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Abstract As the world is progressing quickly towards more connected mobile

devices, the use of mobile collaborative applications is gaining an increasing pop-

ularity. For instance, real-time data streams and web applications (such as social

networking and ad-hoc collaboration) are seamlessly incorporated in mobile appli-

cations. Despite this powerful evolution, the resource limitation (energy consump-

tion and unstable connectivity) remains a serious problem against a safe concurrency

control for an efficient and continuous use of mobile collaboration. In this chapter,

we describe the data consistency issues when mobile applications support collab-

oration through the cloud. Based on human factors (such as high interactivity and

data consistency), we present two concurrency control techniques for offloading and

ensuring data synchronization among mobile devices and the cloud. The first tech-

nique relies on a client-server style to ensure safe coordination, while the second one

supports a peer-to-peer mechanism to achieve a decentralized data synchronization.

1 Introduction

The spectacular development of mobile devices (smartphones, tablets, PDA) and the

rapid progression of mobile communications in these last few years have offered a

new environment of development for mobile applications. These mobile devices have

changed the way we interact with our social environment and become the devices of

choice to collaborate with family members, friends and business colleagues and/or

customers. However, deploying ad-hoc collaboration around mobile applications

requires increasing amounts of computation, data storage and network communica-
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tions. Moreover, preserving the consistency of the manipulated shared data (such as

the shared document in mobile collaborative editor) under constraints of the mobile

applications, namely the freshness and the energy consumption, remains still a seri-

ous problem.

In this case, resorting to cloud computing becomes a necessity. Cloud computing

is a multi-purpose paradigm that aggregates several technologies such as virtualiza-

tion, peer-to-peer networks and autonomic computing. It is an emerged model based

on virtualization for efficient and flexible use of hardware assets and software ser-

vices over a network. Virtualization extends the mobile device resources by offload-

ing execution from the mobile to the cloud where a clone (or virtual machine) of

the mobile is running. It provides a seamless and rich functionality to mobile appli-

cations regardless of the resource limitations of mobile devices. Cloud computing

allows users to build virtual networks “à la peer-to-peer” where a mobile device may

be continuously connected to other mobiles to achieve a common task.

In this chapter, we provide a global view of mobile collaborative applications in

the cloud, while highlighting the specific issues of data consistency in mobile cloud

computing. We present the principle and drawbacks of two concurrency control tech-

niques (centralized and decentralized) for offloading and preserving data consistency

between mobile devices and the cloud. More precisely, we describe the components

of two existing collaborative editing protocols, CloneDoc [1] for the centralized con-

trol concurrency and OptiCloud [2, 3] for the distributed one.

The remainder of this chapter is organized as follows: Data consistency issues

related to mobile collaboration through the cloud are given in Sect. 2. Section 3

presents a concurrency control scheme supporting the client-server style for consis-

tency maintenance of the shared data. In Sect. 4, we describe another concurrency

control scheme based on a pure peer-to-peer model. We discuss the related work in

Sect. 5 and conclude in Sect. 6.

2 Data Consistency Issues

In this section, we present the collaborative model for manipulating shared data

regardless of spatial and temporal constraints using mobile devices in the cloud envi-

ronment, and we illustrate this model by two use cases. Finally, we highlight data

inconsistency problems that mobile users are likely to face due to mobile-to-clone

and clone-to-clone interactions.

2.1 Collaboration Model

The aim of the collaboration in cloud environments is to allow many geographi-

cally dispersed users to manipulate the shared data at anytime and anywhere. This

collaboration model involves a set of mobile devices and a set of clones (or virtual
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Fig. 1 Collaboration model

machines) in such a way each mobile user owns her/his clone in the cloud as illus-

trated in Fig. 1. The clone is characterized by machine features (e.g. CPU frequency,

memory size) and a virtual image to be set up (e.g. softwares like the operating sys-

tem and synchronization protocols).

To achieve continuous collaboration with high data availability, each user owns

two copies of the shared data where the first one is stored in the mobile device

whereas the second one is on its clone (at the cloud level). The collaboration between

users is performed as follows: each user modifies the mobile copy and then sends

local modifications to her/his clone in order to update the second copy and propa-

gate these local modifications to other mobile users by means of their clones.

