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Preface

Machine Learning, Multivariate Methods and Interpretation:
New Avenues in Neuroimaging

Modern multivariate statistical methods developed in the rapidly growing field of
machine learning are being increasingly applied to various problems in neuroimaging,
from cognitive state detection (“mind reading”) to clinical diagnosis and prognosis.
Multivariate pattern analysis methods are designed to examine complex relationships
between high-dimensional signals, such as brain images, and outcomes of interest, such
as the category of a stimulus, a type of a mental state of a subject, or a specific mental
disorder. Such approaches are in contrast with the traditional mass-univariate approa-
ches that dominated neuroimaging in the past and treated each individual imaging
measurement in isolation.

We believe that machine learning has a prominent role in shaping how questions in
neuroscience are framed, and that the machine-learning mindset is now entering
modern psychology and behavioral studies. It is also equally important that practical
applications in these fields motivate a rapidly evolving line or research in the machine
learning community. In parallel, there is an intense interest and several ongoing efforts
focused on learning more about brain function in the context of rich naturalistic
environments, beyond highly specific paradigms that pinpoint a single function. In this
context, many controversies and open questions exist.

This volume is a collection of contributions from the 4th Workshop on Machine
Learning and Interpretation in Neuroimaging (MLINI) at the Neural Information
Processing Systems (NIPS 2014) conference; moreover, it also includes three papers
that received the best paper award at the Third MLINI Workshop in 2013. The first
workshop in these series was organized in December 2011. The MLINI workshop
series focuses on machine learning approaches in neuroscience, neuroimaging, with a
specific extension to behavioral experiments and psychology, and provides a forum that
facilitates cross-fertilization across those fields.

The key objective is to pinpoint the most pressing issues and common challenges,
and to sketch future directions and open questions in the light of novel methodology.
Besides interpretation, and the shift of paradigms, many open questions remain at the
intersection of machine learning, neuroimaging, and psychology. These questions
include, but are not limited to the following. Can we characterize situations when
multivariate predictive analysis (MVPA) and inference methods are better suited for
brain imaging analysis than more traditional techniques? How well can functional
networks and dynamical models capture the brain activity, and when using network
and dynamics information is superior to standard task-based brain activations? How
can we move toward more naturalistic stimuli, tasks, and paradigms in neuroimaging
and neurosignal analysis? What kind of mental states can be inferred from cheaper and
easier to collect data sources (as an alternative to fMRI scanners) such as text, speech,



audio, video, EEG, and wearable devices? What type of features should be extracted
from such naturalistic input to detect specific mental states and/or mental disorders?

Exploring these and many other related questions remains the source of inspiration
for the MLINI workshop series.

December 2014 Irina Rish
Georg Langs
Leila Wehbe

Guillermo Cecchi
Kai-min Kevin Chang

Brian Murphy

VI Preface
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Networks and Decoding



Multi-Task Learning for Interpretation
of Brain Decoding Models

Seyed Mostafa Kia1,2,3(B), Sandro Vega-Pons2,3, Emanuele Olivetti2,3,
and Paolo Avesani2,3

1 University of Trento, Trento, Italy
seyedmostafa.kia@unitn.it

2 NeuroInformatics Laboratory (NILab), Bruno Kessler Foundation, Trento, Italy
3 Centro Interdipartimentale Mente e Cervello (CIMeC),

University of Trento, Trento, Italy

Abstract. Improving the interpretability of multivariate models is of
primary interest for many neuroimaging studies. In this study, we present
an application of multi-task learning (MTL) to enhance the interpretabil-
ity of linear classifiers once applied to neuroimaging data. To attain our
goal, we propose to divide the data into spatial fractions and define the
temporal data of each spatial unit as a task in MTL paradigm. Our
result on magnetoencephalography (MEG) data reveals preliminary evi-
dence that, (1) dividing the brain recordings into spatial fractions based
on spatial units of data and (2) considering each spatial fraction as a
task, are two factors that provide more stability and consequently more
interpretability for brain decoding models.

1 Introduction

Cognitive neuroscientists are generally concerned with discovering answer of
where, when and how a certain brain activity contributes to a particular cognitive
process. Hence, a multivariate analysis of recorded brain activity, e.g., Electroen-
cephalography (EEG), Magnetoencephalography (MEG), or functional Magnetic
Resonance Imaging (fMRI), is considered interpretable if it can find accurate
and stable answer to where, when and how questions. Therefore, improving the
interpretability of multivariate analysis is of high interest in the brain imaging
literature [24].

Nowadays, mass-univariate hypothesis testing methods are widely employed
to make inference on neuroimaing data [11,17,18]. Despite popularity of these
univariate methods, they are generally unable to spot complex interactions
between different brain areas [7]. Recent studies tried to find multivariate alter-
natives to univariate hypothesis testing [16,20], however, classification-based
approaches are still the most popular tools for multivariate analysis of neu-
roimaging data [9]. These approaches go under the name of brain decoding and
generally use linear classifiers to find evidence for stimulus related information
in neuroimaging data. The weights of linear classifiers provide quantitative mea-
surements to assess the relation between each dimension of data, i.e., features,
and the underlying cognitive task. However, these approaches suffer from lack
c© Springer International Publishing AG 2016
I. Rish et al. (Eds.): MLINI 2014, LNAI 9444, pp. 3–11, 2016.
DOI: 10.1007/978-3-319-45174-9 1



4 S.M. Kia et al.

of interpretability due to the high dimensionality of data and high correlation
between features [3,12,13].

Currently, there are two main directions in neuroimaging literature to
improve the interpretability of multivariate linear models. The first concentrates
on model selection in order to increase the stability of brain decoding model. This
approach suggests taking into account the stability of models in model selection
procedure. For example, [22] computed the correlation between weights of mod-
els across different cross-validation runs, and utilized it besides accuracy for
model selection in joint accuracy-reproducibility space. Analogous approaches
have been proposed in [1,4,6,26].

The second approach focuses on the underlying mechanism of regularization
to enhance the interpretability of weights of classifier. The main idea is two-fold:
(1) customizing the regularization terms to address the ill-posed nature of brain
decoding problems (where the number of samples are much less than the number
of features); and (2) to incorporate structural or functional prior knowledge into
the regularization procedure. Group Lasso [29] and total-variation penalty [25]
are tow effective methods in this direction [23,28]. As an example in the neu-
roimaging context, [9] by modifying the regularization term of logistic regression,
proposed a group-wise regularization term for finding sparse and easy to interpret
models. Elsewhere, [10] used total-variation penalty to inject a spatial segmen-
tation prior into the sparse model with Lasso penalty. Similar efforts have been
made in [3,12,27].

Despite the mentioned efforts, recently [13,14] questioned the interpretabil-
ity of linear discriminative models, i.e., weights of linear classifiers, due to the
contribution of noise to the amplitude of weights. To address this problem, they
proposed a procedure to transform discriminative models into equivalent gener-
ative models by multiplying linear classifier weights by the covariance matrix of
the input features (see 2.2). Their experiments on simulated, EEG, and fMRI
data illustrated that, whereas direct interpretation of linear classifier weights
may cause misinterpretation of results, their proposed solution effectively solves
the problem.

In this study, we approach the problem of interpretability by employing a
multi-task learning (MTL) framework in order to improve the stability and as
a result the interpretability of brain decoding models. We are willing to stress
two key advantages of MTL over single-task learning in brain decoding interpre-
tation: (1) reformulating the brain decoding problem into a multi-task problem,
by defining each spatial unit of data as a task, provides more stability for brain
decoding models; (2) learning the pattern of activities simultaneously over spatial
units increases the performance of decoding compared to the single-task learning
where a number of classifiers are trained separately on each spatial unit.

The rest of this paper is organized as follows: in Sect. 2 we introduce multi-
task elastic-net and we show how a brain decoding problem can be recast into
the MTL paradigm. Then, in Sect. 3, we present our experimental results on
an MEG dataset by comparing the performance and the stability of MTL with
single-task learning. Finally, Sect. 4 concludes this paper.
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2 Methods

2.1 Notation

Let (X,Y ) = {(x1, y1), . . . , (xn, yn)} ∈ R
n×p × N

n be the n samples of neu-
roimaging data, e.g., MEG data, where each xi is a p dimensional vector of
spatio-temporal features throughout presentation of stimulus of class yi. The
goal of brain decoding is to find a function Φ such that Y = Φ(X). In the linear
case Y = XW where W ∈ R

p represents the weights associated by a linear
classifier to every corresponding element of xi.

2.2 From Classifier Weights to Activation Patterns

Recently, [13] showed the weights of a linear classifier, i.e., W , are not neuro-
physiologically interpretable. They illustrated that any interpretation based on
W can cause wrong conclusions with respect to the spatio-temporal source of sig-
nal of interest. As a solution, showing that for every discriminative model there
exists an equivalent generative model, they proposed a procedure to transform
the weights of linear classifiers to activation patterns A:

A = ΣXWΣ−1

Ŝ
(1)

where ΣX and Σ−1

Ŝ
represent covariance matrix of X and Ŝ, respectively, and

Ŝ is latent factor representing estimated neural sources.
In fact, an activation pattern is the solution of the equivalent generative

model that encodes the strength and polarity of the activity of interest in each
dimension of data. Therefore, there is a clear physiological interpretation for
activation patterns. In the binary classification setting where there is just one
latent factor Ŷ estimated by the model, the Eq. 1 can be rewritten as:

A =
ΣXW

σ2
Ŷ

∝ ΣXW (2)

2.3 Multi-task Elastic-Net

Multi-task learning (MTL) has recently received particular attention in machine
learning and computer vision literature [30]. MTL tries to learn the underlying
relation between tasks simultaneously by extracting common information across
them. It has been shown that, in some applications, the simultaneous learn-
ing procedure of MTL is advantageous over learning each task independently
[8]. Furthermore, splitting a single-task problem into a multi-task problem can
effectively change the relative size of samples to features for each task. Thus MTL
can provide higher stability by reducing the degree-of-freedom of the solution
space.

In this study, we first define a spatial fraction as a time-series of each spatial
unit of neuroimaging data. For example in the case of MEG data, the time-
series measured by each MEG sensor is defined as one spatial fraction of data.
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Then, we define each spatial fraction as a task in the MTL framework. We
consider the MTL scenario of having the same outputs and different inputs
for each task [2,8]. Thus, a brain decoding problem can be reformulated as
(X,Y ) = {(X1, Y ), . . . , (Xτ , Y )}; where each pair of (Xi, Y ) defines a traditional
brain decoding problem (see 2.1) on just one spatial fraction of data, Xi ∈ R

n×p∗

represents n samples of data at ith spatial fraction, τ represents number of tasks;
and p∗ = p/τ is the number of temporal features at each spatial fraction.

Using this new representation of brain decoding, the multi-task elastic-net
(MTEN) optimization problem, as an instance of MTL, can be formulated as
follows [5,31]:

ŴMTEN = argmin
W∈Rp∗×τ

τ∑

i=1

∥∥XiW i − Y
∥∥2

F
+ ρ1 ‖W‖1 + ρ2 ‖W‖2F (3)

where ‖.‖1 and ‖.‖2F are representing the l1 and l2 penalties respectively, and
W ∈ R

p∗×τ is the MTEN weight matrix. The regularization parameters ρ1 and
ρ2 control sparsity and smoothness over temporal patterns of spatial fractions,
respectively.

The MTEN optimization problem can be considered as an extension of single-
task regression with elastic-net regularization [32]. A general specification of
MTEN is its shared l1 and l2 penalties among all tasks. Furthermore, in this
setting, the number of temporal features of each task (p∗) is reduced by factor of
the number of tasks (τ) with respect to that of the original feature space (p). In
practice and using common down-sampling techniques even p∗ < n is achievable.
Therefore, the input data of each task can be a full rank matrix.

To compute the final prediction of the MTL model, we use a simple averaging
mechanism among the tasks. We first define a decoding-related task (DRT) set D,
as a set of tasks which provide decoding performance over a certain threshold φ in
the training-set. The threshold φ can be decided using nested cross-validation or
can be fixed based on some heuristics. After finding DRT members, to compute
the final prediction for every sample in the test-set, we compute the mean over
predictions of classifiers in D.

Furthermore, considering the fact that decoding models with below chance
performance are not interpretable under any circumstances, those spatial frac-
tions that are not effective in decoding should be filtered out from the joint
activation patterns. Therefore, we merely use the weights of classifiers in D to
compute activation patterns of MTEN. The activation patterns associated to
unrelated tasks are set to zero when constructing the full spatio-temporal acti-
vation pattern A. To compute the activation pattern of each member of DRT
set Ai∗

(i∗ ∈ D), we adopt Eq. 2 as follows:

Ai∗ ∝ ΣXi∗ W i∗
(4)
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3 Experiments

3.1 Material and Experimental Setup

We tested the proposed method on the first 5 subjects of an MEG dataset where
visual stimuli consisting of famous faces, unfamiliar faces and scrambled faces
are presented to subjects. The original dataset consists of 16 subjects and it
is described in [15]1. This dataset is also used for DecMeg2014 competition2.
Same as [19], we created a balanced face vs. scramble dataset by drawing at
random from the trials of famous and unfamiliar faces in equal number to that
scrambled faces. The raw data is high-pass filtered at 1 Hz, down-sampled to
250 Hz, and epoched from 200 ms before the stimulus onset to 800 ms after the
stimulus. Thus each trial has 250 time-points for each of the 306 MEG sensors
(102 magnetometers and 204 planar gradiometers)3.

To illustrate the advantage of MTEN in improving the interpretability of
brain decoding model, we conduct three different experiments. These three set-
tings help us to examine the impact of division of data into spatial fractions and
employing the MTL paradigm separately:

1. We first pool all temporal data of 306 MEG sensors into one vector (i.e., we
have 250*306=76500 features for each sample) and then we use the linear
regression with elastic-net regularization to solve the brain decoding problem
(we refer to this experiment as EN).

2. We divide the data into spatial fractions, then we employ the linear regres-
sion with elastic-net regularization to train a model on each spatial fraction
separately (we refer to this experiment as STEN).

3. After dividing data into spatial fractions, we use MTEN to train the decoding
model (we refer to this experiment as MTEN).

For selecting DRT members in the second and third experiments, the threshold φ
(see 2.3) is set to μperf +σperf , where μperf and σperf are respectively mean and
standard-deviation of performances computed over all spatial fractions (tasks) on
the training set. In all settings, the best values for ρ1 and ρ2 were decided using
nested cross-validation (CV) to ensure unbiased error estimation [21]. In the
inner loop of CV, a grid search on [0, 0.001, 0.01, 0.1, 1, 10, 50, 100] is used to find
optimal values for both ρ1 and ρ2. MALSAR [31] toolbox is used for training the
models. The MATLAB code for all experiments is available at https://github.
com/smkia/MTL Interpretation.

1 The full dataset is publicly available at ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.
henson/wakemandg hensonrn/.

2 The competition data are available at http://www.kaggle.com/c/
decoding-the-human-brain.

3 The preprocessing scripts in python and MATLAB are available at: https://github.
com/FBK-NILab/DecMeg2014.

https://github.com/smkia/MTL_Interpretation
https://github.com/smkia/MTL_Interpretation
ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/
ftp://ftp.mrc-cbu.cam.ac.uk/personal/rik.henson/wakemandg_hensonrn/
http://www.kaggle.com/c/decoding-the-human-brain
http://www.kaggle.com/c/decoding-the-human-brain
https://github.com/FBK-NILab/DecMeg2014
https://github.com/FBK-NILab/DecMeg2014
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3.2 Results and Discussions

Figure 1 compares the performance and the stability of EN, STEN, and MTEN
experiments. The performance of classifiers is measured based on the area under
the ROC curve (AUC). The stability is quantified by computing the pair-wise
correlation between weight matrices across 10 folds of CV (see [22]). The bars
and the error-bars are showing the mean and the standard deviation of AUC
and correlations over 10 folds of CV.

The annotations below each group of bars are showing the result of two-
sample t-test between each pair of benchmarked methods, where −, ∗, and ∗∗
are representing not significant, significant with p−value < 0.05, and significant
with p − value < 0.001, respectively. All the results are corrected for multiple-
comparison using Bonferroni correction. Excluding the second subject which
shows completely different behaviour, Fig. 1 highlights the following points:

1. While MTEN and EN have more or less the same performance, MTEN pro-
vides significantly better stability than EN.

2. STEN and MTEN provide more stability than EN, supporting the idea that
dividing the data into spatial fractions improves the stability of models by
reducing the degree of freedom of solution space.

3. Despite their similar stability, MTEN provides better performance than
STEN illustrating the advantage of learning all tasks simultaneously in MTL
framework.

Fig. 1. Comparison between performance (upper diagram) and stability (lower dia-
gram) of EN, STEN, and MTEN for 5 subjects.
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Fig. 2. Spatio-temporal activation patterns of 2 subjects computed by EN, STEN, and
MTEN.

Figure 2 elaborates more the advantage of MTL paradigm in improving the inter-
pretability of results. This figure shows mean activation patterns of MTEN,
STEN, and EN over 10 folds of CV for two subjects (other subjects show similar
behaviour). These activation patterns are computed using Eq. 2 in EN case, and
using Eq. 4 in STEN and MTEN cases. The horizontal and vertical axes rep-
resent time and sensors dimensions respectively, and the dashed line shows the
stimulus onset. Comparison between these activation patterns suggests:

1. MTEN and STEN provide more sparse solution than EN.
2. Activation patterns of MTEN show no stimulus related activity before stimu-

lus onset, in contrast to EN. Considering the experiment design used for data
acquisition (see 3.1), any discriminating activity before stimulus onset has no
scientific interpretation. These activations before stimulus in EN case can be
consequence of overfitting of the model to noise.

3. Pre-stimulus activation in EN case rises the question that the transformation
proposed by [13] might not guarantee the interpretability of brain decoding
models, and the regularization strategy beside learning algorithm are still
playing important roles.

4 Conclusion

In this paper, we introduced a new application of MTL to enhance the inter-
pretability of brain decoding models. Our results on an MEG dataset show that
recasting the brain decoding problem into the MTL framework is an effective
technique to achieve more stable and consequently more interpretable models.
These characteristics of the proposed method makes it more appropriate for
making inference in cognitive neuroscience studies. Replacing elastic-net with a
new penalization method in the MTL paradigm can be considered a possible
future extention for our work.
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Abstract. Brain connectivity networks have been applied recently to
brain disease diagnosis and classification. Especially for both functional
and structural connectivity interaction, graph theoretical analysis pro-
vided a new measure for human brain organization in vivo, with one
fundamental challenge that is how to define the similarity between a
pair of graphs. As one kind of similarity measure for graphs, graph ker-
nels have been widely studied and applied in the literature. However, few
works exploit to construct graph kernels for brain connectivity networks,
where each node corresponds a unique EEG electrode or regions of inter-
est(ROI). Accordingly, in this paper, we construct a new graph kernel
for brain connectivity networks, which takes into account the inherent
characteristic of nodes and captures the local topological properties of
brain connectivity networks. To validate our method, we have performed
extensive evaluation on a real mild cognitive impairment (MCI) dataset
with the baseline functional magnetic resonance imaging (fMRI) data
from Alzheimers disease Neuroimaging Initiative (ADNI) database. Our
experimental results demonstrate the efficacy of the proposed method.

1 Introduction

As a neurodegenerative disorder, Alzheimer’s disease (AD) is the most common
form of dementia in elderly population worldwide. It leads to substantial and
progressive neuron damage that is irreversible, which eventually causes death.
As a prodromal stage of AD, Mild cognitive impairment (MCI) has gained a
great deal of attention recently, because disease-modifying therapies for patients
at the early stage of AD development will have a much better effect in slowing
down the disease progression and helping preserve some cognitive functions of
the brain. Thus, the accurate diagnosis of MCI is very important for possible
early treatment and possible delay of the AD progression.

In the context of AD and MCI as well as other brain disorders, numer-
ous studies have suggested that the neurodegenerative diseases such as AD and
c© Springer International Publishing AG 2016
I. Rish et al. (Eds.): MLINI 2014, LNAI 9444, pp. 12–20, 2016.
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MCI are related to a large-scale, highly connected functional network, rather
than solely one single isolated region [1–4]. Graph theoretical analysis provides
a new way for exploring the association between brain functional deficits and
the underlying structural disruption related to brain disorders [5–7]. However,
different from traditional data in feature spaces, graph (i.e., network) data is not
represented as feature vector, which raise one fundamental challenge for graph
data that is how to measure the similarity between a pair of graphs. Motivated
by this challenge, computing the similarity of graphs has attracted much atten-
tion in the last decade. Among all kinds of methods, kernel methods [8] offer
a natural framework to study this question. In the literature, graph kernels,
i.e., the kernel constructed on graphs, have been proposed and used in diverse
fields. However, existing graph kernels may fail to compare a pair of connectivity
networks since they don’t consider the inherent characteristics of connectivity
networks, such as: (1) the uniqueness of each node of brain connectivity net-
work. That is, each node in connectivity network corresponds a unique EEG
electrode or region of interest (ROI). Also, there is one-to-one correspondence
between same node across different connectivity networks; (2) local topological
properties of connectivity networks, which is very important for measuring the
similarity between two connectivity networks. To the best of our knowledge, few
work exploit to construct graph kernels on brain connectivity networks. See the
related works for detail in the next section.

Accordingly, in this paper, motivated by the recent work in [9], we proposed
a new graph kernel on brain connectivity networks, which takes into account the
inherent characteristic of nodes and captures the local topological properties of
connectivity network. We evaluate our proposed method on 149 subjects with
the baseline Resting State fMRI (rs-fMRI) data from ADNI database (www.loni.
ucla.edu/ADNI), which includes 99 MCI patients and 50 normal controls. The
experiment results demonstrate the efficacy of our proposed method.

1.1 Related Works

Informally, a kernel is a function that measures the similarity between a pair of
data points. Mathematically, it corresponds to an inner product in a reproduc-
ing kernel Hilbert space [8]. Once a kernel is defined, many learning algorithms
such as support vector machines (SVM) can be applied. To compare the similar-
ity between two graphs, graph kernels have been proposed and used in diverse
fields including image classification [10], protein function prediction [11]. Existing
graph kernels can be roughly divided into two categories: (1) kernels defined on
unlabeled graphs where each node has no distinct identification except through
their interconnectivity [9,12,13]; (2) kernels defined on labeled graphs where
each node is assigned a label [14–17].

In the first category, graph kernels defined on unlabeled graphs dont take into
account the labeled information of each node and thus may fail to compute the
similarity between a pair of labeled graphs (e.g., brain connectivity networks).
In the second category, some of graph kernels are infeasible on connectivity net-
works because of their computation complexity, such as graph kernels in [14].

www.loni.ucla.edu/ADNI
www.loni.ucla.edu/ADNI
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Also, some of graph kernels are not fitting for computing on connectivity net-
works. For example, the graph kernels in [18] mainly compared graphs with edge
labels, while that in [17] are to compare graphs with continuous-valued node
labels. At the same time, some graph kernels [15,16] are constructed based on
Weisfeiler-Lehman test of graph isomorphism. However, note that there doesn’t
have problem of isomorphism between brain connectivity networks when consid-
ering the uniqueness information of each node (i.e., two connectivity networks
are the same or difference).

2 Our Proposed Graph Kernel

In this section, we will first briefly introduce the existing graph kernel [9], and
then present our proposed graph kernel defined on brain connectivity networks.

Given a graph G (denoted by the matrix A ∈ Rm×m) and a number l, where
m is the number of nodes in G. To effectively represent a graph, Shrivastava [9]
defined a symmetric positive semi-definite matrix CG ∈ Rl×l as:

CG(i, j) = cov(
mAie

‖Aie‖1 ,
mAje

‖Aje‖1 ) (1)

where cov denotes the covariance between two vectors, e denotes the vector of all
1s, Aie denotes the i-th power iteration of matrix A on a given starting vector
e. (Shrivastava 2013) argued that matrix CG can capture critical information of
the underlying graph and own many good properties, such as graph invariant
(i.e., isomorphic graphs have the same representation). Furthermore, based on
this new mathematical representation of graphs, (Shrivastava 2013) defined an
effective graph kernel on a pair of graph G and H as the follows

k(G,H) = exp(−1
2

log(|Σ|/
√

(|CG||CH |))) (2)

where |·| denotes the determinant and Σ = (CG + CH)/2.
However, the above-mentioned graph kernels also lack of consideration of

two important issues of connectivity networks as we discussed at the previous
section. To address that problem, we construct a new graph kernel on connec-
tivity networks.

Denote G,H ∈ RN×N as a pair of connectivity networks and given a number
h. To reflect the local multi-level topology of connectivity network, we construct
N groups of sub-networks. Specifically, for connectivity network G, we construct
one group of sub-network on each node i, i.e., Gh

i = Gj
i = (V j

i , Ej
i )j=1,2,··· ,h,

where Gj
i denote a sub-network with a set of nodes V j

i and a set of edges Ej
i .

Here, V j
i is consist of node i and those nodes that their short-path to the node i

is less than or equal to j, and Ej
i includes those edges (i.e., connections) occurred

in G. So, we can obtain N groups of sub-networks, i.e., G = {Gh
1 , Gh

2 , Gh
N}, where

N is the number of nodes. Then, for connectivity network H, we repeat the same
process, and also obtain N groups of sub-networks, i.e., H = {Hh

1 ,Hh
2 ,Hh

N} with
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Hh
i = Hj

i = (V ′j
i , E

′j
i )j=1,2,··· ,h. Finally, we can define the kernel on connectivity

networks G and H by measuring the similarity between a pair of groups of sub-
network from the same node, i.e.,

k(G,H) =
1

Nh

N∑

i=1

h∑

j=1

exp (−1
2

log (|Σj
i |/

√
|CGj

i ||CHj
i |)) (3)

Here, |·| denotes the determinant, Σj
i = (CGj

i + CHj
i )/2, CGj

i and CHj
i are two

matrices defined on sub-networks Gj
i and Hj

i by Eq. 1.

Theorem 1. The kernel as defined in (3) is a positive valid kernel.

