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Abstract. We address the problem of segmenting a multi-dimensional
time series into stationary blocks by improving AutoSLEX [1], which has
been successfully used for this purpose. AutoSLEX finds the best basis
in a library of smoothed localized exponentials (SLEX) basis functions
that are orthogonal and localized in both time and frequency. We intro-
duce DynamicSLEX, a variant of AutoSLEX that relaxes the dyadic
intervals constraint of AutoSLEX, allowing for more flexible segmen-
tation while maintaining tractability. Then, we introduce RandSLEX,
which uses random projections to scale-up SLEX-based segmentation to
high dimensional inputs and to establish a notion of strength of splitting
points in the segmentation. We demonstrate the utility of the proposed
improvements on synthetic and real data.
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1 Introduction

When analyzing neural data such as Electroencephalography (EEG), magnetoen-
cephalography (MEG), local field potential (LFP) or spike trains, it is typical
to encounter non-stationary multidimensional time series whose spectra change
over time depending on external stimuli and behavioral states of the organism
[2]. In such cases, one can assume the signal to be locally stationary and hence,
it is desirable to decompose the time series into orthogonal basis functions that
are localized in both time and frequency. To achieve these qualities, Ombao et
al. [1] proposed the use of smooth localized exponentials (SLEX). The SLEX
transform constructs orthogonal basis functions that are localized in time and
frequency by applying two special window functions to the Fourier bases. The
AutoSLEX model creates a library of SLEX basis functions that correspond
to dyadic time intervals of decreasing length. A segmentation of a time series
into stationary segments can be obtained by selecting the best basis from the
library using the best basis algorithm (BBA) [3]. The choice of dyadic intervals
makes the segmentation problem tractable. However, it limits the obtainable
segmentations. More recent methods relaxed that limitation, at the expense of
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having an intractable problem for which MCMC based methods are employed
[4]. After reviewing SLEX in Sect. 2. We introduce two improvements to SLEX-
based segmentation: in Sect. 3 we propose DynamicSLEX, a variant of SLEX
that overcomes the dyadic intervals limitation of AutoSLEX while maintaining
tractability; and in Sect. 4 we propose RandSLEX, a method to scale-up SLEX
analysis to high-dimensional inputs using random projections.

2 Background

2.1 SLEX Transform

SLEX basis functions are obtained by applying special pairs of window functions
to the Fourier basis. A SLEX basis function has the form

φω(t) = Ψ+(t) exp(i2πωt) + Ψ−(t) exp(−i2πωt), (1)

where ω ∈ [−1/2, 1/2]. The window functions Ψ+ and Ψ− are parametrized by an
interval [α0, α1] and overlap ε and have compact support on [α0 − ε, α1 + ε] .1 In
more detail, Ψ+ and Ψ− are given by
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where r(.) is the iterated sine function given by
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The choice of d controls the steepness in the rising and falling phases of Ψ and
hence time-frequency localization properties. Note that if Ψ− ≡ 0 we revert to
STFT. The existence of the proper Ψ− is what makes the SLEX basis orthogonal
and localized. Figure 1 depicts sample realizations of Ψ+ and Ψ−.

A SLEX library is a collection of bases, each of which consists of localized
SLEX waveforms that span dyadic time intervals. Figure 2(b), demonstrates this
idea; each block consists of all waveforms that span the corresponding interval.
Similar to [1], we use S(j, b) to refer to the bth block in the jth level where S(0, 0)
is the root block that spans the entire time series. Each choice of non-overlapping
blocks that span the time series corresponds to a basis and a segmentation (see
Fig. 2(c)). The SLEX coefficients of block S(j, b) for an input series X can be
computed as follows:

dj,b(ωk) =
1√
Mj

∑
t

X(t)φj,b,ωk
(t), (2)

1 In the rest of the paper when we speak of a basis function over some time interval,
we mean [α0, α1] (ignoring the overlap).
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Fig. 1. Ψ+ and Ψ− constructed with α0 = 128, α1 = 256 and ε = 8

where Mj = |S(j, b)| = T
2j and φj,b,ωk

is defined as in (1) for window functions Ψ+

and Ψ− that correspond to the block S(j, b). Note that the sum over t corresponds
to applying a window function followed by inner product with a Fourier basis
function. Therefore dj,b(ωk) can be computed for all ωk = k/Mj for k = −Mj/2+
1, . . . ,Mj/2 in O(T log T ) time using fast Fourier transform (FFT).