Based on human factors, a mobile collaborative application is characterized by

the following requirements [2, 3]:

1. High local responsiveness: the application has to be as responsive as if it is based

on single-user;

2. High concurrency: users must be able to concurrently and freely modify any part

of the shared data at anytime and anywhere;

3. Consistency: all concurrent updates must be synchronized in such a way users

must eventually be able to see an identical view of all copies;

4. Scalability: a group must be dynamic in the sense that users may join or leave the

group at any time;

5. Failure recovery: users have to recover easily all shared documents when techni-

cal hitch (e.g. crash, theft or loss of mobile device) happens, and continue seam-

lessly the collaboration.

In this chapter, we focus only on features 2 and 3 to present how existing systems

achieve these features.

In the following, we present two use cases that illustrate how this collaboration

model can be deployed over mobile cloud network to overcome some problems:

Assisting tourists. Suppose that a group of tourists want to make a tour in London

city. They are already provided with a mobile application based on the proposed

collaboration model helping them to visit the city using a map. One member of the

group creates a collaborative group in the cloud and downloads the map with relevant

information about the city. The other members join the created group and share the
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London map. When visiting museums, restaurants or historic places, tourists can

share, in real-time, their opinions by writing their comments in the local map. This

allows enriching and updating the map content. For instance, during the journey

one of them realizes that, instead of the art gallery appearing on his map, there is

a pharmacy. Hence, she/he corrects/updates the description of this localization in

her/his map, and then she/he sends it to her/his clone in the cloud in order to be

broadcast to other group members. At the meantime, one tourist was disconnected

when sending the update information. In this case, her/his clone will notify the update

information after her/his re-connection to the group as if she/he did not quit it.

Social networking. With the widespread use of online social networks (e.g. Face-

book, MySpace, and Twitter), which have become a lifestyle in our society, allowing

users to keep in touch with families and friends and also extending for business pur-

poses such as searching for new career opportunities. Recently, these social networks

are increasingly going mobile, and propose a new trend of social networks called

Mobile Social Networks (MSN) [4–6], that has emerged and attracted considerable

attention from the academic and industrial communities. A user can share and syn-

chronize social data (such as a list of friends, comments, a set of song lyrics, etc.)

across a group of friends. However, MSN should address the constraints of mobile

devices, i.e., limited energy, low memory capabilities, limited processing power,

scalability, and heterogeneity [7]. To satisfy the constraints of mobile devices in

MSN, a cloud network can be used where each mobile device creates its own clone.

The clone stays connected and reachable for the other clones in the cloud whether

its mobile device is connected or not. The processing, storage and dissemination of

data are delegated to the clone. The clone can also send possible updates/notifications

(e.g. recommendations, nearby friends, prizes, etc.) back to the other clones or to its

mobile device either when requested or as a response to the events created by other

mobile devices. This cloning-based model does not require the mobile device to be

online all the time. Therefore, it retains the power consumption of the mobile device.

However, this collaborative model is not free from problems. The main challenge

is: how to maintain consistency and properly resolve conflicts throughout the shared

data, while several users are simultaneously updating the same data? Data inconsis-

tency may appear in situations related to clone-to-clone and mobile-to-clone inter-

actions.

2.2 Interaction Between Clones

The inconsistency problem occurs when two or several clones produce simultane-

ous updates. To illustrate this problem, consider the following example of collabora-

tive editor where two clones, CLONE 1 and CLONE 2, contain the same document

“ABC”. CLONE 1 executes editing operation o1 = Ins(2,X) to insert the character

‘X’ at position 2 and ends up with “AXBC”. Concurrently, CLONE 2 performs edit-

ing operation o2 = Del(2) to remove the character ‘B’ at position 2 and obtains the
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Fig. 2 Clone to Clone synchronization scenario

state “AC”. After exchanging operations among clones, the CLONE 1’s document

becomes “ABC” but the CLONE 2’s document has a different state “AXC” as shown

in Fig. 2a.