It is worth noting that (1) on each node we construct a group of sub-networks
which reflects the local multi-level topological properties of connectivity network,
and the scale of sub-networks is decided by the value of h. Here, multi-level
denotes the sub-network with larger value of j will contain much more nodes
and edges, and Gj

i ⊆ Gs
i if j < s. In practice, the value of h can be decided via

inner cross-validation on training subjects; (2) the kernel defined in Eq. (3) com-
pute the similarity on each pair of groups of sub-networks from the same node
across different subjects. Therefore, different with graph kernel in [9], our graph
kernel takes into account the uniqueness of nodes and one-to-one correspondence
between nodes across different subjects, and captures the local topological prop-
erties of connectivity network.

3 Experimental Setup

3.1 Subjects and Data Preprocessing

The dataset used in our study is downloaded from the ADNI database, which
includes 99 MCI patients (56 EMCI and 43 LMCI) and 50 normal controls (NC),
with each subject of MCI or NC being scanned by fMRI. All rs-fMRI data were
acquired on 3.0 Tesla Philips scanners (varied models/systems) at multiple sites.
There is a range for imaging resolution in X and Y dimensions, which is from
2.29 mm to 3.31 mm and the slice thickness is 3.31 mm. TE (echo time) for all
subjects is 30 ms and TR (repetition time) is from 2.2 s to 3.1 s.

The pre-processing steps of the Resting state fMRI (R-fMRI) data include
brain skull removal, slice time correction, motion correction, spatial smoothing,
and temporal pre-whitening. The pre-processing steps of the T1-weighted data
included brain skull removal and tissue segmentation into gray matter (GM),
white matter (WM), and cerebrospinal fluid (CSF). The pre-processed T1 image
was then co-registered to the first volume of pre-processed R-fMRI data of the
same subject and the BOLD signals in GM were merely extracted and adopted
to avoid the relatively high proportion of noise caused by the cardiac and respi-
ratory cycles in WM and ventricle [19]. Finally, The brain space of fMRI images
of each subject was then parcellated into 90 ROIs based on the Automated
Anatomical Labeling (AAL) template [20]. The mean R-fMRI time series of
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each individual ROI was calculated by averaging the GM-masked BOLD signals
among all voxels within the specific ROI. For each subject, a functional con-
nectivity network was constructed with the vertices of network corresponding
to the ROIs and the weight of edges corresponding to the Pearson correlation
coefficients. Fisher’s r-to-z transformation was applied on the elements of the
functional connectivity network to improve the normality of the correlation coef-
ficients.

3.2 Classification

Because the functional connectivity networks are intrinsically weighted graphs
as well as fully connected, to reflect the multi-level topological properties of con-
nectivity networks, we first simultaneously threshold the connectivity network
with multiple different predefined values (in the experiment, for simplicity, we
adopted 5 thresholds, i.e., T= [0.30, 0.35, 0.40, 0.45, 0.50]). Here, we select multi-
ple thresholds instead of single threshold, because the connectivity networks with
different thresholds may represent different level of topological properties (i.e.,
the thresholded connectivity networks with larger threshold often preserve fewer
connections and thus are sparser in connection), and these properties may be
complementary to each other in improving the classification performance. Then,
we compute the graph kernels discussed in previous section on each thresholded
connectivity network across different subjects. Finally, we adopt the multi-kernel
SVM technique used in [21] for final classification.

4 Experimental Results

4.1 Classification Performance

In our experiments, two binary classifiers, i.e., MCI vs. NC, and EMCI vs.
LMCI, are built, respectively. We evaluate the classification performance using
the leave-one-out (LOO) cross-validation with a SVM classifier (the parameter
parameter). We evaluated the performance of different methods by measuring
the classification accuracy, sensitivity, specificity, and the area under receiver
operating characteristic (ROC) curve (AUC).

We compare our kernels to state-of-the-art kernels, selected so as to rep-
resent three major groups of graph kernels on sub-trees, shortest paths and
edges respectively. Those graph kernels belong to Weisfeiler-Lehman graph kernel
framework proposed in [15] (denoted as WL-subtree, WL-shortestpath and WL-
edge, respectively). Bedsides, we also compared the ego-network-based graph
kernels proposed by Shrivastava [9] (denoted as Ego-net) and shortest-path-
based kernels proposed in [12] (denoted as Shortest-path). Also, we directly con-
verted the connectivity network (matrix) into a vector, and a feature selection
method based on Lasso was performed, and a linear SVM was used to classify
the MCI patients from NC (denoted as Vec). Classification results of all methods
are summarized in Table 1. For comparison, in Table 2, we also give the classi-
fication accuracy of different methods using the single thresholded connectivity
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Table 1. Classification performances of different methods

Kernels MCI vs. NC EMCI vs. LMCI

ACC SEN SPE AUC ACC SEN SPE AUC

Vec 67.1 91.9 18.0 0.58 46.5 39.5 51.8 0.50

Ego-net 71.8 98.0 20.0 0.60 49.5 87.5 0.0 0.50

Shortest-path 69.8 84.8 40.0 0.60 55.6 67.9 39.5 0.56

WL-edge 73.2 85.9 48.0 0.72 60.6 64.3 55.8 0.61

WL-subtree 76.5 99.0 32.0 0.72 63.6 73.2 51.2 0.62

WL-Shortestpath 73.2 84.8 50.0 0.70 63.6 69.6 55.8 0.59

Proposed 82.6 99.0 50.0 0.80 67.7 83.9 46.5 0.70

Table 2. Classification accuracy of different methods on single thresholed connectivity
network

Kernels MCI vs. NC EMCI vs. LMCI

T1 T2 T3 T4 T5 Combined T1 T2 T3 T4 T5 Combined

Ego-net 68.5 68.5 69.8 68.5 65.1 71.8 45.5 46.5 44.4 44.4 49.5 49.5

Shortest-path 51.7 59.7 68.5 61.1 64.4 69.8 50.5 49.5 45.5 44.4 46.5 55.6

WL-edge 51.7 59.7 68.5 61.1 64.4 73.2 55.6 52.5 60.6 54.5 52.5 60.6

WL-subtree 67.8 65.8 69.1 70.5 69.1 76.5 55.6 59.6 49.5 52.5 48.5 63.6

WL-Shortestpath 53.7 61.1 67.1 63.1 68.5 73.2 55.6 61.6 60.6 56.6 51.5 63.6

Proposed 73.2 72.5 71.8 71.8 71.1 82.6 59.6 61.6 58.6 58.6 61.6 67.7

networks. As shown in Table 1, the proposed method significantly outperforms
the other methods on both classification tasks. Specifically, the proposed method
yields a classification accuracy of 82.6 % and 67.7 % for MCI vs. NC and EMCI
vs. LMCI classification, respectively, whiloposed graph kee the best classification
accuracy of other methods are 76.5 % and 63.6 %, respectively. Also the AUC
values of proposed method are 0.80 and 0.70 for both classification tasks, which
indicates excellent diagnostic power. Besides, Table 2 show that (1) the com-
bination of multiple thresholded connectivity networks performed significantly
better than using any single thresholded connectivity network alone, and (2) the
performance of proposed graph kernel on each threholded connectivity network
is much batter than that of the state-of-the-art graph kernels, which again shows
the efficacy of the prrnel.

4.2 The Discriminative Regions

In this subsection, we further investigate the discriminative power of each ROI
using proposed graph kernels. Specifically, for each thresholed connectivity net-
work, we first construct a group of subnetworks on each node, and compute the
graph kernels on each group of subnetworks across different subjects according to
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Eq. (3). Note that each group of subnetworks reflects the local topological prop-
erties of a ROI. Then, we compute the classification accuracy of each ROI with
SVM classifier using LOO cross-validation strategy, and rank the ROIs according
to their classification accuracy and select the top 10 ROIs with the highest clas-
sification accuracy. Figure 1 shows those ROIs that are selected from all thresh-
olded networks. The result shows that most of the selected regions, including
hippocampus, cingulate, parahippocampal gyrus, amygdala, heschl gyrus, tem-
poral gyrus and temporal pole, are consistent with the previous studies by using
group comparison method [22–24].

Fig. 1. Top selected ROIs

5 Conclusion

The similarity computation on graph is a fundamental challenge problem in
graph-based data analysis. In this paper, we have developed a new graph kernel
for measuring the similarity of connectivity networks. Different from the exist-
ing graph kernels, our graph kernels take the inherent characteristic of nodes
and the local topological properties of connectivity networks into the similarity
computation. Series of experiments on real MCI dataset show the efficacy of our
proposed method.
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Abstract. Diffusion magnetic resonance imaging (dMRI) and tractog-
raphy provide means to study the anatomical structures within the white
matter of the brain. When studying tractography data across subjects, it
is usually necessary to align, i.e. to register, tractographies together. This
registration step is most often performed by applying the transformation
resulting from the registration of other volumetric images (T1, FA). In
contrast with registration methods that transform tractographies, in this
work, we try to find which streamline in one tractography correspond to
which streamline in the other tractography, without any transformation.
In other words, we try to find a mapping between the tractographies. We
propose a graph-based solution for the tractography mapping problem
and we explain similarities and differences with the related well-known
graph matching problem. Specifically, we define a loss function based on
the pairwise streamline distance and reformulate the mapping problem
as combinatorial optimization of that loss function. We show preliminary
promising results where we compare the proposed method, implemented
with simulated annealing, against a standard registration techniques in
a task of segmentation of the corticospinal tract.

1 Introduction

Diffusion magnetic resonance imaging (dMRI) [1] is a modality that provides
non-invasive images of the white matter of the brain. DMRI measures the local
the diffusion process of the water molecules in each voxel. That process repre-
sents structural information of neuronal axons. From dMRI data, tracking algo-
rithms [9,14] allow to reconstruct the 3D pathways of axons within the white
matter of the brain as a set of streamlines, called tractography. A streamline
is a 3D polyline representing thousands of neuronal axons in that region of the
brain, and a tractography is a large set streamlines, usually ≈ 3 × 105.

Current neuroscientific analyses of white matter tractography data are lim-
ited to qualitative intra-subject comparisons. Thus, it is quite difficult to use
the information for direct inter-subject comparisons [2,5]. This leads to the
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need of initial alignment, or registration, of tractographies via some methods
before doing further study. Registration is most often performed by applying
the transformation resulting from the registration of other images, such as T1
or fractional anisotropy (FA), to tractography [5,6,12]. Recently, [10] proposed
group-wise registration using the trajectory data of the streamlines. The idea to
work on deterministic tractography rather than other images is quite innovative.
And, it may be advantageous to directly align the streamlines because the result
would be closely related to the final goal of registration.

Similar to [10], in this work, we explore the idea of working on determinis-
tic tractography rather than other images. However, in contrast to all current
tractography registration methods, which are based on rigid or non-rigid shape
transformation of one tractography into another, our approach tries to find which
streamline of one tractography corresponds to which streamline in the other trac-
tography, without transformations. This correspondence is a mapping from one
tractography to the other.

In this work we propose to solve the problem of finding the mapping between
two tractographies through a graph-based approach similar to that of the well-
known graph matching problem [3,13]. In the graph matching problem the aim
is to find which node of one graph corresponds to which node of another graph,
under the assumption that graphs have the same number of nodes and that the
correspondence is one-to-one.

Given a tractography of N streamlines T = {s1, . . . , sN} and a distance
function d between streamlines, we can create an undirected weighted graph by
considering each streamline as a vertex and the edge connecting vertex si and sj
as the distance between the two streamlines, d(si, sj). Then, intuitively, the prob-
lem of tractography mapping becomes very similar to that of graph matching,
but with some key differences. Firstly, the size of the two tractographies/graphs
is in general not the same. Global differences in the anatomy of the brains,
e.g. different volume, motivates this difference. Secondly, in general there is not
a one-to-one correspondence between the streamlines/nodes but a many-to-one
correspondence. This is anatomically likely if we consider that a given anatomical
structure (tract), e.g. the cortico-spinal tract (CST), whose streamlines should
have direct correspondence across subjects, may have different thickness, i.e.
different number of streamlines. In this case, for example, multiple streamlines
of one CST would correspond to a single streamline in the other CST. Because
of these differences, it is generally not possible to directly apply efficient graph
matching algorithms to the problem of mapping tractographies.

In the following we formally describe the tractography mapping problem
starting from the graph matching problem and define the details of the opti-
mization problem to solve. We provide a preliminary algorithmic solution, based
on simulated annealing, to minimize the proposed loss function. Then, we apply
our proposed solution to a tractography segmentation task in order to compare
a standard registration-based method to our proposed method on a fair ground.
We conclude the paper with a brief discussion of the preliminary encouraging
results.
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2 Methods

An undirected weighted graph G = (V,E) of size N is a finite set of vertices
V = {1, . . . , N} and edges E ⊂ V × V . The graph matching problem can be
described as follows. Given two graphs GA to GB with the same number of
vertices N , the problem of matching GA and GB is to find the correspondence
between vertices of GA and vertices of GB , which allows to align, or register,
GA and GB in some optimal way. The correspondence between vertices of GA

and of GB is defined as a permutation P of the N vertices, i.e. there a one-
to-one correspondence between the two set of vertices. P is usually represented
as a binary N × N matrix where Pij is equal to 1, if the ith vertex of GA is
matched to the jth vertex of GB , otherwise 0. Given A and B, i.e. the N × N
adjacency matrices of the two graphs, the quality of the matching is assessed by
the discrepancy, or loss, between the graphs after matching as:

L(P ) = ‖A − PBP�‖2 (1)

where ‖A‖2 =
√∑N

ij A2
ij is the Frobenius norm. Therefore, the graph matching

problem becomes the problem of finding P ∗ that minimize L over the set of
permutation matrices P:

P ∗ = argmin
P∈P

‖A − PBP�‖2 (2)

which is a combinatorial optimization problem. The exact solution to this prob-
lem is NP-complete and only approximate solutions are available in practical
cases [3,13].

Let TA = {sA1 , . . . , sAN} and TB = {sB1 , . . . , sBM}, where s = {x1, . . . , xns
} is a

streamline and x ∈ R
3, be the tractographies of two subjects. Let d be a distance

function between streamlines. We define two graphs GA and GB with adjacency
matrix A ∈ R

N×N and B ∈ R
M×M where Aij = d(sAi , sAj ) and Bij = d(sBi , sBj ).

Our current choice of d is discussed in Sect. 3, however any common streamline
distance from the literature can be used.

The loss function of a mapping Q from TA to TB is then:

L(Q) = ‖A − QBQ�‖2 (3)

where the mapping Q is a binary N × M matrix and Qij is equal to 1, if sAi of
TA is mapped to sBj of TB and 0 otherwise. Note that, in general, Q is not a
permutation matrix, because multiple streamlines can be mapped into the same
one. In order to find the optimal mapping Q∗, we minimize L so that TB is most
similar to TA:

Q∗ = argmin
Q∈Q

‖A − QBQ�‖2 (4)

where Q is the set of all possible mappings. Because in general N �= M and
because Q is a mapping and not just a permutation, the tractography map-
ping problem has a larger search space than the graph matching problem,
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i.e. |Q| = MN � N ! = |P| when M ≈ N , is much larger than P. As a con-
sequence, the efficient solutions available in the literature of graph matching,
e.g. [13], are not applicable, because they heavily rely on the assumptions that
we violate here. In Sect. 3 we implemented a simple preliminary solution to the
combinatorial optimization problem by means of the Simulated Annealing meta-
heuristic [8].

2.1 Comparison

In order to compare the proposed method against a standard registration proce-
dure on a fair ground, we cannot rely on the value of the loss function L, because
it is defined only in the case of mapping. For this reason, we compared the two
approaches on the practical task of automatic tractography segmentation, i.e.
finding a given tract of interest in TB given its segmentation in TA. Our hypoth-
esis is that reducing L leads to better overlap between tractographies, which
is important for practical applications like segmentation. In Sect. 3 we describe
an experiment to test this hypothesis and provide the necessary details. Here
we introduce the metric that we use for comparing registration and mapping.
As proposed in [5], we compare the set of voxels crossed by the streamlines of
each tractography after mapping or after registration. As measure of the overlap
between TA and Q(TB)1, we adopt the Jaccard index:

J(TA, TB |Q) =
|TA ∩ Q(TB)|

min{|TA|, |Q(TB)|} (5)

Note that in the above equation, |T | is the volume computed as number of voxels
that any streamline s ∈ T goes through, and |TA ∩Q(TB)| indicates the number
of voxels in common between TA and Q(TB).

3 Experiments

We designed an experiment to provide empirical evidence that reducing the loss
in Eq. 3 is related to an increase of the Jaccard index, i.e. of the overlap between
tractographies.

The dataset used for the experiment is based on dMRI data recorded with a
3T scanner at Utah Brain Institute, 65 gradients (64 + b0); b-value = 1000;
anatomical scan (2 × 2 × 2 mm3). The tractography was reconstructed with
the EuDX algorithm [4] using the dipy2 toolbox. We considered 4 healthy sub-
jects and focused the analysis on the corticospinal tract (CST). CST is a set of
streamlines projecting from the lateral medial cortex associated with the motor
homunculus. This tract is of main interest for the characterization of neurode-
generative diseases, like the amyotrophic lateral sclerosis (ALS). The CST tracts
were segmented by the expert neuroanatomists using a toolbox [11] that sup-
ports an interactive selection of streamlines. The size of the segmented tracts is
reported in Table 1 (see column size).
1 For sake of brevity we denote as Q(TB) the result of applying mapping Q to TB .
2 http://www.dipy.org.

http://www.dipy.org
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The reference method, against which we compared mapping, is the affine
registration of the tractographies in a common MNI space using the voxel-based
FLIRT method [7]. The registration is defined as follows: First, FA images were
registered to the MNI-FMRIB-58 FA template, then the affine transformation
was applied to the tractographies. The Jaccard index computed between the
CSTA and CSTB in common space is reported in Table 1 (see column FLIRT).

We then used mapping to compute the same quantity. The first step was
encoding the tractographies as graphs, which required to define a distance
between streamlines. We refer to the commonly used Mean Average Minimum
distance (MAM) [14], based on the Hausdorff distance:

dMAM (s, s′) =
1
2
(D(s, s′) + D(s′, s)) (6)

where D(s, s′) = 1
ns

∑ns

i=1 d(xi, s
′), and d(x, s′) = minj=1,...,ns′ ||x − x′

j ||2.
Mapping a tract such as the CST, which usually comprises 102 stream-

lines, to an entire tractography TB , which usually consist of 107 streamlines,
is computationally extremely expensive because the space of all possible map-
pings Q has size |TB ||CST |. For this reason, we introduced a heuristic to retain
some of the streamlines in TB . The intuitive idea was to define a superset
of streamlines of the CST for subject B, denoted CST+

B . The heuristic is
in two steps: first, we computed the medoid sm of CSTB , and the radius
r = max{d(sm, si),∀si ∈ CSTB}. Second, we filtered the streamlines in TB

such that CST+
B = {sj ∈ TB |d(sm, sj) ≤ α · r}, where α = 3. See Table 1,

column CSTB?, for the actual sizes of the supersets.
Computing the optimal mapping Q∗ requires to solve, even in an approximate

way, the minimization problem of Eq. 4. As a preliminary strategy to approxi-
mate the optimal mapping Q∗, we implemented the simulated annealing (SA) [8]
meta-heuristic, a reference method for combinatorial optimization. SA requires
the definition of a function to move from the current state, i.e. the current map-
ping Q, to a (potentially better) neighbouring one. As transition function we used
a stochastic greedy one where, given the current mapping Q, one streamline of
CSTA is selected at random and then it is greedily re-mapped to the streamline
in CST+

B providing the greatest reduction in the loss of Eq. 3. As starting point
of the annealing process, we used the 1-nearest neighbour of CSTA with respect
to CST+

B after the registration of TA and TB . We ran the simulated annealing
for 1000 iterations, which required a few minutes on a standard computer3.

The results reported in Fig. 1 show the behaviour of the loss during the opti-
mization process for the mapping of CSTA (subject ID 205), with respect to
the tractography of three other subjects (subject IDs 204, 206 and 212). In all
cases, as the number of iterations increases, the value of loss function decreases.

3 We are aware that this method of combinatorial optimization can be significantly
improved, but we claim that the it was sufficient to do a preliminary investigation
of the relation between the loss L and the overlap between tractographies, by means
of the Jaccard index.
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Fig. 1. Plots of the normalized loss (Lnorm = L
|CSTA| ) as a function of number of

iterations with simulated annealing, when mapping the CST of subject 205 to those of
subjects 204, 206 and 212.

In Fig. 2 we show an example of experiment with the outcome of FLIRT regis-
tration and mapping which refers to subjects 204 and 206. In subfigure A, the
source tract CSTA is shown in blue, in subfigure B the target tract CSTB is
show in green and the related superset of streamlines CST+

B in red. In subfigure
C, the result of FLIRT registration is presented, both with respect to the super-
set CST+

B on the left and with respect to the target tract CSTB on the right.
On the right side, it is illustrated the set of streamlines (blue) from the source
tract CSTA associated to streamlines of target tract CSTB . The association
between streamlines of CSTA and CSTB is computed as nearest neighbour after
the FLIRT registration. The ratio between blue and green streamlines represents
the portion of target tract correctly detected. On the left side of subfigure C, blue
streamlines represents the portion of source tract CSTA not associated to target
tract CSTB . In subfigure D, the result of mapping is presented, with the same
strategy of presentation of subfigure C. On the right side the visualization shows
a greater amount of (blue) streamlines correctly mapped into target tract. Even
on the left side the amount of (blue) streamlines erroneously mapped is greater.
The sum of blue streamlines on the left and right side represents the portion
of streamlines projected from the source to the target. The registration based
on FLIRT doesn’t preserve after the alignment the same amount of streamlines
from the source tract.

In Table 1 are reported the results of the comparison between registration
and mapping methods, measured by the Jaccard index. The overlap between
CSTA and CSTB provided by FLIRT registration is generally quite poor. This
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Fig. 2. Example of registration vs. mapping of the corticospinal tract (CST). From
the left, the tract to be mapped (subfigure A, CSTA in blue), the second tract with
its superset (subfigure B, CSTB in green, CST+

B in red), the result of FLIRT affine
registration (subfigure C) and of mapping (subfigure D). (Color figure online)

Table 1. Comparison of registration vs. mapping. The subject IDs of CSTA and CSTB

are reported in the first two columns. Their sizes, together with that of CST+
B , are in

columns three to five. The last four columns report the overlap between CSTA and
CSTB in terms of Jaccard index (higher is better), for FLIRT registration (6th column)
and for mapping with simulated annealing at a different number of iterations (SA-0,
SA-100, SA-1000 columns).

A B size Jaccard index

subject ID subject ID |CSTA| |CSTB | |CST+
B | FLIRT SA-0 SA-100 SA-1000

205 204 60 124 682 0.18 0.55 0.52 0.59

206 60 100 550 0.15 0.77 0.81 0.82

212 60 68 374 0.10 0.74 0.77 0.90

is partly expected because even after the registration of TA and TB , CSTA and
CSTB may have a systematic displacement due to the variability of anatomy
across subjects. The results of mapping at different iterations of the optimization
process shows a remarkable global increase in the Jaccard index and a general
trend of improved alignment when more iterations are computed.

4 Discussion and Conclusion

In this work we addressed the challenge of finding an alignment between the
tractographies of two subjects. We recast the question as a problem of mapping
between two sets of streamlines and we provided the formulation of the corre-
sponding minimization problem. Preliminary results show that this approach is
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promising despite some limitations. The computational complexity represents a
major issue that may prevent to scale up to whole tractography.
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Abstract. Psychosis is a mental syndrome associated to loss of con-
tact with reality which may arise in patients with different diseases,
such as schizophrenia or bipolar disorder. Symptoms include hallucina-
tions, confused and disturbed thoughts or lack of self-awareness. Recent
studies have found that psychotic patients can be objectively screened
using graph-theoretical algorithms for speech analysis. This analysis
often relies in manually executed tasks such as syntagma generation,
text splitting or manual feature selection for classification. To solve this
fundamental limitation, we use three fully-automated text analysis tools
graph generation methods. In addition, since aspects of psychosis may be
manifested in semantic aspects of speech, we also developed a semantic
features index based on speech coherence. We show that using this com-
bined approach, classifications obtained from automatic techniques are
higher than 85 % in a database of 20 schizophrenic patients, with similar
results to previous works. In summary, here we develop and validate a
new tool for automated speech processing which includes semantic and
structural aspects. The tool performs similar to manual screening pro-
cedures providing a new method to complement standard psychometric
scales and fostering automated psychiatric diagnosis.

1 Introduction

The way we express ourselves allows us to understand how the brain orga-
nizes ideas and concepts, and thus identify and classify the inner organization
of thought through the study of speech characteristics. Previous studies have
shown that speech is modified under the effects of drug intoxication [9,14]. More
recently, speech content analysis provided insight about specific mental-state
alterations due to drug ingestion [1].

Mental-state alterations may also reflect psychiatric disorders, such as mania
or schizophrenia. The cost to society of depression – one of the most prevalent
psiychiatric disorder – is over 40 billion a year in Europe [24]. According to the
c© Springer International Publishing AG 2016
I. Rish et al. (Eds.): MLINI 2014, LNAI 9444, pp. 31–39, 2016.
DOI: 10.1007/978-3-319-45174-9 4
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National Institutes of Health and the Center for Disease Control, the cost to
society in the USA of psychiatric conditions including schizophrenia, depression,
alcohol and drug abuse among others surpasses half a trillion dollars per year.
These conditions are usually diagnosed, and their treatment monitored, by means
of individual oral interviews between psychiatrist and patients.

Computational Psychiatry is a rising new discipline which main objective is
the characterization of mental dysfunctions based on the analysis of computa-
tional problems resolution [21]. These models seeks to identify traces of cognitive
and neural activity, as proposed by Turing and his conception of mental func-
tion as information processing modules in a very particular hardware platform:
the brain [26]. The massive (and increasingly accelerating) digital availability
of thought products in textual format opens a window to study the brain and
mind in radically novel ways. We propose that through the use of natural lan-
guage tools on text and state-of-the-art mathematical approaches we may assess
mental states with unprecedented detail and precision.

