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Abstract Brains can be considered as goal-seeking correlation systems that use
past experience to predict future events so as to guide appropriate behavior. Brains
can also be considered as neural signal processing systems that utilize temporal
codes, neural timing architectures operating on them, and time-domain,
tape-recorder-like memory mechanisms that store and recall temporal spike pat-
terns. If temporal memory traces can also be read out in faster-than-real-time, then
these can serve as an advisory mechanism to guide prospective behavior by sim-
ulating the neural signals generated from time courses of past events, actions, and
the respective hedonic consequences that previously occurred under similar cir-
cumstances. Short-term memory stores based on active regeneration of neuronal
signals in networks of delay paths could subserve short-term temporal expectancies
based on recent history. Polymer-based molecular mechanisms that map
time-to-polymer chain position and vice versa could provide vehicles for storing
and reading out permanent, long-term memory traces.
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1 Introduction

As the aphorism goes, “the purpose of remembering the past is to predict the
future.” Anticipation involves both predicting future situations and events and
preparing for them. Anticipation not only projects what will occur but also when
and where it will occur, as well as what to do about it. Anticipatory mechanisms
enable organisms to use past experience to act in a manner appropriate for future
conditions. This chapter proposes novel anticipatory neural memory mechanisms
that are based on neural time codes and temporal pattern memory traces.
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2 Anticipatory Systems

“Anticipation” is a general notion. The theoretical biologist Robert Rosen coined
the specific term “anticipatory system” [1–3] and defined it as a system in which
prospective future states determine present behaviors [4]. The papers in this volume
are the product of the last of three conferences inspired by Rosen’s and Nadin’s
ideas about anticipatory systems [5, 6].

2.1 Purposive Systems as Functional Organizations

Anticipatory systems are those systems that have embedded goal-states: they are
organized in such a way that their action realizes desired future states. The idea has
much in common with naturalistically grounded teleologies (“teleonomies”) of
purposive systems. In the east, Russian physiologists and psychologists (Anokhin,
Sudakov, Bernstein, et al.) developed general theories of functional systems [7–9].
In the west, notions of purposive, feedback control systems formed the basis of the
early cybernetics movement [10–14].

Rosen and his mentor, Nicolas Rashevsky, were strong proponents of a
non-reductionist, relational, theoretical biology that focused on questions of or-
ganization as explanations of functions, rather than appeal to mechanistic reduc-
tionism [15, 16]. Rosen offered the parable of an amoeba in a pot of water, before
and after boiling. The live amoeba and the dead one share the same molecular
constituents, but the organization of the system has been altered by boiling in such a
way that the amoeba was no longer able to regenerate its parts and its organization.
Rosen mounted deep criticisms of the machine and computer metaphors for
describing living systems, not because the parts in some way violate the laws of
physics, but because, in describing living systems solely in terms of trajectories of
parts, one misses the organizational relations that make the system a persistent,
coherent entity. Knowledge of parts is useful certainly for designing drugs, but it
does alone not tell us how to go about building stable, regenerative organisms [17].
For that, as Rashevsky and Rosen foresaw, one needs a theory of mutually stabi-
lizing relations.1

1Such biological system theories have deep implications for medicine. Much of our current
understanding of disease in terms of “molecular medicine” is grounded in linear chains of inter-
actions between molecular parts. Many therapies simplistically attempt to control one variable
(e.g., blood sugar concentrations) using one or two interventions (insulin) without considering the
circular-causal nature of networks of metabolic loops that can stymie such interventions. Only if
we are able to model the whole set of systemic interactions and relations can we anticipate what
the system will do in the short and long term. Once we have an adequate systems theory of
biological organization, we will gain the deeper understanding needed for how to design thera-
peutic interventions that have self-sustaining effects such that the need for further interventions
becomes self-limiting.
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2.2 Anticipatory Systems in Animals with Nervous Systems

Although the most obvious examples of anticipation involve animal behaviors
mediated by learning and memory, many non-neural examples of biological
anticipatory capabilities abound. For example, in many plants and animals,
developmental stages are orchestrated to occur at favorable seasons of the year
(e.g., seed germination in early spring). The mechanisms for favorable timing of
developmental stages arise in environments with strong seasonal variations. The
environmental variations create positive selective pressures for anticipation, such
that those lineages, whose individual time development enhances survival and
reproduction, will tend to persist longer than those that don’t. Because of the
cyclical, predictable nature of seasonal changes, timing strategies that worked better
in previous cycles will continue to work better in present and future cycles. Thus
anticipatory timing mechanisms appropriate for coping with the future can evolve,
provided that similar situations recur.

