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Abstract Commoditization and virtualization of wireless networks are changing

the economics of mobile networks to help network providers, e.g. Mobile Network

Operator (MNO), Mobile Virtual Network Operator (MVNO), move from propri-

etary and bespoke hardware and software platforms towards an open, cost-effective,

and flexible cellular ecosystem. In addition, rich and innovative local services can be

efficiently materialized through cloudification by leveraging the existing infrastruc-

ture. In this work, we present a Radio Access Network as a Service (RANaaS), in

which a Cloudified Centralized Radio Access Network (C-RAN) is delivered as a

service. RANaaS describes the service life-cycle of an on-demand, elastic, and pay

as you go RAN instantiated on top of the cloud infrastructure. Due to short deadlines

in many examples of RAN, the fluctuations of processing time, introduced by the

virtualization framework, have a deep impact on the C-RAN performance. While in

typical cloud environments, the deadlines of processing time cannot be guaranteed,

the cloudification of C-RAN, in which signal processing runs on general purpose

processors inside Virtual Machines (VMs), is a challenging subject. We describe an

example of real-time cloudified LTE network deployment using the OpenAirInter-
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face (OAI) LTE implementation and OpenStack running on commodity hardware.

We also show the flexibility and performance of the platform developed. Finally, we

draw general conclusions on the RANaaS provisioning problem in future 5G net-

works.

1 Introduction

Every day, we encounter an increasing demand for wireless data use due to a grow-

ing number of broadband-capable devices, such as 3G and 4G mobile telephones.

To satisfy a higher demand for data rates, service providers and mobile operators

expect upgrades and expansion of the existing network, but the required Capital

Expenditure (CAPEX) and Operational Expenditure (OPEX) are superior to the rev-

enue growth [9]. The high upgrade and maintenance costs are mainly caused by the

current architecture of mobile broadband networks, in which the Radio Access Net-

work (RAN) is built upon the integrated Base Transceiver Station (BTS) architecture.

Since mobile broadband providers operate on a large scale, the installation and main-

tenance of a large number of expensive BTSs over vast geographical areas increase

the cost dramatically. Moreover, the new trend of smaller cells will more severely

affect both the cost and maintenance problem in the future.

A cost-effective RAN solution, which meets the ever-increasing amounts of

mobile data traffic, has to fulfill a set of requirements. First, the new RAN

has to quickly and automatically scale with the variable amount of mobile

traffic. Second, it has to consume less power providing higher capacity and

network coverage at the same time. Finally, it should allow mobile operators

to frequently upgrade and operate the service over multiple/heterogeneous air-

interfaces.

Only about 15–20 % of BTSs operating in the current RAN architecture are loaded

more than 50 % (with respect to the maximum capacity), which makes the current

RAN architecture energy inefficient [8]. An emerging solution to reduce upgrad-

ing costs and power consumption is the Centralized-RAN (C-RAN) [13, 17] with

resource sharing and exploitation of load patterns at a given geographical area. Thus,

C-RAN solution is able to adapt to user traffic variability and unpredictable mobil-

ity patterns than the current RAN. Moreover, it allows coordinated and joint signal

processing to increase the spectral efficiency. Finally, the C-RAN represents a good

match between the spatial-temporal traffic variations and available computational

resources and hence power consumption.

Since C-RAN signal processing is centralized, it allows us to apply more sophisti-

cated joint spatio-temporal processing of radio signals, which can increase the over-

all spectral efficiency. Cloud computing technologies based on virtualization allow
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us to lower the operational costs even more by running the RAN through (a) adop-

tion of general purpose IT platforms instead of expensive specific hardware, (b) load

balancing, and (c) fast deployment and resource provisioning. Running the RAN

in the cloud environment is not new. The benefit of such an approach has demon-

strated 71 % of power savings when compared to the existing system [7]. However,

this approach comes at the cost of higher software complexity.

Recent works [27] have shown the feasibility of LTE RAN functions of software

implementation over General Purpose Processors (GPPs), rather than the traditional

implementation over Application-Specific Integrated Circuits (ASICs), Digital Sig-

nal Processors (DSPs), or Field-Programmable Gate Arrays (FPGAs). Different soft-

ware implementations of the LTE base station, which is referred to as evolved Node

B (eNB), already exist: (a) Amarisoft LTE solution, which is a pure-software fea-

turing a fully-functional LTE eNB [2], (b) Intel solutions featuring energy efficiency

and high computing performance using a hybrid GPP-accelerator architecture and

load-balance algorithms among a flexible IT platform [25] and (c) OpenAirInter-

face (OAI) developed by EURECOM, which is an open-source Software Defined

Radio (SDR) implementation of both the LTE RAN and the Evolved Packet Core

(EPC) [12].

This chapter describes recent progress in the C-RAN cloudification (running

software-based RAN in the cloud environment) based on the open source imple-

mentations and has the following organization. In Sect. 2, we introduce the con-

cept, architecture, and benefits of centralized RAN in the LTE Network setup.

Section 3 presents the critical issues of cloudified RAN focusing on fronthaul laten-

cies, processing delays, and appropriate timing. Our performance evaluation of

GPP-based RAN is provided in Sect. 4 and Base-Band Unit (BBU) processing time

is modeled in Sect. 5. Possible architectures of cloudified RAN are described in

Sect. 6. The description of the cloud datacenter supporting C-RAN resides in Sect. 7.

Section 8 illustrates an example RANaaS with its life-cycle management. Finally, we

conclude in Sect. 9.

2 Centralized RAN in the LTE Network

C-RAN based networks are characterized by the decomposition of a BTS into two

entities namely Base-Band Unit (BBU) and, also known as Remote Radio Unit

(RRU). In C-RAN, the RRH stays at the location of the BTS, while the BBU gets

relocated into a central processing pool, which hosts a significant number of distinct

BBUs [27]. In order to allow for signal processing at a remote BBU, a point-to-point

high capacity interface of short delay is required to transport I/Q samples (i.e., digi-

tized analog radio signals) between RRH and BBU. There are a few examples of link

standards meeting the required connectivity expectations such as Open Radio Inter-

face (ORI), Open Base Station Architecture Initiative (OBSAI), or Common Public

Radio Interface (CPRI). Even though many recent works have shown the feasibility
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of C-RAN implementation and the C-RAN importance for the MNOs, there are still

three open questions that has to be thoroughly investigated upon a C-RAN system

design.

1. Dimensioning of the fronthaul capacity: a BBU pool has to support a

high fronthaul capacity to transport I/Q samples for a typical set of 10–

1000 base-stations working in the BBU–RRH configuration. Due to a low

processing budget of RAN, the upper bound for the maximum one-way

delay has to be estimated. Moreover, a very low jitter has to be maintained

for the clock synchronization among BBUs and RRHs.

2. Processing budget at the BBU: in the LTE FDD setup, the Hybrid auto-

matic repeat request (HARQ) mechanism with an 8 ms acknowledgment

response time provides an upper bound for the total delay of both fronthaul

latency and BBU processing time.