Mota and colleagues have used graph-based analysis of speech structure
to classify manic and schizophrenic patients [23]. Interviews to subjects were
manually splitted into syntagmas and manually tagged as dream or waking
reports. To avoid manual processing, Mota and colleagues interviewed subjects
and requested to Please report a recent dream and Please report your waking
activities immediately before that dream[22]. Graphs were automatically gen-
erated from these two different texts. Results showed a high performance of
classification between schizophrenic and control subjects (AUC = 0.94).

In this work, we hypothesize that speech has the information to sort between
classes beyond the asked question. For this, we used both aswsers as one unique
report and applied graph analysis without distinction between dream and waking
reports. We considered previous structural information – i.e. automated graph
analysis – as well as new sintactic information and a complex coherence speech
analysis, incorporting semantic features.

Standard graph-analysis captures essentially syntactic and grammatical
properties of text. We include the graph generated from POS-tagging of text
– which captures more grammatical traces – and coherence analysis [7] which
captures the temporal order in discourse. Speech coherence has been vastly stud-
ied in different domains, from cognitive science, linguistic to artificial intelligence
[12]. This property has different applications: it is useful to quantify the diffi-
culty to comprehend a text [18] helping students to get better texts for their
language level, as well a predictor of schizophrenia [7]. In this article, we study
the incorporation of coherence analysis parameters to evaluate the increase in
classification performance between schizophrenic and control subjects.

2 Methods

2.1 Subjects and Interviews

Fourty subjects participated in the study, 20 of them were diagnosed as
schizophrenic and another 20 acted as control. The diagnosis was performed
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using the standard DSM IV ratings SCID [8]. The schizophrenic subjects were
patients of the Hospital Onofre Lopes (UFRN) and Hospital Machado, Natal,
Brasil. All subjects were interviewed with the following tasks: Please report a
recent dream and Please report your waking activities immediately before that
dream. Their discourse was recorded a blind-conditioned experimenter tran-
scripted the recordings. All subjects signed an informed consent for this study,
which was approved by the UFRN Research Ethics Committee (permit #102/06-
98244);

For this study, we concatenated the speech for both questions as a unique
text. As texts were in Portuguese, text were translated into English using Google
Translate.

2.2 Graph Transformations

After transcription of interviews, plain texts were transformed into graphs with
three different methods. Naive Graph consisted in splitting the text into words
without any transformation. A node was created for every distinct word and two
nodes are connected by an edge if they correspond to consecutive words.

Lemma Graph consisted in splitting plain text using the same procedures as
in the Naive Graph, but after word lemmatization. With this transformation two
different words may have the same lemma (e.g. love, loved and loving have the
same lemma: love). To lemmatize words, we used the Natural Language Toolkit
(NLTK), a Python toolkit for natural language processing [16].

The Part of Speech Graph consisted in changing the words of the plain text
with their Part of Speech tags (category of words or lexical items). To perform
this, we used the Stanford Tagger [25], building a completely different graph
with fewer nodes than other graphs. Figure 1 shows an example of these trans-
formations for a particular sentence.

For each of the three types of graphs, we calculated following graph measures:

– Nodes: Number of nodes in the graph
– Edges: Number of edges in the graph
– PE: The sum of parallel edges in the graph
– LCC: Number of nodes in the maximum connected component
– LSC: Number of nodes in the maximum Strongly connected component
– ATD: Average degree of every node in the graph
– L1: Number of self-loops
– L2: Number of loops with two nodes
– L3: Number of loops with three nodes

2.3 Coherence Algorithm

In this work, we use speech coherence as features to characterize the subject
discourse based on the Elvevaag algorithm [7]. The Elvevaag algorithm con-
sists in characterizing the flow of ideas based on the psychiatry hypothesis that
schizophrenic patients have thought disorders [3].
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The coherence analysis method uses Latent Semantic Analysis (LSA) as a
vectorial representation of concepts [5,15]. LSA was trained on TASA Corpus,
a collection of educational materials compiled by Touchstone Applied Science
Associates (TASA). LSA is a high-dimensional associative model that captures
similarity between words as a linear representation of the semantic space, by
assigning to each word in the lexicon a vector, a distance measure on this space
is used to compare words similarity.

The coherence algorithm works as follows: given the speech transcription D,
the document is splitted into n phrases Si, converted into a vectorial represen-
tation by replacing each word in the phrase by its corresponding LSA vector,
Si → {li1, li2, ...lim}. The phrase vectors are then summarized by taking the
mean vector (Li = (

∑m
k=1 li)/m). At this point, the text is a list of vectors

with each vector representing a sentence. For each text – i.e. the list of vectors
– we define two series: First-Order Coherence (FOC) as the similarity (cosine
distance) of consecutive phrase vectors; and Second-Order Cohernece (SOC) as
the similarity between phrases separated by another intervening phrase:

FOC = [cos(L1, L2), cos(L2, L3), ..., cos(Ln−1, Ln)]

SOC = [cos(L1, L3), cos(L2, L4), ..., cos(Ln−2, Ln)]

Finally, we calculated the mean, median, standard deviation, minimum and
max of these series.

2.4 Classifiers

To quantify the effect of the automatic classification of subject groups we used
Weka [13], a suite of machine learning methods written in Java, developed at
the University of Waikato, New Zealand. We tested the difference between the
two approaches: Graphs and Coherence analysis. We ran a selection of classifiers
for the three following conditions: (1) using only graph features, (2) using only
coherence features and (3) using both, graph and coherence features. For each
condition, we took the five classifiers with best performance. We reported the
performance of the union of the five classifiers for the three conditions (see
Table 1).

The features used in the classification routine were the graph features (9
features per graph) and their normalized version (by the numbers of words in
the text), with 18 total features for each type of graph. Thus, The total amount
of features for the three types of graphs is 54.

For the coherence analysis we took the two series (FOC and SOC), an cal-
culated many ditribution features: mean, median, standard deviation, minimum
and maximum. Again, we generated a normalized version (dividing by the sum
of words of the two sentences involved). Moreover, we also analysed the words
per sentences series (i.e. word per sentences mean, median, standard deviation,
minimum, and max).
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3 Results

For each subject, we automatically generated the Naive, Lemma and POS-tag
graphs (see Methods section for details) from the original transcript of the inter-
view. Figure 1 shows an example sentence of these transformations. Then, from
each graph we measured 18 features. Hence, through this method, we can map
each interview to a set 54 features.

I walked into my house and I found my brother

I | walked | into my house | and I | found | my brotherAd-hoc transformation: 

I | walked | into | my | house | and | I | found | my | brotherNaive transformation: 

I | walk | into | my | house | and | I | find| my | brotherLemma transformation: 

Part of Speech transformation: PRP | VBD | IN | PRP$ | NN | CC | PRP | VBD| PRP$ | NN

Original sentence: 

Part of Speech GraphNaive Graph Lemma Graph

Text to Graph  transformations example

into

walked

my

house

found

brother

and
into

walk

my

house

find

brother

and

I

CC
PRP

VBD

NNPRP$

IN

I

Fig. 1. Text to graph transformations example.

These 54 features, which are representative of an interview, we trained all
Weka classifiers, and computed the performance using a 10-fold cross-validation
scheme. First column of Table 1, shows the performance obtained for the selected
classifiers, with IB1 (65%) as the best classifier. This shows the upper-bound of
our classification using solely automatically derived syntactic graph metrics.

Next, we calculated the coherence parameters for each interview transcrip-
tion (see Methods section for details). For each subject, we obtained a set of
30 coherence-related features. Again, we trained all Weka classifiers, and com-
puted the performance using a 10-fold cross-validation scheme (Second column
of Table 1). In this case, IB1 – the best performing classifier for graph-only fea-
ture – showed slightly decrease of performance, while LWL classifier showed a
82.5% of performance.

Finally, we combined both sets of features and train all classifiers, and com-
puted the performance using a 10-fold cross-validation scheme. The combination
of both groups of features showed the best results, with a 85% of performance
based on LogitBoost classifier [10].
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Table 1. Comparison of classifiers using (1) graph features, (2) coherence features and
(3) both-types features

To evaluate the robustness of these results, we tested the best classifier (Log-
itBoost) versus a bootstrapping, i.e. a random assignation of labels to subject. In
this random assignation, classification methods should be around 50%, i.e. the
chance of assigning the correct label between two possibilities: schizophrenic or
control. Figure 2 shows the classification performance of LogitBoost with each
of the three groups of features, compared to the random sampling described.
Graph features show very similar results to bootstrapping, indicating very low
performance to distriminate between categories. Coherence features exhibits bet-
ter results, with more than 70% of performance. But combination of both set of
features obtain the best results, with more than 82% of performance, separating
from the bootstrapping data.

Graph 
Features

Coherence 
Features

Graph & Coherence 
Features

Real data

0.8

0.8

0.8

0.8

0.8

Bootstrapping Test

Pe
rfo

rm
an

ce

Fig. 2. Performance comparison using graph-only, coherence-only and graph+
coherence classification with the LogitBoost classifier (blue bars) and bootstrapping
classification (red bars). (Color figure online)

4 Discussion

The field of cognitive sciences has recently developed an approach to amass enor-
mous amounts of data through game-like web applications [11,17,27]. Together
with the access to large web repositories of text, and to virtually unlimited



Automated Speech Analysis for Psychosis Evaluation 37

computational power, these developments are changing the way we can charac-
terize cognition and human behavior. The massive availability of thought prod-
ucts in digital textual format opens up a new era with a great amount of new
possibilities, pushing a profound reformulation of how to study and assess mental
states.

Several approaches have been developed in the natural language processing
discipline to automatically extract word representation from texts to analyze
semantic content [2,4,5,20]. Recent works have shown that these methods may
extract regularities in texts reflecting mental/societal activity [6,19].

In this article, we combine discrete mathematics algorithms for graph char-
acterization, with natural language processing techniques to train classifiers that
can distinguish interviews from schizophrenic and control subjects. Graph mea-
sures concentrate on how text syntax and grammar is used. We incorporate
semantic features through the coherence analysis into the classification process.
NLP methods – LSA, specifically – relies on corpus training to create a vec-
tor space where words (or concepts) may be compared or measured providing
a computational measure of semantic content. Here we combine structural and
semantic features and evaluated the classification performance to discriminate
between these two categories: schizophrenic and control subjects.

We report the results of the classification in these three groups of features
(graph features; coherence features and mixed features). Most classifiers show
higher performance using coherence features than using graph features. However
the combination of both types of features show the best results, showing that
there is synergic information between these two aspects of speech.

This new tool presents an automated text processing method which includes
coherence analysis. Results complement standard psychometric scales fostering
automated psychiatric diagnosis.
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Abstract. This paper concerns a new dataset we are collecting combin-
ing 3 modalities (EEG, video of the face, and audio) during imagined and
vocalized phonemic and single-word prompts. We pre-process the EEG
data, compute features for all 3 modalities, and perform binary classifica-
tion of phonological categories using a combination of these modalities.
For example, a deep-belief network obtains accuracies over 90% on iden-
tifying consonants, which is significantly more accurate than two base-
line support vector machines. These data may be used generally by the
research community to learn multimodal relationships, and to develop
silent-speech and brain-computer interfaces.

Keywords: Phonological categories · Electroencephalography · Speech
articulation · Deep-belief networks

1 Introduction

Brain-computer interfaces (BCIs) often involve imagining gross motor move-
ments (e.g., of the hands or feet) to move a pointer on-screen or select from
banks of characters. However, some recent research has attempted to access
language centres in the brain directly. This has included electrocorticography
(ECoG) [2,10] and intracranial neurotrophic electrodes [1] to estimate perceived
words or complete auditory spectra [12] directly. While invasive methods have
high signal-to-noise, they can often only be used in severe cases, due to their
complex nature. We are therefore interested in discovering solutions that can be
applied more generally.

Suppes et al. [16] performed whole-word recognition using using EEG and
magnetoencephalography (MEG) data, where participants either silently pro-
nounced words or thought abstractly about their meaning. Porbadnigk et al.
[13] used an HMM to classify between EEG signals associated with the imag-
ined speech of five words with limited accuracy. The order in which the words
were presented significantly affected the results, which were above chance for
only one of four modes. Previous attempts to classify EEG signals associated
with the imagined pronunciation of phonemes often focussed on vowels [3–5,7],
building on previous work by Fujimaki et al. [8], who identified event-related
c© Springer International Publishing AG 2016
I. Rish et al. (Eds.): MLINI 2014, LNAI 9444, pp. 40–48, 2016.
DOI: 10.1007/978-3-319-45174-9 5
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potentials during the imagined pronunciation of /a/. While relevant, these stud-
ies did not relate EEG signals to either articulation or acoustics during actual
speech production, which is central to our work.

2 Data

2.1 Data Collection

Eight female and eleven male participants (mean age = 27.4, σ = 6.9, range =
26) were recruited from the University of Toronto. All participants were right-
handed (to control for hemispheric differences), had at least some post-secondary
education, had no visual, hearing, or motor impairments, and had no history of
neurological conditions or drug abuse. Furthermore, 17 of the 19 participants
identified North American English as their first language and the remaining two
spoke North American English at a fluent level, having learned the language at
a mean age of six.

Each study was conducted in an office environment at the Toronto Reha-
bilitation Institute (part of the University Health Network). Each participant
was seated in a chair before a computer monitor. A Microsoft Kinect (v.1.8)
sensor was placed above the screen to record facial information and the audio of
the participant’s speech. For each frame of video, the Kinect’s bundled software
extracted six ‘animation units’ (AUs), all on R[−1..1]: upper lip raiser, jaw low-
erer, (lateral) lip stretcher, brow lowerer, lip corner depressor, outer brow raiser.
A research assistant placed an appropriately-sized EEG cap on the participant’s
head and injected a small amount of gel to improve electrical conductance. We
used a 64-channel Neuroscan Quick-cap, where the electrode placement follows
the 10–20 system [14]. To control for artifacts arising from eye-movement, we
used 4 electrodes placed above and below the left eye and to the lateral side
of each eye. All EEG data were recorded using the SynAmps RT amplifier and
sampled at 1 kHz. Impedance levels were usually maintained below 10 kΩ.

After EEG setup, the participant was instructed to look at the computer
monitor and to move as little as possible. Over the course of 30 to 40 min,
individual prompts appeared on the screen one-at-a-time. We used 7 phone-
mic/syllabic prompts (/iy/, /uw/, /piy/, /tiy/, /diy/, /m/, /n/) and 4 words
derived from Kent’s list of phonetically-similar pairs (i.e., pat, pot, knew, and
gnaw) [11]. These prompts were chosen to maintain a relatively even number of
nasals, plosives, and vowels, as well as voiced and unvoiced phonemes. Each trial
consisted of 4 successive states:

1. A 5-second rest state, where the participant was instructed to relax and clear
their mind of any thoughts.

2. A stimulus state, where the prompt text would appear on the screen and
its associated auditory utterance was played over the computer speakers.
This was followed by a 2-second period in which the participant moved their
articulators into position to begin pronouncing the prompt.
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3. A 5-second imagined speech state, in which the participant imagined speak-
ing the prompt without moving.

4. A speaking state, in which the participant spoke the prompt aloud. The
Kinect sensor recorded both the audio and facial features during this stage.

Naturally, given the impact of movement on EEG, we expect excessive noise in
the speaking state EEG. Once the participant has finished speaking, one of
the investigators would proceed to the next trial. Each prompt was presented
12 times for a total of 132 trials each. The phonemic/syllabic prompts were first
presented followed by the 4 ‘Kent’ words, and the trials were randomly permuted
within each of those two sections. After every 40 trials, the participant was given
the opportunity to rest. Data from 5 of the 19 participants were discarded due
to unattached ground wires and two participants falling asleep during recording.
Ethical approval was obtained from both the University of Toronto and the
University Health Network, of which Toronto Rehab is a member.

2.2 Pre-processing

EEG data were pre-processed with EEGLAB [6], including removal of ocular
artifacts using blind source separation [9]. The data were band-pass filtered
between 1 Hz and 50 Hz [5], and the mean values were subtracted from each
channel. The EEG data were segmented into different trials, and each trial was
further segmented into the 4 states described above. We discarded 16 trials that
did not contain facial features from the Kinect.

2.3 Feature Extraction and Selection

For each EEG segment and each non-ocular channel, we window the data
to approximately 10 % of the segment, with a 50 % overlap between consec-
utive windows. We then compute several features over each window, includ-
ing the mean, median, standard deviation, variance, maximum, minimum,
maximum ± minimum, sum, spectral entropy, energy, kurtosis, and skewness.
We also compute the mean, maximum, minimum, and the sum and difference
of the maximum and minimum for the absolute value of the windowed signal.
Furthermore, we compute the first and second derivates of the above features.
This results in 1197 features for each channel of the segment, for a total of 65,835
features across the 62 channels. For each audio recording, we measure the same
set of features. For the facial data, we measure a subset of the above features
for each AU, including the mean, maximum, minimum, median, skewness, and
kurtosis. We further compute the first and second derivatives for each AU and
measure the same set of features.

Due to the high dimensionality of the feature space, particularly for the
EEG features, we rank features by their Pearson correlations with the given
classes for each task independently and we select the N features with the high-
est correlation coefficients, where N ∈ [5...100]. Given the multiple tasks and
our cross-validation scheme (see Sect. 3), we perform feature selection on every
training set independently.
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3 Experiments

We use a subject-independent approach with leave-one-out cross-validation in
which each subject’s data are tested in turn using models trained with all other
data combined. The results therefore may provide more generalizable conclu-
sions than subject-specific models, typical in the literature, which depend on
individual, non-transferable models. Our experiments use two types of classifier:
a deep-belief network (DBN) and support vector machine (SVM) baselines.
Two variants of the latter are tested, with different kernels; SVM-quad uses a
quadratic kernel and SVM-rbf uses the radial basis function.

In the DBN, weights wij between nodes i and j, in different layers, are
adjusted at iteration t+1 with gradient descent given weights at time t according
to

Δwij(t + 1) = wij(t) + η
δ log(P (x))

δwij
, (1)

After unsupervised training, we set a linear mapping of the output and ‘fine
tune’ the network in a supervised fashion using class predictions. In all cases,
we use one hidden layer whose (bottleneck) size is empirically 25 % of the size
of the input. We use up to 10 iterations (to avoid overfitting) in the pretraining
cycle with a batchsize of N/4 (given N observation vectors), a learning rate
η = 0.1, a drop-out rate [15] of 0.5 and the ‘cross entropy’ objective function
C = −∑

j dj log(pj), empirically chosen, where dj is the target probability for
output j and pj is the actual probability output of j.

3.1 Classification of Phonological Categories

Our primary goal is to classify between important phonemic and phonological
classes given different modalities of data and speech planning and production.
Specifically, we consider five binary classification tasks: vowel-only vs. consonant
(C/V), presence of nasal (± Nasal), presence of bilabial (± Bilab.), presence
of high-front vowel (±/iy/), and presence of high-back vowel (±/uw/) using
six modalities: EEG-only, facial features (FAC)-only, audio (AUD)-only, EEG
and facial features (EEG+FAC), EEG and audio features (EEG+AUD), and
all modalities.

Figures 1 and 2 show the average accuracy (with standard error σ/
√

n) of
classifying ±/iy/ and C/V, respectively, across the three classifiers and for each
test subject (given subject-independent models trained on all other data) given
empirical N = 5 input features. For both tasks, the DBN classifiers obtain
between 80 % and 91 % accuracy. Although the SVM-quad classifier obtains sig-
nificantly better-than-chance accuracy on ±/uw/, the SVM classifiers, in gen-
eral, obtain significantly lower accuracy than the DBNs. As suggested by the high
σ/

√
n for the SVM classifiers, this may be largely due to an interaction between

the classification tasks and the modalities of the data used. Indeed, Table 1 shows
that the average accuracies of the SVM-quad classifier varies greatly across these
two dimensions. This is further confirmed by an analysis of variance, which not
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Fig. 1. Average accuracies across models for DBN, SVN-quad, and SVN-rbf classifiers
for the C/V task, across subjects. Error bars are σ/

√
n.

only shows significant linear effects of each of the classifier, test subject, task,
and modality on the accuracy of phonological category classification, but also
significant interactions between the task and both of the classifier used and the
modality of the data (p < 0.01).

Fig. 2. Average accuracies across models for DBN, SVN-quad, and SVN-rbf classifiers
for the ±/uw/ task, across subjects. Error bars are σ/

√
n.

3.2 Correlational Analysis

To further investigate which features are most useful across the three different
modalities, we compute Pearson’s correlation between all pairs of features across
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modality pairs (i.e., EEG and WAV, EEG and FAC, WAV and FAC). These cor-
relation coefficients are computed over all users and all trials. To make these
features more interpretable, we restrict ourselves to a smaller feature set con-
sisting mostly of the same features that we computed on the facial data. The
results are summarized in Tables 2, 3, and 4. While the correlation coefficients
are not particularly high, it is interesting to note that certain features appear
significantly more often than others, such as the skewness, variance, and the sum
of the first derivative of the signal. We are conducting a more thorough analysis
of how different features from the various modalities relate to each other.

Table 1. Average accuracies (%) across modalities and classes given the SVM-quad
classifier.

Task

C/V ± Nasal ± Bilab ±/iy/ ±/uw/

EEG 78.93 37.41 37.47 37.1 9.53

FAC 81.7 36.6 36.44 37.16 12.18

AUD 80.65 42.98 59.81 37.56 22.41

EEG+FAC 81.7 36.48 36.44 37.64 10.26

EEG+AUD 80.65 42.98 59.81 37.87 22.41

ALL 80.7 37.17 56.06 38.98 22.41

Table 2. The 10 highest absolute correlated features for the EEG and WAV modality
pair. The parentheses indicate the channel label.

EEG feature WAV feature r

(CZ) Min of 2nd derivative Mean of 6th power 0.33

(P6) Min of 1st derivative Mean of 6th power 0.33

(AF3) Sum of 1st derivative Variance 0.31

(AF3) Sum of 1st derivative Absolute mean 0.30

(FT8) Kurtosis of 2nd derivative Variance 0.30

(P3) Kurtosis of 1st derivative Variance 0.30

(AF3) Sum of 1st derivative Absolute mean of 1st derivative 0.30

(AF3) Sum of 1st derivative Absolute mean of 2nd derivative 0.30

(AF3) Sum of 1st derivative std. dev 0.30

(CP1) Median Max 0.30
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Table 3. The 10 highest absolute correlated features for the EEG and FAC modality
pair. The parentheses indicate the channel label and AU (AU0: upper lip raiser).

EEG feature FAC feature r

(C4) Mean of 6th power (2nd derivative) (AU0) Mean of 1st derivative −0.41

(PO7) Mean of 6th power (1st derivative) (AU0) Mean of 1st derivative −0.41

(CP4) Variance of 1st derivative (AU0) Mean of 1st derivative 0.40

(O2) Variance (AU0) Mean of 1st derivative 0.40

(CP4) Min of 1st derivative (AU0) Mean of 1st derivative 0.39

(O2) Min (AU0) Mean of 1st derivative 0.39

(C4) Mean of 6th power (2nd derivative) (AU0) std. dev. of 2nd derivative −0.38

(PO7) Mean of 6th power (1st derivative) (AU0) std. dev. of 2nd derivative −0.38

(TP8) Kurtosis of 1st derivative (AU0) Mean of 1st derivative −0.38

(O1) Kurtosis (AU0) Mean of 1st derivative −0.38

Table 4. The 10 highest absolute correlated features for the WAV and FAC modality
pair. Here, AU0: upper lip raiser; AU2: lip stretcher; AU3: brow lowerer; AU4: lip
corner depressor; AU5: outer brow raiser.

WAV feature FAC feature r

Skewness (AU3) Variance 0.31

Skewness (AU0) Min of first derivative 0.30

Skewness (AU0) Sum 0.30

Skewness (AU0) Sum of 2nd derivative 0.30

Skewness (AU5) Variance 0.30

Skewness (AU2) Sum of 2nd derivative 0.30

Skewness (AU2) Sum 0.29

Skewness (AU2) Max minus min 0.29

Skewness (AU2) Min of 1st derivative 0.29

Skewness (AU4) Sum of 2nd derivative 0.29

4 Discussion

In this paper, we classify between phonological categories in planned and exe-
cuted speech combining acoustic, facial, and EEG data. Usually such multi-
modality is only possible with expensive MEG equipment. Instead, we use
an affordable (and portable) Kinect sensor and 64-channel EEG cap, which
is a much more viable setup for brain-computer interfaces. This data set is
also notable in that it combines EEG and physical speech production, which
is normally limited due to inherent measurement artifacts. Furthermore, all
our reported experiments use leave-one-out cross-validation, so our models are
subject-independent and generalizable.
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Other preliminary experiments are presented in the companion paper to this
work [17], which includes classification of the mental state from EEG, which can
achieve up to 95 % with the DBN described here. That task may be involved in
triggering silent text entry, for example, especially when comparing resting states
from active phonological planning. Future work includes methods to reconstruct
acoustic features from EEG, after Pasley et al.’s work with invasive methods
[12], potentially towards mapping imagined speech to synthetic speech.
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Abstract. Recently, multi-task feature selection methods have been
applied to jointly identify the disease-related brain regions for fus-
ing information from multiple modalities of neuroimaging data. How-
ever, most of those approaches ignore the complementary label informa-
tion across modalities. To address this issue, in this paper, we present
a novel label-alignment-based multi-task feature selection method to
jointly select the most discriminative features from multi-modality data.
Specifically, the feature selection procedure of each modality is treated
as a task and a group sparsity regularizer (i.e., �2,1 norm) is adopted to
ensure that only a small number of features to be selected jointly. In addi-
tion, we introduce a new regularization term to preserve label related-
ness. The function of the proposed regularization term is to align paired
within-class subjects from multiple modalities, i.e., to minimize their dis-
tance in corresponding low-dimensional feature space. The experimental
results on the magnetic resonance imaging (MRI) and fluorodeoxyglucose
positron emission tomography (FDG-PET) data of Alzheimer’s Disease
Neuroimaging Initiative (ADNI) dataset demonstrate that our proposed
method can achieve better performances over state-of-the-art methods
on multimodal classification of Alzheimer’s disease (AD) and mild cog-
nitive impairment (MCI).

