, we present a novel approach to hyperalign-
ment that allows incorporating anatomical information in a non-trivial
way. Experiments demonstrate the effectiveness of our approach over the
original hyperalignment and several other natural alternatives.

1 Introduction

Apart from being a fundamental issue in cognitive neuroscience, “the problem
of conceptual similarity across neural diversity” [3] has a direct practical man-
ifestation when analyzing fMRI data. Namely, group analysis of fMRI data via
multivariate pattern methods requires aligning activations of different subjects.
While, pragmatically, the goal of alignment is to attain inter-subject classifica-
tion (ISC) rates comparable to within subject classification (WSC) rates, ideally,
such alignments should take into account both anatomical and functional fea-
tures of the brain.

Existing spatial alignment approaches are based either purely on anatom-
ical features [6,12], or on a combination of anatomical features with features
extracted from fMRI data, such as activations directly [9] or connectivity derived
from activations [4,5]. However, these approaches do not consistently yield ISC
rates comparable to WSC rates [5]. On the opposite end of the spectrum is the
recently introduced class of methods summed under the name “hyperalignment”
[7,8,14]. Hyperalignment essentially finds linear combinations of voxel activa-
tions that agree across the subjects, yielding subject specific linear maps (matri-
ces) that transform their activations into a common abstract high-dimensional
space. While hyperalignment works well in practice achieving ISC rates on par
with or even better than WSC rates, in the current form, it lacks a mechanism for
incorporating anatomical information that potentially may lead to even better
classification performance.
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The goal of this work is to introduce an approach to hyperalignment that
allows the use of anatomical information. We start by computing pair-wise
(hyper-) alignments between subjects by setting up an optimization problem
containing terms involving both anatomical and functional features. Next, we
need to aggregate these pair-wise alignments into an overall alignment of all sub-
jects. To achieve this, inspired by the recent work on synchronization [10,11,13],
we introduce the method of synchronized projections, which yields the final maps
of activations into a common space shared between all subjects.

Our approach has a number of advantages. First, while our approach shares
the same core idea with hyperalignment – mapping activations into a common
space – yet our maps are heavily guided by anatomical information. Second, we
do not make any restrictions on the choice of pair-wise alignments; the synchro-
nized projections can be applied more generally to any set of pair-wise alignments
that can be expressed as linear maps. Third, experimental results confirm the
superiority of synchronized projections in terms of ISC rates over more straight-
forward approaches that align all subjects to a reference subject or to a floating
subject that is iteratively refined.

The paper is organized as follows. We introduce our computation proce-
dure for pair-wise alignments in Sect. 2.1. The main technical contribution, the
method of synchronized projections, is described in Sect. 2.2. We present exper-
imental evaluation of our approach on a multi-subject category perception data
in Sect. 3.

2 Approach

The input to our algorithm is fMRI data elicited from nsubj subjects exposed
to a common synchronous stimulus, such as viewing a number of images in the
same order. The data for i-th subject is recorded in nTR×nvox matrix Xi, where
each row corresponds to a time point, and each column to a voxel in the subject’s
brain. Note that each row-vector represents a spatially-varying fMRI activation
at some time, and the rows in Xi are ordered consistently across all subjects. On
the other hand, the columns – each containing the time course of a particular
voxel – are not assumed to be in correspondence across the subjects. Since the
activations of different subjects are not directly comparable, we cannot train a
single multi-voxel pattern classifier that would work for all the subjects at once.

Our goal is to provide a way of computing features/projections of fMRI acti-
vations that are consistent across subjects. To this end, our algorithm computes
projection matrices – one for each subject – which can be used to map activations
of that subject into a common space shared between all subjects.

The algorithm proceeds in two steps. First, for each pair of subjects, we
compute a linear map that transports the activation vectors of one subject to
the reference frame of the other. In the second step, we compute the projection
matrices by setting up an optimization problem which essentially requires the
following: the projection of an activation should be roughly the same if one were
to transport the activation to another subject and then project. This leads to
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a matrix eigenvalue problem for some symmetric positive semi-definite matrix.
The details of our construction are provided in the remainder of this section.

2.1 Pair-Wise Alignment Maps

As in original hyperalignment, we will use linear maps to align fMRI responses of
different subjects. Thus, the first step of our algorithm is to compute, for every
pair of subjects i, j = 1, ..., nsubj, a linear map (matrix) Cij that transforms
fMRI activations of subject i to the reference frame of subject j, namely by
achieving XiCij ≈ Xj . What this means is that while the voxel activations in
two different subjects may not be directly comparable, yet one can make linear
combinations from activations of some voxels in the i-th subject’s brain that will
be compatible with the activation of a given voxel in the j-th subject’s brain.
Thus, the matrix entry Cij

pq captures the coefficient with which voxel q of subject
i appears in the linear combination for voxel p of subject j.

