Mobile Grading Paper-Based Programming
Exams: Automatic Semantic Partial Credit
Assignment Approach

I-Han Hsiao™®

School of Computing, Informatics and Decision Systems Engineering,
Arizona State University, 699 S. Mill Ave., Tempe, AZ, USA
Sharon. Hsiao@asu. edu

Abstract. In this paper, we report a study of an innovative mobile application
to support grading paper-based programming exams. We call the app — Pro-
gramming Grading Assistant (PGA). It scans pre-generated QR-codes of
paper-based question-and-concepts associations and uses OCR to recognize
handwritten answers. PGA provides interfaces for teachers to calibrate recog-
nition results, as well as to adjust partial credit assignment according to con-
ceptual incorrectness of the answers. We evaluate the mobile grading process
and the quality of grading results based on the assessed semantic information.
The results demonstrate that the mobile grading approach keeps persistent traces
of students’ performance, including semantic feedback and ultimately enhances
grading consistency.

1 Introduction

Today, the majority of programing classes are delivered via a blended instructional
method with face-to-face instruction in the classrooms supported by online tools such
as intelligent tutors, self-assessment quizzes, and course management systems etc. Such
a blended instructional strategy, in contrast to pure on-line learning/instruction through
massive open online courses, which still has inconclusive results [1, 2], allows teachers
to focus on systematically instructing complex topics in class while supplying many
supplemental exercises outside the classroom. The blended instructional classrooms
still mainly rely on paper-based exams as the main method to assess students’
knowledge in today’s lower division programming courses. It is very challenging for
teachers to provide personalized feedback on each individual test. The large size of the
classes makes it impractical to discuss with each individual student on his/her exam
paper. Instead, typically, teachers discuss on the returned exam in the class (hopefully
thorough and detailed enough to cover all the students’ misconceptions).

Although teachers still point out the common mistakes and try to pinpoint the key
concepts related to the such mistakes, many desired detailed learning analytics are
unavailable, such as how did s/he receive partial credits, was it a single concept or
multiple concepts mistake, a careless mistake or a long-term misconception etc. As a
result, students often focus solely on the scores they earned on the returned exams, but
miss several learning opportunities, such as identification of strength and weakness,

© Springer International Publishing Switzerland 2016
K. Verbert et al. (Eds.): EC-TEL 2016, LNCS 9891, pp. 110-123, 2016.
DOI: 10.1007/978-3-319-45153-4_9



Mobile Grading Paper-Based Programming Exams 111

characterization of the nature of their errors or any recurring patterns if any,
assessment of appropriateness of their study strategies and preparation, etc. Fur-
thermore, from teachers’ perspective, there is an increasing difficulty in managing
paper-based exams. Teachers can hardly memorize all students’ names, it is becoming
even more challenging for teachers to manage all mistake patterns in students’ exam
answers. Thus, it is common for teachers to focus on common mistakes based on the
history of a course rather than a specific exam. Moreover, with graders or teaching
assistants being recruited to do the majority of grading in order to handle large classes,
teachers could overlook the detailed course performances. In this case, varying level of
training of the graders and potential inconsistency among graders are among additional
factors that may further complicate students’ learning.

In this work, we investigate an innovative method to capture paper-based pro-
gramming exams in order to provide semantic personalized feedback in supporting
large-scale auto-grading in blended instruction classrooms. We emphasize that
paper-based approach is still one of the primary and preferred ways of delivering
programming exams, due to the sake of easiness and other logistics or potential aca-
demic dishonesty issues to occur in online settings. The rest of the paper is organized
with reviewing related work in Automatic Program Assessment and Technology
Support for Blended Classroom in Computing Education. We then describe the study
methodology and layout the study design. Finally, we present the evaluation results and
discuss the approach with current limitations and future work.