Keywords: Alzheimer’s disease · Mild cognitive impairment · Label
alignment · Multi-task learning · Multi-modality

1 Introduction

Alzheimer’s disease (AD) is the most common form of dementia in people over
65 years of age. It is reported that there are 26.6 million AD sufferers worldwide,
and 1 in 85 people will be affected by 2050 [1]. Thus, effective and accurate
diagnosis of AD and its prodromal stage (i.e., mild cognitive impairment, MCI),
is very important for possible delay and early treatment of the brain disease.
Lots of efforts have been made for possible identification of such changes at the
early stage by leveraging neuroimaging data [3,13]. At present, several modali-
ties of biomarkers have been proved to be sensitive to AD and MCI, such as the
c© Springer International Publishing AG 2016
I. Rish et al. (Eds.): MLINI 2014, LNAI 9444, pp. 51–59, 2016.
DOI: 10.1007/978-3-319-45174-9 6
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brain atrophy measured in magnetic resonance imaging (MRI) [7] and the cere-
bral metabolic rates of glucose measured in fluorodeoxyglucose positron emission
tomography (FDG-PET) [8].

As multiple features are extracted from different imaging modalities, there
may exist some irrelevant or redundant features. So, feature selection, which can
be considered as the biomarker identification for AD and MCI, is commonly
used to remove these redundant and irrelevant features. Some feature selection
methods based on multi-modality data have been proposed for jointly selecting
the most discriminative features relevant to disease. For example, Zhang et al.
[12] proposed a multi-modal multi-task learning for joint feature selection for AD
classification and regression. Liu et al. [5] proposed inter-modality relationship
constrained multi-task feature selection for AD/MCI classification. Jie et al. [4]
presented a manifold regularized multi-task feature selection method for classifi-
cation of AD, and achieved the state-of-the-art performance on Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database. However, those methods ignore
the label information of data from multiple modalities, i.e., the subjects from
the same class across multiple modalities should be closer in the low-dimensional
feature space.

In this paper, to address this issue, we propose a novel label-alignment-based
multi-task feature selection method that considers the intrinsic label relatedness
among multi-modality data and preserves the complementary information con-
veyed by different modalities. We formulate the classification of multi-modality
data as a multi-task learning (MTL) problem, where each task focuses on the
classification of each modality. Specifically, two regularization items are included
in the proposed model. The first item is a group Lasso regularizer [11], which
ensures only a small number of features to be jointly selected across different
tasks. The second item is a label-alignment regularization term, which can min-
imize the distance of within-class subjects from multiple modalities after projec-
tion to low-dimensional feature space leading to the selection of more discrimi-
native features. Then, we use a multi-kernel support vector machine to fuse the
above-selected features from each individual modality. The proposed method has
been evaluated on ADNI dataset and obtained promising results.

The rest of this paper is organized as follows. In Sect. 2, we present the
proposed label-alignment-based multi-task feature selection method in detail.
Experimental results on ADNI dataset using MRI and FDG-PET biomarkers
are given in Sect. 3. Finally, Sect. 4 concludes this paper and indicates points for
future work.

2 Methods

2.1 Label-Alignment-Based Multi-Task Feature Selection

In this paper, we treat feature selection as a multi-task regression problem
that incorporates the relationship between different modalities. Suppose we
have M supervised learning tasks (i.e., the number of modalities). Denote
Xm = [xm

1 ,xm
2 , . . . ,xm

N ]T ∈ R
N×d as a N × d matrix that represents d
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features of N training samples on the m-th task (i.e., m-th modality), and
Y = [y1, y2, . . . , yN ]T ∈ R

N as the response vector from these training subjects,
where xm

i represents feature vector of the i-th subjects of the m-th modality,
and yi is the corresponding class label (i.e., patient or normal control). Sup-
pose wm ∈ R

d is the regression coefficient vector of the m-th task. Then the
multi-task feature selection (MTFS) model is to solve the following objective
function:

min
W

M∑

m=1

‖Y − Xmwm‖22 + λ1‖W ‖2,1 (1)

where W = [w1,w2, . . . ,wM ] ∈ R
d×M is the weight matrix whose row wj is

the vector of coefficients associated with the j-th feature across different tasks.
‖W ‖2,1 is the �2,1-norm of matrix W defined as ‖W ‖2,1 =

∑d
j=1‖wj‖2 which is

the sum of the �2-norms of the rows of matrix W [11]. The first term of Eq. (1)
measures the empirical error on the training data while the �2,1-norm encourages
matrix with many zero rows. So the �2,1-norm combines multiple tasks and
ensures that a small number of common features will be selected across different
tasks. λ1 is a regularization parameter which balances the relative contributions
of the two terms.

The MTFS model using a linear mapping function transforms the data from
the original high-dimensional space to one-dimensional space. The limitation of
the model is that only the relationship between data and class label for each
task is considered, while the mutual dependence among data and the comple-
mentary information conveyed by different modalities are ignored, which may
result in large deviations even for very similar data after mapping. To address
this problem, we introduce a new regularization term called label-alignment regu-
larization term which minimizes the distance between feature vectors of multiple
modalities of the within-class subjects after feature projection:

Ω =
N∑

i,j

M∑

p,q(p≤q)

‖(wp)Txp
i − (wq)Txq

j‖22Sij (2)

where xp
i and xq

j are the feature vectors of the i-th and the j-th subjects in the
p-th and q-th modalities respectively. Sij denotes the element of the similarity
matrix S across different subjects. Here, the similarity matrix can be defined as:

Sij =

{
1, ifxp

i andxq
j are from the same class

0, otherwise.
(3)

The regularization term Eq. (2) can be explained as follows. ‖(wp)Txp
i −

(wq)Txq
j‖22Sij measures the distance between xp

i and xq
j in the projected space.

It implies that, if xp
i and xq

j are from the same class, the distance between them
should be as small as possible. Otherwise, the distance between them should
be as large as possible. When p = q, the local geometric structrue of the same
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modality data are preserved during the mapping and when p < q, the com-
plementary information provided from different modalities are preserved after
projection of feature vectors onto the one-dimensional feature space. By incor-
porating the regularizer Eq. (2) into Eq. (1), we can obtain the objective function
of our label-alignment-based multi-task feature selection model:

min
W

M∑

m=1

‖Y −Xmwm‖22+λ1‖W ‖2,1+λ2

N∑

i,j

M∑

p,q(p≤q)

‖(wp)Txp
i −(wq)Txq

j‖22Sij

(4)

where λ1 and λ2 are the two positive constants that control the sparseness and
the degree of preserving the distance between subjects, respectively. To optimize
the problem in Eq. (4), we use Accelerated Proximal Gradient (APG) method
[6] and only those features with non-zero regression coefficients are used for final
classification.

2.2 Multi-modality Data Fusion and Classification

In this paper, we adopt a multi-kernel based support vector machine (SVM)
method to integrate features from different modalities for classification [13].
Specifically, we calculate the linear kernels based on the features selected by
the above-proposed feature selection method by using multi-modal biomarkers.
Then, a combined kernel matrix is constructed by linearly combining kernels
from different modalities and used in multi-kernel based SVM. The optimal para-
meters used for combining different kernels are determined by using a coarse-grid
search through cross-validation on the training samples.

We conduct standard 10-fold cross-validation to evaluate classification per-
formance. For each of the 10 trials, within the training data, an internal 10-fold
cross-validation is performed to fine tune the parameters, i.e., the regulariza-
tion parameters λ1, λ2 and the kernel combination parameter. The model that
reaches the best performance during the inner cross-validation stage is consid-
ered as the optimal model and is adopted to classify unseen testing samples.
This process is repeated 10 times independently to avoid any bias introduced
by randomly partitioning dataset in the 10-fold cross-validation and the average
results are reported.

Figure 1 gives a schematic illustration of our multimodal data fusion and
classification pipeline, where two modalities of data (e.g., MRI and FDG-PET)
are used for jointly selection features corresponding to different tasks.
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Fig. 1. Schematic diagram of the proposed method

3 Experiments

In this section, we perform a series of experiments on the Alzheimer’s Disease
Neuroimaging Initiative (ADNI) database (http://adni.loni.usc.edu) to evaluate
the effectiveness of the proposed method.

3.1 Subjects and Settings

We use a total of 202 subjects with corresponding baseline MRI and FDG-PET
data from ADNI dataset: 51 AD patients, 99 MCI patients (including 43 MCI con-

http://adni.loni.usc.edu
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verters who had converted to AD within 18 months and 56 MCI non-converters),
and 52 normal controls (NC). Standard image pre-processing is carried out for all
MRI and FDG-PET images, including spatial distortion, skull-stripping, removal
of cerebellum. Then for structural MR images, we partition each subject image
into 93 manually labeled regions-of-interest (ROIs) [9] with atlas wraping. The
gray matter tissue volume of these 93 ROIs is used as features extracted by the
FSL package [14]. FDG-PET image of each subject is aligned onto its correspond-
ing MR image using a grid transformation and the average intensity of each ROI
in the FDG-PET image is calculated as features. Therefore, we can finally acquire
93 features from MRI image and other 93 features from PET image.

In our experiments, we compare our proposed method with multi-modality
multi-kernel method [13] without feature selection (denoted as Baseline), single-
modality feature selection with Lasso integrated with multi-modality multi-kernel
SVM (denoted as SMFS) and multi-task feature selection method [12] (denoted
as MTFS). In addition, we also concatenate all features from MRI and FDG-PET
into one feature vector and perform Lasso-based feature selection and then use
the standard SVM with linear kernel for classification (denoted as CONFS). For
each comparison, different methods are evaluated on multiple binary classifica-
tion tasks, i.e., AD vs. NC, MCI vs. NC and MCI converters (MCI-C) vs. MCI
non-converters (MCI-NC), respectively. To evaluate the performances of differ-
ent methods, we use four performance measures, including classification accuracy,
area under receiver operating characteristic (ROC) curve (AUC), sensitivity (i.e.,
the proportion of patients that are correctly predicted), and specificity (i.e., the
proportion of normal controls that are correctly predicted).

3.2 Results

Table 1 shows the experimental results achieved by five different methods. As can
be seen from Table 1, the proposed feature selection method is always superior
to other methods on three classification tasks. Specifically, our method obtains
the classification accuracy of 95.51%, 82.15% and 70.50% for AD vs. NC, MCI
vs. NC and MCI-C vs. MCI-NC, respectively. On the other hand, the best clas-
sification accuracy of other methods are 92.25 %, 74.34 % and 61.67 % on three
tasks, respectively. Besides, we perform the standard paired t-test on the accu-
racies of our proposed and those of compared methods. It is shown that our

Table 1. Classification performance of all comparison methods

Method AD vs. NC MCI vs. NC MCI-C vs. MCI-NC

ACC

(%)

SEN

(%)

SPE

(%)

AUC ACC

(%)

SEN

(%)

SPE

(%)

AUC ACC

(%)

SEN

(%)

SPE

(%)

AUC

Baseline 91.65 92.94 90.19 0.9615 74.34 85.35 53.46 0.7764 59.67 46.28 69.64 0.6010

CONFS 91.02 90.39 91.35 0.9486 73.44 76.46 67.12 0.7802 58.44 52.33 63.04 0.6019

SMFS 92.25 92.16 92.12 0.9674 73.84 77.27 66.92 0.7745 61.67 54.19 66.96 0.6139

MTFS 92.07 91.76 92.12 0.9557 74.17 81.31 60.19 0.7758 61.61 57.21 65.36 0.6179

Proposed 95.51 97.06 93.85 0.9688 82.15 86.36 73.85 0.8317 70.50 66.98 72.50 0.6857
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Fig. 2. ROC curves of different methods for classifications

proposed method is significantly better than the comparison methods with p
values smaller than 0.05. In addition, Fig. 2 further plots the corresponding ROC
curves of different methods for three classification tasks. These results demon-
strate that considering the complementary label information of multi-modality
data can significantly improve the classification performance, with comparison
to traditional methods.

Furthermore, in Table 2, we compare our proposed method with several recent
start-of-the-art methods for multimodal AD/MCI classification. Gray et al. got
the classification accuracy of 89.0 %, 74.6 % and 58.0 % for AD vs. NC, MCI vs.

Table 2. Comparison on performance of different multi-modality classification methods

Method Modalities AD vs. NC MCI vs. NC MCI-C vs. MCI-NC

Gray et al. [2] MRI+PET+
CSF+genetic

89.0 % 74.6 % 58.0 %

Westman et al. [10] MRI+PET 91.8 % 77.6 % 68.5 %

Liu et al. [5] MRI+PET 94.4 % 78.8 % -

Jie et al. [4] MRI+PET 95.0 % 79.3 % 68.9 %

Proposed MRI+PET 95.5% 82.2% 70.5%
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NC, and MCI-C vs. MCI-NC, respectively with four different modalities (MRI
+ PET + CSF + genetic) [2]. When using two modalities of features (MRI
+ PET), Jie et al. [4] achieved the accuracy of 95.0 %, 79.3 % and 68.9 % for
classification of AD vs. NC, MCI vs. NC and MCI-C vs. MCI-NC, respectively,
which are inferior to our method. These results further validate the efficacy of
our proposed method for multimodal AD/MCI classification.

4 Discussion

This paper addresses the problem of integrating the complementary label infor-
mation to build the multi-task feature selection method for jointly selecting fea-
tures from multi-modality neuroimaging data to improve AD/MCI classification.
Specifically, we formulate the multi-modality classification as a multi-task learn-
ing framework and introduce the label-alignment regularization term to seek the
optimal features which preserve the discriminative information between within-
class subjects across multiple modalities. Experimental results demonstrate that
our proposed method can achieve better performance than all conventional meth-
ods. In future work, we will extend our method to include more modalities and
test other classifiers for further improvement of classification performance.
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Abstract. Sparse Canonical Correlation Analysis (SCCA) has been
proposed to find pairs of sparse weight vectors that maximize corre-
lations between sets of paired variables. This is done by computing one
weight vector pair, deflating the correlation matrix between the views,
and then repeating the process to compute the next pair. However, the
deflation step used does not guarantee the orthogonality of the vector
pairs. This is a very important requirement if one wishes to study the
space spanned by these vectors, which should have very promising neu-
roscience applications. In the present work, we propose a new method
for performing the deflation step in SCCA models. The ability of these
vector pairs to generalize to new data was tested using an open-access
dementia dataset which included T1-weighted MRI images and clinical
information. The proposed method provided weight vector pairs that
were both orthogonal and able to generalize to new data.

Keywords: Sparse Canonical Correlation Analysis · Matrix deflation ·
Neuroimaging · Dementia

1 Introduction

Pattern recognition algorithms have been successfully applied to analyse neu-
roimaging data for a variety of applications, including the study of neurological
and psychiatric diseases. However, so far, most of these studies have focused on
supervised binary classification problems, i.e. they summarize the clinical assess-
ment into a single measure (e.g. diagnostic classification) and the output of the
models is limited to a probability value and, in most cases, a binary decision
(e.g. healthy/patient) [4,6,8–10,12].

Unsupervised learning approaches, such as Canonical Correlation Analysis
(CCA), may provide useful insights into brain mechanisms by finding relation-
ships between different sets of measurements (i.e. views) from the same subjects.
CCA identifies a projection or latent space containing the relevant information
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in both views [13]. By studying this latent space, one can extract information
regarding the underlying relationship between them.

The output of CCA consists of two sets of weight vectors that maximize the
correlations between the two views. However, due to the high dimensionality
of neuroimaging data, the interpretability of the image weight vectors is lost.
Sparsity is imposed on the models to overcome this issue, usually by using a
variation of CCA called Sparse CCA (SCCA).

Witten et al. proposed a SCCA approach with both L1 and L2 constraints
imposed on the optimization problem [16]. The L1 constraint favors sparse solu-
tions, while the L2 constraint allows for correlated features to be included in
the model. This type of algorithm has gained some popularity in neuroimaging,
being applied in a few studies, either directly or with some variant [2,3,14,17].
Similar approaches were also proposed slightly before the paper by Witten et al.
(e.g. [11]). The SCCA algorithm acquires one pair of weight vectors by converg-
ing in an iterative process, after which it deflates the correlation matrix between
the two views to acquire the next pair. However, upon performing this deflation
step, we were unable to acquire a pair of weight vectors orthogonal to the first
pair.

In this paper, we propose an alternative method for performing the matrix
deflation step that ensures the orthogonality of the weight vectors. This should
be of utmost importance if one wants to use these weight vectors to characterize
the space in which the views of the data are maximally correlated. In order to
test the proposed method, we implemented the SCCA algorithm described in
[16] and applied it to an open-access dementia dataset consisting of T1-weighted
MRI images and clinical/demographic information [7]. The weight vectors were
then obtained with the deflation step described in [16] and the deflation step
proposed in this paper.

2 Methods

2.1 Sparse Canonical Correlation Analysis (SCCA)

Each view was organized in a matrix where each row corresponded to a subject
and each column to a feature. This was done for both image (X ) and clinical
(Y ) views.

SCCA allows one to find a subspace that maximally correlates both views
of a paired dataset. This is done by solving the following optimization problem
[16]:

max
u,v

= uTX TYv

subject to
‖u‖22 � 1, ‖v‖22 � 1, ‖u‖1 � cx, ‖v‖1 � cy

(1)

where X T and uT denote the transposed of X and u , respectively; u and v
correspond to the weight vectors for the image and clinical views, respectively;
and cx and cy correspond to the L1 constraints on the image and clinical views,
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respectively. The lower the values of cx and cy, the stronger the L1 constraint
on the corresponding view is. Their values should be 1 � cx �

√
dx and 1 �

cy �
√

dy, where dx and dy are equal to the number of variables in X and Y ,
respectively.

The algorithm used to solve the optimization problem (1) is described in [16]
as the following:

1. C = X TY ;
2. Apply SVD to obtain the 1st estimate of v ;
3. Initialize v to have L2-norm = 1;
4. Iterate until convergence:

(a) u ← S(Cv ,Δx)
‖S(Cv ,Δx)‖2

, where Δx = 0 if it results in |u |1 � cx; otherwise, Δx

is chosen to be a positive constraint such that |u |1 = cy;

(b) v ← S(CT u,Δy)

‖S(CT u,Δy)‖2

, where Δy = 0 if it results in |v |1 � cy; otherwise, Δy

is chosen to be a positive constraint such that |v |1 = cy;
5. d ← uTCv
6. C ← C − duvT

where S is the soft threshold operator defined as S(a, c) = sgn(a)(|a| − c)+,
where c > 0 is a constant and x+ is equal to x if x > 0 and x = 0 if x � 0 [16].

After performing the loop described in step 4, the weight vectors are obtained.
If one wants to obtain additional sparse weight vectors, then matrix C has to
be deflated using the last two steps. However, we propose an alternative way of
doing this.

If we consider C̃ to be the matrix whose variance is not explained by u and
v (i.e. the one we want to obtain, so that we can calculate the new weight vector
pair), then:

C̃ = X̃
T
Ỹ (2)

Note that if the weight vectors obtained are orthogonal, then: X̃u = 0 and
Ỹ v = 0 .

X̃ and Ỹ can be re-written as:

X̃ = X (I − uuT ) and Ỹ = Y (I − vvT ) (3)

By substituting (3) in (2) and doing some manipulations, one arrives at:

C̃ = C − CvvT − uuTC + duvT (4)

Step 6 in the algorithm can then be substituted by: C ← C̃ .
The first three pairs of weight vectors obtained were used to project test data

in order to evaluate the model’s performance, i.e. ability to learn associations
between the two views that can be generalized to new data:

Px = X testU and Py = Y testV (5)
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where Px and Py denote the projection of the image and clinical views, respec-
tively; U and V are the column vector matrices containing the three weight vec-
tors. In order to calculate a summary of the correlation between the three com-
ponents of the projections simultaneously, the Hilbert-Schmidt Independence
Criterion (HSIC) [5] was used.

2.2 Validation Framework

A validation framework was used to test the SCCA model for its ability to
generalize to new data. This was done by projecting the two views of the test
data onto the SCCA weight vectors computed using the training data (5) and
computing the correlation between the projected views. The procedure used to
validate the model was the following:

1. Create 100 random splits of the data: 50 % for training and 50 % for testing;
2. For one split, run SCCA on the training data, and project both views of the

test data using the SCCA weight vectors for each view (5). Then, calculate
the correlation between the projected views using HSIC;

3. Randomly permute the order of the rows in the clinical test data matrix,
project both views of the test data using the SCCA weight vectors for each
view (5). Then, calculate the correlation between the projected views using
HSIC;

4. Go back to step 3 and repeat 10000 times;
5. Check how many times the absolute values of the correlation calculated in step

3 (permuted SCCA correlation) were greater or equal to the one calculated
in step 2 (original SCCA correlation). If the fraction is lower than 0.05, then,
the correlation was considered as being statistically significant.

6. Go back to step 2 and select the next split;

In order to summarize the results of the validation framework, the percentage
of splits that were considered statistically significant (step 5) was determined.
Note that by using this framework (i.e. permuting the test data), we are testing
the significance of the learnt weight vectors (their performance on test data),
rather than the ability of SCCA to learn weight vectors. The latter would require
the permutations to be performed on the whole dataset, before the SCCA weight
vectors are obtained.

2.3 Dataset

A subset from the “OASIS: Longitudinal MRI Data in Nondemented and
Demented Older Adults” dataset (www.oasis-brains.org) was used. The dataset
includes T1-weighted MRI scans from subjects at different time points, with the
corresponding clinical information [7]. In this study, a subset of 142 subjects from
the first time point was used. These included 58 male subjects and 84 female sub-
jectswith an average age of 75.4 years ± 7.7 years. Among these, 72were considered

www.oasis-brains.org
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as being healthy, 56 as demented, and 14 as “converted”. The latter ones were con-
sidered as healthy on the first time point, but latter developed dementia.

All images were preprocessed using SPM12b [15]. The first step was to aver-
age all the repeats for each session followed by a grey matter segmentation, then,
the segmented images were registered using DARTEL [1], normalized to MNI
space with a voxel size of [2 2 2] and smoothed with a Gaussian kernel with a
full width at half maximum (FWHM) of [8 8 8]. In addition, the head size was
regressed out of the data and a mask was applied to select voxels that had a prob-
ability of being grey matter equal or above 20 %. The grey matter probability
maps within the mask were used as the first view of SCCA.

For each subject, the following clinical information was used as the second
view of SCCA: age, social economic status, education, Mini-Mental State Exami-
nation (MMSE) and Clinical Dementia Rating (CDR). All features in both views
were mean-centered and normalized.

2.4 Previous Deflation Procedure vs. Proposed Procedure

To see the difference between the previous and the proposed deflation procedures
(4), each SCCA procedure was applied to compute three weight vector pairs.
Then, we checked if these weight vectors were orthogonal and used them to
project the data matrices from each view onto them, i.e. the image data matrix
was projected onto the three image weight vectors and the clinical data matrix
was projected onto the three clinical weight vectors. The resulting projections
were then plotted for each deflation procedure.

Based on previous results, the regularization parameters were set to cx = 50
and cy =

√
5 for both deflation procedures, since they provided a statistically

significant solution with an adequate amount of selected voxels for visualizing
the effects of the different procedures. Due to space constraints, we will not
be able to present these results. However, it should be noted that finding the
optimal level of sparsity is not the objective of this paper, the main focus lies
on the effects of the weight vector orthogonalization, which are observed using
different levels of sparsity.

3 Results and Discussion

The weight vector groups obtained using the previous deflation procedure were
not orthogonal. When calculating the inner products between the vectors, the
range of the absolute values obtained was [0.24, 1], with a median of 0.82. In con-
trast, the weight vectors obtained with the proposed deflation step were orthog-
onal, all the inner products were approximately 0. Furthermore, the inner prod-
ucts calculated for each split of the validation procedure described in Sect. 2.2
followed the same tendency. The range of the absolute values of the inner prod-
ucts using the previous deflation procedure was [0.01, 1.00] with a median of 0.89,
while the range and median for the proposed deflation procedure were [0.00, 0.05]
and 0.00, respectively.
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Fig. 1. First three image weight vectors calculated using each deflation step. Red
regions correspond to positive weight values and blue regions correspond to negative
weight values.

Figure 1 shows the weight maps for the first three weight vectors calculated
using each deflation step. The second weight vector calculated using the previous
deflation step selects regions surrounding the ones selected by the previous weight
vector, and the third weight vector selects regions surrounding regions selected
by the second weight vector. This suggests that SCCA is detecting the same
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Fig. 2. Projections of the data onto the corresponding weight vectors. Blue: Non-
Demented; Red: Demented; Green: “Converted”. (a) Previous deflation - projections
using the image weights; (b) previous deflation - projections using the clinical weights;
(c) proposed deflation - projections using the image weights; (d) proposed deflation -
projections using the clinical weights. (Color figure online)

effect in the data for each weight vector pair. By enforcing the orthogonality
of the weight vectors, the effects described by the previous weight vectors are
removed from the data, allowing new effects to be detected.

The nonorthogonality of the weight vectors leads to projections that can be
seen in Fig. 2(a) and (b), where the projections are aligned along a line. However,
this is not the case when the proposed procedure is used (Fig. 2(c) and (d)). In
this case, the weight vectors obtained were orthogonal, which leads to projections
that are able to capture the variance of the data.

The models were both tested for significance using the procedure described
in Sect. 2.2 and they were both significant (p < 0.05) in 100 % of the splits.
However, this only means that the vectors could not have been obtained by
chance alone. The group of paired weight vectors obtained using the previous
deflation might be significant, but the vectors are still not orthogonal (which
should not be the case when matrix deflation is applied).
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4 Conclusion

The results showed that the proposed method is able to calculate statistically
significant orthogonal weight vectors. By guaranteeing the orthogonality of the
image weight vectors, new brain regions that correlate with the clinical variables
could be found. Therefore, we believe that using this method is preferable when
applying SCCA with matrix deflation to study neuroimaging data.