2.2 Basis Selection

To select a SLEX basis, we define a cost function C(j, b) for each block

C(j, b) =
Mj/2∑

k=−Mj/2+1

log Ij,b(ωk) + βj

√
Mj (3)

where βj is a penalty parameter that prevents oversegmentation and Ij,b(ωk)
is obtained by smoothing the SLEX periodogram |dj,b(ωk)|2 using a kernel
smoother. The smoothing bandwidth is chosen by generalized cross validation
(GCV), as detailed in [1]. After computing the costs, basis selection is performed
using best basis algorithm [3] which simply proceeds bottom up, merging two
sibling blocks if the cost of their parent is less than the sum of their costs.

2.3 The Multivariate SLEX

The straightforward extension of SLEX transform to multiple time series is to
assume they are independent and consequently assume that the net cost of a
block is the sum of costs of all series [1,3]. To ensure that spectral information is
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non-redundant in the presence of correlation, Ombao et al. [5] propose computing
the cost based on the eigen spectrum of the smoothed cross-periodogram matrix
given by

I
(i,j)
j,b (ωk) = d

(Xi)
j,b (ωk)d(Xj)

j,b (ωk), (4)

The proposed multivariate cost function is given by

C(j, b) =
Mj/2∑

k=−Mj/2+1

P∑
d=1

λd
j,b(ωk) log λd

j,b(ωk)∑P
d′=1 λd′

j,b(ωk)
+ βj

√
Mj , (5)

where P is the number of time series and λd(ωk) is the dth eigenvalue of the
smoothed cross-periodogram matrix at frequency ωk. This can be thought of
as applying the additive cost method on non-stationary principal components
that have zero coherence. With the new formulation, basis selection can proceed
as described in 2.2. The multivariate SLEX transform can be summarized as
follows:

1. For each block S(j, b), compute the SLEX coefficients based on (2) using FFT.
Use the coefficients to compute the cross-periodogram matrix for each block
based on (4).

2. For each block S(j, b), smooth the cross-periodograms I
(i,j)
j,b (ωk) along fre-

quency using a window smoother whose bandwidth is optimized based on
GCV.

3. For each block S(j, b), compute the eigenvalues of the smoothed cross-
periodogram matrix at each frequency and use them to compute the cost
based on (5).

4. Use BBA to obtain best segmentation and extract the smoothed cross-
periodogram matrices corresponding to selected blocks.

3 Flexible Segmentation Using DynamicSLEX

Although AutoSLEX analysis provides an appealing segmentation method, it
suffers from a fundamental limitation; if the best basis contains the interval
[2m T

2k
, 2(m + 1) T

2k
] then it must contain its sibling in the dyadic structure as

well as the sibling of the parent, the sibling of the grand parent and so on up to
[0, T

2 ] and [T
2 , T ]. Therefore, AutoSLEX can result in spurious splits of the time

series, as demonstrated in Fig. 2, or otherwise miss splitting points. To mitigate
this problem, we introduce DynamicSLEX, a variant of SLEX analysis that is
also tractable but, at the same time, is capable of producing any segmenta-
tion whose splitting points are located at integer multiples of T

2K
regardless of

the length and starting position of each segment. DynamicSLEX uses the same
dyadic bottom-up strategy to select basis functions using BBA. Recall that,
in AutoSLEX, a single BBA step determines the best segmentation of a block
S(j, b) given the best segmentations of it children S(j + 1, 2b) and S(j + 1, 2b)
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Fig. 2. Limitation of SLEX-based segmentation: to recover the left (bright) segment
in (a), bba needs to choose the shaded basis intervals in (b) which produce the seg-
mentation shown in (c).

(denoted in Fig. 3 as “input”). BBA for AutoSLEX can decide to merge the
blocks, removing all splitting points or to split the blocks, keeping their split-
ting points and introducing a middle one that separates them. DynamicSLEX
introduces a third option, to concatenate the blocks by keeping the splitting
points intact. This is demonstrated in Fig. 3. Effectively, DynamicSLEX is able
to merge between adjacent blocks that have different parents and possibly are
at different levels, preventing unnecessary splits. With proper bookkeeping, it
is easy to compute the cost of blocks resulting concatenation without affecting
the tractability of BBA. The algorithm is outlined in Algorithm 1. The algo-
rithm makes use of ComputeIntervalCost function, which computes the cost of
a given interval according to (3) or its multivariate version (5)2.