2 Literature Review

2.1 Automatic Program Assessment

Automatic program evaluation is not a new topic. Special interest group on computer
science education (SIGCSE) reports several work on automatic grading students’
programming assignments in last couple decades. For instance, WEB-CAT [3], BOSS
[4], ASSYST [5] and among many others. The common approach is to apply
pattern-matching techniques to verify students’ answers and the correct answers. Most
of these systems are web-based evaluation tools; less is emphasized on automatic
evaluation for paper-based programming formal assessments. There are a few relevant
early innovations attempting to apply to process paper exams and hand written codes,
such as tablet grading system [6, 7]. It uses tabletop scanners to digitalize the exam
papers and provides a central grading interface on the tablet in assisting mass pro-
gramming grading. It reports that a few benefits of digitizing paper exams (i.e. some
default feedback can be kept on the digital pages; student’s identity can be kept
anonymous and potentially prevent graders’ bias in recognizing names). There is also
an adjacent related work attempted to address scaling up assessment production, it is
called parameterized exercises. Parameterized questions and exercises use randomly
generated parameters in every question template and produce many similar, yet suffi-
ciently different questions. This approach not only automatically evaluates students’
programs, but also dramatically reduces authoring efforts and creates a sizeable col-
lection of questions to facilitate programming assessment. As demonstrated by a



112 1.-H. Hsiao

number of projects such as CAPA [8], WebAssign [9], QuizPack [10], and QuizJET
[11] parameterized questions can be used effectively in a number of domains allowing
to increase the number of assessment items, decrease authoring efforts and reduce
cheating. Overall, the field of automatic program evaluation is less focused on grading
paper-based programming problems, therefore, less support of personalization as such.

2.2 Technology and Instructional Support for Blended Classroom
in Computing Education

In the field of Computer Supported Collaborative Learning (CSCL), researchers
describe classroom orchestration as a field in transition, which defines how a teacher
manages multilayered activities in real time and in a multi-constraints context. It dis-
cusses how and what research-based technologies have been adopted and should be
done in classrooms [12]. We have begun to see more tabletops, wearable cameras,
smart classrooms or interactive tools such as Classroom Response Systems (AKA:
Clickers) etc. provide dynamic feedback and integrative students knowledge updates
[13—15]. Such tools attempt to capture in-the-moment teaching pace and on—the-fly
students’ learning pace; however, they are usually highly customized to the content or
require a large collection of content for teachers to start using the tools. Classes may
still suffer from lacking comprehensive content collections due to high development or
maintenance costs or run into off-sync issues when the students leave the interactive
classrooms. Over the last decade, several educational technologies and instructional
pedagogies have been proposed and studied to amend and assist large size of class-
rooms. For instance, flipped classroom model to promote utilization of class time for
interaction [16]; peer instruction to facilitate students’ conceptual reasoning [17, 18];
media computation to increase learning motivation [19, 20] etc. In the context of
computing education, a dozen of research projects attempted to apply these methods in
programming classes [21-24]. In spite of there were positive results reported, most of
the findings were still in early stage and inconclusive. For example, instructors are
supposed to utilize the class time to maximize student and teacher interactions, how-
ever, until today, it is still challenging to gather and interact with large amount of
students with laptops in the lecture hall or in the computer lab [25].

3 Methodology

3.1 Mobile Grading Framework

In order to automatically evaluate programming problems on paper-based exams, we
create a mobile PGA grading framework (Fig. 1) and develop an instance of android
application' based on the framework. (1) Using a camera-enabled mobile device to
scan questions, which are attached with pre-generated Quick Response codes (Fig. 2).
The scanning can be done at a batch process by scanning multiple questions and

! The mobile grading app is currently available upon request.



Mobile Grading Paper-Based Programming Exams 113

multiple exams at a time before entering to auto-grading phase; (2) The grading service
begins to process the scanned questions as images, which includes: (a) Converting
pixel images to binary images; (b) Removing noises from the image in order to just
focus on texts in the recognition step, but not to falsely remove the punctuations, which
is considered an important element in code writing; (c) Defining character boundaries
for later recognition to calculate word separation and alignments. (3) We deploy an
open source OCR (Optical Characteristic Recognition) library® to recognize hand
written and/or printed texts from the scanned images; (4) The app then compares the
recognized answers to the correct answers; (5) The app assigns scores based on two
grading schemes: (a) a binary function of correct or incorrect answer; (b) a partial credit
assignment based on the proportion of recognized concepts to the overall concepts of
the correct answer; (6) Finally, the app aggregates step 1 to 5 results to generate reports
and updates analytics.