Several cloud-based collaborative editors such as Google Docs,
1

Cloud9,
2

Zoho

Suite
3

use Operational Transformation (OT) approach [8, 9] that provides a general

model for synchronizing the shared data, while allowing each user to apply local

updates optimistically. OT is considered as the efficient and safe method for consis-

tency maintenance in the literature of collaborative editors. It consists to transform

the parameters of an operation to include the effects of previously concurrent oper-

ations so that the transformed operation can lead to consistent document. In the OT

approach, each site is equipped by two main components [8, 10]: the integration

component and the transformation component. The integration component deter-

mines how an operation is transformed against a given operation sequence (e.g., the

log buffer). It is also responsible for receiving, broadcasting and executing opera-

tions. It is rather independent of the type of the shared data. The transformation

component is a set of transformation functions which is responsible for merging two

concurrent operations defined on the same state. Every transformation function is

specific to the semantics of a given shared data. The most known OT-based theo-

retical framework is established by Ressel et al. [10]. They define two consistency

criteria:

∙ Causality: If one operation O1 causally precedes another operation O2, then O1
must be executed before O2 at all sites.

∙ Convergence: When all sites have performed the same set of operations, the copies

of the shared data must be identical.

1
https://www.google.fr/intl/fr/docs/about/.

2
https://c9.io/.

3
https://www.zoho.com/.

https://www.google.fr/intl/fr/docs/about/
https://c9.io/
https://www.zoho.com/
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Thus, at CLONE 1, operation o2 needs to include the effect of o1 using a transfor-

mation function IT: o′2 = IT(o2, o1) = Del(3). As for CLONE 2, operation o1 is left

unchanged. Accordingly, both of them get the same state “AXC” as shown in Fig. 2b.

2.3 Interaction Between Mobile and Its Clone

Since the mobile and its clone are two entities that are physically and geographically

separated. Each entity has its own local copy of the shared data to be synchronized.

Therefore, a delay of applying the same operations on both sides with the same copy

is possible. This may lead to document inconsistency.

Consider the example of collaborative editing illustrated in Fig. 3. Given a mobile

M and its clone C that have the same initial document “ABC”. Mobile M performs

a local update operation o1 = Ins(2,X) to insert the character ‘X’ at position 2 and

results in state “AXBC”. Simultaneously, clone C executes two operations o2 and o3
coming from other clones: operation o2 = Ins(2,X) adds the character ‘X’ at position

2 and gives the state “AXBC”; operation o3 = Del(3) removes the character “B” at

position 3 and obtains the state “AXC”.

When Mobile M and its Clone C decide to synchronize, they commit their opera-

tions that have been applied locally. After exchanging operations, clone C performs

operation o1 and its document becomes “AXXC”. At the meanwhile, Mobile M exe-

cutes operations o2 and o3 to result in the state “AXBC”. As illustrated in Fig. 3, the

mobile and its clone have different states.

It is clear that preserving data consistency between the mobile and its clone

requires some additional treatments that have to be performed by either the mobile

Fig. 3 Mobile to clone

synchronization scenario
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device, its clone or both. Note that the more computing tasks are executed on mobile

device the more battery life is reduced.

To deal with data consistency problems caused by clone-to-clone and mobile-to-

clone interactions, two kinds (centralized and decentralized) of OT-based concur-

rency control protocols will be presented in the following sections.

3 Centralized Concurrency Control

In this section, we give a general presentation of concurrency control protocols

designed in the client-server style and using OT approach to coordinate all concur-

rent updates.

3.1 Principle

To maintain consistency, many centralized concurrency control protocols (such as

CloneDoc [1], SPORC [11] and Google Docs
4
) are based on a single server (or super

clone), that is the backbone of the collaboration with the following features:

∙ It relies on OT technique to enforce continuous and global order on all updates to

avoid the divergence of user’s document view from the server.

∙ It enables users to join or/and leave any collaborative group;

∙ It ensures the availability of shared documents for all mobile users.

∙ It manages the synchronization and propagation of updates between clones.

Two layers are used to maintain the data consistency: the first layer ensures syn-

chronization between clones and the second one consists in synchronizing the mobile

with its clone.

Clone-to-Clone synchronization. The clone is used to (i) submit the operation

coming from its mobile to the super clone (or central server), (ii) transform the oper-

ations of the other clones received from the super clone and (iii) handle its queues

so that its state of the shared document is coherent to that of other clones. Note that

the super clone serializes all operations according to a total order.

For instance, the clone in CloneDoc [1] maintains two states: The pending queue
contains update operations received from its mobile that have already been applied

to its local state, but not sent yet to the super clone (i.e. not yet serialized). The
committed queue contains operations already ordered by the super clone.

When a clone receives an operation from its mobile, it applies it immediately over

its local state, saves it locally and then sends it to the central server to be ordered. In

the case of CloneDoc, the operation is saved in the pending queue.