Fig. 3. The effect of merging, split and concatenation on two adjacent intervals. The
vertical dashed lines indicate splitting points whereas the window functions indicate
the spans of the selected basis functions.

2 Note that concatenation can introduce intervals whose length is not be a power of
2. Therefore, we cannot use the common Cooley-Tukey method for FFT. Instead,
to efficiently compute SLEX periodograms in O(T log T ) time, we resort to Chirp-Z
Transform [6].



Fast and Improved SLEX Analysis of High-Dimensional Time Series 99

input :
X: A T × P matrix representing P time series of length T
J : Maximum segmentation level

output:
A set of splitting points

data :
C(j,b): The cost of block b at level j
S(j,b): Set of splitting points in blockb at level j
R(j,b): The cost of the rightmost segment in block b at level j
L(j,b): The cost of the leftmost segment in block b at level j

{Initialization}
for b ← 1 to 2J do

C(J, b) ← ComputeIntervalCost([(l − 1) T
2J

, l T
2J

]);
S(J, b) ← {};
R(J, b) ← C(j, b); L(J, b) ← C(j, b);

end
{Dynamic BBA}
for j ← J to 0 do

for b ← b to 2j − 1 do
merge cost ← ComputeIntervalCost([b T

2j
, (b + 1) T

2j
]);

split cost ← C(j + 1, 2b) + C(j + 1, 2b + 1);
{Construct interval for new basis function}
left ← max(S(j + 1, 2b) ∪ {b T

2k
});

right ← min(S(j + 1, 2b + 1) ∪ {(b + 1) T
2k

});
cat cost ← split cost − R(j + 1, 2b) − L(j + 1, 2b + 1) +
ComputeIntervalCost([left, right]);

{Select minimum cost}
C(j, b) ← min({merge cost, split cost, cat cost});
if C(j, b) = merge cost then S(j, b) ← {} else if C(j, b) = split cost
then S(j, b) ← S(j + 1, 2b) ∪ S(j + 1, 2b + 1) ∪ {(b + 1

2
) T
2j

} else
S(j, b) ← S(j + 1, 2b) ∪ S(j + 1, 2b + 1) Update R(j, b) and L(j, b);

end
end
Output S(0, 0);

Algorithm 1: DynamicSLEX Segmentation Algorithm
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4 Fast SLEX Analysis Using RandSLEX

One problem with AutoSLEX is that it does not scale well to high-dimensional
time series. For a P–dimensional series, the cost of computation and smoothing
of the cross periodograms is O(P 2T ) and the cost of eigenvalue decomposition
of the cross periodograms is O(P 3T ). This cost can be substantial or even pro-
hibitive for the analysis of massive datasets of high dimensional time series.
We propose the use of random projections to speed up SLEX analysis. Specif-
ically, we choose p � P and generate a p-dimensional time series by taking
random Gaussian-distributed linear combinations of the input series X. The use
of random projection for dimensionality reduction was successful in numerous
applications [7,8]. In our case, the use of random projection is motivated by
the observation that a random Gaussian combination of a piecewise-stationary
multivariate timeseries preserves stationarity break points almost surely.

Since p � P , SLEX segmentation will be much faster and can be repeated
k times with different randomly generated combinations, potentially resulting
in different splitting points. The results of multiple segmentations can be aggre-
gated in a split-count graph as shown in Fig. 4. The split-count graph is a visual
summary that gives, for each position in the time series, the number of times
that RandSLEX detected a splitting point at that position out of the k different
runs. This number can be interpreted as a measure of strength for each split-
ting point and can be used to obtain segmentations at increasing resolutions by
filtering out splitting points whose strength is below a given threshold. Once a
segmentation is chosen, the coefficients of the full input series X w.r.t the chosen
basis can be computed in O(PT log T ) time.

Fig. 4. Top: A sample split-count graph for k = 10 runs of RandSLEX. Bottom: seg-
mentation obtained by setting strength threshold to 7.