Animals are motile organisms that cannot produce their own food. In contrast to
fungi, which absorb nutrients, animals ingest and digest their food. As a conse-
quence, most animals must move to find food, such that the immediate environ-
ments within which they must orient and transport themselves are ever changing.
Animal lineages evolved nervous systems that coordinate the actions of effector
organs contingent on the sensed states of immediate surrounds and on current
internal goal-related states. Embedded goal-related states include the needs of the
organism for survival (e.g., satisfaction of system-goals of homeostasis, self-repair,
growth), and reproduction. Those lineages of organisms that evolved more effective
embedded goal mechanisms for survival and reproduction tended to persist. In
choosing actions contingent on percepts and active goals, organisms in effect
anticipate which actions will be most appropriate in satisfying those goals.

On evolutionary timescales, variation, construction, and selection processes
yield organisms that are better adapted in their particular ecological contexts for
more reliable (survival and) reproduction. During the lifespans of organisms with
nervous systems, neural learning processes shape percept-action mappings con-
tingent on past experience and reward. So even in the most primitive kind of
adaptive percept-action systems, there is anticipation in the sense that the results of
previous experiences and successful performances continually modify system
structure and behavior to guide future action.

In both evolution and learning cases, memory mechanisms encode the past and
make it available for anticipation of what actions can be most appropriate in the
current state. In the evolutionary case, the memory lies (mostly) in the genetic
sequences that, shaped by selective pressures and construction constraints, persisted
in the lineage. In the learning case, the memory lies in short-term memory traces
that guide behavior based on the immediate past and present, and in more per-
manent long-term memory traces that can guide behavior that is based on the deeper
past.
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2.3 Organization of Perception and Action

Animals with nervous systems can be characterized in terms of purposive,
percept-action systems. They have sensory receptors that permit them to make
distinctions on their surrounds; effector organs (mainly muscles) that permit them to
influence their environs (action); and nervous systems that permit coordination of
action contingent on behavior. Aside from sleep or other dormant states, there is a
constant, ongoing cycle of percepts, coordinations, actions, and subsequent envi-
ronmental changes (Fig. 1, bold arrows).

In parallel with percept-action cycles are internal cyclical neuronal dynamics that
steer behavior from moment to moment and over the long run (Fig. 2). These
include the neuronal dynamics of competing internal goals, internal modal
system-states (e.g., waking/sleeping, affective states), cognitive and deliberative
processes, attention, action-selection, and the influence of long-term memories.

Embedded in all nervous systems of animals are feedback-driven goal mecha-
nisms that steer behavior in a manner that reliably satisfy basic organismic
imperatives of survival and reproduction (e.g., maintain oxygen/water homeostasis,
find food sources, avoid predators, find mates). Competitive dynamics of current
goals determine which goals are paramount at any given moment such that their

Fig. 1 Percept-coordination-action cycles and goal-directed steering of percept-action
coordinations
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drive states partially determine behavioral choices (action selections).2 This is
basically “dominance principle” of the Russian psychologist Ukhtomsky (1845–
1942) [9]:

… in the nervous system, there is at each moment only one active dominating dynamic
structure or constellation of excitation, which is associated with the most actual, urgent
ongoing needs and desires. This excitation structure plays the role of a situational nervous
network, an agency for organizing the physiological and behavioral response directed to
satisfying these needs. At the same time all other goals and desires are suppressed” [18].
What is the difference between a bodily physiological mechanism in an animal and a
technical mechanism? Firstly, the former is generated during the course of the reaction
itself. Secondly, once chosen, the behavior of a technical mechanism is secured once and
for all by its construction, whereas in a reflex apparatus it’s possible to successively realize
as many different mechanisms as there are available degrees of freedom in the system. Each
of the successively realized mechanisms is achieved through the active inhibition of all
available processes, except one. (Ukhtomsky, quoted in [18])