In order to capture the variance of the data in the subspace defined by
the weight vectors, it is very important to guarantee the orthogonality of these
vectors. The analysis of the space spanned by the weight vectors should provide
very useful information regarding the underlying relationship between the two
views. Future work should include the study of this space in order to find any
information that might improve the understanding of brain function or assist
with the diagnosis of diseases related with the brain.
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Abstract. Magnetoencephalography (MEG) has a high temporal reso-
lution well-suited for studying perceptual learning. However, to identify
where learning happens in the brain, one needs to apply source localiza-
tion techniques to project MEG sensor data into brain space. Previous
source localization methods, such as the short-time Fourier transform
(STFT) method by Gramfort et al. [6] produced intriguing results, but
they were not designed to incorporate trial-by-trial learning effects. Here
we modify the approach in [6] to produce an STFT-based source local-
ization method (STFT-R) that includes an additional regression of the
STFT components on covariates such as the behavioral learning curve.
We also exploit a hierarchical L21 penalty to induce structured sparsity
of STFT components and to emphasize signals from regions of interest
(ROIs) that are selected according to prior knowledge. In reconstructing
the ROI source signals from simulated data, STFT-R achieved smaller
errors than a two-step method using the popular minimum-norm esti-
mate (MNE), and in a real-world human learning experiment, STFT-R
yielded more interpretable results about what time-frequency compo-
nents of the ROI signals were correlated with learning.

1 Introduction

Magnetoencephalography (MEG) [9] has a high temporal resolution well-suited
for studying the neural bases of perceptual learning. By regressing MEG signals
on covariates, for example, trial-by-trial behavioral performance, we can identify
how neural signals change with learning. Based on Maxwell’s equations [8], MEG
sensor data can be approximated by a linear transform of the underlying neural
signals in a “source space”, often defined as ∼104 source points distributed on the
cortical surfaces. Solving the inverse of this linear problem (“source localization”)
facilitates identifying the neural sites of learning. However, this inverse problem
is underspecified, because the number of sensors (∼300) is much smaller than the
number of source points. Many source localization methods use an L2 penalty
for regularization at each time point (minimum-norm estimate [8], dSPM [3]
and sLORETA [15]). These methods, however, may give noisy solutions in that
they ignore the temporal smoothness of the MEG signals. Other methods have
been proposed to capture the temporal structure (e.g. [4,13]), among which, a
c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-45174-9 8
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sparse short-time Fourier transform (STFT) method by Gramfort et al. [6] yields
solutions that are spatially sparse and temporally smooth.

With L2 methods such as the minimum-norm estimate (MNE), one can study
learning effects in a two-step procedure: (1) obtain source time series in each
trial; (2) regress some features of the time series on the covariates. However,
these methods may give noisy solutions due to lack of smoothness. To address
this, we might want to regress the STFT components in [6] on the covariates in a
two-step procedure, but being designed for single-trial data, [6] may not provide
consistent sparse structures across trials. Additionally, in cases with pre-defined
regions of interest (ROIs) that are theoretically important in perceptual learning,
for example, “face-selective” areas [5,12,16], it is not desirable to shrink all source
points equally to zero as in MNE. Instead, it may be useful to assign weighted
penalties to emphasize the ROIs.

Here we modify the model in [6] to produce a new method (STFT-R) to
estimate learning effects in MEG. We represent the source signals with STFT
components and assume the components have a linear relationship with the
covariates. To solve the regression coefficients of STFT components, we design
a hierarchical group lasso (L21) penalty [11] of three levels to induce structured
sparsity. The first level partitions source points based on ROIs, allowing different
penalties for source points within ROIs and outside ROIs; then for each source
point, the second level encourages sparsity over time and frequency on the regres-
sion coefficients of the STFT components, and finally for each STFT component,
the third level induces sparsity over the coefficients for different covariates. We
derive an algorithm with an active-set strategy to solve STFT-R, and compare
STFT-R with an alternative two-step procedure using MNE on both simulated
and human experimental data.

2 Methods

Model. Assume we have n sensors, m source points, T time points in each trial,
and q trials together. Let M (r) ∈ R

n×T be the sensor time series we observe in
the rth trial, and G ∈ R

n×m be the known linear operator (“forward matrix”)
that projects source signals to sensor space. Following the notation in [6], let
ΦH ∈ C

s×T be s pre-defined STFT dictionary functions at different frequencies
and time points (see Appendix 1). Suppose we have p covariates (e.g. a behavioral
learning curve, or non-parametric spline basis functions), we write them into a
design matrix X ∈ R

q×p, which also includes an all-one column to represent the
intercept. Besides the all one column, all other columns have zero means. Let the
scalar X

(r)
k = X(r, k) be the kth covariate in the rth trial. When we represent the

time series of the ith source point with STFT, we assume each STFT component
is a linear function of the p covariates: the jth STFT component in the rth trial
is

∑p
k=1 X

(r)
k Zijk, where the regression coefficients Zijk’s are to be solved. We

use a complex tensor Z ∈ C
m×s×p to denote the Zijk’s, and use Zk ∈ C

m×s to
denote each layer of Z. Our STFT-R model reads
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M (r) = G

(
p∑

k=1

X
(r)
k Zk

)
ΦH + E(r) for r = 1, · · · , q.

where the error E(r) ∈ R
n×T is an i.i.d random matrix for each trial. To solve

for Z, we minimize the sum of squared prediction error across q trials, with a
hierarchical L21 penalty Ω on Z:

min
Z

(
1
2

q∑

r=1

‖M (r) − G(
p∑

k=1

X
(r)
k Zk)ΦH‖2F + Ω(Z, α, β, γ,w)

)
(1)

where ‖ · ‖F is the Frobenius norm and

Ω(Z, α, β, γ,w) = α
∑

l

wl

√√√√
∑

i∈Al

s∑

j=1

p∑

k=1

|Zijk|2 (2)

+ β

m∑

i=1

s∑

j=1

√√√√
p∑

k=1

|Zijk|2 (3)

+ γ
m∑

i=1

s∑

j=1

p∑

k=1

|Zijk|. (4)

The penalty Ω involves three terms corresponding to three levels of nested
groups, and α, β and γ are tuning parameters. On the first level in (2), each
group under the square root either consists of coefficients for all source points
within one ROI, or coefficients for one single source point outside the ROIs.
Therefore we have Nα groups, denoted by Al, l = 1, · · · , Nα, where Nα is the
number of ROIs plus the number of source points outside the ROIs. Such a
structure encourages the source signals outside the ROIs to be spatially sparse
and thus reduces computational cost. With a good choice of weights for the Nα

groups, w = (w1, w2, . . . wNα
)T , we can also make the penalty on coefficients

for source points within the ROIs smaller than that on coefficients for source
points outside the ROIs. On the second level, for each source point i, the term
(3) groups the p regression coefficients for the jth STFT component under the
square root, inducing sparsity over time points and frequencies. Finally, on the
third level, (4) adds an L1 penalty on each Zijk to encourage sparsity on the p
covariates, for each STFT component of each source point.

The FISTA Algorithm. We use the fast iterative shrinkage-thresholding algo-
rithm (FISTA [2]) to solve (1), with a constant step size, following [6]. Let z be
a vector that is concatenated by all entries in Z, and let y be a vector of the
same size. In each FISTA step, we need the proximal operator associated with
the hierarchical penalty Ω:
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arg min
z

(
1
2
‖z−y‖2+Ω(z, α, β, γ,w)) = arg min

z
(
1
2
‖z−y‖2+

N∑

h=1

λh‖z|gh
‖2) (5)

where we concatenate all of the nested groups on the three levels in Ω into an
ordered list {g1, g2, · · · , gN} and denote the penalty on group gh by λh. For
example, λh = αwl if gh is the lth group on the first level, λh = β if gh is on
the second level, and λh = γ if gh is on in the third level. {g1, g2, · · · , gN} is
obtained by listing all the third level groups, then the second level and finally
the first level, such that if h1 is before h2, then gh1 ⊂ gh2 or gh1 ∩ gh2 = ∅.
Let z|gh

be the elements of z in group gh. As proved in [11], (5) is solved by
composing the proximal operators for the L21 penalty on each gh, following the
order in the list; that is, initialize z ← y, for h = 1, · · · N in the ordered list,

z|gh
←

{
z|gh

(1 − λh/‖z|gh
‖2) if ‖z|gh

‖2 > λh

0 otherwise

Algorithm 1. FISTA algorithm given the Lipschitz constant L

Data: L, f(z) = 1
2

∑q
r=1 ‖M (r) − G

(∑p
k=1 X

(r)
k Zk

)
ΦH ‖2

F , Ω(z) =

Ω(Z , α, β, γ, w)
Result: the optimal solution z
initialization: z0, ζ = 1, ζ0 = 1, y ← z0, z ← z0 ;
while change of z in two iterations is not small enough do

z0 ← z; Compute ∇f(y) ;
Apply the proximal operator
z = argx min( 1

2
‖x − (y − 1

L
∇f(y))‖2 + 1

L
Ω(x));

ζ0 ← ζ; ζ ← 1+
√

4ζ2
0+1

2
; y ← z + ζ0−1

ζ
(z − z0);

end

Details of FISTA are shown in Algorithm1, where y and z0 are auxiliary
variables of the same shape as z, and ζ, ζ0 are constants used to accelerate
convergence. The gradient of f(z) is computed in the following way: ∂f

∂Zk
=

−GT
∑q

r=1 X
(r)
k M (r)Φ + GT G(

∑q
r=1 X

(r)
k

∑p
k′=1 Zk′Xk′(r))ΦHΦ. We use the

power iteration method in [6] to compute the Lipschitz constant of the gradient.

The Active-Set Strategy. In practice, it is expensive to solve the original
problem in (1). Thus we derive an active-set strategy (Algorithm 2), according
to Chap. 6 in [1]: starting with a union of some groups on the first level (J =
∪l∈BAl,B ⊂ {1, · · · , Nα}), we compute the solution to the problem constrained
on J , then examine whether it is optimal for the original problem by checking
whether the Karush-Kuhn-Tucker(KKT) conditions are met, if yes, we accept
it, otherwise, we greedily add more groups to J and repeat the procedure.

Let z denote the concatenated Z again, and let diagonal matrix Dh be a
filter to select the elements of z in group gh (i.e. entries of Dhz in group gh
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are equal to z|gh
, and entries outside gh are 0). Given a solution z0, the KKT

conditions are

∇f(z)z=z0 +
∑

h

Dhξh = 0, and

{
ξh = λh

Dhz0
‖Dhz0‖2

if ‖Dhz0‖2 > 0,

‖ξh‖2 ≤ λh if ‖Dhz0‖2 = 0

where ξh, h = 1, · · · , N are Lagrange multipliers of the same shape as z. We
defer the derivations to Appendix 2.

We minimize the following problem

min
ξh,∀h

1
2
‖∇f(z)z=z0 +

∑

h

Dhξh‖22,

subject to

{
ξh = λh

Dhz0
‖Dhz0‖2

if ‖Dhz0‖2 > 0,

‖ξh‖2 ≤ λh if ‖Dhz0‖2 = 0

and use 1
2‖∇f(z)z=z0 +

∑
h Dhξh‖22 at the optimum to measure the violation

of KKT conditions. Additionally, we use the 1
2‖ (∇f(z)z=z0 +

∑
h Dhξh) |Al

‖22,
constrained on each non-active first-level group Al �⊂ J , as a measurement of
violation for the group.

Algorithm 2. Active-set strategy
initialization: choose initial J and initial solution Z; compute the KKT
violation for each Al �∈ J ;

while the total KKT violation is not small enough do
add 50 non-active groups that have the largest KKT violations to J ;
compute a solution to the problem constrained on J using FISTA ;
compute the KKT violation for each Al �⊂ J ;

end

L2 Regularization and Bootstrapping. The hierarchical L21 penalty may
give biased results [6]. To reduce bias, we computed an L2 solution constrained
on the non-zero entries of the hierarchical L21 solution. Tuning parameters in the
L21 and L2 models were selected to minimize cross-validated prediction error.

To obtain the standard deviations of the regression coefficients in Z, we
performed a data-splitting bootstrapping procedure. The data was split to two
halves (odd and even trials). On the first half, we obtained the hierarchical L21

solution, and on the second half, we computed an L2 solution constrained on the
non-zero entries of the hierarchical L21 solution. Then we plugged in this L2 solu-
tion Z to obtain residual sensor time series of each trial on the second half of the
data (R(r) = M (r)−G(

∑p
k=1 X

(r)
k Zk)ΦH). We rescaled the residuals according

to the design matrix X [17]. Let Xr = X(r, :)T = (X(r)
1 ,X

(r)
2 , · · · ,X

(r)
p )T , and
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hr = XT
r (XT X)−1Xr. The residual in the rth trial was rescaled by 1/(1−hr)0.5.

The re-sampled residuals R(r)∗s were random samples with replacement from
{R(r)/(1 − hr)0.5, r = 1, · · · , q} and the bootstrapped sensor data for each trial
were

M (r)∗ = G(
p∑

k=1

X
(r)
k Zk)ΦH + R(r)∗

After B re-sampling procedures, for each bootstrapped sample, we re-estimated
the solution to the L2 problem constrained on the non-zero entries again, and
the best L2 parameter was determined by a 2-fold cross-validation.

3 Results

Simulation. On simulated data, we compared STFT-R with an alternative
two-step MNE method (labelled as MNE-R), that is, (1) obtain MNE source
solutions for each trial; (2) apply STFT and regress the STFT components on
the covariates.

We performed simulations using “mne-python” [7], which provided a sample
dataset, and a source space that consisted of 7498 source points perpendicular
to the gray-white matter boundary, following the major current directions that
MEG is sensitive to. Simulated source signals were constrained in four regions in
the left and right primary visual and auditory cortices (Aud-lh, Aud-rh, Vis-lh
and Vis-rh, Fig. 1(a)). All source points outside the four regions were set to zero.
To test whether STFT-R could emphasize regions of interest, we treated Aud-lh
and Aud-rh as the target ROIs and Vis-lh and Vis-rh as irrelevant signal
sources. The noiseless signals were low-frequency Gabor functions (Fig. 1(b)),
whose amplitude was a linear function of a sigmoid curve (simulated “behavorial
learning curve”, Fig. 1(c)). We added Gaussian process noise on each source point
in the four regions independently for each trial. The marginal standard deviation
of this noise at each time point was defined as noise level. We ran simulations
with the noise level being 0.1, 0.3 and 0.5, where the units were 10 nA. We also
simulated the sensor noise as multivariate Gaussian noise filtered by a 5th order
infinite impulse response (IIR) filter. The filter and covariance matrix of the
sensor noise were estimated from the sample data. We controlled the signal-to-
noise ratios (SNRs) in Decibel when adding sensor noise to the simulated data
in each trial1.

We ran 5 independent simulations for SNR ∈ {0.5, 1} and noise level
∈ {0.1, 0.3, 0.5}, with 20 trials (length of time series T = 100, sampling rate
= 100 Hz, window size of the STFT = 160 ms and step size τ0 = 40 ms). With
only one covariate (the sigmoid curve), we fit an intercept and a slope for each

1 Note that in this case, the variance of sensor noise in each trial was proportional
to the source signals. This violated the i.i.d sensor noise assumption in both STFT-
R and MNE-R. We compared performance of the two methods in tolerating such
heteroskedasticity.
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STFT component. Before applying both methods, we pre-whitened the correla-
tion between sensors. In STFT-R, the weights for α in the ROI groups were set
to zero, and the weights in the non-ROI groups were equal and summed to 1.
We tuned the penalization parameters α, β in STFT-R. For γ, because the true
slope and intercept were equal in the simulation, we did not need a large γ to
select between the slope and intercept, therefore we fixed γ to a small value to
reduce the time for parameter tuning. The L2 penalty parameter in MNE-R was
also selected via cross-validation. We used B = 20 in bootstrapping.

We reconstructed the source signals in each trial using the estimated Z.
Note that true source currents that were close to each other could have opposite
directions due to the folding of sulci and gyri, and with limited precision of the
forward matrix, the estimated signal could have an opposite sign to the truth.
Therefore we “rectified” the reconstructed signals and the true noiseless signals
by taking their absolute values, and computed the mean squared error (MSE)
on the absolute values. Figure 1(d) shows estimated source signals in the target

Fig. 1. Simulation results: source signal reconstruction. (a), Target ROIs: Aud-lh (red),
Aud-rh (yellow) and irrelevant regions: Vis-lh (blue), Vis-rh (green). (b), The simu-
lated source signals with Gaussian process noise in the 20th trial. Each curve represents
one source point. The thicker curves show the noiseless true signals (solid: target ROIs,
dashed: irrelevant regions). noise level = 0.5. (c), The simulated “behavioral learning
curve”. (d), Estimates of source signals (noise level = 0.5, SNR = 0.5) in the 20th trial
by STFT-R and MNE-R, in Aud-lh (red) and Aud-rh (yellow). Each curve represents
one source point. Note the scale for MNE-R is < 1/10 of the truth. (e) and (f), Ratios
of rectified MSE (STFT-R over MNE-R) for source points within the target ROIs (e)
and for all source points (f). The bars show averaged ratios across 5 independent runs
of simulation, and the error bars show standard errors of the averaged ratios. (Color
figure online)
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ROIs (red and yellow) by the two methods in the 20th trial (SNR = 0.5, noise
level = 0.5). Noticing the scales, we found that MNE-R shrank the signals much
more than STFT-R. We show the ratios of the rectified MSEs of STFT-R to
the rectified MSEs of MNE-R for source points within the ROIs (Fig. 1(e)), and
for all source points in the source space (Fig. 1(f)). Compared with MNE-R,
STFT-R reduced the MSE within the ROIs by about 20 ∼ 40% (Fig. 1(e)).
STFT-R also reduced the MSE of all the source points by about 20% in cases
with low noise levels (0.1) (Fig. 1(f)). The MSE reduction was larger when noise
level was small.

To visualize which time-frequency components were correlated with the
covariate, we computed the T-statistic for each slope coefficient of each STFT
component, defined as the estimated coefficient divided by the bootstrapped
standard error. Again, since our estimate could have an opposite sign to the
true signals, we rectified the T-statistics by using their absolute values. We first

(a) Truth (b) STFT-R (c) MNE-R

(d) Truth (e) STFT-R (f) MNE-R

Fig. 2. Simulation results: inference of regression. SNR = 0.5, noise level = 0.5. (a),
The true slope coefficients of the regression. The vertical axis corresponds to the indices
of source points. Source points from the two ROIs are concatenated. The horizontal
axis corresponds to the indices of frequency × time components, where 0–24 are 25
time points in 0 Hz, 25–49 in 6.25 Hz, etc. The upper and lower plots show the real
and imaginary parts of the complex coefficients. (b) and (c), The T-statistics for each
STFT components, by STFT-R (b) and by MNE-R(c). (d), Averaged absolute values
of the real and imaginary parts of the true slope coefficients across source points in
each ROI. (e) and (f), Averaged absolute T for each STFT component in the two ROIs
by STFT-R (e) and MNE-R (f).
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averaged the absolute values of the T-statistics for the real and imaginary parts
of each STFT component, and then averaged them across all non-zero source
points in an ROI, for each STFT component. We call these values averaged
absolute T s.

In Fig. 2, we plot the T-statistic of the slope coefficient for each STFT compo-
nent of each source point in the two ROIs by STFT-R (Fig. 2(b)) and by MNE-R
(Fig. 2(c)), and compared them with the true coefficients in Fig. 2(a) (SNR = 0.5,
noise level = 0.5). The T-statistics for the real and imaginary parts are shown
separately. In Fig. 2(a), (b) and (c), the vertical axis corresponds to the indices
of source points, concatenated for the two ROIs. The horizontal axis corresponds
to the indices of STFT components, which is a one-dimensional concatena-
tion of the cells of the frequency × time matrix in Fig. 2(d); 0–24 are 25 time
points in 0 Hz, 25–49 in 6.25 Hz, 50–74 in 12.5 Hz, and so on. STFT-R yielded a
sparse pattern, where only the lower frequency (0 to 6.25 Hz) components were
active, whereas the pattern by MNE-R spread into higher frequencies (index
100–200, 25–50Hz). We also compared the averaged absolute T s for each ROI by
STFT-R (Fig. 2(e)) and by MNE-R (Fig. 2(f)), with the true pattern in Fig. 2(d),
in which we averaged the absolute values of the real and imaginary parts of the
true coefficients across the source points in the ROI. Again, STFT-R yielded a
sparse activation pattern similar to the truth, where as MNE-R yielded a more
dispersed pattern.

Human Face-Learning Experiment. We applied STFT-R and MNE-R on
a subset of data from a face-learning study [19], where participants learned to
distinguish two categories of computer-generated faces. In each trial, a partici-
pant was shown a face, then reported whether it was Category 0 or 1, and got
feedback. In about 500 trials, participants’ behavioural accuracy rates increased
from chance to at least 70%. Figure 3(a) shows the smoothed behavioral accu-
racy of one participant for Category 0, where the smoothing was done by a
logistic regression on Legendre polynomial basis functions of degree 5. We used
face-selective ROIs pre-defined in an independent dataset, and applied STFT-R
and MNE-R to regress on the smoothed accuracy rates. Considering that the
participants might have different learning rates for different categories, we ana-
lyzed trials with each category separately. Again, it was a simple linear regression
with only one covariate, where we fit a slope and an intercept for each STFT
component, and we were mainly interested in the slope regression coefficients,
which reflected how neural signals correlated with learning. We preprocessed the
sensor data using MNE-python and re-sampled the data at 100 Hz. STFT was
computed in a time window of 160 ms, at a step size τ0 = 40 ms. When applying
STFT, we set the weights of α for the ROI groups to zero, and used equal weights
for other non-ROI groups, which summed to 1. All of the tuning parameters in
both methods, including α, β and γ, were selected via cross-validation. We used
B = 20 in bootstrapping.

We report here preliminary results in one of the face selective regions, the
right inferior occipital gyrus (labelled as IOG R-rh), for one participant and
one face category. This area is part of the “occipital face area” reported in the
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(a) Behavioral accuracy

(b) STFT-R slope time series (c) MNE-R slope time series

(d) STFT-R averaged absolute T (e) MNE-R averaged absolute T

Fig. 3. Face-learning experiment results for one participant. (a), Smoothed behavioral
accuracy for Category 0. (b) and (c), Time series reconstructed from the STFT slope
coefficients in trials with faces of Category 0. Each curve denotes one source point. The
shaded bands show 95 % confidence intervals. (d, e) Averaged absolute T s by STFT-R
and MNE-R.

literature [16]. Since both STFT and the regression on the covariates are linear,
we inversely transformed the slope coefficients of the STFT components to a
time series for each source point, (denoted by “slope time series”), which showed
the slope coefficient in the time domain (Fig. 3(b) and (c)). We observed that
STFT-R produced smooth slope time series due to the sparse STFT represen-
tation (Fig. 3(b)), whereas MNE-R produced more noisy time series (Fig. 3(c)).
We also show the previously defined averaged absolute T s in the ROI, produced
by STFT-R (Fig. 3(d)) and MNE-R (Fig. 3(e)) Compared with the dispersed
pattern by MNE-R, STFT-R produced a more sparse pattern localized near
200 ∼ 300 ms. We speculate that this pattern corresponds to the N250 compo-
nent near 250 ms, which is related to familiarity of faces [18].

4 Discussion

To estimate learning effects in MEG, we introduced a source localization model
(STFT-R), in which we embedded regression of STFT components of source sig-
nals on covariates, and exploited a hierarchical L21 penalty to induce structured
sparsity and emphasize regions of interest. We derived the FISTA algorithm and
an active-set strategy to solve STFT-R. In reconstructing the ROI source signals
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from simulated data, STFT-R achieved smaller errors than a two-step method
using MNE, and in a human learning experiment, STFT-R yielded more sparse
and thus more interpretable results in identifying what time-frequency com-
ponents of the ROI signals were correlated with learning. In future work, the
STFT-R framework can also be used to regress MEG signals on high-dimensional
features of stimuli, where the sparsity-inducing property will be able to select
important features relevant to complex cognitive processes.

One limitation of STFT-R is its sparse representation of the non-ROI source
points. In our simulation, all of the source points outside the four regions had
zero signals, and it was reasonable to represent the two irrelevant regions as
sparse source points. However, further simulations are needed to test how well
STFT-R behaves when the true signals of the non-ROI source points are more
dispersed. It is also interesting to develop a one-step regression model based on
Bayesian source localization methods [10,14], where we can relax the hard sparse
constraints but still regularize the problem according to prior knowledge.
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Appendix

Appendix 1

Short-Time Fourier Transform (STFT). Our approach builds on the STFT
implemented by Gramfort et al. in [6]. Given a time series U = {U(t), t =
1, · · · , T}, a time step τ0 and a window size T0, we define the STFT as

Φ({U(t)}, τ, ωh) =
T∑

t=1

U(t)K(t − τ)e(−iωh) (6)

for ωh = 2πh/T0, h = 0, 1, · · · , T0/2 and τ = τ0, 2τ0, · · · n0τ0, where K(t − τ)
is a window function centered at τ , and n0 = T/τ0. We concatenate STFT
components at different time points and frequencies into a single vector in V ∈
C

s, where s = (T0/2 + 1) × n0. Following notations in [6], we also call the
K(t− τ)e(−iωh) terms STFT dictionary functions, and use a matrix’s Hermitian
transpose ΦH to denote them, i.e. (UT )1×T = (V T )1×s(ΦH)s×T .