3. The real-time requirements of the Operating-System and
Virtualization-System: to successfully provide frame/subframe timings,

the execution environment of the BBU has to support strict deadlines

of the code execution. Moreover, load variations in the cell (e.g.,

day/night load shifts) impose the requirement on the on-demand resource

provisioning and load balancing of the BBU pool.

There are also many other challenges in this field [6], such as front-haul multiplex-

ing, optimal clustering of BBUs and RRHs, BBU interconnection, cooperative radio

resource management, energy optimization, and channel estimation techniques. The

following subsections focus on the critical issues, and present C-RAN feasible archi-

tectures.

3 Critical Issues of C-RAN

In the following subsections, we evaluate the most important critical issues of the

C-RAN. We concentrate on the fronthaul capacity problem, BBU signal processing,

and real-time cloud infrastructure for signal processing [18].

3.1 Fronthaul Capacity

We start with the description of fronthaul requirements. A very fast link of low delay

is necessary as the BBU processes the computationally most heavy physical (PHY)

layer of the LTE standards. Many factors contribute to the data rate of the fronthaul,
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which depends on the cell and fronthaul configurations. Equation 1 calculates the

required data rate based on such configurations:

Cfronthaul = 2 × N × M × F × W × C
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

cell configuration

× O × K
⏟⏟⏟

fronthaul configuration

, (1)

where N is the number of receiving/transmitting (Tx/Rx) antenna ports, M is the

number of sectors, F represents the sampling rate, W is the bit width of an I/Q sym-

bol, C number of carrier components, O is the ratio of transport protocol and coding

overheads, and K is the compression factor. The following table shows the required

fronthaul capacity for a simple set of configurations. An overall overhead is assumed

to be 1.33, which is the result of the the protocol overhead ratio of 16/15 and the line

coding of 10/8 (CPRI case). One can observe that the fronthaul capacity heavily

depends on the cell configuration and rapidly grows with the increased sampling

rate, number of antennas/sectors and carrier components (Table 1).

Figure 1 compares the fronthaul capacity between the RRH and the BBU pool

for 20 MHz BW, SISO (max. 75 Mb/s on the radio interface). In the case without

compression, the fronthaul has to provide at least 1.3 Gb/s; when the 1/3 compression

ratio is used, the required fronthaul capacity drops to 0.45 Gb/s.

Further data rate reduction can be obtained by an RRH offloading the BBU

functions. As shown in Fig. 2, the functional split can be provided by decoupling

the L3/L2 from the L1 (labelled 4), or part of the user processing from the L1

Table 1 Fronthaul capacity for different configurations

BW
(MHz)

N M F W (bits) O C K Cfronthaul
(Mb/s)

1.4 1× 1 1 1.92 16 1.33 1 1 81

5 1× 1 1 7.68 16 1.33 1 1 326

5 2× 2 1 7.68 16 1.33 1 1 653

10 4× 4 1 15.36 16 1.33 1 1/2 1300

20 1× 1 1 30.72 16 1.33 1 1 1300

20 2× 2 3 30.72 16 1.33 1 1 7850

20 4× 4 3 30.72 16 1.33 1 1 15600

BBURRHUser

75Mbps 1.3-0.45Gbps

Fig. 1 Fronthaul capacity between the RRH and the BBU pool for 20 MHz BW, Single Input

Single Output (SISO). Minimum required fronthaul capacity without compression is estimated at

1.3 Gb/s, the deployment of 1/3 compression ratio decreases the required capacity to 0.45 Gb/s
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Fig. 2 Functional block diagram of downlink and uplink for LTE eNB

(labelled 3), or all user-specific from the cell processing (labelled 2), or antenna-

specific from non-antenna processing (labelled 1), which is different for the Rx and

Tx chain.

Trade-offs have to be performed among the available fronthaul capacity, complex-

ity, and the resulted spectral efficiency. Regardless various possibilities in the BBU

functional split, the fronthaul should still maintain the latency requirement to meet

the HARQ deadlines. According to Chanclou et al. [5], the RTT between RRH and

BBU equipped with a CPRI link cannot exceed 700µs for LTE and 400µs for LTE-

Advanced. Jitter required by advanced CoMP schemes in the MIMO case is below

65 ns as specified in 3GPP 36.104. Next Generation Mobile Networks (NGMN)

adopts the maximum fronthaul round-trip-time latency of 500µs [16].
1

The propa-

gation delay, corresponding to timing advance, between RRH and UE, affects only

the UE processing time. The timing advance value can be up to 0.67 ms (equiva-

lent to maximum cell radius of 100 km). Consequently, this leaves the BBU PHY

layer only with around 2.3–2.6 ms for signal processing at a centralized processing

pool. The next subsection elaborates on the BBU processing budget in the LTE FDD

access method.

3.2 Processing Budget in LTE FDD

This subsection describes the processing budget problem of the Frequency-Division

Long-Term Evolution (LTE-FDD). We concentrate on the Physical Layer (PHY)

and Medium Access Control (MAC). PHY is responsible for symbol level process-

ing, while MAC provides user scheduling and HARQ. The LTE FDD PHY is

1
Different protocols have been standardized for the fronthaul, namely CPRI representing 4/5 of the

market, OBSAI representing 1/5 of the market, and more recently the Open Radio Interface (ORI)

initiated by NGMN and now by the European Telecommunications Standards Institute (ETSI)

Industry Specification Group (ISG).
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implemented in the asymmetric way using Orthogonal Frequency-Division Multi-

ple Access (OFDMA) and Single-Carrier Frequency-Division Multiple Access (SC-

FDMA) on the downlink and uplink respectively. To control the goodput of the air

interface, the PHY uses various Modulation and Coding Schemes (MCSs). 3GPP

defines 28 MCSs with indexes between 0 and 27. A distinct MCS is characterized

by a specific modulation (i.e., QPSK, 16-QAM, 64-QAM having a varying number

of data bits per modulation symbol carried) and the so called code rate, which mea-

sures the information redundancy in a symbol for error correction purposes [3, 9].

The smallest chunk of data transmitted by an eNB through the LTE FDD PHY is

referred to as Physical Resource Block (PRB) and spans 12 sub-carriers (180 kHz)

and 7 modulation symbols (0.5 ms), which gives 84 modulation symbols in total.

In LTE FDD, we are provided with channels of 1.4 MHz, 3 MHz, 5 MHz, 10 MHz,

15 MHz, and 20 MHz bandwidth, which can simultaneously carry 6, 15, 25, 50, 75,

and 100 PRBs respectively. Therefore, the workload of signal processing in soft-

ware is heavily influenced by the MCS index, number of allocated PRBs, and the

channel bandwidth. Moreover, Hybrid Automatic Repeat Request protocol (HARQ)

on the MAC layer introduces short deadline for signal processing on the PHY. Due

to HARQ, every transmitted chunk of information has to be acknowledged back at

the transmitter to allow for retransmissions. In LTE-FDD, the retransmission time is

equal to THARQ of 8 ms. Let us briefly explain the retransmission mechanism. Every

LTE FDD subframe (subframe is later referred to as SF) lasts for 1 ms and con-

tains information chunks carried within PRBs. The HARQ protocol states that the

Acknowledgment (ACK) or Negative Acknowledgment (NACK) for a data chunk

received at subframe N has to be issued upon a subframe N + 4 and decoded at the

transmitter before subframe N + 8, which either sends new data or again negatively

acknowledged chunks. In the following subsection, we briefly summarize the BBU

functions.