Process Feedback
Paper-based < > Mobile Grading Steps < Distribution

Exams

2) (©) 4)
(1) ot . (5) ©)
.| Process | | Recognize | | Compare | | L]
Quizz:ir;ns Scanned (Handwritten / to Correct S’::;?] A%Z?y?titzs
Images Printed) Texts Answers 9

Fig. 1. Mobile grading framework.

3.2 Research Platform: Programming Grading Assistant

We develop an Android application and deploy it in a Samsung Galaxy Tab S2 8
device to support grading paper-based exams. Currently, we consider two major types
of programming problems on the exams, multiple choice question (MCQ) and code
writing question (CWQ). Due to the handwritten texts naturally carry various com-
plications, such as scripts and prints mixture, word separation ambiguity, inconsistent
word alignments etc. Based on the unique characteristics of these two types of ques-
tions (MCQ consists of limited handwriting texts and printed question texts; CWQ
mainly includes substantial amount of handwriting texts and limited printed texts), we
design two separate mobile grading modules to deal with different level of handwriting
recognition complexity. In this paper, we focus on the CWQ module, which allows us
to focus on the proposed technology in examining procedural knowledge of pro-
gramming problem solving.

CWQ Grading Module. This module utilizes 2-dimensional quick response code
(QR-code) to associate each question, answer, corresponding concepts and weights (the
importance of the concepts). Figure 2 demonstrates the CWQ grading interface, where

2 https://github.com/tesseract-ocr.


https://github.com/tesseract-ocr

114 1.-H. Hsiao

Fig. 2. Code writing question grading interface.

the grader can keep notes anywhere on the screen and to leave free-form feedback or
just simply highlight the missing/incorrect codes with her fingertip. The pencil icon
located at the lower right is the functionality to edit misconceptions. Grading is done by
tapping on the concepts, which resembles the action of punishing misconceptions of
incorrect codes. The grades are shown at the lower left corner. The graders can also
manually adjust the grades as appropriately. Once graders are done with editing, they
can press the top-left corner save icon. All the graded questions will be recorded into
database and be exported as an xml format file to be ready to feed in learning analytics
dashboard tool, such as EduAnalysis [26].

Semantic Feedback. All questions’ associated concepts are parsed and indexed by
Java Programming ontology” and weights are automatically indexed by EduAnalysis
[26]. On toggling on and off the pencil icon, the associated concepts of the question
will be brought out to the screen. The grader can tap to edit the weights to indicate the
missing concepts and/or misconceptions. In Fig. 2, the red highlighted concept indi-
cates the misconception, blue shows the gained concept, and grey shows missing
concepts. In this CWQ example, the student has clearly missed to initialize a counter
variable i (int 1=0) and the increment statement (1++) in the while loop. Therefore,
the IntVariable and IncrementDecrementExpression concepts are greyed out.

3 Source of Java Ontology: http://www.pitt.edu/ ~ paws//ont/java.owl.


http://www.pitt.edu/%7epaws//ont/java.owl

Mobile Grading Paper-Based Programming Exams 115

Such grading process not only leaves conceptual feedback for each question, but also
allows automatic partial credit computation (will be discussed in next sub-section).