The notion of competitive goal dynamics fits extremely well into current con-
ceptions of brains as sets of competing circuits that steer behavior, for better or
worse, towards particular sets of goals (“implementation of internal goals” in
Fig. 1). The notion of the inhibitory suppression of non-dominant goals fits very
well with the emerging conception of the basal ganglia/striatum as a generalized
double-inhibition braking system in which brakes are selectively released to

Fig. 2 Functional organization of informational dynamics in brains

2Drive states only partially determine actions, because arguably, actions taken also depend upon
which action-alternatives (affordances) are perceived by the organism to be immediately available.
Those goals that have obvious, apparent means of attainment may be more attractive for action.
Perception of options for effective action can feed back to change which drive states become
dominant.
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facilitate task-relevant thalamic sensory and motor channels. The resting state is a
state of inhibition of sensory and motor systems in which neural loop gains are
slightly attenuating. The release of inhibition changes these gains to slightly
amplifying, thereby facilitating neuronal sensory and motor signals related to the
current dominant goal.

In addition to competitive goal dynamics, virtually all animals switch their
global system-states between discrete modes of operation and behavior, (e.g.,
waking-sleep-hibernation cycles and behavioral modes such as eating, excreting,
hunting, fleeing, communicating, exploring, mating) [19]. Affective states, which
can be regarded as internal assessments of the current overall “state of the organ-
ism” also modulate behavior choices by increasing propensities for different modes
of action (e.g., fight/flee/approach). Behavior is jointly determined by internal states
(goal-drive state, system-mode, affective states), as well as by the perceived current
state of the environment and the perceived goal-satisfaction action-possibilities that
the situation affords (Fig. 1). The situation perceived by the animal is in turn jointly
determined by the state of the environment and the animal’s perceptual systems.

2.4 General Types of Functional Organizations

In my view, such animals can be categorized in terms of the functionalities that their
organizations afford. Animals are living systems because they actively regenerate
their organization (material components and relations). This is the core idea
underlying conceptions of self-production systems [20], autopoietic systems [21,
22], metabolism-repair systems [23, 24], self-reproducing robots [25], autocatalytic
nets [26], self-modifying systems [27], and semantically-closed self-interpreting
construction systems [28]. They are semiotic systems because their internal oper-
ation and resulting behavior can be described in terms of sign distinctions conveyed
via neural codes [29, 30]; and they are autonomous purposive systems because they
are mainly driven by internal goals.

They have their own agency to the extent that they have embedded goals (in-
ternal motivation), requisite ability (the right mechanisms needed for action), and
sufficient freedom of action (autonomy) to reliably achieve particular goals. They
are anticipatory systems if they have learning and memory mechanisms that allow
them to project the past into the present so as to evaluate future consequences of
current courses of action. If one defines these different attributes in terms of these
specific kinds of material organizations, then a system, such as an autonomous
robot, need not be living to be semiotic, autonomous, purposive, or anticipatory, or
to exhibit agency. Underlying these different types of functional organization is the
Aristotelian notion of hylomorphism.
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2.5 Hylomorphism as an Ontology for Functional
Organization

Hylomorphism is an ontology of functional organizations embedded in matter.
Aristotle adopted the hylomorphic framework in formulating his theories of life and
mind [31–33].

Life, purpose, meaning, and even conscious awareness are properties of material
systems that are organized in particular ways. Explanations based on organization
(the system is organized so as to realize a particular goal, i.e., it has a “final cause”)
are complementary to reductionist, causal explanations based solely on physical
properties of parts. Purposive, goal-directed systems are material systems that are
organized so as to realize particular goal end-states that in effect become their final
causes.

An example of a simple purposive system is a thermostatically regulated heating
system that is organized so as to maintain the temperature of a room within a
particular range. The “final cause” of the system is the end-state target temperature
range that is determined by the thermostat. (Because of its organization and material
realization, the system seeks the corresponding temperature states, and, provided
that the system is working properly, the thermostat setting “predicts” the final
temperature state of the system.)