3.3 BBU Functions

Figure 2 illustrates the main RAN functions in both TX and RX spanning all the lay-

ers, which has to be evaluated to characterize the BBU processing time and assess

the feasibility of a full GPP RAN. Since the main processing bottleneck resides in

the physical layer, the scope of the analysis in this chapter is limited to the BBU func-

tions. From the figure, it can be observed that the overall processing is the sum of

cell- and user-specific processing. The former only depends on the channel band-

width and thus imposes a constant base processing load on the system, whereas

the latter depends on the MCS and resource blocks allocated to users as well as

the Signal-to-Noise Ratio (SNR) and channel conditions. The figure also shows the

interfaces where the functional split could happen to offload the processing either to

an accelerator or to an RRH.

To meet the timing and protocol requirements, the BBU must finish processing

before the deadline previously discussed at the beginning of Sect. 3.2. Each MAC
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PDU sent at subframe N is acquired in subframe N + 1, and must be processed in

both RX and TX chains before subframe N + 3 allowing ACK/NACK to be transmit-

ted in subframe N + 4. On the receiver side, the transmitted ACK or NACK will be

acquired in subframe N + 5, and must be processed before subframe N + 7, allowing

the transmitter to retransmit or clear the MAC PDU sent in subframe N. Figure 3a,

b show an example of timing deadlines required to process each subframe on the

downlink and uplink respectively. Figure 3c graphically represents the communica-

tion between the UE, RRH, and BBU. It can be observed that the total processing

time is 3 ms. The available processing time for a BBU to perform the reception and

transmission is upper-bounded by HARQ round trip time (THARQ), propagation time

(TProp.), acquisition time (TAcq.), and fronthaul transport time (TTrans.) as follows:

Trx + Ttx ≤ THARQ∕2 − (TProp. + TAcq. + TTrans. + TOffset) , (2)

where THARQ = 8ms, TProp. is compensated by the timing advance of the UE: TProp. =
0, TAcq. is equal to the duration of the subframe: TAcq. = 1ms, and there is no BBU

offset on the downlink: TOffset = 0. Depending on the implementation, the maximum

tolerated transport latency depends on the BBU processing time and HARQ period.

The LTE FDD access method puts a particular focus on perfect timing of (sub-)

frame processing. To accomplish this goal, the processing system has to fulfill real-

time requirements. The next subsection focuses on the real-time cloud system design

capable of C-RAN provisioning.

3.4 Real-Time Operating System and Virtualization
Environment

A typical general purpose operating systems (GPOS) is not designed to support real-

time applications with hard deadline. Hard real-time applications have strict timing

requirements to meet deadlines. Otherwise unexpected behaviors can occur com-

promising performance. For instance, Linux is not a hard real-time operating sys-

tem as the kernel can suspend any task when a desired runtime has expired. As a

result, the task can remain suspended for an arbitrarily long period of time. The

kernel uses a scheduling policy that decides on the allocation of processing time to

tasks. A scheduler that always guarantees the worst case performance (or better if

possible) and also provides a deterministic behavior (with short interrupt-response

delay of 100µs) for the real-time applications is required. Recently, a new sched-

uler, named SCHED_DEADLINE, is introduced in the Linux mainstream kernel

that allows each application to set a triple of (runtime[ns], deadline[ns], period[ns]),
where runtime ≤ deadline ≤ period.

2
The scheduler is able to preempts the kernel

code to meet the deadline and allocates the required runtime (i.e., CPU time) to each

task period.

2
http://www.kernel.org/doc/Documentation/scheduler/sched-deadline.txt.

http://www.kernel.org/doc/Documentation/scheduler/sched-deadline.txt
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A good deadline scheduler can simplify C-RAN deployment, because Software-

based Radio providing RAN in software is a real-time application that requires hard

deadlines to maintain frame and subframe timing. In the C-RAN setting, the software

radio application runs on a virtualized environment, where the hardware is either

fully, partially, or not virtualized. Two main approaches exist to virtualization: vir-

tual machines (e.g., Linux KVM
3

and Xen
4
) or containers (e.g., LinuX Container

LXC
5

and Docker
6
) as shown in Fig. 4. In a virtual machine (VM), a complete oper-

ating system (guest OS) is used with the associated overhead due to emulating virtual

hardware, whereas containers use and share the OS and device drivers of the host.

While VMs rely on the hypervisor to requests for CPU, memory, hard disk, network

and other hardware resources, containers exploit the OS-level capabilities. Similar

to VMs, containers preserve the advantage of virtualization in terms of flexibility

(containerize a system or an application), resource provisioning, decoupling, man-

agement and scaling. Thus, containers are lightweight as they do not emulate any

hardware layer (share the same kernel and thus application is native with respect

to the host) and therefore have a smaller footprint than VMs, start up much faster,

and offer near bare metal runtime performance. This comes at the expense of less

isolation and greater dependency on the host kernel.

3
http://www.linux-kvm.org.

4
http://www.xenserver.org.

5
http://linuxcontainers.org.

6
http://www.docker.com.

http://www.linux-kvm.org
http://www.xenserver.org
http://linuxcontainers.org
http://www.docker.com
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Two other important aspects when targeting RAN virtualization are:

∙ I/O Virtualization: I/O access is a key for a fast access to the fronthaul interface

and to the hardware accelerators that might be shared among BBUs. In hyper-

visor approach to virtualization (i.e., VM), IO virtualization is done through the

hardware emulation layer under the control of hypervisor, where as in a container

this is materialized through device mapping. Thus, direct access to hardware is

easier in containers than in VMs as they operate at the host OS level. In a VM,

additional techniques might be needed (e.g., para-virtualization or CPU-assisted

virtualization) to provide a direct or fast access to the hardware. When it comes

to sharing I/O resources among multiple physical/virtual servers, and in particu-

lar that of radio front-end hardware, new techniques such as single/multi root I/O

virtualization (SR/MR-IOV) are required.

∙ Service composition of the software radio application: A radio application can

be defined as a composition of three types of service [15], atomic service that exe-

cutes a single business or technical function and is not subject to further decompo-

sition, composed service that aggregates and combines atomic services together

with orchestration logic, and support service that provides specific (often com-

mon) functions available to all types of service. An atomic service in RAN can be

defined on per carrier, per layer, per function basis. For instance, a radio applica-

tion could be defined as a composition of layer 1 and layer 2/3 services supported

by a monitoring as a service.

4 OpenAirInterface Based Evaluation of the Cloud
Execution Environment

Section 1 gives a brief insight into various software-based implementations of BBU.