3.3 Recognition Optimization

Students’ handwritings are heterogeneous. Typically, OCR requires a training process
to calibrate recognition. However, due to the target corpus in this experiment is pro-
gramming language domain, we anticipate students will only be writing code syntac-
tical texts. In other words, all recognized texts should be identified from Java glossary.
For instance, Fig. 3(a) shows the OCR recognized results from the same example in
Fig. 2. However, without proper training, the recognition fails to identify variable i or
the print method. In order to minimize the training effort, we adopt spelling correction
logic and implement recognition correction algorithm. We use Damerau—Levenshtein
distance algorithm [27] to iteratively transpose, replace and insert the recognized
characters from simultaneously referencing to Java glossary dictionary. In Fig. 3(b)
illustrates a corrected recognition codes, which improves the readability of original
recognition. Note that the punctuations and variables are still not yet optimized.

3T 100% 8425 PM

=
ASUARATSIAI0ER

wWhile ([ <: 10 );
{ Z\/hl\é(l(:’\o)
System . Out . System ot
pr-i(nt/an. ( i ); ’

Fig. 3. Before (a) and after (b) optimized hand writing recognition.

3.4 Semantic Partial Credit Algorithm

Assigning grades on the programming exams is not a trivia task. Each code-writing
question can potentially have multiple solutions; each solution can have miscellaneous
variations, such as local variable differences, utility methods, interfaces etc. Therefore,
it may not be fair to assign scores by judging codes similarity between students’ and
teacher’s codes. Typically, teachers will evaluate the code solutions and assign partial
credits to award the logic soundness instead of code completeness. For instance, a
common strategy is to give points to conceptual integrity and deduct points by pun-
ishing conceptual mistakes. The question is, how many points are appropriate as
partial credits?



116 1.-H. Hsiao

We discover there often exists the inconsistency in assigning partial credits.
Figure 4 illustrates some of the inconsistent scenarios: (a-left) The student clearly
implemented key concepts ArrayList and Foreach-loop, but missed to aggregate values
from each iteration and to print out the final results. However, this student was being
punished by missing minor concepts and suffered from major credits loss (5 out of 7).
In case (a-right) shows the same grader gave same partial credits to another student,
while s/he not only missed out the sum variable declaration and initialization, but
actually wrongly implemented the Foreach-loop. In case (b), it shows a different grader
gave different amount of partial credits on the exactly the same question. These
examples demonstrate a series of grading inconsistency issues: oversight on key con-
cept misconception, over-emphasized on minor concepts, limited feedback etc.

wal N new B“ﬂ‘tmwlxﬂ,
0;

decomal Numuts)

() déuble sum =

sem- ut printin (€ \wung)y B
% sum += element;
System.out.println(st

Suen = Sumni oLy

T e Out. PR (SO0, ot PUIOR (S0,

-l e il
Fig. 4. (a) left & right are two different students’ answers that were graded by the same grader;

(b) left & right are the same student’s answer that were graded by two different graders.

In order to enforce consistency in assigning partial credits, we design a semantic
partial credit algorithm to calculate students’ proportional conceptual errors of a
question (Table 1). There are 3 parameters to determine the partial credits: Concept
Similarity, Concept Saliency, and Miscellaneous. We assume partial credit would be
given based on conceptual inconsistency with the correct answer, therefore, Concept
Similarity is calculated by the cosine similarity between student’s and the correct one.
We use Concept Saliency coefficient (Eq. 1) to highlight the importance of key concept
and to demote peripheral conceptual mistakes. For instance, the question in Fig. 4
(a-left) deserves more credits when the key concepts are intact, and the peripheral
concepts are missed; vice versa in Fig. 4(a-right). Finally, we reserve a Miscellaneous
coefficient to capture all other mistakes that are not conceptual, such as careless
mistakes.

3.5 Study Setup

We design a study to investigate paper-based programming exams grading process,
specifically focus on the semantic partial credit assignment effects. We randomly
sampled 20 students’ exams from an Object-Oriented Programming & Data Structure



Mobile Grading Paper-Based Programming Exams

Table 1. Semantic partial credit algorithm

117

function pc = partial_credit(question){
if concepts incorrect then

pc = ConceptSimilarityzegerecorec: ¥ ConceptSaliencys;

ConceptSaliency = w,,/ ¥, w,,
if pc<0 then return pc = 0;
else
PC = 1 — Euiscettancons’
if pc<0 then return pc = 0;

return pc;

(Eq.1)

class in 2015 Fall semester offered in Arizona State University. We recruited six
graders who have been graders or teaching assistants for the same course at least once.
Among the recruited 6 graders, there are 3 graduate students and 3 undergraduate
students, 1 female and 5 male. All of them are either Computer Science major or
Information Science major. They have 1 ~5 years Java programming experiences and
have taken 3 ~ 8 programming courses. In addition, they all code multiple all-purposes

programming languages on a daily basis (mainly, C, C++, and PHP).