These alignment matrices are learned from the training data by posing an
optimization problem of the following form: Cij = arg minC ‖XiC−Xj‖F , where
‖ · ‖F is the Frobenius norm. Since the amount of training data is limited, this
optimization problem is overly under-determined and needs some kind of reg-
ularization. For example, the original hyperalignment [7] requires the matrices
Cij to be orthogonal.

Here we propose a different regularization that incorporates the anatomical
information. Remember that the brains can be anatomically aligned using a
number of approaches; here we will use the Talairach alignment [12]. As a result
of such alignment, all of the brain images are placed into a common 3D space,
and one can compute the Euclidean distance Dij

pq between voxel q of subject i
and voxel p of subject j. We now seek the pairwise alignment matrix via the
following optimization problem:

Cij = arg min
C

‖XiC − Xj‖2F + µ
∑

p,q

(Dij
pqCpq)2. (1)

The proposed regularization term has an important advantage over the
orthogonality requirement of original hyperalignment. Orthogonality require-
ment makes it possible for spatially distant voxels to take part in the linear com-
bination for a given voxel, rendering hyperalignment “anatomy free”. Our regu-
larizer, on the other hand, penalizes spatially distant voxels, effectively imposing
the prior that the anatomical alignment is not too far from truth.

2.2 Synchronized Projections

The second step of our algorithm uses the pairwise alignment maps in order
to construct projection matrices into a d-dimensional common space shared
between all subjects. To this end, for each subject i we construct an nvox × d
matrix P i, such that the projected activations XiP i are consistent between sub-
jects and can be used to train a single multi-voxel pattern classifier that would
work for all subjects at once.
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The main idea is as follows: if we have an activation row-vector v of subject i,
then it can be transported to subject j by computing vCij ; since the activation
before and after transport represents the same stimulus, then their projections
(using the respective subject’s projection matrix) should be roughly the same:
vCijP j ≈ vP i. Since this should hold for all activation vectors and all pairs of
subjects, we can setup an optimization problem that minimizes the discrepancies
between projections. One way to formalize this is to seek the projection matrices
as minimizers of

∑
i,j ‖CijP i − P j‖2F , subject to normalization constraints to

avoid trivial solutions.
To put the problem into a more familiar form, let us denote by P the

nsubjnvox × d matrix obtained by stacking together all of the matrices P i, i =
1, ..., nsubj. We can rewrite the optimization objective as follows:

∑

i,j

‖CijP i − P j‖2F = P
�
LP, (2)

where L is nsubjnvox × nsubjnvox matrix. This matrix consists of nsubj × nsubj

blocks Lij of size nvox×nvox. Namely, letting I be the nvox×nvox identity matrix,
we have

Lij =
{−(Cij + Cji�) , i �= j

(nsubj − 1)I +
∑

k,k �=i C
ki�Cki , i = j

As can be seen directly from Eq. (2), L is a symmetric positive semi-definite
matrix. This is a generalized notion of graph Laplacian to the setting where
edges are decorated by pair-wise mappings [10,11,13].

Since our goal is to minimize P
�
LP, we need to impose some constraints

on P in order to avoid trivial solutions. We require the columns of P to be
orthonormal because this leads to an eigenvalue problem. Namely, it is easy to
see that then the columns of optimal P are simply the eigenvectors corresponding
to the smallest d eigenvalues of L, and that the optimal objective value is the
sum of the smallest d eigenvalues of L.

It follows that when the dimension d of the common space is increased from
one value to another, all the previous projected coordinates are kept intact and
new coordinates are added. In a sense, the projected coordinates are naturally
ordered by their corresponding eigenvalues – the smaller the eigenvalue, the
stronger is the inter-subject commonality (i.e. the smaller is its contribution to
the discrepancy as measured by our objective) captured by the corresponding
projected coordinate. Therefore, to obtain a low-dimensional common represen-
tation space, we do not need to start with a high-dimensional space and then
select the principal component directions as in original hyperalignment [7]. Our
eigenvalue based ordering of coordinates provides a more principled criterion
than the maximum variance directions criterion of the PCA, because large vari-
ance could in fact be due to the absence of commonality along a direction.