This section, provides an overview of the OpenAirInterface (OAI), which is a key

software component in our studies. The main advantage of OAI is that it an open-

source project that implements the LTE 3GPP Release-10 standard. It includes a

fully functional wireless stack with PHY, MAC, Radio Link Control (RLC), Packet

Data Convergence Protocol (PDCP) and Radio Resource Control (RRC) layers as

well as Non-Access-Stratum (NAS) drivers for IPv4/IPv6 interconnection with other

network services [20]. Regarding the LTE FDD, OAI provides both the uplink

and downlink processing chains with SC-FDMA and OFDMA respectively (c.f.,

Sect. 3.2). For efficient numerical computing on the PHY, OAI uses specially opti-

mized SIMD Intel instruction sets (i.e., MMX/SSE3/SSE4). Figure 5 presents the

OAI multi-threaded signal processing at the subframe level. As an example, the

mobile air-interface of a client terminal started transmitting subframe N− 1 at

time (a). The decoder thread of the OAI lte-softmodem starts processing the sub-

frame N− 1 at (1) after the subframe is entirely received at time instance (b). Due

to the fact that the encoding thread starting at (2) has to get input from the decoding

thread to comply with HARQ retransmission scheme, the decoding thread gets at
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Fig. 5 Processing orders in

OAI

most 2 ms to finish signal processing. Again, HARQ requires data to be acknowl-

edged at subframe N + 3, therefore the encoding thread has to finish before (c) and

receives at most 1 ms for processing. This description, however, does not include

RRH-BBU propagation delays, which shorten the computing budget (both decoding

and encoding) by a few hundred microseconds. Summing up, the OAI decoder gets

twice as much time as the encoder; roughly 2 ms are allocated for decoding and 1 ms

for encoding.
7

In the following subsections, we evaluate the OAI execution performance on dif-

ferent platforms.

4.1 Experiment Setup

Four set of different experiments are performed. The first experiment (c.f., Sect. 4.2)

analyses the impact of different x86 CPU architecture on BBU processing time,

namely Intel Xeon E5-2690 v2 3 GHz (same architecture as IvyBridge), Intel Sandy-

Bridge i7-3930K at 3.20 GHz, and Intel Haswell i7-4770 3.40 GHz. The second

experiment (c.f., Sect. 4.3) shows how the BBU processing time scales with the

CPU frequency. The third experiment (c.f., Sect. 4.4) benchmarks the BBU process-

ing time in different virtualization environments including LXC, Docker, and KVM

against a physical machine (GPP). The last experiment (c.f., Sect. 4.5) measures the

I/O performance of virtual Ethernet interface through the guest-to-host round-trip

time (RTT).

All the experiments are performed using the OAI DLSCH and ULSCH simulators
designed to perform all the baseband functions of an eNB for downlink and uplink

as in a real system. All the machines (hosts or guests) operate Ubuntu 14.04 with

the low latency (LL) Linux kernel version 3.17, x86-64 architecture and GCC 4.7.3.

To have a fair comparison, only one core is used across all the experiments with the

CPU frequency scaling deactivated except for the second experiment.

The benchmarking results are obtained as a function of allocated PRBs, mod-

ulation and coding scheme (MCS), and the minimum SNR for the allocated MCS

for 75 % reliability across 4 rounds of HARQ. Note that the processing time of the

turbo decoder depends on the number of iterations, which is channel-dependant.

7
This rule was established empirically, because in full load conditions (i.e., all PRBs allocated in

the subframe; the same MCS for all PRBs) the OAI LTE FDD TX requires 2 times less processing

time than the OAI LTE FDD RX.
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The choice of minimum SNR for an MCS represents the realistic behavior, and may

increase number of turbo iterations and consequently causing high processing varia-

tion. Additionally, the experiments are performed at full data rate (from 0.6 Mb/s for

MCS 0 to 64 Mb/s for MCS 28 in both directions) using a single user with no mobil-

ity, Single-Input and Single-Output (SISO) mode with Additive White Gaussian

Noise (AWGN) channel, and 8-bit log-likelihood ratios turbo decoder. Note that if

multiple users are scheduled within the same subframe on the downlink or uplink,

the total processing depends on the allocated PRB and MCS, which is lower than a

single user case with all PRBs and highest MCS. Thus, the single user case represents

the worst case scenario.

The processing time of each signal processing module is calculated using

timestamps at the beginning and at the end of each BBU function. OAI uses the

rdtsc instruction implemented on all x86 and x64 processors to get very precise

timestamps, which counts the number of CPU tics since the reset. Therefore the

processing time is measured as a number of CPU tics between the beginning and

end of a particular processing function divided by the CPU frequency.
8

To allow for a rigorous analysis, the total and per function BBU processing time

are measured. For statistical analysis, a large number of processing_time samples

(10000) are collected for each BBU function to calculate the average, median, first

quantile, third quantile, minimum and maximum processing time for all the sub-

frames on the uplink and downlink.

4.2 CPU Architecture Analysis

Figure 6 depicts the BBU processing budget in both directions for the considered

Intel x86 CPU architecture. It can be observed that processing load grows with the

increase of PRB and MCS for all CPU architectures, and that it is mainly domi-

nated by the uplink. Furthermore, the ratio and variation of downlink processing

load to that of uplink also grows with the increase of PRB and MCS. Higher perfor-

mance (lower processing time) is achieved by the Haswell architecture followed by

SandyBridge and Xeon. This is primarily due to the respective clock frequency (c.f.,

Sect. 4.3), but also due to a better vector processing and faster single threaded perfor-

mance of the Haswell architecture.
9

For the Haswell architecture, the performance

can be further increased by approximately a factor of two if AVX2 (256-bit Single

instruction multiple data (SIMD) compared to 128-bit SIMD) instructions are used

to optimize the turbo decoding and FFT processing.

8
https://svn.eurecom.fr/openair4G/trunk/openair1/PHY/TOOLS/time_meas.h.

9
http://en.wikipedia.org/wiki/Haswell_(microarchitecture).

https://svn.eurecom.fr/openair4G/trunk/openair1/PHY/TOOLS/time_meas.h
http://en.wikipedia.org/wiki/Haswell_(microarchitecture)
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Fig. 6 BBU processing budget on the downlink (left) and uplink (right) for different CPU archi-

tecture
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4.3 CPU Frequency Analysis

Figure 7 illustrates the total BBU processing time as a function of different CPU

frequencies (1.5, 1.9, 2.3, 2.7, 3.0, and 3.4 GHz) on the Haswell architecture. The

most time consuming scenario is considered with 100 PRBs and MCS 27 on both

downlink and uplink. In order to perform experiments with different CPU frequen-

cies, Linux ACPI interface and cpufreq tool are used to limit the CPU clock. It can

be observed that the BBU processing time scales down with the increasing CPU fre-

quency. The figure also reflects that the minimum required frequency for 1 CPU core

to meet the HARQ deadline is 2.7 GHz.

Based on the above figure, the total processing time per subframe, T
subframe

, can

be modeled as a function of the CPU frequency [1]:

T
subframe

(x) [µs] = 𝛼∕x , (3)

where 𝛼 = 7810 ± 15 for the MCS of 27 in both directions, and x is CPU frequency

measured in GHz.
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Fig. 8 BBU processing budget on the downlink (left) and uplink (right) for different virtualized

environments
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Fig. 9 BBU processing time distribution for downlink MCS 27 and uplink MCS 16 with 100 PRB

4.4 Virtualization Technique Analysis

Figure 8 compares the BBU processing budget of a GPP platform with different vir-

tualized environments, namely LXC, Docker, and KVM, on the SandyBridge archi-

tecture (3.2 GHz). While on average the processing times are very close for all the

considered virtualization environments, it can be observed that GPP and LXC have

slightly lower processing time variations than that of DOCKER and KVM, especially

when PRB and MCS increase.