Data Collection. We scan two questions and answers from the sampled 20 paper-
based exams and use photo editing software to remove the original grading remarks
from the scans. Thus, there are 40 questions (2 questions x 20 different students’
exams) in total. Exam questions are presented in Table 2.

Table 2. Sampled exam questions & answer keys/grading scheme

Question

Answers & Grading Scheme

1. Write the following for loop as a while
loop: (5pt)

for(int 1 = 0; i <= 10; i++4)
{

System.out.println(i);
}

2. Instantiate an ArrayList that contains
decimal numbers and assign it to an
appropriate variable. Write an enhanced for
loop (for-each loop) that iterates through
your ArrayList of decimal numbers and
displays their sum to the console: (7pt)

fo

'

e (i==10){ 3
stem.out.println(i);

/ -4
(Do

em.out
/ -0.5 o

e;

st

inco

rect enhanced fo
e d: numList){
sum += d;

println(sum);

other errors

e> numList = ne

oop statement




118 1.-H. Hsiao

Study Procedure. In the lab study, we instructed graders to refer to the provided
solution keys and grading schemes (Table 2) and assign grades based on their best
judgment to all 40 questions. Noted that graders graded on the same 40 questions. The
grading scheme was solicited from the same teacher who designed the exam. Graders
were also instructed to mark or leave feedback as appropriately. They spent
10~33 min to finish grading all the questions.

4 Evaluation Results

4.1 Semantic Partial Credit Accuracy

We compared all graders’ grading and automatic partial credit algorithm calculation
results to original teacher’s grading. We set the threshold at 0.1 marks; where we
consider it is a correct answer when the grades differences are less than the threshold.
We found that given the grading schemes for graders (per Table 2), they could still
make considerably inaccurate grading outcomes. The inaccuracy effect is especially
noticeable in Q2, which is a more complex question than Q1. Q2 involves more key
concepts and more overall concepts. Recall that the case of Fig. 4-(a), the student
clearly knew how to implement ArrayList and Foreach Loop, but the grader penalized
this answer as missing a lot codes, and neglected the grading scheme. Figure 5 illus-
trates all graders CWQ grading accuracy distribution by question compared to auto-
matic method. Overall, we found that automatic partial credit algorithm improved 20%
of the accuracy.

Additionally, We found that the complex question (Q2) consistently being taken
more than 20 points off in total, and averagely each question was mis-graded respec-
tively 0.658 and 1.491 in Q1 and Q2 (Table 3). Meanwhile, the automatic partial credit
algorithm achieved low grades discrepancy in both Q1 and Q2. On average, they were
graded only 0.122 and 0.370 off compared to teacher’s grades. Such results suggested
that if an exam consists of 10 code-writing questions, the variance between grader and
teacher could be as large as one letter grade.

Q1 and Q2 Correctness

1 . Q1 Total Points Off Per Q1 and Q2
. Q2

graderl grader2 grader3 grader4 grader5 grader6  AUTO grader!  grader2  grader3  grader4  grader5 grader6  AUTO

Fig. 5. Partial Credit Accuracy (left); Grades Discrency by Question Complexities (right).