4
https://www.google.fr/intl/fr/docs/about/.

https://www.google.fr/intl/fr/docs/about/
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To serialize operations, two total ordering schemes may be enforced by the super

clone [12]:

∙ The implicit total ordering scheme: it is based on a central server for broadcasting

operations among collaborating clones where each clone sends local operations

to the super clone via a FIFO (First In First Out) communication channel. Then,

the super clone serializes operations and broadcasts them among all clones. The

operation serialization order at the super clone implicitly forms a total order among

all operations. This total ordering scheme is used in Google Docs.

∙ The explicit total ordering scheme: it is based on a special sequencer which does

not broadcast operations but only generates continuous sequence numbers (tickets)

for ordering operations. After generating a local operation, a collaborating clone

requests the central sequencer for a sequence number to timestamp this operation.

In this way, all operations are totally ordered by sequence numbers. This total

ordering scheme is used in CloneDoc [1].

When the clone receives an ordered operation form the central server, two cases

are possible:

∙ If the received operation is generated by another clone then, the clone transforms

it over its precedent ordered operations (w.r.t the total order enforced by the super

clone), applies it on its local state and sends it to its mobile. In the case of Clone-

Doc, the operation is transformed over the committed queue, then the resulted

operation is applied on the local state of the clone and sent to the mobile device.

∙ If the clone received its own operation from the central server, the clone stores it

locally and sends it to its mobile without executing it because it is already executed.

In the case of CloneDoc, the clone extracts the received operation from the pending
queue, adds it in the committed queue and sends it to its mobile.

Mobile-to-Clone synchronization. The mobile device and its clone are not phys-

ically the same. This leads to an inevitable delay in their communications which may

introduce data inconsistency (as shown in Sect. 2.3). Therefore, an additional con-

sistency protocol based on OT approach is deployed on mobile device to solve this

problem. For example, a user applies several operations on her/his mobile to edit

the local copy of the shared document in disconnected mode; these operations are

logged in a local queue of the mobile device (a pending queue in the case of Clone-

Doc). At meanwhile, the clone can receive operations from other clones. When the

mobile joins the cloud, its clone sends it the operations received and integrated from

other clones. Then, the mobile transforms these operations over its local operations

stored in its local queue.

Consider the scenario illustrated in Fig. 4 where User 1 exchanges operation O
with User 2. First, User 1 executes immediately the operation O on the local copy

and sends it to his clone namely Clone 1. Then, Clone 1 performs O, saves it in the

pending queue and sends it to SuperClone in order to serialize it according to the

used total ordering scheme. Next, Super Clone broadcasts the ordered operation O′

to all the clones of the cloud, including Clone 1.
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Fig. 4 Centralized synchronization

When Clone 2 receives the ordered operation O′
, it transforms it over its com-

mitted queue. Then, the clone executes the transformed operation over its local state

and sends it to the mobile of User 2.

On the other side, when Clone 1 receives its own ordered operation O′
from

SuperClone, it extracts the operation from the pending queue, adds the ordered oper-

ation in the committed queue and sends it to the mobile of User 1.

The clones send back the ordered operation O′
to their real devices (smartphones)

to be transformed (if there are operations in pending queue) and executed (except in

User 1) such that the copy of User 1 is coherent with the copies of the other users in

the system.

3.2 Drawbacks

The strong dependence of different users (clones) to the coordination server (which

plays a central and important role in the collaboration) can cause serious problems

that may negatively affect the collaboration. Hereafter, we list some disadvantages

of centralized concurrency control.

Failure. Based on central coordination server, mobile collaborative applications

deployed on cloud environments are expected to suffer from bottlenecks and are more

prone to faults. For example, if all clones running in the cloud keep making lot of

updates to the super clone, the performance will be drastically downgraded at the
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expense of responsiveness. Again, if the super clone fails (due to hardware failure or

denial of service [13]), some clones will lose their updates. Moreover, a malicious

user can flood the sequencer server with a great number of operations in order to

make the server unavailable as long as possible.

Energy consumption. The collaborative software based on centralized concur-

rency control protocols, such as CloneDoc [1] and Google Docs, use an additional

processing of OT on the mobile side in order to avoid inconsistency problem between

the mobile and its clone as illustrated in Fig. 3. However, this will cause supplemen-

tary energy consumption.