Figure 9 depicts the Complementary Cumulative Distribution Function (CCDF)

of the overall processing time for downlink MCS 27 and uplink MCS 16 with 100

PRB.
10

It can be observed that the execution time is stable for all the platforms

on the uplink and downlink. The processing time for the KVM (hypervisor-based)

has a longer tail and is mostly skewed to longer runs due to higher variations in

the non-native execution environments (caused by the host and guest OS sched-

10
The CCDF plot for a given processing time value displays the fraction of subframes with execution

times exceeding this value.
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uler). Higher processing variability is observed on a public cloud with unpredictable

behaviors, suggesting that cares have to be taken when targeting a shared cloud

infrastructure [1].

4.5 I/O Performance Analysis

Generally, the fronthaul one-way-delay depends on the physical medium, technol-

ogy, and the deployment scenario. However in the cloud environment, the guest-

to-host interface delay (usually Ethernet) has to be also considered to minimize the

access to the RRH interface. To assess such a delay, bidirectional traffics are gener-

ated for different set of packet sizes (64, 768, 2048, 4096, 8092) and inter-departure

time (1, 0.8, 0.4, 0.2) between the host and LXC, Docker, and KVM guests. It can be

seen from Fig. 10 that LXC and Docker are extremely efficient with 4–5 times lower

round trip times. KVM has a high variations, and requires optimization to lower the

interrupt response delay as well as host OS scheduling delay. The results validate the

benefit of containerization for high performance networking.

4.6 New Trends in C-RAN Signal Processing

This chapter is an attempt to analyze three critical issues in processing radio access

network functions in the cloud through modeling and measurements. The results

reveal new directions to enable a cloud-native radio access network that are outlined

below.

New functional split between BBU and RRH: To reduce the fronthaul data

rate requirements, optimal functional split is required between BBU and RRH.

This depends on the deployment on the cell load, spatial multiplexing (number of

UEs/RE/RRH, e.g., MU detection and CoMP), and scenario and can be dynamically

assigned between RRH and BBU. In addition some non-time critical function may

be performed at a remote cloud. Three principles must be considered while retain-
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Fig. 10 Round trip time between the host and LXC, Docker, and KVM guests
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Fig. 11 Functional split between BBU and RRH

ing the benefit of coordinated signal processing and transmission, namely (1) min-

imize the FH data rate, (2) minimize the split on the time-critical path, (3) no split

of the deterministic functions. The proposed split is shown in Fig. 11. In TX chain,

full PHY layer can be moved from BBU to RRH (c.f., label 4 in Fig. 2) in order to

minimize the fronthaul capacity requirements as the operation of PHY layer remain

deterministic as long as the L2/MAC layer provides transport blocks for all channels

with the required pre-coding information. When it comes to RX chain, moving cell

processing to RRH seems promising as it halves the fronthaul capacity requirements.

Additional fronthaul capacity reduction can be obtained if part of user processing can

be dynamically assigned to RRH (i.e., log-likelihood ratio) depending on the number

of UEs scheduled per resource elements and per RRH. The control plane protocols

may be moved to a remote cloud as they are not time-critical functions.

Number of CPU cores per BBU: In LTE-FDD, the total RX (Uplink) + TX

(Downlink) processing should take less than 3 ms to comply with HARQ RTT, leav-

ing 2 ms for RX and 1 ms for TX. Due to that TX requires the output of RX to pro-

ceed, the number of concurrent threads/cores per eNB subframe is limited to 3 even,

if each subframe is processed in parallel. By analyzing processing time for a 1 ms

LTE sub-frame, 2 cores at 3 GHz are needed to handle the total BBU processing of

an eNB. One processor core for the receiver, assuming 16-QAM on the uplink, and



188 N. Nikaein et al.

approximately 1 core for the transmitter processing with 64-QAM on the downlink,

are required to meet the HARQ deadlines for a fully loaded system. Processing load

is mainly dominated by uplink and increases with growing PRBs and MCSs [1, 4].

Furthermore, the ratio and variation of downlink processing load to that of uplink

also grows with the increase of PRB and MCS. With the AVX2/AVX3 optimiza-

tions, the computational efficiency is expected to double and thus a full software

solution would fit with an average of one x86 core per eNB. Additional processing

gain is achievable if certain time consuming functions are offloaded to a dedicated

hardware accelerator.

Virtualization environment for BBU: When comparing results for different vir-

tualization environments, the average processing times are very close making both

container and hypervisor approach to RAN virtualization a feasible approach. How-

ever, the bare metal and LXC virtualization execution environments have slightly

lower variations than that of DOCKER and KVM, especially with the increase of

PRB and MCS increase. In addition, the I/O performance of container approach

to virtualization proved to be very efficient. This suggests that fast packet process-

ing (e.g. through DPDK) is required in hypervisor approach to minimize the packet

switching time, especially for the fronthaul transport network. Due to the fact that

containers are built upon modern kernel features such as cgroups,namespace,
chroot, they share the host kernel and can benefit from the host scheduler, which

is a key to meet real-time deadlines. This makes containers a cost-effective solution

without compromising the performance.

5 Modeling BBU Processing Time

We confirm with the results from Sect. 4 that the total processing time increases

with PRB and MCS, and that uplink processing time dominates the downlink. A

remaining analysis to study the contribution of each BBU function to the overall

processing time is to be done together with an accurate model, which includes the

PRB and MCS as input parameters. In this study, three main BBU signal process-

ing modules are considered as main contributors to the total processing including

(de-)coding, (de-)modulation, and iFFT/FFT. For each module, the evaluate process-

ing time is measured for different PRB, MCS, and virtualization environment on the

Intel SandyBridge architecture with CPU frequency of 3.2 GHz (c.f., Fig. 12).

The plots in Fig. 12 reveals that processing time for iFFT and FFT increase only

with the PRB while (de-)coding and (de-)modulation are are increasing as a func-

tion of both PRB and MCS. Moreover, the underlying processing platform adds a

processing offset to each function. It can be seen from different plots in Fig. 12 that

coding and decoding functions represent most of processing time on the uplink and

downlink chains, and that decoding is the dominant factor. The QPSK, 16-QAM, and

64-QAM modulation schemes correspond to MCS 9, 16, and 27. The OAI imple-

mentation speeds up the processing by including highly optimized SIMD integer

DSP instructions for encoding and decoding functions, such as 64-bit MMX, 128-
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Fig. 12 Contribution of (i-)FFT, (de-)modulation, and (de-)coding to the total BBU processing

for different PRB, MCS, and platforms

bit SSE2/3/4. However, when operating the OAI in a hypervisor-based virtualization,

some extra delay could be added if these instructions are not supported by the hard-

ware emulation layer (c.f., Fig. 4).