Mobile Grading Paper-Based Programming Exams 119

Table 3. Grading discrepancy magnitude

Average | Grader | Auto PC Algorithm
Q1 0.658 |0.122
Q2 1.491 [0.370

4.2 Mobile Grading Enhances Grading Coherence

To gauge graders’ coherence, we evaluated how did the graders grade questions; do
they give extra points than they should have? or do they penalize the students in
deducting more points than they should have? Figure 6 showed each grader’s incon-
sistency. We found that grader 1, 3, 5, and 6 tend to give more credits; grader 2 and 4
tended to be stricter and give fewer credits than they should have. The gaps among
graders are evident. We found that automatic partial credit algorithm achieved higher
grading coherence (smaller gap between + & —).

Average Total + and - Points Off Per Question [l + points ¥ - points

50
37.5 [
= 36
25 5 ]
F
"o 3.646
N = a. W= -

grader1 grader2 grader3 graderd grader5 grader6 AUTO

Fig. 6. Inconsistencies Among Graders, some graders graded loosely, some strictly.

In addition, noted that currently the auto-grading algorithm tends to give fewer
points to students (-0.155 points on average), which means PGA is rather to grade
slightly harshly than mercifully. On the other hand, graders give mixed signals in
grading; either half point more or half point less (Table 4). Such results show
prominent news for teachers, who may consider partial incorrectness as incorrect rather
than giving false positive grading and mislead students.

Table 4. Grading discrepancy magnitude

Average | Grader | Auto PC Algorithm
+ 0.594 1 0.091
- 0.481 |0.155




120 1.-H. Hsiao

4.3 Feedback Quality

We analyze graders’ feedback on total 180 questions not-entirely-correct questions (30
out of 40 sampled questions per grader). We categorize six types of graders’ feedback:
No feedback at all, Highlights on students’ errors, (Partial) correct answers, Justifi-
cations on penalty, Conceptual feedback, and Wrong feedback (Fig. 7).

Percentage vs. Feedback Type

I: No feedback

II: Highlight

IlI: (Partial) correct answer

Type

IV: Penalty Justification
V: Concepts

VI: Wrong feedback

0.00 0.15 0.30 0.45 0.60
Percentage

Fig. 7. Feedback types and percentage.

We found that the majority of the questions (52.8%) did not receive feedback from
the graders at all. The cases are often occurred when the students had completely wrong
implementation. They usually receive a big red cross and zero along with the question
and nothing else (Fig. 8 Left). These students are usually the ones who have none or
incomplete knowledge and demand for more support. However, they tend not to get
any feedback at all on the paper-based exams. Nonetheless, the second type of feedback

14, Write th :
14. Write the following for loop as a while loop: © following for loop as a while loop:

0 :Ol(in\ L= 0; 1 <= 10; 144)

SysLam.uuL.prlntln(i):

:Ol'(ihL L =07 & <= 107 444)

System,.out printin(i);

0 =D 1+
W,ou\nvm\\'\n ('\)"

deb

Fig. 8. Left: No feedback at all; Right: Highlights on errors.



Mobile Grading Paper-Based Programming Exams 121

is to highlight students’ errors (20.0%) (Fig. 8 Right). In such scenario, students could
potentially obtain point-of-interests to focus on mistakes, but no further guidance.
Unfortunately, these two types of feedback are not only shallow, but also very common
strategies for grading paper-based exams.

Type III feedback is that graders directly write down the answers or partial answers
on students’ exams (11.7%). For example, Fig. 3(a). Type IV feedback lists the reasons
why there are points of deduction (6.7%), for instance, graders left comments on the
exams “your sum is not computed”, “results is not displayed”, “your output is mis-
placed”, “where is sum?” Type V explains the misconceptions semantics (6.1%), for
example, “Wrong while condition”, and “no initialization”. These three types (Type
I~ V) are considered more substantial feedback. However, in the context of learning,
the correct solutions may not necessarily the best next steps for all learners. It is harder
to provide personalized feedback on paper-based exams, due to the lack of under-
standing on students other learning performances. Finally, Type VI shows a 2.8% of
messages are actually wrong feedback to the students.