Hylomorphism is a functionalist ontology to the extent that functional organi-
zation can be abstracted from particular material substrates. One can design a
thermostatically regulated heating system in terms of functions of and relations
between components without specifying exactly how thermostat control mecha-
nisms and heating/cooling elements are to be realized materially (and different
material implementations can realize comparable behavioral functions). However,
unlike platonic ontologies based entirely on ideal forms, a hylomorphic ontology is
materially grounded. In order to realize functions within the material world,
organizations must be realized in some material form. It is not enough to replicate
form; the organization must be fleshed out, embodied, such that it interacts with
and changes other parts of the material world.

3 Anticipation and Memory

Memory is a process that entails the maintenance of a distinction through time, and
thus it is a semiotic process that is invariant with respect to time. Anticipatory
prediction involves estimating the course of future events based on the (remem-
bered) past and present (Fig. 3).

Nervous systems evolved to coordinate behavior. Coordination without memory
is possible where mappings between percepts and actions do not change with
experience. However, once these coordinative mappings can be modified on the
basis of experience, then the effects of past experiences can carry over into present
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and future. This kind of simple adaptive modification of behavior does not require
explicit storage and retrieval processes.

In biological organisms and nervous systems, anticipation involves not only
what situations and events are expected, but also when and where they are expected
to occur. In animals with nervous systems, anticipation involves (usually implicit)
understanding of the contingent structure of the world (modeling) for deliberative
purposes: to decide whether positive action needs to be taken, to determine what
actions are available (perceived affordances), and if so, what action is most likely to
satisfy those system-goals that are currently of highest priority (goal satisfaction).

3.1 Short- and Long-Term Memory

Standard theories of memory posit a labile, short-term memory coupled with a
permanent long-term memory (Fig. 4). There is large literature, old and new, in
psychology on the characteristics and nature of memory [34–36]. Many treatments
further subdivide different types of memory by modality, the nature of the items
stored, temporal processing windows, and temporal persistence, while others seek
universal frameworks.

Short-term memory, broadly construed, provides a temporary store of neural
signals related to current and recent perceptions, thoughts, affects, motivations, as
well items maintained via working memory or recalled from long-term memory.
Since the 1930s, the neural mechanisms that subserve short-term memory have
been conceived explicitly in terms of neuronal reverberatory processes, i.e., neural
activity patterns that are actively maintained and self-sustaining. The sustained
firing of neurons that permits these activity patterns to persist is facilitated by
activation of N-methyl-D-aspartate (NMDA) receptors that create the biophysical
conditions for long-term potentiation (LTP) and spike-timing-dependent plasticity
(STDP).

How the specific contents of these temporary memories are coded in neuronal
activity patterns is the neural coding problem as it applies to memory. If the

Fig. 3 Memory enables present distinctions to carry over to influence future actions
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information is encoded such that specific subsets of neurons have sustained, ele-
vated firing rates, then the reverberating patterns likely involve persistent activation
of these specific neuron subsets. If information is encoded in temporal spike pat-
terns, as is proposed here, then the reverberating patterns likely involve persistent
regeneration of spike patterns within neuronal circuits.

The hippocampal formation is the bridge between short-term and long-term
memory stores. It appears to be responsible both for maintaining neural activity
patterns in short-term memory and for replaying neuronal patterns associated with
significant events such that they can be consolidated into long-term memory,
mainly during sleep. This work originally came out of animal maze-running
experiments, where “place cells,” which encode distinct maze locations, were
observed to fire in the temporal sequences of the maze running. Recently, “time
cells,” which encode the timings of events and places, have been found in the
hippocampus and elsewhere [37]. During states of sleep or during periods of awake
reflection, stored event-sequences can be replayed at faster-than-real-time, enabling
them to function as predictive reward mechanisms [38].

Long-term memory is permanent: it can survive sleep, seizure, general anes-
thesia, and long periods of coma. Once formed, some types of long-term memories
can last the entire lifetime of an individual.