From Fig. 12, we observe that the downlink and uplink processing curves have

two components: dynamic processing load added to a base processing load. The

dynamic processing load includes user parameters, such as (de-)coding and
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Fig. 13 Modeling BBU processing time

(de-)modulation, which is in linear relation to the allocated MCS and PRBs. Note the

(de-)coding functions depend also on the channel quality and SNR. The remaining

user parameters, namely DCO coding, PDCCH coding, and scrambling, are mod-

elled as the root mean square error (RMSE) for each platform. The base processing

load includes iFFT/FFT cell-processing parameter for each PRB and the platform-

specific parameter relative to the reference GPP platform.

The fitted curve of the total processing time for GPP is illustrated in Fig. 13a and

the RMSE for all platforms in Fig. 13b.

Given the results in Fig. 13, we propose a model that compute the total BBU

downlink and uplink processing time for different MCS, PRB, and underlying plat-

form, as indicated by the following formula.

T
subframe

(x, y,w) [µs] = c[x] + p[w]
⏟⏞⏞⏞⏟⏞⏞⏞⏟

base processing

+ ur[x]
⏟⏟⏟

RMSE

+ us(x, y)
⏟⏟⏟

dynamic processing

, (4)

PRB, MCS, and underlying platform are represented by the triple (x, y,w). The p[w]
and c[x] are the base offsets for the platform and cell processing, ur[x] is the reminder

of user processing, and us(x, y) is the specific user processing that depends on the

allocated PRB and MCS. We fit us(x, y) part linearly to a(x)y + b(x), where y is the
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Table 2 Downlink processing model parameters in us

x c p us(x, y) uc

GPP LCX DOCKER KVM a b GPP LCX DOCKER KVM

25 23.81 0 5.2 2.6 3.5 4.9 24.4 41.6 57.6 55.6 59.4

50 41.98 0 5.7 9.7 13 6.3 70 79.2 80 89.3 79.7

100 111.4 0 7.4 13 21.6 12 147 145.7 133.7 140.5 153

Table 3 Uplink processing model parameters in us

x c p us(x, y) uc

GPP LCX DOCKER KVM a b GPP LCX DOCKER KVM

25 20.3 0 5.4 4.8 8.8 11.9 39.6 18 25.6 30.6 32

50 40.1 0 6 9.2 15.8 23.5 75.7 39.6 55.6 59.8 42.9

100 108.8 0 13.2 31.6 26.6 41.9 196.8 77.1 73.2 93.8 80

input MCS, a and b are the coefficients. Tables 2 and 3 provide the uplink and down-

link modelling parameters of Eq. 4 for a SandyBridge Intel-based architecture with

the CPU frequency set to 3.2 GHz. For different BBU configuration (e.g., Carrier

aggregation or Multiple-Input and Multiple-Output (MIMO)), CPU architecture and

frequency (c.f., Figs. 6 and 7), a and b has to be adjusted. In our setup, the achieved

accuracy using our model is illustrated given an example. Given that PRB equals to

100, Downlink MCS to 27, Uplink MCS to 16, and performing within LXC plat-

form, the estimated total processing time is 723.5µs (111.4 + 7.4 + 12 × 27 + 147

+ 133.7) against 755.9µs on the downlink, and 1062.4µs (108.8 + 13.2 + 41.9 ×
16 + 196.8 + 73.2) against 984.9µs on the uplink.

6 Potential Architectures of C-RAN

While from the operators’ perspective such an architecture has to meet the scalabil-

ity, reliability/resiliency, cost-effectiveness requirements, from the software-defined

RAN, two key requirements have to be satisfied: (1) realtime deadline to maintain

both protocol, frame and subframe timing, and (2) efficient and elastic computational

and I/O resources (e.g. CPU, memory, networking) to perform intensive digital signal

processing required, especially for different transmission schemes (beam-forming,

MIMO, CoMP, and Massive MIMO).

Broadly, three main choices are possible to design a RAN, each of which provide

a different cost, power, performance, and flexibility trade-offs.

∙ Full GPP: where all the processing (L1/L2/L3) functions are software-defined.

According to China Mobile, the power consumption of the OAI full GPP LTE

modem is around 70 W per carrier [7].
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Fig. 14 Potential C-RAN architectures

∙ Accelerated: where certain computationally-intensive functions, such as turbo

decoding and encryption/decryption, are offloaded to a dedicated hardware such

as an FPGA, GPU, and/or DSP. The remaining functions are software-defined

and performed on the host/guest OS. In this case, the power consumption can

be reduced to around 13–18 W per carrier.

∙ System-on-Chip: where the entire Layer 1 is performed in a dedicated hardware

(e.g. a SoC), and the layer 2 functions are run on the host/guest OS. This can

reduce the power consumption to around 8 W per carrier.

As shown in Fig. 14, the hardware platform can either be a full GPP or a hybrid. In

the later case, all or part of the L1 functions might be split and placed either locally

at the BBU cloud infrastructure or remotely at the RRH unit. In either cases, some

of the L1 functions might be offloaded to dedicated accelerator. It can be seen that

a pool of base station (BS) can be virtualized inside the same (or different) cloud

infrastructure and mapped to RF interface within the RRH gateway. A virtualized

RAN (vRAN) can communicate with core networks (CN) through a dedicated inter-

face (e.g. S1 in LTE), and with each other directly through another interface (e.g.

X2 in LTE). In addition, vRAN can rely on the same cloud infrastructure to provide

localized edge service such as content caching and positioning, and network APIs

to interact with the access and core networks [23]. Different service compositions

and chaining can be considered, ranging from all-in-one software radio application

virtualization to per carrier, per layer or per function virtualization [10]. The vir-
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tualization technology can either be based on container or a hypervisor, under the

control of a cloud OS, managing the life-cycle of a composite service (orchestrator

logic) as well as provisioning the required resources dynamically.

Nevertheless, a full GPP approach to RAN brings the required flexibility in split-

ting, chaining, and placement of RAN functions while meeting the realtime deadlines

along with the following principles [11, 19, 26]:

∙ NFV andMicro service Architecture: breaks down the network into a set of hor-

izontal functions that can be bundled together, assigned with target performance

parameters, mapped onto the infrastructure resources (physical or virtual), and

finally delivered as a service. This implies that micro virtualized network functions

(VNF) are stateless (services should be designed to maximize statelessness even if

that means deferring state management elsewhere) and composable (services may

compose others, allowing logic to be represented at different levels of granularity;

this allows for re-usability and the creation of service abstraction layers and/or

platforms). In addition, they can be autonomous (the logic governed by a service

resides within an explicit boundary), loosely coupled (dependencies between the

underlying logic of a service and its consumers are limited to conformance of the

service contract), reusable (whether immediate reuse opportunities exist, services

are designed to support potential reuse), and discoverable (services should allow

their descriptions to be discovered and understood by (possibly) humans, service

requesters, and service discovery that may be able to make use of their logic).
11

∙ Scalability: monitors the RAN events (e.g. workload variations, optimization,

relocation, or upgrade) and automatically provision resources without any degra-

dations in the required/agreed network performance (scale out/in).

∙ Reliability: shares the RAN contexts across multiple replicated RAN services to

keep the required redundancy, and distributes the loads among them.