Network traffic. The coordination based on super node (or central server) incurs

more network bandwidth to receive and broadcast updates from/to clones respec-

tively. Larger the number of users, more the network bandwidth is consumed. There-

fore, this problem may lead to the loss of some operations of clones and consequently

to data divergence.

Intention violation. The intention of an operation o means the effect which can

be obtained by executing o on the document state from which o was generated. If

one operation o is generated at clone i, then its intention should be preserved at any

clone j (with i ≠ j) regardless the transformations that o undergoes. Preserving users

intention using OT approach is a hard task in collaborative editing applications. In

the following, we present a scenario of violation of intention in Google Docs.

Google Docs allows users to modify and update the same document in the same

time by using a central coordination server. Google Docs is based on Jupiter [14]

which is a client-server collaborative system. The Jupiter server maintains multiple

2D state-spaces, one for every client. A state-space consists of a local dimension

for operations generated by the corresponding client, and a global dimension for

operations from all other clients. To avoid using 2D state-spaces, Google adapted

Jupiter system [14] by adding a Stop-and-Wait protocol between the client and the

server. As a consequence, a single 1D buffer at the server is sufficient to maintain all

transformation states.

However, Google Docs inherits the main flaw of Jupiter system, namely inten-

tion violation [15]. As illustrated in Fig. 5, three users concurrently execute different

operations on the same document that contains initially the state “A”. User 1 per-

forms operation Ins(1,X) to add ‘X’ at the position 1. Simultaneously, User 2 exe-

cutes operation Ins(2,Y) to insert ‘Y’ at position 2 and User 3 performs Del(1) to

delete ‘A’.

Then, the users send their operations to the central server in order to be trans-

formed. The Google Docs server uses the reception order of operations to determine

the priority among operations. Consequently, we might get different results depend-

ing on the reception order of operations.

In Fig. 5, we have three different reception orders which result in two divergent

states “XY” and “YX” for the same document.

For example, If the server executes the delete operation o3 first, the two insert

operations o1 and o2 will be transformed to insert different characters at the same

position in the document.
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Fig. 5 Intention

preservation scenario in

Google Docs [15, 16]

Moreover, if we assume that the Google Docs server is potentially malicious (i.e.

in the sense that it might diverge the states of different users at a given point of time),

then it is very hard (or even impossible) for users to be aware about this problem and

to recover back to the point of time when their views were consistent.

Security risks. The central server may be vulnerable to malicious side-channel

attacks [17]. This may affect the synchronization process. For instance, BYOD

(Bring Your Own Devices)
5

practice is increasingly becoming a global phenomenon.

Indeed, it allows employees/students to bring personally owned mobile devices (lap-

tops, tablets, and smartphones) to their workplace, and to use those devices to access

privileged company information/education platforms. What happens if BYOD prac-

tice is used for accessing a collaborative application based on central coordination?

It is clear that BYOD brings significant security risks. The users could be suscepti-

ble from attacks originating from compromised web sites that may contain harmful

malware and compromise the proper functioning of the application.

4 Decentralized Concurrency Control

In this section, we give a general presentation of decentralized concurrency control

scheme designed “à la Peer-to-Peer” and supporting an unconstrained collaborative

work (without the necessity of central coordination). Using OT approach, synchro-

nization of divergent copies is fulfilled automatically at each clone. To better present

5
http://www.ibm.com/mobilefirst/us/en/bring-your-own-device/byod.html.

http://www.ibm.com/mobilefirst/us/en/bring-your-own-device/byod.html
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Fig. 6 Distributed synchronization

this decentralization, we describe the main components of OptiCloud [2, 3] as it

is the best representative of decentralized concurrency control protocols combining

mobile and cloud environments.

4.1 Principle

As illustrated in Fig. 6, the mobile collaborative application, based on decentral-

ized coordination, provides a pure peer-to-peer virtual private network (without any

server role assigned to some clone) platform where users can form ad-hoc groups

based on their clones to achieve a common objective. It allows users to cooperate

as follows (see Fig. 6): each user has a local copy of the shared document in her/his

mobile and another copy of the same document in the clone; the user’s operation O
is locally executed in the mobile device and then is sent to its clone in order to be

transformed (O′
is the transformed form of O) and executed on other mobile devices

(via their clones).