3 Results

Our goal is to show the benefit of synchronization in comparison to two other
natural approaches, and also to compare it with anatomical alignment and the
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Fig. 1. ISC performance comparison
of a number of approaches to multi-
subject fMRI data alignment.

Fig. 2. Dependence of ISC perfor-
mance on the dimension d of the com-
mon space.

original hyperalignment of [7]. Our experiments are based on category perception
(faces and objects) data from [7] that is distributed together with hyperalign-
ment module [1] of PyMVPA package. This dataset is challenging as evidenced,
for example, by the inability of a previously introduced generalization of hyper-
alignment [14] to improve over the original hyperalignment [1]. This can be
attributed in part to the small size of the dataset, which limits the number of
training samples.

Our evaluation protocol follows directly the one described in [7]: first, for all
subjects, all runs except one are used for voxel selection, pair-wise map computa-
tion, and determining common space; second, a linear multi-class SVM classifier
[2] is trained on these runs of all subjects except one subject; the classifier is
tested on the held-out run of the held-out subject. The obtained classifier accu-
racy is a measure of inter-subject classification success; this accuracy, averaged
over held-out subjects and held-out runs, constitutes our performance metric.

Figure 1 shows the performance comparison of five different approaches to
alignment of multi-subject fMRI data. The horizontal axis on this graph is the
value of the regularization weight µ appearing in the optimization problem for
computing pair-wise maps, Eq. (1). Of course, the performances of Talairach
alignment (taken directly from the hyperalignment module website [1]) and orig-
inal hyperalignment [7] (re-implemented in MATLAB for consistency; results are
in agreement with hyperalignment module [1]) are independent of the parameter
µ. In accordance with [7], voxel selection is done by retaining a fixed number
(nvox = 200) of voxels with highest F -scores. For all methods in this figure except
synchronization, the dimension of common space is tied (equal) to the number
of voxels; for fair comparison, we set d = nvox for synchronization as well.

The performance of our synchronization approach is also compared to two
other natural approaches, labeled “direct” and “iterated direct” in the graph.
The direct approach picks one of the subjects, say r, as a reference, and then
uses the pair-wise maps Cir to map the activations of all of the subjects to the



120 R.M. Rustamov and L. Guibas

frame of this reference subject; these mapped activations are used as features
in machine learning step. The iterated direct approach starts out in exactly the
same manner, except that mapping process is repeated. Namely, after the first
mapping is complete, for each TR, the average of mapped activations are com-
puted, and the new pair-wise maps (from all subjects to the reference subject)
are computed to match these averaged activations on reference subject. This
iterative process is similar to the original hyperalignment technique of Haxby
et al. [7], except that the pair-wise maps are computed using Eq. (1). The per-
formances of direct and iterated direct approaches are averaged over all the
reference subject choices.

As indicated by Fig. 1, the synchronization approach consistently improves
over the natural alternatives – the direct and iterated direct approaches – using
the same type of pair-wise maps. In addition, for some parameter settings, syn-
chronization provides a non-negligible improvement over the original hyperalign-
ment approach of Haxby et al. [7].

Next, we fix the parameter µ = 1, and study the dependence of ISC perfor-
mance on the dimension d of the common space. Figure 2 shows that even for
the dimensionality as low as 10, our approach yields performance competitive
with Haxby et al. hyperalignment. This is in agreement with the finding in [7]
that keeping a limited number of principal components of the common space is
sufficient for obtaining improved ISC rates. However, here we do not need to
apply principal component analysis, because the coordinates of common space
obtained via our algorithm are already ordered by the degree of inter-subject
commonality; see discussion at the end of Sect. 2.2.

Finally, we investigate what happens if one were to change the type of pair-
wise alignments used in synchronization. Following the idea of original hyper-
alignment [7], we require that the pair-wise alignment matrices are orthogonal.
More precisely, in optimization problem of Eq. (1) we drop the anatomy based
regularizer, and instead require that Cij is orthogonal, which reduces the prob-
lem to Procrustes analysis as in [7]. The curve in Fig. 2 labeled “Synch. Haxby
et al.” shows the performance of synchronization applied to these new pair-wise
maps. It can be seen that the performance is equivalent to the original hyper-
alignment starting at around dimension d = 35, which is in good agreement with
the dimension of reduced common space identified in [7] via PCA.

4 Conclusion

We have introduced an approach allowing to inject anatomical information into
hyperalignment. Experiments demonstrated the effectiveness of our approach
over the original hyperalignment and several other natural alternatives.
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