∙ Placement: optimizes the cost and/or performance by locating the RAN services

at the specific area subjected to performance, cost, and availability of the RF front-

end and cloud resources.

∙ Multi-tenancy: shares the available spectrum, radio, and/or infrastructure

resources across multiple tenants (MNOs, MVNOs) of the same cloud provider,

∙ Real-time Service: allows to open the RAN edge service environment to autho-

rized third-parties to rapidly deploy innovative application and service endpoints.

It provides a direct access to real-time radio information for low-latency and high-

bandwidth service deployed at the network edge [23]. The Real-time Service shall

be automatically configurable to rapidly adjust to varying requirements and utiliza-

tion of the cloud environment (c.f., Sect. 7).

Table 4 compares the requirements of general-purpose cloud application against

the cloud RAN.

11
Micro-service architecture is in opposition to the so-called “monolithic” architecture where

all functionality is offered by a single logical executable, see http://martinfowler.com/articles/

microservices.html. It has to be noted that the micro-service architecture supports the ETSI NFV

architecture [10], where each VNF can be seen as a service.

http://martinfowler.com/articles/microservices.html
http://martinfowler.com/articles/microservices.html
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Table 4 General purpose cloud applications versus C-RAN

Application GP-Cloud computing Cloud-RAN

Data rate Mb/s, bursty Gb/s, stream

Latency/Jitter Tens of ms <1 ms, jitter in ns

Lifetime of data Long Extremely short

Number of clients Millions Thousands–Millions (IoT)

Scalability High (Micro-service and

stateless)

Low

Reliability Redundancy/load balancing Redundancy, offloading, load

balancing

Placement Depends on the cost and

performance

Specific areas with Radio

Frontend. Depends on the cost

and performance.

Timescale (operation,

recovery)

Non-realtime Realtime

7 Cloud Architecture for the LTE RAN

In cloudified C-RAN, the BBU becomes software-based, hence the concept of C-

RAN cloudification, in which the BBU life-cycle is managed through a cloud operat-

ing system and run over the cloud infrastructure, is sound and may become an impor-

tant business connection between mobile telephony operators and cloud providers.

Generally, a cloud provider delivers their (publicly available) service in the form

of three different flavors, namely Infrastructure-as-a-Service (IaaS), Platform-as-a-

Service (PaaS) and Software-as-a-Service (SaaS) [22], however, in the scope of this

work, we put a particular focus on the IaaS-based systems. In the IaaS mode, a cloud

operator delivers a resource as a so called Virtual Machines (VM), which comes

with processing power, RAM, and storage (optionally other services too) accessible

through the Internet. A user operating a VM system has the experience of remote

access to an ordinary computer, which is accomplished through a virtualization pro-

cedure. Virtualization, which is enabled through a special software layer called a

hypervisor, allows us to simultaneously run many VMs (instances) on a single phys-

ical cloud server.

When a Cloud-RAN is deployed on a public cloud, then multiple instances com-

pete for the same infrastructure (e.g., computing power, storage, RAM). Hence, in

an ordinary setup, we cannot be provided with deadlines for required real-time com-

puting. It is therefore necessary to work out new organizational models of publicly

available data centers as currently cloud providers do not offer real-time support in

their virtual environment. Here, we briefly present our efforts to allow for real-time

support in IaaS clouds. We start with an OpenStack installation of a well established

cloud orchestration system. OpenStack looks after computing power, storage, and

networking resources of the cloud infrastructure (server pools) and orchestrates the

execution of VMs including (re-) configuration upon initialization or a user request.
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Fig. 15 OpenStack management architecture

The response time of the full-virtualization KVM-based OpenStack system did

not fully satisfy our requirements due to unpredictable processing delays. We there-

fore decided to modify the host system (cloud compute servers) by installing a low

latency kernel and replace the default virtualization technique with the Linux Con-

tainers (LXC) plugin of OpenStack (c.f., Fig. 15). LXC is Operating System Level

virtualization providing high performance as all CPU instructions are natively exe-

cuted. Moreover, it allows us for the real-time process prioritization on the guest

operating system (VM). In our case, the lte-softmodem OAI application is pri-

oritized real-time within the LXC container using the SCHED_DEADLINE or

SCHED_FIFO schedulers provided by the low latency Linux kernel. Good perfor-

mance of RAN satisfied through LXCs could have a big impact on the security

of cloud infrastructure as LXCs do not provide a good separation of VMs from

physical servers and should be avoided in the case of less time-critical applications

such as EPC, HSS, etc. Therefore a heterogeneous cloud infrastructure maintaining

both real-time (e.g., LXC-based) and general-purpose (e.g., KVM-based) comput-

ing regions
12

can properly serve purposed of the MNO. The region’s workload is

not know in advance, therefore the cloud provider has to be provided with flexibility

to on-demand re-program the infrastructure when required, e.g., to activate a larger

number of real-time compute nodes for RAN if the current workload exceeds the

capacity of the real-time infrastructure, but the overall cloud-global capacity can

still withhold the workload when reconfigured (i.e., adapting the size of real-time

and non-real-time regions). To this end, we can employ JUJU
13

and Metal As a Ser-

vice (MAAS)
14

to program physical cloud compute nodes and provide the concept

of programmable cloud that dynamically adjusts the cloud region size.

12
A cloud region is an organizational unit of the cloud containing a pool of cloud workers with

specific properties such as the same configuration or geographical location.

13
http://www.ubuntu.com/cloud/tools/juju.

14
http://www.ubuntu.com/cloud/tools/maas.

http://www.ubuntu.com/cloud/tools/juju
http://www.ubuntu.com/cloud/tools/maas
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8 C-RAN Prototype

In this section, we demonstrate a RANaaS proof-of-concept (PoC) (c.f., the architec-

ture presented in Fig. 16). Our cloud infrastructure consists of the OpenStack orches-

trating software with appropriately designed compute servers. Normally, OpenStack

manages large pools of resources, but in our example, it controls a local nano data-

center developed to execute RANaaS. Our compute node is deployed on a com-

modity computer running Ubuntu 14.04 with the low latency Linux kernel version

3.17, while the OpenStack installation uses the LXC plugin on compute nodes to

support LXC virtualization. For cloud orchestration OpenStack developed a Heat

module that provides a human- and machine-accessible service for the management

of the entire life-cycle of a virtual infrastructure and applications. This orchestration

engine relies on text-based templates, called Heat Orchestration Templates (HoTs),

to manage multiple composite cloud applications and organize them as a stack of

virtualized entities (e.g. network, LXCs) called the Heat stack.

Following the LTE protocol stack,
15

our demonstration has to instantiate an E-

UTRAN part, evolved packet core (EPC), and home subscriber server (HSS). The

EPC consists of a mobility management entity (MME) as well as a Serving and

Packet data network Gateway (S/P-GW). Mobile Operators (e.g., MNO, MVNO) use

the User Interface (UI) to manage the life-cycle of RANaaS. The Service Manager

(SM) component receives user queries from the UI and manages the cloud execution

through the Service Orchestrator (SO) component, which leverages the use of the

Heat API for cloud orchestration.