5 Conclusions

5.1 Summary

In this work, we design and evaluate an innovative mobile application to investigate
automatic grading paper-based programming exams. We call it Programming Grading
Assistant (PGA), it utilizes mobile’s inbuilt-camera to scan question and answers. We
use OCR technology to recognize students’ handwriting answers and design interfaces
to calibrate recognition or log misconceptions. We use 2-dimensional quick response
code (QR-Code) to associate each code-writing question, answer, and their corre-
sponding concepts and importance. Based on semantics associations with the exam
content, a partial credit assignment algorithm is constructed to leverage grading
inconsistency and to be utilized to provide semantic feedback.

Study results show that human graders exhibit multiple grading inconsistencies and
provide insufficient and shallow feedback. Meanwhile, PGA not only elevates the
grading consistency, but also systematically assigns partial credits and improves the
grading coherence. It also reveals human graders provide insufficient feedback, while
the proposed approach provides consistent semantics remarks as feedback. In addition,
handwriting recognition is currently not optimized, but can be improved with recog-
nition correction logic. Overall, PGA’s auto-grading framework via mobile devices
shows promising results in capturing paper-based programming exams for advanced
learning analytics.

5.2 Limitations and Future Work

In spite of several promising findings, there are a few limitations in current study. First
of all, the handwriting recognition requires good lighting (i.e. natural sun light) and ball
pen writing. In our experiment, we found that indoor lighting often resulted in
recognition failure, which was also one of the reasons that took slightly longer time



122 1.-H. Hsiao

than we expected. In addition, penciled texts of students’ answers also resulted in
recognition failure. However, programming exams typically require iterative problem
solving and trial-and-error, thus, students usually prefer to use pencils than pens. We
recognize these challenges with OCR technology, and have begun to instruct students
to write their code carefully by following sound Object-Oriented Programming prin-
ciples and coding conventions.

Secondly, we did not measure codes recognition accuracy yet, since the recognition
is not yet optimized. It is in our research agenda, to expedite fully automatic grading
process and to reach reliable consistent grading outcome. We have begun training to
use designated underscores for uppercases and whitespaces to increase word separation
recognition.

In the near future, we anticipate providing personalized feedback to students from
their paper-based exams. We are currently developing APIs to synchronize grading
results to the learning analytics dashboards [26]. We plan to conduct more user studies
and larger scale of field studies to explore PGA with graders in UI related issues and
measure the effects for grading entire class exams.

References

1. Zhenghao, C., et al.: Who’s Benefiting from MOOCsSs, and Why. Harvard Business Review
(2015)

2. Kolowich, S.: Puts MOOC Project with Udacity on Hold, in The Chronicle of Higher
Education (2013)

3. Edwards, S.H., Perez-Quinones, M.A.: Web-CAT: automatically grading programming
assignments. In: ACM SIGCSE Bulletin. ACM (2008)

4. Joy, M., Griffiths, N., Boyatt, R.: The boss online submission and assessment system.
J. Educ. Res. Comput. (JERIC) 5(3), 2 (2005)

5. Jackson, D., Usher, M.: Grading student programs using ASSYST. In: ACM SIGCSE
Bulletin. ACM (1997)

6. Bloomfield, A., Groves, J.F.: A tablet-based paper exam grading system. In: ACM SIGCSE
Bulletin. ACM (2008)

7. Bloomfield, A.: Evolution of a digital paper exam grading system. In: 2010 IEEE Frontiers
in Education Conference (FIE). IEEE (2010)

8. Kashy, E., et al.: Using networked tools to enhance student success rates in large classes. In:
Proceedings of the 27th Annual Conference Frontiers in Education Conference, 1997.
Teaching and Learning in an Era of Change. IEEE (1997)

9. Titus, A.P., Martin, L.W., Beichner, R.J.: Web-based testing in physics education: methods
and opportunities. Comput. Phys. 12(2), 117-123 (1998)

10. Brusilovsky, P., Sosnovsky, S.: Individualized exercises for self-assessment of programming
knowledge: an evaluation of QuizPACK. J. Educ. Res. Comput. (JERIC) 5(3), 6 (2005)