Appendix 2

The Karush-Kuhn-Tucker Conditions. Here we derive the Karush-Kuhn-
Tucker (KKT) conditions for the hierarchical L21 problem. Since the term
f(z) = 1

2

∑q
r=1 ||M (r) − G(

∑p
k=1 X

(r)
k Zk)ΦH ||2F is essentially a sum of squared



80 Y. Yang et al.

error of a linear problem, we can re-write it as f(z) = 1
2 ||b − Az||2, where z

again is a vector concatenated by entries in Z, b is a vector concatenated by
M (1), · · · ,M (q), and A is a linear operator, such that Az is the concatenated
G(

∑p
k=1 X

(r)
k Zk)ΦH , r = 1, · · · , q. Note that although z is a complex vector,

we can further reduce the problem into a real-valued problem by rearranging
the real and imaginary parts of z and A. Here for simplicity, we only derive the
KKT conditions for the real case. Again we use {g1, · · · , gh, · · · , gN} to denote
our ordered hierarchical group set, and λh to denote the corresponding penalty
for group gh. We also define diagonal matrices Dh such that

Dh(l, l) =
{

1 if l ∈ gh

0 otherwise ∀h

therefore, the non-zero elements of Dhz is equal to z|gh
. With the simplified

notation, we re-cast the original problem into a standard formulation:

min
z

(
1
2
‖b − Az‖22 +

∑

h

λh‖Dhz‖2) (7)

To better describe the KKT conditions, we introduce some auxiliary variables,
u = Az,vh = Dhz. Then (7) is equivalent to

min
z,u,vh

(
1
2
‖b − u‖22 +

∑

h

λh‖vh‖2)

such that u = Az, vh = Dhz,∀h

The corresponding Lagrange function is

L(z, u, vh, μ, ξh) =
1

2
‖b − u‖2

2 +
∑

h

λh‖vh‖2 + μT (Az − u) +
∑

h

ξT
h (Dhz − vh)

where μ and ξh’s are Lagrange multipliers. At the optimum, the following KKT
conditions hold

∂L

∂u
= u − b − μ = 0 (8)

∂L

∂z
= AT μ +

∑

h

Dhξh = 0 (9)

∂L

∂vh
= λh∂‖vh‖2 − ξh � 0,∀h (10)

where ∂‖ · ‖2 is the subgradient of the L2 norm. From (8) we have μ = u−b, then
(9) becomes AT (u − b) +

∑
h Dhξh = 0. Plugging u = Az in, we can see that

the first term AT (u − b) = AT (Az − b) is the gradient of f(z) = 1
2‖b − Az‖22.

For a solution z0, once we plug in vh = Dhz0, the KKT conditions become

∇f(z)z=z0 +
∑

h

Dhξh = 0 (11)
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λh∂‖Dhz0‖2 − ξh � 0,∀h (12)

In (12), we have the following according to the definition of subgradients

ξh = λh
Dhz0

‖Dhz0‖2 if ‖Dhz0‖2 > 0

‖ξh‖2 ≤ λh if ‖Dhz0‖2 = 0

Therefore we can determine whether (11) and (12) hold by solving the following
problem.

min
ξh

1
2
‖∇f(z)z=z0 +

∑

h

Dhξh‖22

subject to ξh = λh
Dhz0

‖Dhz0‖2 if ‖Dhz0‖2 > 0

‖ξh‖2 ≤ λh if ‖Dhz0‖2 = 0

which is a standard group lasso problem with no overlap. We can use coordinate-
descent to solve it. We define 1

2‖∇f(z)z=z0 +
∑

h Dhξh‖22 at the optimum as a
measure of violation of the KKT conditions.

Let fJ be the function f constrained on a set J . Because the gradient of f
is linear, if z0 only has non-zero entries in J , then the entries of ∇f(z) in J are
equal to ∇fJ (z|J ) at z = z0. In addition, ξh’s are separate for each group. There-
fore if z0 is an optimal solution to the problem constrained on J , then the KKT
conditions are already met for entries in J (i.e. (∇f(z)z=z0 +

∑
h Dhξh) |J = 0);

for gh �⊂ J , we use ( 1
2‖ (∇f(z)z=z0 +

∑
h Dhξh) |gh

‖2) at the optimum as a mea-
surement of how much the elements in group gh violate the KKT conditions,
which is a criterion when we greedily add groups (see Algorithm2).
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Abstract. Brain effective connectivity aims to detect causal interac-
tions between distinct brain units and it can be studied through the
analysis of magneto/electroencephalography (M/EEG) signals. Methods
to evaluate effective connectivity belong to the large body of literature
related to detecting causal interactions between multivariate autoregres-
sive (MAR) data, a field of signal processing. Here, we reformulate the
problem of causality detection as a supervised learning task and we pro-
pose a classification-based approach for it. Our solution takes advantage
of the MAR model by generating a labeled data set that contains trials of
multivariate signals for each possible configuration of causal interactions.
Through the definition of a proper feature space, a classifier is trained to
identify the causality structure within each trial. As evidence of the effi-
cacy of the proposed method, we report both the cross-validated results
and the details of our submission to the causality detection competition
of Biomag2014, where the method reached the 2nd place.

1 Introduction

A main part of neuroscience research concerns brain connectivity and aims
to investigate the pattern of interactions between distinct units within the
brain [10]. The concept of brain units is strongly related to the level of the
adopted scale. Thus, brain connectivity can be studied from the microscopic level
of single synaptic connections to the macroscopic level of brain regions. Depend-
ing on the type of interactions that we focus on, the topic of brain connectivity
is divided into structural, functional and effective connectivity. In the first case
the connectivity patterns are referred to anatomical links i.e. neural pathways, in
the second case to the statistical dependences between brain activity in different
units and in the last one to the causal interactions between them [15].

In particular, effective connectivity provides information about the direct
influence that one or more units exert over another and aims to establish causal
interactions among them [7]. To achieve this goal the usefulness of brain sig-
nals measured by magneto/electroencephalography (M/EEG) has been largely
shown [3]. In fact, M/EEG record high temporal resolution signals that directly
measure the brain activity. A large body of work was developed about methods
to quantify the effective connectivity, mainly in the field of signal processing
c© Springer International Publishing AG 2016
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DOI: 10.1007/978-3-319-45174-9 9



86 D. Benozzo et al.

where it is known as the problem of inferring causality among time series. An
overview of the literature is provided below.

A first distinction that can be made in the available methods for causality
detection, is between linear and nonlinear methods. Linear approaches are largely
used both in time and frequency domain. An example of time domain technique
is the Granger causality index. Granger causality is one of the most widespread
measure to estimate the direction of causal influence in time series and its basic
assumption, that a cause has to precede its effect, has been adopted in many
other methods [8]. More precisely, if one or more time series x0(t), . . . , xk(t)
are causing the time series y(t), then a future value of y(t) is better predicted
by considering also the past values of x0(t), . . . , xk(t) than only those of y(t).
Most of the other time domain methods have the property that their multivari-
ate extension is based on the partial auto- and cross-spectra estimation done by
frequency-domain methods [16]. Thus, these latter have great adoption in causal-
ity assessment [5]. Examples are: the direct transfer function (DTF) [11,12], the
direct coherence (DC) [2] and the partial direct coherence [1].

In situations in which the nonlinear component of the causal interaction
is expected to be important, nonlinear multivariate methods are used [14]. A
first attempt to deal with nonlinearity was done by the local application of
linear multivariate methods in order to perform nonlinear prediction [6]. Further
approaches are based on information theory [9], phase synchronization [4] and
state space synchronization [13].

The intricate structure of interconnections, the enormous amount of depen-
dence that brain units can exert over each other and, last but not least, the
lack of a ground truth, make the assessment of the causal interactions a very
complex problem. In general new methods to estimate causal interactions are
assessed and validated on a limited set of signals and often by using data sim-
ulated by multivariate autoregressive (MAR) model. This is a common premise
that allows researchers to analyse the performance of their techniques in the
fully controlled environment of the MAR model. An example of the interest that
has been addressed to causality in multivariate time series is the Biomag2014
Causality Challenge (Causal2014)1. The purpose of the contest was to estimate
the direct causal interactions in a data set of simulated trials. One trial is meant
as three multivariate time series, generated by a known MAR model, that is
expected to simulate the behaviour of three neuronal populations.

In this paper we propose a new approach for the causality detection in time
series by attacking the problem from a different prospective. Instead of develop-
ing a solution in the context of signal processing, as in the previous literature, we
faced the problem from the machine learning point of view. Since modelling causal
interactions with a MAR model is a common practice in the literature, we used the
competition MAR model to create a set of trials for each possible causal configura-
tion among the time series. Then a classifier was trained on those data in order to

1 http://www.biomag2014.org/competition.shtml, see “Challenge 2: Causality Chal-
lenge”.

http://www.biomag2014.org/competition.shtml
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discriminate between causal configurations. Finally, it was applied to the compe-
tition data set providing a solution that reached the second place of Causal2014.

2 Materials

The competition organizers provided the code of the MAR model together with
the data set of which to estimate the direct causal interactions. Here, we will
describe them both.

The final output of the MAR model is the multivariate time series X =
{X(t), t = 0, 1, . . . , N−1},X(t) ∈ R

M×1 that is defined as the linear combination
of two M -dimensional multivariate time series Xs and Xn

X = (1 − γ)Xs + γXn (1)

Xs carries the causal information, Xn represents the noise corruption and
γ ∈ [0, 1] tunes the signal-to-noise ratio. Each time point of Xs and Xn is
computed by following the MAR model

Xs(t) =
min(P,t)∑

τ=1

A(τ)�
s Xs(t − τ) + εs(t)

Xn(t) =
min(P,t)∑

τ=1

A(τ)�
n Xn(t − τ) + εn(t)

(2)

where P is the order of the MAR model and represents the maximal time lag.
εs(t) and εn(t) are realizations from a M -dimensional standard normal distri-
bution. And A

(τ)
s , A

(τ)
n ∈ R

M×M , τ = 1, 2, . . . , P are the coefficient matrices
modelling the influence of the signal values at time t − τ on the current signal
values, i.e. at time t. The coefficient matrices {A

(τ)
s }τ are involved in the process

of causal-informative data generation. They are computed by randomly corrupt-
ing the non-zero elements of the M × M binary matrix A, called configuration
matrix. In essence, the configuration matrix A contains the causal structure that
leads the MAR model. Specifically Ai,j = 1 means signal i causes the signal j.
On the other hand, coefficient matrices A

(τ)
n lead the noisy part of the signals and

they are obtained by randomly generating P diagonal matrices. The diagonality
of these latter matrices is needed to avoid noise regressive dependencies across
signals. After that, if both sets of matrices A

(τ)
s and A

(τ)
n fulfil the stationarity

condition, each time point of Xs and Xn can be generated by Eq. 2.
In essence, given P , γ and A, it is possible to generate X following Eqs. 1

and 2. The goal of the competition is to reconstruct A given X.
The competition data set was built by generating 1000 trials with the follow-

ing parameter assignments: the number of time series in each trial is M = 3, the
MAR model order is P = 10 and the time series length is N = 6000. The trial-
specific parameters γ and A were randomly sampled from a standard uniform
distribution for each trial and kept secret by the organizer of the competition.
From now on, we will refer to the competition data set as C.
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3 Methods

The solution that we propose to the causality detection problem is based on a
supervised approach. Indeed, this task to reconstruct A from the data can be
formulated as a classification problem. In a general setting, each trial is com-
posed by M time series and the final goal is to estimate its M × M binary
configuration matrix A. Thus, there are M(M − 1) free binary parameters and
2M(M−1) possible causal configurations2.

Our supervised approach aims to train a classifier in order to discriminate
between trials that were generated by different configuration matrices. And since
we aim to predict A given a trial, the classifier is going to treat A as the trial’s
class label.

The training of the classifier is done on a new simulated data set generated
by the MAR model described in Sect. 2. This new data set, that we will call L,
is meant to better represent the entire population of causal configurations that
can be obtained by the adopted model. Therefore, L contains multiple trials for
each of the possible 2M(M−1) causal configurations.

Before the training, a proper feature space has to be defined in order to
extract the causal structure that led the generation of the trial. And once L has
been mapped on that feature space, a classifier f is trained on it.

The classifier f and the benefit that the feature space provides, are evalu-
ated by estimating the discriminative power of f through cross-validation. The
discriminative power can be maximized by trying different types of classifiers,
by tuning the related parameters and also by adjusting the feature space. Such
way of proceeding does not introduce circularity because we are not using C.

In the end, f is applied to the competition data set C to predict the config-
uration matrix of each trial.

The feature space that we built, is strongly based on the concept of Granger
causality. Indeed, it is a collection of measures that quantifies the ability to
predict the value at a given time point of a certain time series (effect) from the
past values of each possible subset of the M time series in the trial (causes).
The pair, made by causes and effect, is called causality scenario and, for M time
series, there are

∑M
i=1

(
M
i

)
M scenarios. In the case of the competition, where

M = 3, the possible causality scenarios are 21, and they are summarized in
Table 1, where xi(t), i = 0, 1, 2, denotes each of the time series that defines a
trial.

For each causality scenario, a plain linear regression problem was built by
selecting, as dependent variable, a set of time points from the signal in the effect
column. Each of these dependent variables has a regressor vector composed by
the P previous time points selected from the signals in the causes column. Table 2
shows how the regression problems were defined when M = 3, by specifying
from which time series and time points, regressors and dependent variables are
extracted. In the following, in order to simplify the notation, we will use xt

i

instead of xi(t), i = 0, 1, 2 and t ∈ T,T ⊆ {P, P +1, . . . , N−1}. Figure 1 explains

2 The diagonal is not relevant since by definition the time series are autoregressive.
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Table 1. The possible causality scenarios for three time series xi(t), i = 0, 1, 2.

Causes Effect

x0(t) xi(t)

x1(t) xi(t)

x2(t) xi(t)

x0(t), x1(t) xi(t)

x0(t), x2(t) xi(t)

x1(t), x2(t) xi(t)

x0(t), x1(t), x2(t) xi(t)

how, for the specific time point t = 30, the input of the regression problem is
built in the case of the last causality scenario of the Table 2 with i = 2. More
precisely, this example shows how the input of the regression problem is defined
in order to quantify the plausibility of the causality scenario: “x0, x1 and x2 are
causing x2”.

Table 2. Description of how the 21 linear regression problems are defined for each
trial. xt

i, i = 0, 1, 2 and t ∈ T,T ⊆ {10, 11, . . . , N − 1}, are the three time series of a
trial.

Regressors (causes) Dependent variable (effect)

[xt−10
0 , . . . , xt−1

0 ] xt
i

[xt−10
1 , . . . , xt−1

1 ] xt
i

[xt−10
2 , . . . , xt−1

2 ] xt
i

[xt−10
0 , . . . , xt−1

0 , xt−10
1 , . . . , xt−1

1 ] xt
i

[xt−10
0 , . . . , xt−1

0 , xt−10
2 , . . . , xt−1

2 ] xt
i

[xt−10
1 , . . . , xt−1

1 , xt−10
2 , . . . , xt−1

2 ] xt
i

[xt−10
0 , . . . , xt−1

0 , xt−10
1 , . . . , xt−1

1 , xt−10
2 , . . . , xt−1

2 ] xt
i

The regression problem of each causality scenario was cross-validated and
its performance was quantified through multiple regression metrics, e.g. mean
square error. The ensemble of the regression metrics of each causality scenario
defined the initial feature vector of the trial. We then applied standard feature
engineering techniques on the initial feature vector to enrich the feature space.
The choice of using multiple regression metrics and in particular which ones
including in the initial feature vectors, as well the choice of the feature engineer-
ing techniques, are driven by the goal to maximize the discriminative power of
f . See Sect. 4 for further details.
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Fig. 1. Example of how the sample associated at the time point t = 30 is built in order
to form the input of the last regression problem of the Table 2, for the case i = 2.

4 Experiments

In this section we present the technical details and results of the experiments
that were conducted to evaluate the method described in Sect. 3. In particu-
lar, we show two different types of results. The first one is an estimate of the
discriminative power of a classifier trained on the L data set and it provides a
quantification of how well the defined feature space is able to express the causal
structure behind a trial. The second result is the competition score obtained by
our submission, which gives us insights into how our approach works compared
to the ones adopted by the other participants.

Results are presented both in terms of confusion matrices and competition
score. The competition score was defined in the following way. For each entry
Âij , i �= j, of each predicted Â, if Âij was 1 and correct, then +1 point was
given. If Âij was 1 but incorrect, then −3 points were given. If Âij was 0, then 0
points were given. In practice, false discoveries were punished three times more
than what true discoveries were rewarded.

In order to take into account the strong false positive penalisation, we added
a cost model to our predictions, by combining the probability of each of the 64



Classification-Based Causality Detection in Time Series 91

classes with the cost of predicting one class instead of another. Given Sij the
cost of predicting i when the true class was j, the optimal way to assign the
class l to a trial is

l = argmax
i=1,2,...,64

64∑

j=1

Si,jpj (3)

where pj is the probability of class j for the trial, as estimated by the classifier.
The new simulated labeled data set L was generated by keeping the same

parameter initialization3 of C, except for the number of trials that was increased
to 64000 in order to have 1000 trials for each class. Indeed, since M = 3 the
amount of causal configurations is 26 = 64. The regression metrics used to build
the feature space are the mean square error and the coefficient of determination
r2. Both were included because we noticed a significant improvement in the
cross-validated score, although, intuitively, they could seem redundant. We also
added an estimate of the Granger causality coefficients4 to the feature space.

As a final step we increased the number of features through standard fea-
ture engineering techniques by applying simple basis functions. This consisted
in extracting the 2nd power, 3rd power and square root of the previously defined
features, together with the pairwise product of all features. Adding extracted fea-
tures was motivated both by the need to overcome the limitation of the adopted
linear classifier and because they proved to be effective in increasing the cross-
validated score.

Both the data sets, L and C, were mapped to the proposed feature space.
Then the performance of the logistic regression classifier5, with �2 regularisation,
was evaluated on L through 5-folds cross-validation. In this way we quantified
the discriminative capability of the proposed method.

Tables 3 and 4 show the cross-validated classification results in L by means of
confusion matrices. In particular, Table 3 is related to the percentage of causal
interactions predicted by assigning to each test trial the most probable class,
i.e. l = argmax pi, and its accuracy is 81 %. In Table 4 the assignments are
done by Eq. 3 according to the cost matrix, i.e. by penalizing the false positives,

Table 3. Confusion matrix computed by
assigning to each test trial the most proba-
ble class.

Predicted
1 0

True 1 79 % 21%
0 17 % 83%

Table 4. Confusion matrix in
which the test trial class labels are
computed by Eq. 3.

Predicted
1 0

True 1 56% 44 %
0 1% 99 %

3 Excluding the trial-specific parameter γ which was randomly uniformly generated
for each trail.

4 http://nipy.org/nitime.
5 http://scikit-learn.org.

http://nipy.org/nitime
http://scikit-learn.org
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and the related accuracy is 77.5 %. Through their comparison, the effect of S is
evident since in Table 4, false positives are strongly decreased, due to the score
penalization, but to the detriment of some true positives.

Finally logistic regression was trained on L and tested on C to predict the
configuration matrices of the competition. According to the number of trials in
C and the assumptions of the generative process, the expected range of the score
is [−9000, 3000]. The score of our submission was 1571, which reached the 2nd
place in the final ranking of the Causal2014 competition.

5 Discussion, Conclusion and Future Works

In this paper, we proposed a new approach to detect causal interactions in mul-
tivariate time series. Specifically, we developed a classification-based causality
detection method by defining a feature space based on the concept of Granger
causality and by exploiting the MAR model as data generator. Aside from the
novelty of the method itself, the interesting aspect of our solution is that it is
a supervised method. Thus, it belongs to the machine learning field and not to
the signal processing as traditionally was for that type of problem.

The proposed method was assessed by cross-validating the generated labeled
data set and it provided promising results, as shown in Tables 3 and 4 by means
of confusion matrices. Then, the submitted solution to the Causal2014 compe-
tition was computed by a classifier trained on the generated labeled data set.
The achieved results, both in terms of cross-validation and competition rank-
ing, are evidence that classification-based techniques are a feasible alternative to
the signal processing methods for inferring causality between time series. And
furthermore, that the defined feature space is able to well capture the causal
structures among signals.

As an improvement of our approach, we are working on a tractable extension
to the case of detecting causality in more than three time series.
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Abstract. We address the problem of segmenting a multi-dimensional
time series into stationary blocks by improving AutoSLEX [1], which has
been successfully used for this purpose. AutoSLEX finds the best basis
in a library of smoothed localized exponentials (SLEX) basis functions
that are orthogonal and localized in both time and frequency. We intro-
duce DynamicSLEX, a variant of AutoSLEX that relaxes the dyadic
intervals constraint of AutoSLEX, allowing for more flexible segmen-
tation while maintaining tractability. Then, we introduce RandSLEX,
which uses random projections to scale-up SLEX-based segmentation to
high dimensional inputs and to establish a notion of strength of splitting
points in the segmentation. We demonstrate the utility of the proposed
improvements on synthetic and real data.

Keywords: SLEX · Time series

1 Introduction

When analyzing neural data such as Electroencephalography (EEG), magnetoen-
cephalography (MEG), local field potential (LFP) or spike trains, it is typical
to encounter non-stationary multidimensional time series whose spectra change
over time depending on external stimuli and behavioral states of the organism
[2]. In such cases, one can assume the signal to be locally stationary and hence,
it is desirable to decompose the time series into orthogonal basis functions that
are localized in both time and frequency. To achieve these qualities, Ombao et
al. [1] proposed the use of smooth localized exponentials (SLEX). The SLEX
transform constructs orthogonal basis functions that are localized in time and
frequency by applying two special window functions to the Fourier bases. The
AutoSLEX model creates a library of SLEX basis functions that correspond
to dyadic time intervals of decreasing length. A segmentation of a time series
into stationary segments can be obtained by selecting the best basis from the
library using the best basis algorithm (BBA) [3]. The choice of dyadic intervals
makes the segmentation problem tractable. However, it limits the obtainable
segmentations. More recent methods relaxed that limitation, at the expense of
c© Springer International Publishing AG 2016
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having an intractable problem for which MCMC based methods are employed
[4]. After reviewing SLEX in Sect. 2. We introduce two improvements to SLEX-
based segmentation: in Sect. 3 we propose DynamicSLEX, a variant of SLEX
that overcomes the dyadic intervals limitation of AutoSLEX while maintaining
tractability; and in Sect. 4 we propose RandSLEX, a method to scale-up SLEX
analysis to high-dimensional inputs using random projections.

2 Background

2.1 SLEX Transform

SLEX basis functions are obtained by applying special pairs of window functions
to the Fourier basis. A SLEX basis function has the form

φω(t) = Ψ+(t) exp(i2πωt) + Ψ−(t) exp(−i2πωt), (1)

where ω ∈ [−1/2, 1/2]. The window functions Ψ+ and Ψ− are parametrized by an
interval [α0, α1] and overlap ε and have compact support on [α0 − ε, α1 + ε] .1 In
more detail, Ψ+ and Ψ− are given by

Ψ+(t) = r2
(

t − α0

ε

)
r2

(
t − α1

ε

)

Ψ−(t) = r

(
t − α0

ε

)
r

(
α0 − t

ε

)
− r

(
t − α1

ε

)
r

(
α1 − t

ε

)
,

where r(.) is the iterated sine function given by

r0(t) = sin
[π

4
(1 + t)

]

rd+1(t) = rd

(
sin

π

2
t
)

.

The choice of d controls the steepness in the rising and falling phases of Ψ and
hence time-frequency localization properties. Note that if Ψ− ≡ 0 we revert to
STFT. The existence of the proper Ψ− is what makes the SLEX basis orthogonal
and localized. Figure 1 depicts sample realizations of Ψ+ and Ψ−.

A SLEX library is a collection of bases, each of which consists of localized
SLEX waveforms that span dyadic time intervals. Figure 2(b), demonstrates this
idea; each block consists of all waveforms that span the corresponding interval.
Similar to [1], we use S(j, b) to refer to the bth block in the jth level where S(0, 0)
is the root block that spans the entire time series. Each choice of non-overlapping
blocks that span the time series corresponds to a basis and a segmentation (see
Fig. 2(c)). The SLEX coefficients of block S(j, b) for an input series X can be
computed as follows:

dj,b(ωk) =
1√
Mj

∑

t

X(t)φj,b,ωk
(t), (2)

1 In the rest of the paper when we speak of a basis function over some time interval,
we mean [α0, α1] (ignoring the overlap).
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Fig. 1. Ψ+ and Ψ− constructed with α0 = 128, α1 = 256 and ε = 8

where Mj = |S(j, b)| = T
2j and φj,b,ωk

is defined as in (1) for window functions Ψ+

and Ψ− that correspond to the block S(j, b). Note that the sum over t corresponds
to applying a window function followed by inner product with a Fourier basis
function. Therefore dj,b(ωk) can be computed for all ωk = k/Mj for k = −Mj/2+
1, . . . ,Mj/2 in O(T log T ) time using fast Fourier transform (FFT).

2.2 Basis Selection

To select a SLEX basis, we define a cost function C(j, b) for each block

C(j, b) =
Mj/2∑

k=−Mj/2+1

log Ij,b(ωk) + βj

√
Mj (3)

where βj is a penalty parameter that prevents oversegmentation and Ij,b(ωk)
is obtained by smoothing the SLEX periodogram |dj,b(ωk)|2 using a kernel
smoother. The smoothing bandwidth is chosen by generalized cross validation
(GCV), as detailed in [1]. After computing the costs, basis selection is performed
using best basis algorithm [3] which simply proceeds bottom up, merging two
sibling blocks if the cost of their parent is less than the sum of their costs.

2.3 The Multivariate SLEX

The straightforward extension of SLEX transform to multiple time series is to
assume they are independent and consequently assume that the net cost of a
block is the sum of costs of all series [1,3]. To ensure that spectral information is
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non-redundant in the presence of correlation, Ombao et al. [5] propose computing
the cost based on the eigen spectrum of the smoothed cross-periodogram matrix
given by

I
(i,j)
j,b (ωk) = d

(Xi)
j,b (ωk)d(Xj)

j,b (ωk), (4)

The proposed multivariate cost function is given by

C(j, b) =
Mj/2∑

k=−Mj/2+1

P∑

d=1

λd
j,b(ωk) log λd

j,b(ωk)
∑P

d′=1 λd′
j,b(ωk)

+ βj

√
Mj , (5)

where P is the number of time series and λd(ωk) is the dth eigenvalue of the
smoothed cross-periodogram matrix at frequency ωk. This can be thought of
as applying the additive cost method on non-stationary principal components
that have zero coherence. With the new formulation, basis selection can proceed
as described in 2.2. The multivariate SLEX transform can be summarized as
follows:

1. For each block S(j, b), compute the SLEX coefficients based on (2) using FFT.
Use the coefficients to compute the cross-periodogram matrix for each block
based on (4).