In the demonstrated scenario, a HoT file describes the whole virtual infrastruc-

ture including the LTE network elements as well as the required network setup tai-

lored to a specific business case. Using the HoT template, Heat manages the service

instantiation of every required LTE network function implemented in OAI spread

among multiple VMs. As we previously explained, RANaaS has strict latency and

timing requirements to achieve a required LTE frame/subframe timing. To this end,

we use the SCHED_DEALINE Linux scheduler to allocates the requested runtime

(i.e., CPU time) upon every sub-frame to meet the deadline.

Listing 1 presents an example HoT file, which instantiates the RAN as a Service

(RANaaS) stack. The template is provided to Heat, which automatically spawns a

VM using an arbitrary image previously uploaded to OpenStack (enb-1 provides the

installation of the OAI lte-softmodem), attaches the network (e.g., PUBLIC_NET

defined in OpenStack), and pre-configures the VM through a bash script provided

as user-data. Other VMs illustrated in Fig. 16 could be instantiated in a similar way.

Heat allows us to use previously defined resource attributes. For instance, if an eNB

requires the address of an HSS, one can reference to it through the get_attr Heat

function, i.e., get_attr: [EPC, first_address], where the EPC is a previously defined

resource and first_address is the attribute of the resource (an IP address of the first

interface). Consequently, the whole LTE as a Service (LTEaaS) containing an HSS,

EPC, and eNBs can be instantiated from a single HoT file with one request to Heat.

15
Here, the work stack does not refer to Heat and should be understood as a protocol stack.
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Fig. 16 RANaaS prototype (left) and hardware setup (right)
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Fig. 17 The RANaaS life-cycle management

LTEaaS describes the service life-cycle of an on-demand, elastic, pay as you go

RAN that is running on top of the cloud infrastructure. We believe that life-cycle

management is a key for successful adoption and deployment of C-RAN and related

services (e.g. MVNO as a Service). It is a process of network design, deployment,

resource provisioning, operation and runtime management, and disposal as shown

in Fig. 17. In this figure, SM/SO indicates Service Manager/Service Orchestrator,

while Keystone and Heat Orchestrator are OpenStack services; the box OpenStack

refers to other OpenStack services such as Compute, Storage, Networking, etc. With

the help of the UI, the MNO first designs the HoT and spawns other actions such as

Deploy, Provision, Manage, and Disposal, which are then managed by the SM/SO

that directly communicates with the Heat Orchestrator.

8.1 LTEaaS: eNB Resource Provisioning

This section presents the performance study of the time-critical eNB application run-

ning in the LTE as a Service (LTEaaS) architecture. We conducted several experi-

ments particularly relying on the LTE eNB and UE implementation [19, 21] using the

OAI platform that implements standard compliant 3GPP protocol stack. We deploy

the LTEaaS on the cloud center as shown in Fig. 16 and as described above. The

parameters of the real-time OAI eNB are the following: FDD 10 MHz channel band-

width (50 PRBs) in SISO mode over band 7. MCS are fixed to 26 in downlink and

16 in uplink to produce high processing load. The eNB sends grants to the UE for

UL transmission only in downlink SF #0, 1, 2 and 3. Useful UL SFs are then SF #

4, 5, 6, 7. The others UL SFs can possibly be used for HARQ retransmissions.

We compare the feasibility and performance of the proposed LTEaaS architec-

ture using two different linux OS schedulers: namely SCHED_FIFO (not SCHED_

OTHER) or SCHED_DEADLINE (low-latency policy) while running the eNB in

LXC containers. Linux cgroups and cpu-sets are used to control the CPUs cores

accessible to the container. Bandrich C500, a commercial LTE UE dongle is con-



Towards a Cloud-Native Radio Access Network 199

nected to the instantiated eNB using the classical LTE over-the-air attachment pro-

cedure. We measure the uplink goodput (data-rate over a period of a second) for

each scheduler applying to the eNB and for different numbers of available CPU cores

(CPU is i7-3930k 3.2 GHz with hyper-threading and turbo mode disabled). The mea-

surement lasts 120 s while iperf is generating UDP traffic between the UE and a local

server connected to the EPC.

Figures 18 and 19 present the complementary cumulative distribution function

of the running time of each RX thread at the eNB, when using SCHED_FIFO or

SCHED_DEADLINE with 3 or 2 CPU cores available. Each of these threads cor-

responds to a specific UL SF. It should be noted that those threads are not the only

ones running, as there are also a management thread and a TX thread for each DL

SF. In Fig. 18, the value (1) of 0.65 ms indicates the BBU and protocol processing

time of a fully loaded SF (most of the time for SFs #4, 5, 6 and 7 shown as solid lines

in the figure, from time to time corresponding to HARQ retransmission for the other

subframes), while the increase (2) of 0.2 ms is related to the RLC packet reassembly

event that also triggers the PDCP integrity check.

Fig. 18 OAI LTE soft-modem running on 3 CPU cores

Fig. 19 OAI LTE soft-modem running on 2 CPU cores
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Fig. 20 Impact of the execution environment on the LTE soft-modem uplink performance

Both schedulers behave similarly in this scenario when 3 CPU cores are available

as shown on Fig. 18. There is no missed deadline in either case, meaning that the

processing power is sufficient to directly execute the required threads in their con-

strained time (2 ms after receiving RF samples for RX, and 1 ms for generating the

RF samples for TX).

When only 2 CPU cores are available, the results change for the FIFO scheduler

as shown in Fig. 19. Using the low-latency scheduler, the results are similar than

with 3 CPU cores and there is no missed subframes. But using the FIFO scheduler,

it can be seen that the SF processing time is sometimes larger than 2 ms as indicated

by the tails of the curves and during the 120 s transfer, there are 708 missed SFs.

It represents a loss of 0.6 % of the SFs due to late scheduling. Figure 20 shows that

while this loss might seem small, it impacts the average uplink goodput with a more

than 6 % decrease. The DL channel should present a similar behavior when fully

loaded.

The results of this experiment are in line with what was presented throughout

this chapter and underlines that adequate hardware resources provisioning (program-

mable cloud concept) and scheduling are mandatory to achieve high performances

in cloud architectures.

9 Conclusions

In this chapter, we have studied and analyzed several important aspects of the radio

access network cloudification. First, we have presented C-RAN as a cost effective,

scalable, energy efficient, and flexible service for MNOs and MVNOs. Second, cur-

rent requirements of the LTE standard were translated in terms of various require-

ments for C-RAN including fronthaul properties, processing software latencies, and

real-time capabilities of the operating system. Third, by using OAI, we have eval-

uated C-RAN in various execution environments such as dedicated Linux, LXC,

and KVM. We drew new conclusions on the RRH-based BBU offloading and vir-

tualization environment for C-RAN; we highlighted advantages of containerization
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over virtualization in C-RAN provisioning. Fourth, we described the properties of

RANaaS focusing on the radio-processing organization and micro-service, multi-

tenant architecture; we pointed out main differences between RANaaS and general

purpose cloud computing. Finally, we described the cloud architecture for LTE RAN

and focused on the C-RAN prototype and its life-cycle management.
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