Fig. 4 Short-term regenerative memory and long-term memory. Neuronal signals related to
current goal-states are maintained in regenerative short-term working memory and eventually
consolidated into long-term memory traces. In this proposed scheme, the contents of short-term
memory stores consist of complex temporal spike patterns that are actively regenerated in
correlation-facilitated delay paths. Long-term temporal memory traces are activated by
corresponding temporal patterns present in working memory, enabling pattern-resonance and
content-addressability
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3.2 Music, Memory, and Anticipation

Music perception offers a rich set of examples of the actions of short- and long-term
memory mechanisms whose operations span timescales from seconds to lifetimes
[39, 40]. Because music is a universally familiar medium that involves sequences of
discrete events that unfold in time within the evolving context of the remembered
recent present, it provides an excellent springboard for studying the role of time in
mind and brain.

In music, every note-event creates an expectancy of the next note-event such that
sequences of notes create pattern expectancies of succeeding notes. Repeating a
sequence of events immediately groups the events in the sequence into a coherent
“chunk” and creates a strong expectancy that the pattern sequence will repeat yet again.
The pattern expectancies can involve temporal patterns of the note timings (rhythmic
patterns), note accent patterns (meter), pitch sequences (motifs, melodies), and timbral
sequences. Temporal grouping processes, which were extensively investigated by the
Gestaltists, play an essential role in shaping these expectancies [39, 41, 42].

The brain is extremely good at detecting patterns of events and attributes that
recur, and it can do this over many timescales.3 In music, periodic sound patterns
whose waveforms rapidly repeat (25–4000 Hz) produce musical pitches (that can
carry a melody), whereas slower periodic patterns of sonic events (10 Hz or less),
be they musical notes, clangs, or speech fragments, create rhythmic expectancies.
Every repeating sound creates a strong expectancy of its continuation, and viola-
tions of this expectancy are highly noticeable. The repeating pattern is grouped into
a unitary whole (a “chunk”). If the pattern is a fast-repeating acoustic waveform
with a repetition rate greater than about 25 Hz, we perceive a pitch at the repetition
rate. The tonal quality (timbre) of the sustained sound is determined by the form of
the repeated waveform (or in Fourier terms, its spectral distribution and shape).

In music, repeating temporal patterns of onsets and offsets of discrete events with
rates of less than roughly 10 per second are perceived as rhythms. Different tem-
poral patterns are heard as different rhythms. Here the repeating events are grouped
together into a chunk (“groove”), and after a few repetitions, expectations that each
of the events will recur at a given time in the sequence and with the same attributes
rapidly develop. This implies that the representation of the rhythmic pattern con-
tains not only information about the sequence of events and their respective attri-
butes (e.g., pitch, timbre, loudness, duration, location), but also a timeline of events.
The memory trace of a rhythmic pattern essentially replicates the timeline of the
events (the timings of event onsets, mainly, but also offsets that co-encode
event-durations).

3Oliver Selfridge once related to me his experience with early computers with mechanical relays.
The programmers would set up the computer and would stay in the room periods of time while the
computations ran. After a while they would begin to notice long and elaborate repeating irregular
sound patterns that were being produced by the relays as the program executed long, iterated
complex instruction loops.
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What is the nature of this memory trace? Although it has been conventionally
assumed that temporal relations are converted to spatial patterns of neuronal acti-
vation, there have been a number of suggestions in the past that the memory traces
themselves might be temporal patterns. In his book on the psychology of time,
Fraisse [43] references the “cyclochronism” theory of the Russian psychologist
Popov. Longuet-Higgins had proposed various nonlocal, holographic memory
schemes based on frequency-domain Fourier decompositions (holophone model,
[44]). Although these have the merit of using the oscillatory dynamics of neural
populations, they had very limited storage capacity. Much more promising was a
later time-domain mechanism based on temporal correlations between spikes [45].
Roy John proposed that evoked, induced, and triggered temporal patterns of
response could subserve general mechanisms for memory [34, 46, 47].