5 Experiments

5.1 Synthetic Experiments

In the first experiment, we demonstrate the utility of DynamicSLEX.
We generated time series data from three auto regressive (AR) processes



Fast and Improved SLEX Analysis of High-Dimensional Time Series 101

P1 := AR(1)[0.9], P2 = AR(2)[1.69,−0.81] and P3 = AR(3)[1.35,−0.65]. We
generated a piecewise-stationary series of length T = 1024 by switching the
source process at T/4, T/2, 3T/4. We experimented with four categories of
series shown in Table 1. Categories (b) and (d) are essentially “harder” versions
of categories (a) and (c), with P3 less distinguishable from P2 than P1. For each
category, we generate 100 time series which are then segmented using AutoSLEX
and DynamicSLEX with minimum block length of T/4 and penalty parameter
β = 1. Table 1 shows the number of times a splitting point was generated at
T/4, T/2 and 3T/4. While AutoSLEX and DynamicSLEX are comparable in
categories (a) and (b), AutoSLEX consistently produces a spurious split at T/2
in category (c). In category (d) AutoSLEX fails to detect the splits at T/4 and
3T/4 more often than DynamicSLEX.

Table 1. Categories of time series used to test DynamicSLEX and the number of times
each splitting point is generated by AutoSLEX and DynamicSLEX for each category
across 100 trials.

AutoSLEX DynamicSLEX

Category [0, T/4] [T/4, T/2] [T/2, 3T/4] [3T/4, T ] T/4 T/2 3T/4 T/4 T/2 3T/4

(a) P1 P2 P1 98 99 6 98 99 6

(b) P3 P2 P3 66 78 5 69 76 6

(c) P1 P2 P1 99 98 96 98 9 97

(d) P3 P2 P3 47 52 39 77 12 54

In the second experiment, we asses the ability of RandSLEX to efficiently
recover segmentations of a multivariate time series. For this purpose we generate
four different time series, which switch from process P1 to process P2 at times
T/16, T/8, 5T/16 and 11T/16 respectively (T = 8192). From these four series,
a 10 dimensional series is obtained by taking random linear combinations of
the base signals where the combinations weights are sampled from a standard
normal distribution. We run RandSLEX on top of DynamicSLEX with p = 1 and
k = 10 and for each confidence threshold 1 ≤ θ ≤ k we count true positive, false
positive and false negative splitting points, where a positive splitting point is
one that is reported at least θ times. We aggregate the counts over 100 different
instantiations of that experiment and based on that compute precision (the
percentage of reported splitting points that are true) and recall (the percentage
of true splitting points that were reported) for each confidence threshold θ. The
results are summarized in the PR curve depicted in Fig. 5(left). The curve shows
that, for example, RandSLEX can achieve 94.5 % recall with 81.3 % precision.
Surprisingly, RandSLEX outperformed DynamicSLEX (marked as a green circle
in the figure), which gives 81 % at 41 % recall.
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Fig. 5. left: PR curve for RandSLEX on synthetic time series right: Mean and stan-
dard errors of split strength on LFP data (Color figure online)

5.2 Analysis of Local Field Potential Data

In this experiment, we demonstrate RandSLEX on Local field potentials (LFP)
recorded in the Frontal Eye Fields (FEF). Data were acquired through a 16-
channel linear probe at 1 kHz from an alert rhesus macaque monkey during
performance of a memory-guided saccade task. The animal was required to fixate
a central dot during presentation of a visual cue. The visual cue was a brief
flash (at time 0.0) at a fixed eccentricity in one of eight directions relative to
fixation (spaced by 45◦). From time 0.0, the animal had to maintain fixation for
a delay period of 500 ms after which the central fixation dot was removed. The
animal was rewarded for a successful saccadic eye movement to the remembered
direction of the visual cue. The time series, consisting of 1500 samples, was zero-
padded to the next power of two. We applied RandSLEX on 100 trials of each
direction, for a total of 800 trials. The minimum block size was set to 128 and
the parameters p and k set to 1 and 16 respectively. The hypothesis is that
changes in the stimulus are expected to change the spectral properties of the
time series and cause splitting points. Figure 5(right) summarizes the strength
of splitting points across trials (zero padding interval not included). Note that
two significant splits were found at 0.0 and 0.5 s, where there is a change in the
stimulus. Switching on the fixation dot at around −0.3 s is captured by another
less significant splitting point. It is remakable that the model employs no prior
knowledge of the stimulus. We speculate that the rightmost splitting point could
be attributed to zero padding or other edge effects.

6 Discussion

We introduced an efficient method for segmenting a multivariate into station-
ary segments. The method provides two enhancements over AutoSLEX: An
expanded library of bases that allows for more flexible segmentation (Dynamic-
SLEX) and the use of random projections to scale up to high-dimensional time
series and provide a notion of segmentation strength. Our experiments revealed
that the introduced method gives promising results on synthetic and real data.
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