2. For each block S(j, b), smooth the cross-periodograms I
(i,j)
j,b (ωk) along fre-

quency using a window smoother whose bandwidth is optimized based on
GCV.

3. For each block S(j, b), compute the eigenvalues of the smoothed cross-
periodogram matrix at each frequency and use them to compute the cost
based on (5).

4. Use BBA to obtain best segmentation and extract the smoothed cross-
periodogram matrices corresponding to selected blocks.

3 Flexible Segmentation Using DynamicSLEX

Although AutoSLEX analysis provides an appealing segmentation method, it
suffers from a fundamental limitation; if the best basis contains the interval
[2m T

2k
, 2(m + 1) T

2k
] then it must contain its sibling in the dyadic structure as

well as the sibling of the parent, the sibling of the grand parent and so on up to
[0, T

2 ] and [T
2 , T ]. Therefore, AutoSLEX can result in spurious splits of the time

series, as demonstrated in Fig. 2, or otherwise miss splitting points. To mitigate
this problem, we introduce DynamicSLEX, a variant of SLEX analysis that is
also tractable but, at the same time, is capable of producing any segmenta-
tion whose splitting points are located at integer multiples of T

2K
regardless of

the length and starting position of each segment. DynamicSLEX uses the same
dyadic bottom-up strategy to select basis functions using BBA. Recall that,
in AutoSLEX, a single BBA step determines the best segmentation of a block
S(j, b) given the best segmentations of it children S(j + 1, 2b) and S(j + 1, 2b)
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Fig. 2. Limitation of SLEX-based segmentation: to recover the left (bright) segment
in (a), bba needs to choose the shaded basis intervals in (b) which produce the seg-
mentation shown in (c).

(denoted in Fig. 3 as “input”). BBA for AutoSLEX can decide to merge the
blocks, removing all splitting points or to split the blocks, keeping their split-
ting points and introducing a middle one that separates them. DynamicSLEX
introduces a third option, to concatenate the blocks by keeping the splitting
points intact. This is demonstrated in Fig. 3. Effectively, DynamicSLEX is able
to merge between adjacent blocks that have different parents and possibly are
at different levels, preventing unnecessary splits. With proper bookkeeping, it
is easy to compute the cost of blocks resulting concatenation without affecting
the tractability of BBA. The algorithm is outlined in Algorithm 1. The algo-
rithm makes use of ComputeIntervalCost function, which computes the cost of
a given interval according to (3) or its multivariate version (5)2.

Fig. 3. The effect of merging, split and concatenation on two adjacent intervals. The
vertical dashed lines indicate splitting points whereas the window functions indicate
the spans of the selected basis functions.

2 Note that concatenation can introduce intervals whose length is not be a power of
2. Therefore, we cannot use the common Cooley-Tukey method for FFT. Instead,
to efficiently compute SLEX periodograms in O(T log T ) time, we resort to Chirp-Z
Transform [6].
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input :
X: A T × P matrix representing P time series of length T
J : Maximum segmentation level

output:
A set of splitting points

data :
C(j,b): The cost of block b at level j
S(j,b): Set of splitting points in blockb at level j
R(j,b): The cost of the rightmost segment in block b at level j
L(j,b): The cost of the leftmost segment in block b at level j

{Initialization}
for b ← 1 to 2J do

C(J, b) ← ComputeIntervalCost([(l − 1) T
2J

, l T
2J

]);
S(J, b) ← {};
R(J, b) ← C(j, b); L(J, b) ← C(j, b);

end
{Dynamic BBA}
for j ← J to 0 do

for b ← b to 2j − 1 do
merge cost ← ComputeIntervalCost([b T

2j
, (b + 1) T

2j
]);

split cost ← C(j + 1, 2b) + C(j + 1, 2b + 1);
{Construct interval for new basis function}
left ← max(S(j + 1, 2b) ∪ {b T

2k
});

right ← min(S(j + 1, 2b + 1) ∪ {(b + 1) T
2k

});
cat cost ← split cost − R(j + 1, 2b) − L(j + 1, 2b + 1) +
ComputeIntervalCost([left, right]);

{Select minimum cost}
C(j, b) ← min({merge cost, split cost, cat cost});
if C(j, b) = merge cost then S(j, b) ← {} else if C(j, b) = split cost
then S(j, b) ← S(j + 1, 2b) ∪ S(j + 1, 2b + 1) ∪ {(b + 1

2
) T
2j

} else
S(j, b) ← S(j + 1, 2b) ∪ S(j + 1, 2b + 1) Update R(j, b) and L(j, b);

end
end
Output S(0, 0);

Algorithm 1: DynamicSLEX Segmentation Algorithm
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4 Fast SLEX Analysis Using RandSLEX

One problem with AutoSLEX is that it does not scale well to high-dimensional
time series. For a P–dimensional series, the cost of computation and smoothing
of the cross periodograms is O(P 2T ) and the cost of eigenvalue decomposition
of the cross periodograms is O(P 3T ). This cost can be substantial or even pro-
hibitive for the analysis of massive datasets of high dimensional time series.
We propose the use of random projections to speed up SLEX analysis. Specif-
ically, we choose p � P and generate a p-dimensional time series by taking
random Gaussian-distributed linear combinations of the input series X. The use
of random projection for dimensionality reduction was successful in numerous
applications [7,8]. In our case, the use of random projection is motivated by
the observation that a random Gaussian combination of a piecewise-stationary
multivariate timeseries preserves stationarity break points almost surely.

Since p � P , SLEX segmentation will be much faster and can be repeated
k times with different randomly generated combinations, potentially resulting
in different splitting points. The results of multiple segmentations can be aggre-
gated in a split-count graph as shown in Fig. 4. The split-count graph is a visual
summary that gives, for each position in the time series, the number of times
that RandSLEX detected a splitting point at that position out of the k different
runs. This number can be interpreted as a measure of strength for each split-
ting point and can be used to obtain segmentations at increasing resolutions by
filtering out splitting points whose strength is below a given threshold. Once a
segmentation is chosen, the coefficients of the full input series X w.r.t the chosen
basis can be computed in O(PT log T ) time.

Fig. 4. Top: A sample split-count graph for k = 10 runs of RandSLEX. Bottom: seg-
mentation obtained by setting strength threshold to 7.

5 Experiments

5.1 Synthetic Experiments

In the first experiment, we demonstrate the utility of DynamicSLEX.
We generated time series data from three auto regressive (AR) processes
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P1 := AR(1)[0.9], P2 = AR(2)[1.69,−0.81] and P3 = AR(3)[1.35,−0.65]. We
generated a piecewise-stationary series of length T = 1024 by switching the
source process at T/4, T/2, 3T/4. We experimented with four categories of
series shown in Table 1. Categories (b) and (d) are essentially “harder” versions
of categories (a) and (c), with P3 less distinguishable from P2 than P1. For each
category, we generate 100 time series which are then segmented using AutoSLEX
and DynamicSLEX with minimum block length of T/4 and penalty parameter
β = 1. Table 1 shows the number of times a splitting point was generated at
T/4, T/2 and 3T/4. While AutoSLEX and DynamicSLEX are comparable in
categories (a) and (b), AutoSLEX consistently produces a spurious split at T/2
in category (c). In category (d) AutoSLEX fails to detect the splits at T/4 and
3T/4 more often than DynamicSLEX.

Table 1. Categories of time series used to test DynamicSLEX and the number of times
each splitting point is generated by AutoSLEX and DynamicSLEX for each category
across 100 trials.

AutoSLEX DynamicSLEX

Category [0, T/4] [T/4, T/2] [T/2, 3T/4] [3T/4, T ] T/4 T/2 3T/4 T/4 T/2 3T/4

(a) P1 P2 P1 98 99 6 98 99 6

(b) P3 P2 P3 66 78 5 69 76 6

(c) P1 P2 P1 99 98 96 98 9 97

(d) P3 P2 P3 47 52 39 77 12 54

In the second experiment, we asses the ability of RandSLEX to efficiently
recover segmentations of a multivariate time series. For this purpose we generate
four different time series, which switch from process P1 to process P2 at times
T/16, T/8, 5T/16 and 11T/16 respectively (T = 8192). From these four series,
a 10 dimensional series is obtained by taking random linear combinations of
the base signals where the combinations weights are sampled from a standard
normal distribution. We run RandSLEX on top of DynamicSLEX with p = 1 and
k = 10 and for each confidence threshold 1 ≤ θ ≤ k we count true positive, false
positive and false negative splitting points, where a positive splitting point is
one that is reported at least θ times. We aggregate the counts over 100 different
instantiations of that experiment and based on that compute precision (the
percentage of reported splitting points that are true) and recall (the percentage
of true splitting points that were reported) for each confidence threshold θ. The
results are summarized in the PR curve depicted in Fig. 5(left). The curve shows
that, for example, RandSLEX can achieve 94.5 % recall with 81.3 % precision.
Surprisingly, RandSLEX outperformed DynamicSLEX (marked as a green circle
in the figure), which gives 81 % at 41 % recall.
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Fig. 5. left: PR curve for RandSLEX on synthetic time series right: Mean and stan-
dard errors of split strength on LFP data (Color figure online)

5.2 Analysis of Local Field Potential Data

In this experiment, we demonstrate RandSLEX on Local field potentials (LFP)
recorded in the Frontal Eye Fields (FEF). Data were acquired through a 16-
channel linear probe at 1 kHz from an alert rhesus macaque monkey during
performance of a memory-guided saccade task. The animal was required to fixate
a central dot during presentation of a visual cue. The visual cue was a brief
flash (at time 0.0) at a fixed eccentricity in one of eight directions relative to
fixation (spaced by 45◦). From time 0.0, the animal had to maintain fixation for
a delay period of 500 ms after which the central fixation dot was removed. The
animal was rewarded for a successful saccadic eye movement to the remembered
direction of the visual cue. The time series, consisting of 1500 samples, was zero-
padded to the next power of two. We applied RandSLEX on 100 trials of each
direction, for a total of 800 trials. The minimum block size was set to 128 and
the parameters p and k set to 1 and 16 respectively. The hypothesis is that
changes in the stimulus are expected to change the spectral properties of the
time series and cause splitting points. Figure 5(right) summarizes the strength
of splitting points across trials (zero padding interval not included). Note that
two significant splits were found at 0.0 and 0.5 s, where there is a change in the
stimulus. Switching on the fixation dot at around −0.3 s is captured by another
less significant splitting point. It is remakable that the model employs no prior
knowledge of the stimulus. We speculate that the rightmost splitting point could
be attributed to zero padding or other edge effects.

6 Discussion

We introduced an efficient method for segmenting a multivariate into station-
ary segments. The method provides two enhancements over AutoSLEX: An
expanded library of bases that allows for more flexible segmentation (Dynamic-
SLEX) and the use of random projections to scale up to high-dimensional time
series and provide a notion of segmentation strength. Our experiments revealed
that the introduced method gives promising results on synthetic and real data.
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Abstract. This paper introduces a framework for analyzing longitudi-
nal neuroimaging datasets. We address the problem of detecting subtle,
short-term changes in neural structure that are indicative of cognitive
decline and correlate with risk factors for Alzheimer’s disease. Previous
approaches have focused on separating populations with different risk
factors based on gross changes, such as decreasing gray matter volume.
In contrast, we introduce a new spatially-sensitive kernel that allows us
to characterize individuals, as opposed to populations. We use this for
both classification and regression, e.g., to predict changes in a subject’s
cognitive test scores from neuroimaging data alone. In doing so, this
paper presents the first evidence demonstrating that very small changes
in white matter structure over a two year period can predict change in
cognitive function in healthy adults.

1 Introduction

This paper introduces a framework for analyzing longitudinal neuroimaging
datasets. We address the problem of detecting subtle changes in neural struc-
ture that are indicative of cognitive decline and correlate with risk factors for
Alzheimer’s disease (AD). Previous approaches have focused on separating pop-
ulations with different risk factors based on gross changes such as decreasing gray
and white matter volume [6,8,13] or statistical voxel-based comparisons [3,7].
In contrast, we introduce a new spatially-sensitive kernel that allows us to char-
acterize individuals – as opposed to populations – by identifying neural regions
that are implicated in cognitive performance. We use this for both classifica-
tion and regression, e.g., to predict changes in a subject’s cognitive test scores
from neuroimaging data alone. It is increasingly common to track longitudinal
changes over very short periods of time. In human neuroimaging, this interval
has become as short as three months [1]. One may ask if there is even a “signal”
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(a) (b)
(c)

Fig. 1. (a) The blue outer mesh is a 3-D view of the surface of the human brain. The
red inner mesh outlines the corpus callosum. (b) A view of the corpus callosum, a
thick band of nerve fibers that connects the left and right hemispheres of the brain. (c)
A view of the splenium of the corpus callosum, containing over 12,000 voxels. (Color
figure online)

to find here. How do we know if there is anything meaningful to detect? This is
exacerbated when the sampling time frame is much shorter than the onset time
of observable phenomena we would like to predict.

Our approach begins with a “simple” classification problem. For longitudinal
data, one instance of ground truth is the chronological order in which the datasets
were collected. Thus, a natural question is: can we determine this order for
a given individual? Solving this problem allows us to identify and rank the
most temporally significant (longitudinally) and consistent (cross-sectionally)
voxels. We hypothesize these voxels correlate with other temporally sensitive
data, such as cognitive test scores. In confirming this hypothesis using the novel
computational methods in Sect. 3 for the experiments in Sect. 4, we present the
first evidence demonstrating that very small changes in white matter structure
over a two year period can predict change in cognitive function in healthy adults.

2 Background and Data

Much previous research on Alzheimer’s disease has focused on gray matter;
white matter has historically been regarded as less relevant to cognition. In
recent years, however, the role of white matter in the transfer of information has
attracted vigorous interest [15] and is the subject of our paper. Data examined
here come from the Wisconsin Registry for Alzheimer’s Prevention [12]. Longi-
tudinal imaging and cognitive testing data were available for 75 subjects, who
were healthy, middle-aged (ranging from ages 45 to 70), and tested cognitively
normal on neuropsychological assays. 78 % of subjects showed one or more risk
factors for AD. All participants underwent comprehensive neuropsychological
testing. The factor score of interest in this paper is the Speed and Flexibility
factor [11,14].

We use measurements of white matter volume and structure from diffusion
tensor magnetic resonance imaging (DT-MRI, or DTI). From these tensors, we
derive the common scalar summary measure of Fractional Anisotropy (FA).
Figure 1 illustrates the location and shapes of some regions of interest analyzed
in this paper.
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3 A Point Set Approach

In many classification tasks, data are often abstracted into a representation (e.g.,
a vector) that fails to retain their spatial information. Given the inherent spatial
nature of voxel data, rather than serialize the voxels of a brain or region into
one vector and lose their locations, we represent them as a point set B = (V,W )
where V ⊂ R

3,W ⊂ R and every point vi in V has a corresponding weight wi

in W . Weights wi correspond to FA values here.
We compare DTI scans by defining a custom similarity between their respec-

tive voxel sets. This similarity is not a simple point-to-point similarity; rather
it is between two point sets. One such measure of similarity is random Fourier
features [9], in which a map Φ̃ (“lifting” function) is applied to each data point
in R

d. This transforms it into an element of RD, a D-dimensional approxima-
tion of a reproducing kernel Hilbert space (RKHS). The mapping is randomized
and similarity-preserving; a shift-invariant kernel in the original space is approx-
imately equal to the inner product in the new space, where the approximation
can be made as precise as possible by varying the dimensionality (D) of the

lifted space. For the kernel K(x,y) = e− ‖x−y‖2

2 , the approximate lifting map
Φ̂D : Rd → R

D is defined as follows:

Φ̂(x) = [cos(ω1x), . . . , cos(ωD
2
x), sin(ω1x), . . . , sin(ωD

2
x)] for x ∈ R

d

where elements of ωi’s are random and normally distributed, and 〈Φ̂(x), Φ̂(y〉 �
K(x,y) for any x,y ∈ R

d.
Raman et al. [10] applied this approximate lifting map in representing point

sets as elements of an RKHS. The map is applied to each point in a point
set, and the whole set is then represented as a single vector by summing the
lifted representations of the constituent points. The summed vector is normal-
ized to unit length to eliminate differences caused by differing set cardinalities.
The similarity between two point sets X and Y is defined as the dot product
between the vectors representing them. We extend this formulation of point set
similarity to incorporate weights for each point, so that the final expression for
similarity between two point sets X = (VX ,WX) and Y = (VY ,WY ) becomes

〈 Φ̂(X)
‖Φ̂(X)‖ ,

Φ̂(Y )
‖Φ̂(Y )‖〉, where Φ̂(X) =

∑

vi∈VX

wiΦ̂(vi).

3.1 Identifying Subsets of Informative Voxels

Given the large number of voxels in each scan, we combined longitudinal and
cross-sectional data to identify those voxels that had comparatively large, consis-
tent, and similar values in all difference images corresponding to a given class.
Our hypothesis is that the voxels that change similarly in all subjects (cross-
sectionally) across time (longitudinally) are the ones most sensitive to temporal
ordering. Towards this, we define a “Q-value” for each voxel as follows:



110 M.H. Coen et al.

Q(vi) =
mean(FA1

i − FA2
i )

var(FA1
i − FA2

i )
(1)

where FA1
i is the FA value at voxel i at time 1, FA2

i the value at time 2, and
mean and variance are computed cross-sectionally over the subject population.

We also define an additional quantity called Consistency (or Cons) for a
voxel as follows, measuring the (higher) percentage of subjects who show the
same sign change in that voxel from time 1 to time 2. We then set thresholds on
Q and Cons and extract those voxels with values above these thresholds.

4 Experiments and Analysis

We present two experiments that demonstrate application of our framework to
detecting minute, short-term changes in WM structure and relating them to
changes in cognitive test scores.

4.1 Before Vs. After

Fig. 2. Portions of the
splenium of the cor-
pus with high Cons
value. Red voxels indi-
cate a consistent increase
in FA value across sub-
jects, while blue rep-
resents decrease. (Color
figure online)

The task in this experiment is to determine the tem-
poral ordering in pairs of scans for an individual. We
do this by exploiting data from voxels that undergo
changes that are consistent and similar across subjects.
This problem is challenging for several reasons: (1)
The time period between scans is extremely short (1.5–
2 years) and the subtle changes in the scans are believed
to be largely unrelated to cognition; (2) All subjects are
healthy and middle-aged and do not exhibit any pathol-
ogy; (3) Domain experts in neuroscience and radiology
are unable to solve this problem for healthy patients
better than chance.

For each of the 75 subjects, we subtract the lat-
ter image from the earlier one (“positive” difference
images) and then reverse the order of subtraction
(“negative” difference images). When given two new
images from a single subject with no ordering information, we perform the sub-
traction in an arbitrary manner and compute which set of difference images this
new difference image is more “similar” to, using the kernel in Sect. 3.

Since there are an equal number of positive and negative difference images,
the baseline accuracy for this experiment is 50 %. We applied two simple mean-
of-ROI (region of interest) classification methods for comparisons with our tech-
nique. The classification rule “the scan with the higher mean is the earlier image”
achieves an accuracy rate of 57 % on the splenium of the corpus callosum - little
better than random chance. This is because not all voxels show a decrease in FA
value over time; in fact some voxels show an increase. A slightly more complex
rule that weights FA changes by the signs of Q for each voxel yields an accuracy
of 82% for the same region, requiring all 12,729 voxels in the splenium.
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Table 1. Classification results for predicting the before image from the later image
using four different WM regions. The number of voxels reported is the mean across the
different folds in each experiment.

Region Number of voxels (Cons > 70%) Accuracy

Corpus callosum (whole) 3429 voxels 96%

Corpus callosum (splenium) 463 voxels 97.3 %

Corpus callosum (genu) 364 voxels 90.7 %

Cingulum bundle (R & L) 776 voxels 97.3 %

Classification and Accuracy. We trained a support vector machine (SVM)
with the kernel derived from Random Fourier Features (Sect. 3) to classify “pos-
itive” and “negative” difference images. Accuracy was determined with 10-fold
cross validation, insuring no cross-leaking between test and training sets. The
10-fold cross-validation accuracy in predicting “before” scans from “after” scans
(i.e. “positive” difference images from “negative” difference images) is shown for
different WM regions in Table 1. As the table shows, approximately 400 well-
chosen voxels are sufficient to achieve a classification accuracy of 96 %.

The identified voxels of interest are visualized in Fig. 2. Voxels can be distin-
guished based on whether they show an upward trend in FA value or a down-
ward trend. The figure shows that voxels tend to be spatially proximal to other
voxels of the same type. We note that this naturally-occurring “clustering” of
nearby voxels with similar trends is readily apparent even when no smoothing is
applied to the data. Further study of these regions and the trends within them
(FA changes, demyelination, and relations to cognitive impairment) will be use-
ful in understanding patterns of age-related change in FA and are discussed in
Sect. 5.

4.2 Regression

We would like to model changes in subjects’ neuropsychological test scores using
FA differences observed over time. Even employing the Q score defined above
to prune the space of voxels, the models remains extremely wide. Fitting mul-
tivariate linear models in this case cannot be done without constraints. While
there are many familiar approaches limiting model exploration (e.g., lasso) and
ways to validate them (e.g., residual distributions), evaluating the assessments
is difficult with a limited number of samples. The data themselves are difficult
to work with, as none of the differences between earlier and later test scores
is statistically significant according to paired t-tests adjusted for inequality of
variances. Scatterplots of earlier vs. later test scores fit lines of slope 1 with
relatively high R2. In these cases, even null models perform well.

To better manage the need for constrained variable selection with wide data,
we used the coordinate descent approach for lasso and ridge [4]. We modified our
approach to perform logistic regression on the signs of the test score changes,
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Table 2. Classification results for predicting Speed and Flexibility from voxels

Method Parameters Accuracy (voxels) Accuracy (clusters)

Lasso logistic regression [4] 70 % (λ = .011) 75 % (λ = .013)

SVM, Lifted kernel D = 500, C = 1 58 % 55.7 %

SVM, Gaussian kernel σ = 1, C = 1 57 % 58.5 %

Baseline random guessing 54 % 54 %

viewed as binomial distributions. Doing so normalizes the error penalty and
allows us to pose a well-defined problem: do changes in neuroimaging data pre-
dict whether a subject’s score for a neuropsychological test has increased or
decreased? While one may suppose that cognitive abilities deteriorate monoton-
ically with age, evidence does not bear this out, as discussed in Sect. 5. Our
output variable is the sign of a small difference that appears to fluctuate around
zero at random. However, lasso logistic regression via coordinate descent run
100 times with 10-fold cross validation achieved classification accuracy of 70 %
with shrinkage parameter λ = .011 (within one standard error of the minimum).
Results for this and other methods are shown in Table 2. No significant improve-
ment was seen for other parameters on competing approaches.

These results are quite surprising. While achieving 70% accuracy seems mod-
est, consider that this prediction is made using voxel-based neuroimaging data
selected because they were able to accurately answer our initial “Which image
came first?” question. Within their own representation, the outcome data do not
appear separable. But when viewing them from the neuroimaging perspective,
we can classify them.

Clustering. In general, we prefer as few explanatory variables in a model as
possible. Wide linear models always raise the specter of overfitting and are noto-
riously difficult to interpret, particularly when constructed with lasso. Following
the spatial point set approach in Sect. 3, we cluster the voxels based on spa-
tial proximity and their Q values. Linkage-based clustering connects voxels with
their neighbors if their Q values are within ρ percent of each other. We typically
take ρ = 15 and specify the maximum number of desired clusters as 30. Emerg-
ing from the clustering was the observation that spatially adjacent voxels are
likely to have similar Q values. The regions corresponding to clustered voxels
are shown in Fig. 3.

Because the clusters are internally consistent with respect to Q values, we
used their mean FA values in a ridge logistic regression analysis to predict the
sign of the change in the Speed and Flexibility score. Because the number of
features (regions) is 30 here, we are no longer dealing with wide data, alleviat-
ing many of the concerns that they raise. The clusters are found to be better
predictors than the voxels used in the previous model. Ridge logistic regression
via coordinate descent run 100 times with 10-fold cross validation achieved a
classification accuracy of 75 % for shrinking parameter λ = 0.13.
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5 Discussion

Fig. 3. A view of vox-
els clustered by Q values.
Colors correspond to dif-
ferent clusters. (Color
figure online)

This paper presents a new approach for longitudinal
analysis of neuroimaging data. Our approach relies on
the spatial nature of the data both for defining a new
kernel and for clustering voxels based on their per-
ceived quality or Q value. This kernel can be used to
reliably classify scans based on small changes in their
white matter structure – a task that eludes human
experts. We then used the voxels that enabled this clas-
sification to predict changes in the significant cognitive
factor of Speed and Flexibility. While a relationship
between speed based cognitive tests and white mat-
ter microstructure has been qualitatively examined in
cross-sectional studies, this is the first work to deter-
mine that change in FA over two years can predict change in cognitive function
in healthy adults. The two experiments in this paper are on subject-level pre-
dictions, not group differences. As such, work on two-sample testing [5] is not
relevant to this problem.