In [2, 3], a collaborative editing service is presented for manipulating the shared

data, regardless of spatial and temporal constraints, where mobile users can edit col-

laboratively shared documents in peer-to-peer mode. The advantages of this model

are (i) the availability of data anytime and anywhere, and (ii) the optimal use of

mobile devices resources. In fact, the collaboration and communication tasks are
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seamlessly turned on the cloud. Moreover, it is equipped with mechanisms to trans-

parently manage the user departure, the arrival of new users joining the collaboration

group.

Each clone has a local copy of the shared document SC and its log LC storing all

updates received from other clones and updates generated from its mobile. The log

LR contains remote updates transformed against LC, executed on SC and in synchro-

nization pending with the mobile. Updates sent by the mobile and generated locally

in the clone are stored in log LM . An index SP of log LC is used to indicate the last

synchronization point between the clone and its mobile.

To preserve data consistency in peer-to-peer mode between mobile users, Opti-

Cloud [2, 3] is constituted from two synchronization layers: The first layer ensures

synchronization between clones (as back-end) and the second one consists in syn-

chronizing the mobile with its clone (as front-end).

4.1.1 Clone-Clone Synchronization

Two events can be triggered in the clone: (i) receiving operations from mobile to be

generated and integrated in the clone; (ii) receiving and integrating remote operations

coming from other clones.

Generation of local operations. Once the clone receives operations from its

mobile, it performs the following steps:

1. Computes the minimal execution context of each operation O received from

mobile. An operation may depend on previous operations according to the exe-

cution order. Tracking this dependency inside a log enables to identify operations

that must be executed on all clones according to the same order. The clone syn-

chronization protocol uses a minimal dependency relation which is independent

of the number of users, and accordingly, it is well suited for dynamic groups. In

other words, instead of considering O as being dependent of all LC operations,

this step reduces this context by excluding as much as possible some operations

of LC to give the transformed operation O′
. For more details, we can refer to

[15, 18].

2. Sends O′
to other clones and adds it in LM which contains all operations (coming

from the mobile) executed on LC.

3. Determines the operations that are concurrent to O′
in log LR and calls the trans-

formation component in order to get operation O′′
that is the transformed form

of O′
according to the concurrent operations;

4. Applies operation O′′
over its local state SC and adds it to log LR.

Integration of remote operations. When a clone receives a remote operation O
from another clone, the integration of this operation proceeds by the following steps:
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Fig. 7 Scenario of

collaboration

1. From the log LC, it determines the sequence seq of concurrent operations to O in

order to transform O against seq and obtain O′
;

2. After added O′
to the local log LC, it determines from the log LR the sequence

seq′ of operations that are concurrent to O′
;

3. It calls the transformation component in order to get operation O′′
that is the

transformation of O′
according to seq′;

4. It executes O′′
on the current state and adds it to the local log LR.

Illustrative example. Given two clones, Clone 1 and Clone 2 editing a shared doc-

ument described in Fig. 7. Initially, each Clone has a copy that contains “AB”. Two

local insertion operations O1 and O2 have been executed by Clone 1. Concurrently,

Clone 2 has executed another insertion operation O3. The added characters are ‘X’,

‘Y’ and ‘T’ respectively.

There is a dependency relation between operations O1 and O2 in such a way O1
must be executed before O2 in all clones. This is due to the fact that their added

characters are adjacent (positions 1 and 2) and created by the same clone (for more

details see [18]). This dependency relation is minimal in the sense that when O2 is

broadcast to all clones, it holds only the identity of O1 as it depends on directly. As

illustrated in Fig. 7, the execution order is as follows.

At Clone 1, O3 is considered as concurrent. It is then transformed against O1 and

O2. The sequence [O1 = Ins(1, X), O2 = Ins(2, Y), O′
3 = Ins(3, T)] is executed and

logged in Clone 1, where O′
3 results from transforming O3 to include the effect of

operations O1 and O2 (i.e. O′
3 = IT(IT(O3, O1), O2) = Ins(3, T) using transformation

function IT given in [18]).