We propose that temporal patterns of spikes might provide a direct basis for
temporal memory trace mechanisms. In essence, temporally patterned stimuli
impress their temporal structure on the time structure of neural spikes, such that the
temporal patterns of spikes can serve as an iconic time-domain representation of the
stimulus.

A great deal of evidence in the auditory system points towards temporal codes
for pitch and rhythm, albeit at different levels of the system. The most obvious
neural correlates of musical pitch lie in spike timing patterns— distributions of
interspike intervals—in the auditory nerve, brainstem, and midbrain [48, 49]. Those
for rhythm can be found at all levels of the system, from auditory nerve to auditory
cortex and beyond. The onsets and offsets of every note produce well-timed spikes
in large numbers of cortical neurons [50], such that temporal patterns of note-events
replicate the temporal structures of their rhythms [51, 52]. These evoked neuronal
temporal responses provide the necessary inputs for various oscillatory mechanisms
of rhythmic and metrical expectancy that have been proposed [53]. (Possible direct
time codes for rhythm and their relationship to oscillatory dynamics are discussed a
bit more below in Sect. 5.2.2.)

3.3 Mismatch Negativity and Short-Term Expectancies

Short-term musical memory is very sensitive to the timing of events; and there are
neural responses that are widely observed in event potentials that appear to be
related to short-term temporal expectancies and their violations. Event potentials are
averaged electrical or magnetic signals triggered (aligned in time) by the onset of a
particular event, such as a note-event or even the change in a note-event pattern.

A so-called “mismatch negativity response” (MMN) is observed when an event
is presented repetitively (“standard”) and then some change is made in a subsequent
event (“deviant”). Such MMN-like responses are widely used to study the dynamics
of musical expectancies and their violations [50, 54, 55].

If the event is a musical note, any perceptible change in the physical attributes of
the note, such as a change in sound level (loudness), periodicity (pitch), spectrum
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(timbre), attack (timbre), duration, or location (apparent location), will produce a
neural response that differs from the response to the standard event. Here the
context of the standard event pattern has created an expectancy that is then violated
by the deviant event. The mismatch negativity is computed by subtracting the
time-pattern of the averaged response to deviant events (triggered on their onsets)
from that of the standards. Depending on the nature of the change in events, the
mismatch negativity peaks at a characteristic latency after the beginning of the
deviation from the standard, i.e., at the onset of the deviant stimulus. This latency is
typically on the order of 100-200 ms for changes in basic auditory perceptual
attributes.

The MMN is evoked more or less automatically. It does not require subjects to
attend to the stimuli, and indeed can be observed in sleeping subjects, infants, and
many animals. MMN responses to a standard metrical musical pattern followed by
the same (syncopated) pattern in which one of the beats is omitted are observed in
newborn infants. MMN-like responses are observed (sometimes reported under a
different name) in many different species, sensory modalities, and brain regions.

MMN-like responses can also be seen for “higher level” patterns and attributes.
Complex rhythmic and/or melodic patterns of note-events can be presented as
standards, and a pattern that deviates in some respect (e.g., a change in the peri-
odicity (pitch) of one of the notes) will create an MMN closely following the time
point of the deviation. MMN-like responses with longer latencies are observed for
syntactic and semantic violations and yet other kinds of more abstract attributes.

MMN responses are sensitive not only to changes in the perceptual and cognitive
attributes of discrete events, but also to their timings. If a regular metrical sequence
is set up as the expected standard pattern, then deviations in the timing of subse-
quent events (leads or lags relative to the expected timing of the beat) will evoke
MMN responses, again with a latency that depends on the timing of the
expectancy-violating mismatch. In music, these expectancy violations form the
basis for expressive timing, intentional manipulation of the timings of notes to
convey and evoke emotions.

MMN phenomena suggest the existence of canonical neural temporal compar-
ison mechanisms. It is as if a timeline of events is being built up, maintained in
short-term memory, and compared with incoming temporal patterns. In this chapter,
I propose a complex neural time code in which both the attributes of events and
their relative timings are encoded and simple neuronal delay-and-compare mech-
anisms (recurrent timing nets) that would produce similar kinds of behaviors. What
is needed is a mechanism that both builds up an expectancy of patterns of events
when they recur, and computes the deviation of the incoming stream of new events
from what was expected at that particular time point.