11. Hsiao, L-H., Sosnovsky, S., Brusilovsky, P.: Guiding students to the right questions:
adaptive navigation support in an E-Learning system for Java programming. J. Comput.
Assist. Learn. 26(4), 270-283 (2010)

12. Dillenbourg, P.: Design for classroom orchestration. Comput. Educ. 69, 485-492 (2013)



13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

Mobile Grading Paper-Based Programming Exams 123

Martinez-Maldonado, R., et al.: Capturing and analyzing verbal and physical collaborative
learning interactions at an enriched interactive tabletop. Int. J. Comput. Support.
Collaborative Learn. 8(4), 455-485 (2013)

Roschelle, J., Penuel, W.R., Abrahamson, L.: Classroom response and communication
systems: research review and theory. In: Annual Meeting of the American Educational
Research Association (AERA). San Diego, CA, pp. 1-8 (2004)

Slotta, J.D., Tissenbaum, M., Lui, M.: Orchestrating of complex inquiry: three roles for
learning analytics in a smart classroom infrastructure. In: Proceedings of the Third
International Conference on Learning Analytics and Knowledge. ACM (2013)

Bishop, J., Verleger, M.: The flipped classroom: a survey of the research. In: 120th ASEE
Annual Conference & Exposition. Atlanta, GA (2013)

Crouch, C.H., Mazur, E.: Peer instruction: ten years of experience and results. Am. J. Phys.
69(9), 970-977 (2001)

Fagen, A.P., Crouch, C.H., Mazur, E.: Peer instruction: results from a range of classrooms.
Phys. Teach. 40(4), 206-209 (2002)

Guzdial, M.: Exploring hypotheses about media computation. In: Proceedings of the Ninth
Annual International ACM Conference on International Computing Education Research.
ACM (2013)

Porter, L., et al.: Success in introductory programming: what works? Commun. ACM 56(8),
34-36 (2013)

Simon, B., et al.: Experience report: peer instruction in introductory computing. In:
Proceedings of the 41st ACM Technical Symposium on Computer Science Education. ACM
(2010)

Simon, B., et al.: Experience report: CS1 for majors with media computation. In:
Proceedings of the Fifteenth Annual Conference on Innovation and Technology in Computer
Science Education. ACM (2010)

Sarawagi, N.: Flipping an introductory programming course: yes you can! J. Comput. Sci.
Coll. 28(6), 186-188 (2013)

Amresh, A., Carberry, A.R., Femiani, J.: Evaluating the effectiveness of flipped classrooms
for teaching CS1. In: 2013 IEEE Frontiers in Education Conference. IEEE (2013)
Rosiene, C., Rosiene, J.: Flipping a programming course: the good, the bad, and the ugly. In:
Frontiers in Education Conference. IEEE (2015)

Hsiao, L-H., Govindarajan, S.K.P., Lin, Y.-L.: Semantic visual analytics for today’s
programming classrooms. In: The 6th International Learning Analytics and Knowledge
Conference. ACM, Edinburgh, UK (2016)

Brill, E., Moore, R.C.: An improved error model for noisy channel spelling correction. In:
Proceedings of the 38th Annual Meeting on Association for Computational Linguistics.
Association for Computational Linguistics (2000)



	Mobile Grading Paper-Based Programming Exams: Automatic Semantic Partial Credit Assignment Approach
	Abstract
	1 Introduction
	2 Literature Review
	2.1 Automatic Program Assessment
	2.2 Technology and Instructional Support for Blended Classroom in Computing Education

	3 Methodology
	3.1 Mobile Grading Framework
	3.2 Research Platform: Programming Grading Assistant
	3.3 Recognition Optimization
	3.4 Semantic Partial Credit Algorithm
	3.5 Study Setup

	4 Evaluation Results
	4.1 Semantic Partial Credit Accuracy
	4.2 Mobile Grading Enhances Grading Coherence
	4.3 Feedback Quality

	5 Conclusions
	5.1 Summary
	5.2 Limitations and Future Work

	References