At Clone 2, O1 and O2 are concurrent with respect to O3. They must be trans-

formed before being executed after O3 according to their dependency relation. Thus,

the following sequence is executed and logged in Clone 2: O3 = Ins(1, T) and O′
1 =

IT(O1, O3) = O1 and O′
2 = O2.
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4.1.2 Mobile-to-Clone Synchronization

In OptiCloud [2, 3], the shared document is considered as a critical section between

the mobile and its clone. Indeed, when the mobile tries to commit/synchronize w.r.t

its clone, only one of them will have the exclusive right to access in synchronizing

mode to its document copy. This distributed mutual exclusion protocol is achieved

by the exchange of messages (i.e., token). Initially, the mobile device has the right to

be the first to commit/synchronize with its clone. To ensure a safe synchronization

between mobile and its clone, we use two tokens TM and TC:

∙ Token TM gives the mobile state: (i) TM = 1 means that mobile is editing its local

copy; (ii) TM = 0 indicates that mobile is synchronizing with its clone.

∙ Token TC indicates the state of the clone: (i) TC = 1 states clone is integrating

remote operations received from other clones; (ii) TC = 0 means that clone is syn-

chronizing with its mobile.

Whatever where the exclusive access right is, the mobile device and its clone can

edit independently their local copies. The clone continues to receive remote opera-

tions from other clones to integrate them later on the local state. At the meantime,

the mobile user can work on her/his copy in unconstrained way. But, once she/he

decides to synchronize with her/his clone, all local editing operations are sent to

her/his clone and the exclusive access right is released to enable the clone to start

the synchronization with the mobile device as illustrated in Fig. 8. Thus, the clone

performs the operations issued by the mobile device on its local state, includes their

effects by transformation in its local (and not yet seen by the mobile) operations,

and sends the resulting (or transformed) operations to the mobile device in order to

integrate them.

In the mobile side, OptiCloud uses just the local state and the Log that contains

performed operations. Note that the mobile device does not perform any specific

Fig. 8 Sequence diagram of

synchronization process

among mobile and clone
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treatment; it updates only its state. The steps of synchronization between the mobile

and its clone can be represented as follows:

Generation of local operations. If the mobile is in editing state (i.e. TM = 1) then

it creates operation o (e.g. o = ins(1, X)), executes this operation directly on its local

state and adds o to its log. When the user wants to synchronize with her/his clone

(i.e. TM = 0 indicating that the mobile is in synchronizing state), the log is sent to the

clone. The mobile cannot generate local operations up to the end of synchronization.

Reception of mobile operations by the clone. When the clone starts the synchro-

nization process with its mobile, after receiving log LM from the mobile, the clone

generates locally each received operation (as previously explained in step Genera-
tion of local operations of Sect. 4.1.1). After integrating all operations coming from

the mobile, the clone prepares the operations (not yet seen by the mobile) to be sent

to the mobile. These operations are included in the interval from SP to |LC| in log

LC, where Sp is the last synchronization point between the mobile and its clone and

|LC| the length of log LC. Each operation O in the interval [SP, |LC|] inside log LC
is integrated over LM as follows:

1. Defines the operations that are concurrent to O in the log LM;

2. Transforms O according to the defined operations to result O′
;

3. Adds O′
to the local log LM;

Next, operation O′
is added to a Log. Then, the Log is sent to the mobile in order to

be applied on its local state.

The reception of operations from the clone.When the mobile receives operations

from its clone, it applies them over its local state and makes TM = 1 to indicate that

it is available to generate local operations.

4.2 Drawbacks

Although the cloud-based mobile collaborative applications using distributed con-

currency control avoid several flaws of the ones based on the centralized coordination

server, they also have some weaknesses:

Energy consumption. Since the heavy computing tasks are delegated to the

clone, it consumes more energy in the cloud in order to ensure communication among

clones and also its mobile, compute transformation procedures to maintain data con-

sistency and manage join and leave events of its mobile.

Access control. Ensuring a distributed access control to a shared data is a chal-

lenging problem in the cloud-based mobile collaborative application. The availabil-

ity of the shared data in anytime and anywhere is one of the main requirements of

collaborative applications, whereas access control looks to guarantee this availabil-

ity only to users with proper authorization. Moreover, high responsiveness of local
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updates is required. However, when adding an access control layer, high responsive-

ness is lost because every update must be guaranteed by some authorization coming

from a distant user (such as central server) [19].

5 Related Work

The massive development of cloud technology encourages users to delegate their

heavy computing treatments to cloud platforms. The mobile applications are the

most concerned candidates to benefit from the huge computing power of Cloud to

satisfy their constraints in terms of resources (battery life, date storage and applica-

tion speed up).