There is an ongoing debate about the nature and meaning of the MMN [56].
Some current theories of the MMN hold that a memory trace is formed when the
standard is repeated and that there is a comparison of incoming neural activity
patterns against this memory trace that was constructed from very recent experi-
ence. Others hold that the memory trace itself may be embedded in the responses of
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ensembles of cortical neurons. Still others reject the notion of organized memory
traces in favor of explaining the MMN in terms of neuronal adaptation processes.

It is notable that early studies of electrical conditioning in single neurons,
conducted before MMN was discovered, found that cortical neurons assimilated
rhythmic patterns (10 Hz flashes of light) that were presented in conjunction with
correlated electrical pulses similar in many respects to a reward signal [34, 57, 58].
The stimuli were presented over and over, paired with electrical pulses; and over
tens of trials the temporal response pattern of the neurons came to resemble that of
the stimulus (10 Hz firing pattern). When the stimulus was then abruptly changed to
1 Hz, the slower flashes evoked the 10 Hz pattern for many repetitions, but
eventually the assimilated rhythm was extinguished.

3.4 Temporal Theories of Associative Memory

Predictive timing is a key element of anticipatory behavior. It is often important to
know when a reward will come. The relative timing of rewards and the events that
lead up to them has been an ongoing concern of theories of learning.

It has also been observed that spike timings of dopaminergic neurons reflect
discrepancies between anticipated and observed courses of the neural concomitants
of events associated with rewards [59, 60]. This discovery has spawned a host of
adaptive temporal prediction models.

Many studies in animal and human conditioning suggest that the timings of all
correlated events relative to the arrival of a reward are implicitly and intrinsically stored
in both short and long term memory, such that any of them can serve as anticipatory
temporal predictors [61]. This temporal coding of memory hypothesis thus proposes
that “the temporal conditions (e.g. the CS-US interstimulus interval) are not merely
catalysts in the formation of associations, but are also a part of the content of learning”
[62]. The hypothesis further asserts that animals can build temporal maps from rela-
tionships between events that were never physically paired, “that is, temporal infor-
mation from different training situations which have a common element can be
integrated based on super-positioning of the common element in different temporal
maps” [63]. This means that systematic maps of temporal relations between events can
be built up from separate experiences of subsets of events. Such maps of temporal
relations can then subserve anticipatory prediction—each event becomes a predictor for
other temporally correlated events [64].

4 A Temporal Theory of Brain Function

Brains implement anticipatory predictions that subsequently guide behavior. In this
paper we propose a high-level theory of brain function based on temporal pulse
pattern codes that can be actively regenerated, stored, and retrieved. In this theory,
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prediction and steering of behavior are achieved by encoding and retrieving tem-
poral patterns of spikes associated with internal events connected to percepts,
actions, rewards, and punishments. Although it shares many assumptions with
mainstream connectionist theory, (e.g., recurrent connections, distributed coding
and processing), this proposed theory differs from connectionism in its fundamental
neural coding assumptions. Whereas connectionism is based entirely on
channel-activation codes (which neurons fire at which average rates), the alternative
neural architectures envisioned here rely on temporal codes, i.e., neural codes that
encode distinctions in temporal patterns of spikes.

A general theory of brain function requires specification of several basic aspects.

1. Neural codes. What are the system’s signals? A neural coding scheme based on
spike timing patterns must be capable of representing all the distinctions that we
make (e.g., encoding all of the attributes of objects, events, and their relations
and their compositions).

2. Neural networks. What processing architectures are needed to realize the
informational signal processing operations that the system performs? A neural
processing architecture capable of operating on temporal patterns in order to
carry out informational operations—such as detections, discriminations, pattern
recognitions, invariances, transformations, and groupings—is required.

3. Memory mechanisms. How are informational distinctions encoded and decoded
in memory? Here mechanisms of short- and long-term memory that can store
and recall temporally coded temporal patterns in a content-addressable manner
are needed.