Our results show that over time, portions of the splenium decrease in FA
over a time period of approximately 2 years, which is expected in aging. More
unexpected were white matter tracts that showed an increase in FA. (The red
regions of Fig. 2.) The splenium of the corpus callosum carries fibers that connect
the bilateral temporal, parietal and occipital lobes. It is possible that changes
occurring over time include both loss of fibers and regenerative myelination [2].
The tight relationship found with the Speed and Flexibility factor score is not
surprising because speed of neural conduction relies on intact myelin.
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Abstract. Group analysis of fMRI data via multivariate pattern meth-
ods requires accurate alignments between neuronal activities of differ-
ent subjects in order to attain competitive inter-subject classification
rates. Hyperalignment, a recent technique pioneered by Haxby and col-
laborators, aligns the activations of different subjects by mapping them
into a common abstract high-dimensional space. While hyperalignment
is very successful in terms of classification performance, its “anatomy
free” nature excludes the use of potentially helpful information inherent
in anatomy. In this paper, we present a novel approach to hyperalign-
ment that allows incorporating anatomical information in a non-trivial
way. Experiments demonstrate the effectiveness of our approach over the
original hyperalignment and several other natural alternatives.

1 Introduction

Apart from being a fundamental issue in cognitive neuroscience, “the problem
of conceptual similarity across neural diversity” [3] has a direct practical man-
ifestation when analyzing fMRI data. Namely, group analysis of fMRI data via
multivariate pattern methods requires aligning activations of different subjects.
While, pragmatically, the goal of alignment is to attain inter-subject classifica-
tion (ISC) rates comparable to within subject classification (WSC) rates, ideally,
such alignments should take into account both anatomical and functional fea-
tures of the brain.

Existing spatial alignment approaches are based either purely on anatom-
ical features [6,12], or on a combination of anatomical features with features
extracted from fMRI data, such as activations directly [9] or connectivity derived
from activations [4,5]. However, these approaches do not consistently yield ISC
rates comparable to WSC rates [5]. On the opposite end of the spectrum is the
recently introduced class of methods summed under the name “hyperalignment”
[7,8,14]. Hyperalignment essentially finds linear combinations of voxel activa-
tions that agree across the subjects, yielding subject specific linear maps (matri-
ces) that transform their activations into a common abstract high-dimensional
space. While hyperalignment works well in practice achieving ISC rates on par
with or even better than WSC rates, in the current form, it lacks a mechanism for
incorporating anatomical information that potentially may lead to even better
classification performance.
c© Springer International Publishing AG 2016
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The goal of this work is to introduce an approach to hyperalignment that
allows the use of anatomical information. We start by computing pair-wise
(hyper-) alignments between subjects by setting up an optimization problem
containing terms involving both anatomical and functional features. Next, we
need to aggregate these pair-wise alignments into an overall alignment of all sub-
jects. To achieve this, inspired by the recent work on synchronization [10,11,13],
we introduce the method of synchronized projections, which yields the final maps
of activations into a common space shared between all subjects.

Our approach has a number of advantages. First, while our approach shares
the same core idea with hyperalignment – mapping activations into a common
space – yet our maps are heavily guided by anatomical information. Second, we
do not make any restrictions on the choice of pair-wise alignments; the synchro-
nized projections can be applied more generally to any set of pair-wise alignments
that can be expressed as linear maps. Third, experimental results confirm the
superiority of synchronized projections in terms of ISC rates over more straight-
forward approaches that align all subjects to a reference subject or to a floating
subject that is iteratively refined.

The paper is organized as follows. We introduce our computation proce-
dure for pair-wise alignments in Sect. 2.1. The main technical contribution, the
method of synchronized projections, is described in Sect. 2.2. We present exper-
imental evaluation of our approach on a multi-subject category perception data
in Sect. 3.

2 Approach

The input to our algorithm is fMRI data elicited from nsubj subjects exposed
to a common synchronous stimulus, such as viewing a number of images in the
same order. The data for i-th subject is recorded in nTR×nvox matrix Xi, where
each row corresponds to a time point, and each column to a voxel in the subject’s
brain. Note that each row-vector represents a spatially-varying fMRI activation
at some time, and the rows in Xi are ordered consistently across all subjects. On
the other hand, the columns – each containing the time course of a particular
voxel – are not assumed to be in correspondence across the subjects. Since the
activations of different subjects are not directly comparable, we cannot train a
single multi-voxel pattern classifier that would work for all the subjects at once.

Our goal is to provide a way of computing features/projections of fMRI acti-
vations that are consistent across subjects. To this end, our algorithm computes
projection matrices – one for each subject – which can be used to map activations
of that subject into a common space shared between all subjects.

The algorithm proceeds in two steps. First, for each pair of subjects, we
compute a linear map that transports the activation vectors of one subject to
the reference frame of the other. In the second step, we compute the projection
matrices by setting up an optimization problem which essentially requires the
following: the projection of an activation should be roughly the same if one were
to transport the activation to another subject and then project. This leads to
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a matrix eigenvalue problem for some symmetric positive semi-definite matrix.
The details of our construction are provided in the remainder of this section.

2.1 Pair-Wise Alignment Maps

As in original hyperalignment, we will use linear maps to align fMRI responses of
different subjects. Thus, the first step of our algorithm is to compute, for every
pair of subjects i, j = 1, ..., nsubj, a linear map (matrix) Cij that transforms
fMRI activations of subject i to the reference frame of subject j, namely by
achieving XiCij ≈ Xj . What this means is that while the voxel activations in
two different subjects may not be directly comparable, yet one can make linear
combinations from activations of some voxels in the i-th subject’s brain that will
be compatible with the activation of a given voxel in the j-th subject’s brain.
Thus, the matrix entry Cij

pq captures the coefficient with which voxel q of subject
i appears in the linear combination for voxel p of subject j.

These alignment matrices are learned from the training data by posing an
optimization problem of the following form: Cij = arg minC ‖XiC−Xj‖F , where
‖ · ‖F is the Frobenius norm. Since the amount of training data is limited, this
optimization problem is overly under-determined and needs some kind of reg-
ularization. For example, the original hyperalignment [7] requires the matrices
Cij to be orthogonal.

Here we propose a different regularization that incorporates the anatomical
information. Remember that the brains can be anatomically aligned using a
number of approaches; here we will use the Talairach alignment [12]. As a result
of such alignment, all of the brain images are placed into a common 3D space,
and one can compute the Euclidean distance Dij

pq between voxel q of subject i
and voxel p of subject j. We now seek the pairwise alignment matrix via the
following optimization problem:

Cij = arg min
C

‖XiC − Xj‖2F + µ
∑

p,q

(Dij
pqCpq)2. (1)

The proposed regularization term has an important advantage over the
orthogonality requirement of original hyperalignment. Orthogonality require-
ment makes it possible for spatially distant voxels to take part in the linear com-
bination for a given voxel, rendering hyperalignment “anatomy free”. Our regu-
larizer, on the other hand, penalizes spatially distant voxels, effectively imposing
the prior that the anatomical alignment is not too far from truth.

2.2 Synchronized Projections

The second step of our algorithm uses the pairwise alignment maps in order
to construct projection matrices into a d-dimensional common space shared
between all subjects. To this end, for each subject i we construct an nvox × d
matrix P i, such that the projected activations XiP i are consistent between sub-
jects and can be used to train a single multi-voxel pattern classifier that would
work for all subjects at once.
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The main idea is as follows: if we have an activation row-vector v of subject i,
then it can be transported to subject j by computing vCij ; since the activation
before and after transport represents the same stimulus, then their projections
(using the respective subject’s projection matrix) should be roughly the same:
vCijP j ≈ vP i. Since this should hold for all activation vectors and all pairs of
subjects, we can setup an optimization problem that minimizes the discrepancies
between projections. One way to formalize this is to seek the projection matrices
as minimizers of

∑
i,j ‖CijP i − P j‖2F , subject to normalization constraints to

avoid trivial solutions.
To put the problem into a more familiar form, let us denote by P the

nsubjnvox × d matrix obtained by stacking together all of the matrices P i, i =
1, ..., nsubj. We can rewrite the optimization objective as follows:

∑

i,j

‖CijP i − P j‖2F = P
�
LP, (2)

where L is nsubjnvox × nsubjnvox matrix. This matrix consists of nsubj × nsubj

blocks Lij of size nvox×nvox. Namely, letting I be the nvox×nvox identity matrix,
we have

Lij =
{−(Cij + Cji�) , i �= j

(nsubj − 1)I +
∑

k,k �=i C
ki�Cki , i = j

As can be seen directly from Eq. (2), L is a symmetric positive semi-definite
matrix. This is a generalized notion of graph Laplacian to the setting where
edges are decorated by pair-wise mappings [10,11,13].

Since our goal is to minimize P
�
LP, we need to impose some constraints

on P in order to avoid trivial solutions. We require the columns of P to be
orthonormal because this leads to an eigenvalue problem. Namely, it is easy to
see that then the columns of optimal P are simply the eigenvectors corresponding
to the smallest d eigenvalues of L, and that the optimal objective value is the
sum of the smallest d eigenvalues of L.

It follows that when the dimension d of the common space is increased from
one value to another, all the previous projected coordinates are kept intact and
new coordinates are added. In a sense, the projected coordinates are naturally
ordered by their corresponding eigenvalues – the smaller the eigenvalue, the
stronger is the inter-subject commonality (i.e. the smaller is its contribution to
the discrepancy as measured by our objective) captured by the corresponding
projected coordinate. Therefore, to obtain a low-dimensional common represen-
tation space, we do not need to start with a high-dimensional space and then
select the principal component directions as in original hyperalignment [7]. Our
eigenvalue based ordering of coordinates provides a more principled criterion
than the maximum variance directions criterion of the PCA, because large vari-
ance could in fact be due to the absence of commonality along a direction.

3 Results

Our goal is to show the benefit of synchronization in comparison to two other
natural approaches, and also to compare it with anatomical alignment and the
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Fig. 1. ISC performance comparison
of a number of approaches to multi-
subject fMRI data alignment.

Fig. 2. Dependence of ISC perfor-
mance on the dimension d of the com-
mon space.

original hyperalignment of [7]. Our experiments are based on category perception
(faces and objects) data from [7] that is distributed together with hyperalign-
ment module [1] of PyMVPA package. This dataset is challenging as evidenced,
for example, by the inability of a previously introduced generalization of hyper-
alignment [14] to improve over the original hyperalignment [1]. This can be
attributed in part to the small size of the dataset, which limits the number of
training samples.

Our evaluation protocol follows directly the one described in [7]: first, for all
subjects, all runs except one are used for voxel selection, pair-wise map computa-
tion, and determining common space; second, a linear multi-class SVM classifier
[2] is trained on these runs of all subjects except one subject; the classifier is
tested on the held-out run of the held-out subject. The obtained classifier accu-
racy is a measure of inter-subject classification success; this accuracy, averaged
over held-out subjects and held-out runs, constitutes our performance metric.

Figure 1 shows the performance comparison of five different approaches to
alignment of multi-subject fMRI data. The horizontal axis on this graph is the
value of the regularization weight µ appearing in the optimization problem for
computing pair-wise maps, Eq. (1). Of course, the performances of Talairach
alignment (taken directly from the hyperalignment module website [1]) and orig-
inal hyperalignment [7] (re-implemented in MATLAB for consistency; results are
in agreement with hyperalignment module [1]) are independent of the parameter
µ. In accordance with [7], voxel selection is done by retaining a fixed number
(nvox = 200) of voxels with highest F -scores. For all methods in this figure except
synchronization, the dimension of common space is tied (equal) to the number
of voxels; for fair comparison, we set d = nvox for synchronization as well.

The performance of our synchronization approach is also compared to two
other natural approaches, labeled “direct” and “iterated direct” in the graph.
The direct approach picks one of the subjects, say r, as a reference, and then
uses the pair-wise maps Cir to map the activations of all of the subjects to the
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frame of this reference subject; these mapped activations are used as features
in machine learning step. The iterated direct approach starts out in exactly the
same manner, except that mapping process is repeated. Namely, after the first
mapping is complete, for each TR, the average of mapped activations are com-
puted, and the new pair-wise maps (from all subjects to the reference subject)
are computed to match these averaged activations on reference subject. This
iterative process is similar to the original hyperalignment technique of Haxby
et al. [7], except that the pair-wise maps are computed using Eq. (1). The per-
formances of direct and iterated direct approaches are averaged over all the
reference subject choices.

As indicated by Fig. 1, the synchronization approach consistently improves
over the natural alternatives – the direct and iterated direct approaches – using
the same type of pair-wise maps. In addition, for some parameter settings, syn-
chronization provides a non-negligible improvement over the original hyperalign-
ment approach of Haxby et al. [7].

Next, we fix the parameter µ = 1, and study the dependence of ISC perfor-
mance on the dimension d of the common space. Figure 2 shows that even for
the dimensionality as low as 10, our approach yields performance competitive
with Haxby et al. hyperalignment. This is in agreement with the finding in [7]
that keeping a limited number of principal components of the common space is
sufficient for obtaining improved ISC rates. However, here we do not need to
apply principal component analysis, because the coordinates of common space
obtained via our algorithm are already ordered by the degree of inter-subject
commonality; see discussion at the end of Sect. 2.2.

Finally, we investigate what happens if one were to change the type of pair-
wise alignments used in synchronization. Following the idea of original hyper-
alignment [7], we require that the pair-wise alignment matrices are orthogonal.
More precisely, in optimization problem of Eq. (1) we drop the anatomy based
regularizer, and instead require that Cij is orthogonal, which reduces the prob-
lem to Procrustes analysis as in [7]. The curve in Fig. 2 labeled “Synch. Haxby
et al.” shows the performance of synchronization applied to these new pair-wise
maps. It can be seen that the performance is equivalent to the original hyper-
alignment starting at around dimension d = 35, which is in good agreement with
the dimension of reduced common space identified in [7] via PCA.

4 Conclusion

We have introduced an approach allowing to inject anatomical information into
hyperalignment. Experiments demonstrated the effectiveness of our approach
over the original hyperalignment and several other natural alternatives.
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Abstract. Machine learning approaches have had some success in pre-
dicting conversion to Alzheimer’s Disease (AD) in subjects with mild
cognitive impairment (MCI), a less serious condition that nonetheless
is a risk factor for AD. Predicting conversion is clinically important as
because novel drugs currently being developed require administration
early in the disease process to be effective. Traditionally training data
are labelled with discrete disease states; which may explain the limited
accuracies obtained as labels are noisy due to the difficulty in providing
a definitive diagnosis of Alzheimer’s without post-mortem confirmation,
and ignore the existence of a continuous spectrum of disease severity.
Here, we dispense with discrete training labels and instead predict the
loss of brain volume over one year, a quantity that can be repeatably and
objectively measured with the boundary shift integral and is strongly
correlated with conversion. The method combines MRI and PET image
data and cerebrospinal fluid biomarker levels in an Bayesian multi-kernel
learning framework. The resulting predicted atrophy separates convert-
ing and non-converting MCI subjects with 74.6 % accuracy, which com-
pares well to state of the art methods despite a small training set size.

Keywords: Gaussian processes · Regression · Atrophy · BSI ·
Multi-kernel learning · MRI · PET Alzheimer’s disease · Mild cognitive
impairment

1 Introduction

In the study of AD, in recent years an increasing emphasis has been placed on
the importance of early diagnosis. This is because while currently available treat-
ments are only able to mitigate the downstream effects of the disease process,
pending ones are focused on actually disrupting the disease process itself, by
interfering with the amyloid cascade that is thought to be one of the under-
lying causes of AD [1]. To be effective, such treatments would have to begin
c© Springer International Publishing AG 2016
I. Rish et al. (Eds.): MLINI 2014, LNAI 9444, pp. 122–128, 2016.
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before the patient is showing the full symptoms of AD. This involves studying
patients who have mild cognitive impairment (MCI). Clinically, MCI is defined
as having isolated memory deficits that are not severe enough to affect normal
living [2]. MCI patients convert to AD at an annual rate of 10–15% per year
[3], although some develop other diseases or remain stable. As stable and con-
verting MCI (MCI-s and MCI-c) patients by definition have similar symptoms,
standard cognitive tests used to diagnose AD are by themselves of little help for
this problem; instead, imaging and other biomarkers can be used with machine
learning methods to detect subtle differences between the groups. A classifier
can be trained on labeled examples of MCI-s and MCI-c images, or alternatively
on examples of AD patients and healthy controls (HC), under the assumption
that MCI-s subjects are more HC like and MCI-c subjects are more AD like.
Most such studies use magnetic resonance imaging (MRI), from which a variety
of features can be extracted. However the results can be improved by combining
MRI features with imaging data measuring metabolic activity using fluorodex-
oxyglucose positron emission tomography (FDG-PET) and biomarkers measured
in a sample of cerebrospinal fluid (CSF) or genetic information in a multi-kernel
framework [4,5].

A limiting factor in the accuracy these studies may be mislabeling of training
subjects. The gold standard for diagnosis of AD is autopsy, but most studies use
subjects whose diagnosis has been determined by standard clinical testing, which
has been shown to have an error rate of at least 10 % [6]. This is an issue than has
not been widely adressed; Aksu et al. [7] point out that training labels for MCI-s
and MCI-c are uncertain and go on to generate their own MCI training labels
by following the classification of MCI subjects by an HC versus AD classifier
across multiple timepoint. However even this neglects the uncertainty in the HC
and AD labels this scheme ultimately depends on.

Our proposed method follows [8] in abandoning discrete disease state labels
for training altogether. We also perform a regression to predict a continuous
proxy for disease status, but instead of age we use atrophy over a period of one
year as measured by the boundary shift integral (BSI) [9]. This then provides
a predicted atrophy rate for each test subject. We use Gaussian process (GP)
regression [10], with a multiple kernel framework to optimally combine MRI,
FDG-PET and CSF data. This results in a measure that can predict MCI con-
version within 3 years with a balanced accuracy of 74.6 %, as good as state of
the art techniques having a much larger training set, including our own previous
work using multikernel GPs for classification [5].

2 Materials and Methods

2.1 Image and Biomarker Data

All data were obtained from the Alzheimer’s Disease Neuroimaging Initiative
(ADNI) database1. The MRI images were T1 weighted structural scans from

1 http://adni.loni.ucla.edu/.

http://adni.loni.ucla.edu/
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1.5T scanners taken at baseline and 12 month follow-up. All were subjected
to quality control and automatically corrected for spatial distortion caused by
gradient nonlinearity and B1 field inhomogeneity.

FDG-PET images were acquired according to the ADNI protocol: acquired
30–60 min post-injection, averaged, spatially aligned, interpolated to a standard
voxel size, intensity normalized, and smoothed to a common resolution of 8-mm
full width at half maximum.

CSF samples were obtained from subjects by a lumbar puncture around the
time of their baseline scan. Levels of the proteins amyloid-β42 (aβ42), tau, and
phosphorylated tau were measured and recorded.

The original ADNI project collected baseline structural MRI scans for all
subjects. However FDG-PET scanning and collection of CSF data were only
done on subsets of these subjects. Furthermore, calculation of BSI requires a
12-month follow-up structural MRI, which were also missing for some subjects.
As our method requires FDG-PET and CSF and a 12-month BSI as well as
structural MRI data, only 129 subjects could be included in the study. The
details of these are shown in Table 1. Subjects were classified as HC, AD or MCI
by neuropsychological and clinical testing at the time of the baseline scan, with
MCI conversion status decided by whether subjects were subsequently diagnosed
as AD at any stage during the 36 month follow-up period.

Table 1. Subject groups and demographics

Disease status Number Female Mean age (sd)

HC 28 19 74.1 (4.5)

MCI-s 38 22 75.3 (7.3)

MCI-c 29 18 75.1 (7.4)

AD 34 23 75.1 (6.8)

2.2 Image Processing

Probabilistic grey matter (GM) maps were produced from the native space base-
line scans using the NiftySeg tool [11]. The native space images were also anatom-
ically parcelated into 83 regions with a novel label fusion algorithm [12] in a
multi-atlas label propagation scheme. The resulting parcelations were used to
mask out the brainstem and cerebellum from the native space GM segmenta-
tions.

Also, a custom template was produced, performing all registrations using the
NiftyReg toolkit [13]. The native GM space segmentations were then warped into
the groupwise space. Finally, the groupwise space, masked GM segmentations
were modulated by the Jacobian determinants of this final deformation. This
step ensures the total mass of tissue remains constant. Hence the MRI features
used were voxel level GM probabilities.
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The native space anatomical parcelations were also rigidly transferred to the
space of the FDG-PET images for the corresponding subjects. The parcelation
was used to normalise each FDG-PET image by its mean cerebellar activity, and
then to calculate the mean activity within each anatomical region, generating a
set of 83 features for each FDG-PET image.

2.3 Boundary Shift Integral

The BSI is a method for robustly assessing volume loss of whole brains or brain
regions from structural MRI. It calculates a change in volume by integrating
across the longitudinal change in position of the boundary between CSF and
GM surrounding the region of interest. Preprocessing is needed to extract the
region of interest (which in our case is the whole brain) from each image, linearly
align the baseline and follow-up images, and correct for intensity inhomogeneity
between scans. We use the latest version of BSI [9] which uses a symmetric regis-
tration scheme to minimise bias and maximise desirable qualities for an atrophy
measurement such as inverse consistency and transitivity between multiple time-
points.

We normalise the resulting volume changes by the baseline brain volumes
and by the exact interval between baseline and follow-up scans, and multiply
by 100. This produces a normalised brain atrophy rate (BAR) in percentage of
original brain volume per year for each subject. These are then used as targets
in the following regression analysis.

2.4 Gaussian Process Regression

Gaussian processes (GPs) provide a Bayesian, kernelised framework for solving
both regression and classification problems. As an in depth explanation of GPs
is beyond the scope of this paper, we refer the reader to [10] for a theoretical
treatment and our previous work [5] for an application of multi-kernel GPs to
predicting conversion to AD.

Briefly, however, a GP is a multivariate Gaussian forming the prior on the
value of a latent function, on top of which is put a Gaussian noise model. The
covariance of the prior is a function of the covariance between instances of train-
ing data X , and a set of hyperparameters θ that control the overall form of the
prior and the noise variance. During the training phase, the hyperparameters
are learned from the training data X and targets y by type-II maximum likeli-
hood. Once the hyperparameters have been set, predictions on unseen data are
made by integrating across this prior, which can be calculated analytically for
the regression case.

2.5 Gaussian Processes as Multimodal Kernel Methods

GP regression is based on a covariance kernel K, a symmetric positive definite
matrix where entry Kij is given by a covariance kernel function k of the feature
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vectors for the ith and jth subject x i and x j and a hyperparameter or hyperpa-
rameters θ. We use a linear kernel function, which is simply the scalar product
of x i and x j . As GPs belongs to the family of kernel methods, a positive sum of
valid kernels is a valid kernel, and a valid kernel multiplied by a positive scalar
is also a valid kernel. This implies that to do multimodal classification, we can
define our kernel function as the weighted sum of a number of subkernels, each
of which has been calculated from a the feature vectors representing a particular
type of data or modality for each subject. Each subkernel has a scaling hyperpa-
rameter α representing the modality’s weight in the overall kernel. A bias term
β is also included in the sum. So in the case of multimodal classification using
information derived from the MRI, PET and CSF data for each subject the
overall kernel is

Kij = αMRI(x i,MRI.x j,MRI) + αPET(x i,PET.x j,PET) + αCSF(x i,CSF.x j,CSF) + β (1)

giving a total of four covariance hyperparameters to set.

3 Results

To generate predicted BARs for all 129 subjects, we perform a leave-one-out cross
validation (LOOCV) across the entire set. The correlation coefficient between
predicted and measured BARs for the subjects is 0.38 (p < 0.0001) and the root
mean squared error is 0.61. However our primary focus is not on the predicted
brain atrophy rates themselves, but on whether they can be used to predict
conversion in MCI subjects. Figures 1 and 2 show the spread of both measured
and predicted BAR values for all four disease groups (HC, MCI-s, MCI-c, AD).
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Fig. 1. Measured BAR across groups
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Fig. 2. Predicted BAR across groups

As shown in Figs. 1 and 2, while the mean predicted BARs for each group are
similar to the corresponding means for measured BARs, each clinical group occu-
pies a much tighter cluster of values, even allowing for a few outliers (marked as
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Table 2. Accuracy of discrimi-
nation between MCI-s and MCI-c
with predicted BAR

Modalities Accuracy (%) AUC

MRI 59.7 0.595

PET 73.1 0.777

CSF 52.2 0.545

MRI, PET, CSF 74.6 0.725

Table 3. Accuracy of discrimination
between MCI-s and MCI-c with training on
binary diagnostic class labels

Training Accuracy (%) AUC

MCI (CV) 40.3 0.401

HC, MCI, AD (CV) 52.2 0.569

HC, AD 55.2 0.661

a +). This results in reduced overlap between the clinical groups, which is espe-
cially noticeable between the MCI-s and MCI-c groups. The resulting accuracy
is 74.6 %, which is similar to the best previously reported results. The balanced
accuracy and area under the ROC curve (AUC) are shown in Table 2. This
also shows results for single modalities, demonstrating the benefit of combining
sources of data with multikernel learning.

We also compare our method to performing direct binary classification on
the conversion status again using GPs. This can be done by training on the MCI
subjects only in an LOOCV loop, by training on all subjects, again with an
LOOCV loop and grouping HC subjects with MCI-s and MCI-c subjects with
AD, and finally by training on the HC and AD subjects, and testing on the MCI
subjects. The results are given in Table 3.

4 Discussion

These results show a clear advantage for our method of training on a well-
characterised proxy for MCI conversion, rather than the diagnostic status itself.
Training on BAR enables us to reach accuracies of up to 74.6 %, whereas training
on diagnostic labels struggles to perform better than chance. It therefore appears
that the use of BAR bypasses the problems caused by binary diagnostic labels.
Data is made better use of as subjects can be used for training regardless of
diagnostic label, and as parameters are learned automatically there is no need
to set subjects aside for tuning. We also show an advantage for multimodal
regression. Although direct comparisons between methods are difficult [5], the
resulting accuracy in forecasting MCI conversion is among the best yet achieved.
The main drawback of our the proposed method is that all three types of data
are all required for the best results (although FDG-PET alone does almost as
well) which limits the number of subjects that can be included. However we
intend to further evaluate this method as much greater numbers of subjects
with all modalities become available in ADNI 2. Finally, while 12-month follow-
up scans are also required to calculate BSI values for training data, it should be
emphasised they are not needed for testing data.
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