Several approaches [20–22] have been proposed to offload parts of their heavy

tasks to the cloud since execution in the cloud is considerably faster than the one

on mobile devices and mobile-cloud offloading mechanisms delegate heavy mobile

computation to the cloud.

SPORC [11] is a collaborative system where several users can edit shared docu-

ments using smartphones. To maintain consistency, it relies on operational transfor-

mation technique and a single server to give global order to concurrent user updates.

However, SPORC exchanges a large number of messages between users and the

server. Therefore, it is not well adequate to mobile devices due to short battery life.

Inspired from SPORC, CloneDoc [1] is a secure real-time which enables col-

laboration for mobile devices that are cloned in the cloud in order to lessen the

heavy computing tasks of collaborative editing works on mobile devices. CloneDoc

is implemented upon C2C platform [23] which is a distributed peer-to-peer platform

for cloud clones of smartphones. It is based on Operational Transformation (OT)

approach and a single server to enforce a continuous and global order to avoid the

divergence of client’s document view from the server. Unfortunately, a server failure

could stop the collaboration between mobile devices. Moreover, CloneDoc needs

additional treatment of OT on the mobile side to ensure convergence between the

mobile and its clone.

rbTree-Doc [24] is a collaborative editor framework for cloud environments. It

allows multiple users to share and edit online documents. The document is repre-

sented as Red-Black tree [25]. The user can download a part of a document to be

updated from the cloud service, and this enables rbTree-Doc to reduce the amount of

data that needs to be encrypted by focusing on the analysis of content that has been

updated by the collaborative services. However, rbTree-Doc is based on a client-

server model and uses a complex structure to represent the shared document, and

this from one hand, cannot support a server failure situation and from the other hand,

the complex structures are hardly treated in mobile devices.

Hermes [26] is a transparent approach to interoperate between heterogeneous col-

laborative editing services in the cloud. Users are enabled to use their familiar ser-

vices to participate in the cross-cloud document collaboration. Hermes uses an OT

driven approach to resolve conflicts and maintain data consistency for cross-cloud
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document synchronization. Like Hermes, the collaborative editing service proposed

in [2, 3] can be extended to manage the mobile collaboration on several clouds.

The platform presented in [2, 3, 27] is cloud service-based approach, and it is

composed of two level systems. The first level, cloning engine, provides an auto-

matic chain for preparing a dynamic platform that can contain multiple virtual pri-

vate networks. Each network corresponds to a group of users and contains clones of

their mobiles. It provides web services to manage users groups and creates clones

of mobiles in the cloud. The second layer, OptiCloud, provides group collabora-

tion mechanisms for editing shared documents in fully decentralized way. Unlike

SPORC [11], CloneDoc [1] and rbTree-Doc [24], the platform of [2, 3] furnishes

group collaboration mechanisms in real-time without any role assigned to the server.

Procedures for maintaining consistency of shared documents are executed on the

clone side.

6 Conclusion

Designing concurrency control for mobile collaborative applications is considered

as a challenge, since mobile devices are constrained by insufficient resources which

must be regarded when combining mobile and cloud environments.

In this chapter, we have presented the data consistency issues when mobile users

are cloned in the cloud and they update simultaneously the shared data replicated

in the mobile device and its clone. Two kinds of concurrency control scheme are

described with their drawbacks. The first control uses central coordination server

to maintain data consistency. As for the second one, it provides a synchronization

mechanism in fully decentralized way.

As future research direction, it is interesting to add a new layer for security within

mobile collaborative applications in the cloud. It consists in developing a protocol for

managing distributed access rights and adding cryptographic mechanisms to ensure

maximum security of shared resources.

Appendix

∙ Replica: is a copy of the shared data that can be modified at will by the user.

∙ Data Consistency: means that data values must be the same for all replicas when

there is no updates in transit. This term is used to indicate that the system is able to

reflect correctly the updates performed on a copy to all other copies of the shared

data.

∙ Data Concurrency: means that many users can access simultaneously shared data

to perform read and write operations.



Concurrency Control for Mobile Collaborative Applications . . . 287

∙ Data Dependency: an update operation applied on replica may depend on previ-

ously performed operations. In other words, the effect of such operation may be

influenced by previous operations.

∙ Clone: in our case, the clone is a virtual machine Android X86
6

running in the

cloud and has the same features as a physical mobile device.
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