These different aspects of the system need to be compatible with each other. The
nature of the neural codes that bear informational distinctions heavily determines
the nature of neural signal processing architectures and the memory mechanisms
needed to utilize them. Conversely, the available neural mechanisms for processing,
storing, and retrieving information heavily constrain what kinds of codes the system
can use.

5 A Universal Coding Framework Based on Complex
Temporal Spike Patterns

5.1 The Neural Coding Problem

Understanding the nature of the neural code (the “neural coding problem”) in
central circuits is arguably the most fundamental problem facing neuroscience
today. Without an understanding of the precise nature of the “signals of the sys-
tem,” we cannot have a firm grasp of the nature of information processing and
storage in brains. Neuroscience today is in a situation comparable to cellular
biology and genetics before DNA nucleotide sequences came to be understood as
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the primary vehicle for inheriting and expressing genetic information. However,
neural coding is rarely explicitly mentioned as an unsolved problem in neuro-
science. Although interest in neural coding has undergone cyclical changes from
decade to decade, it has never yet risen to the forefront of neuroscience.

A common tacit assumption in mainstream neuroscience is that the coding
problem has already been solved, that the brain is a large, complex connectionist
network. The instantaneous functional states of the system are thought to be pat-
terns of average firing rates across neurons, and its structural informational states
are thought to be characterizable in terms of interneural connection weights. The
instantaneous functional state (mental state), taken together with the structural state
(the “connectome”), is thought to determine how the system behaves. Note that
these assumptions only hold to the extent that spike timing and temporal relations
between neurons (intra- and inter-neuronal time delays) have no significant role in
informational functions. Solving the neural coding problem is critical for inter-
preting the functional significance of specific neuronal connection patterns.

Neural codes, as discussed here, are the functional signals of the system, those
neuronal activity patterns that have functional significance for information pro-
cessing in the brain. Different kinds of informational distinctions (e.g., perceptual
attributes, thoughts, desires, affective states) and their specific alternatives (e.g., for
the visual attribute of color, the distinctions of red vs. blue vs. green vs. yellow) are
mediated through specific patterns of neural spiking activity. These specific types of
patterns and different patterns within a type constitute the neural codes [65–69].4

This notion of coding is related to the conception of a sign in semiotics as a
distinction that has functional significance for its user. A sign, in Gregory Bateson’s
phrase, is a “difference that make a difference.” A neural code is a pattern of activity
that makes a functional difference in the brain, i.e. a difference that alters internal
functional states and subsequent behavior. To go further, some spike patterns may be
meaningful, having consequences for internal states or overt behaviors, whereas others
that are not interpretable within a coding scheme may not constitute a coherent internal
message, and so would not be meaningful to the system. Examples of the latter might
include uncorrelated “spontaneous” spike patterns, spikes generated during epileptic
seizures, and incoherent firing patterns produced under general anesthesia.

5.2 Types of Neural Codes: Channel Codes and Temporal
Codes

Neural pulse codes can be divided into two types: channel codes and temporal
codes. In channel codes, activation of particular subsets of neurons (channels)

4The functional definition of neural coding is different from formal, information-theoretic
Shannonian estimates of channel capacities that are independent of whether or not the system
makes use of the different states.
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conveys distinctions (e.g., through across-neuron firing rate profiles), whereas in
temporal codes particular temporal patterns of spikes convey distinctions. Temporal
codes can be further divided into those codes that depend on temporal patterns of
spikes irrespective of their times-of-arrival (spike latency) and those codes that
depend on the relative latencies of spikes. Temporal pattern codes based on
inter-spike intervals appear to subserve auditory pitch and cutaneous
flutter-vibration sensations, whereas relative time-of-arrival codes appear to sub-
serve various stimulus localization mechanisms based on temporal cross-correlation
in audition, somatoception, and electroception.

Connectionist theory adopts the assumption that the central codes operant in brains
are firing-rate channel codes, whereas the neural timing net theory outlined here posits
that these are complex temporal pattern codes. Thus, for most of the history of modern
neuroscience, channel coding has been adopted as the conventional, default assumption
and with it, connectionism as the default neural network assumption. However, a
significant minority opinion has involved proposal of various kinds of temporal codes
as alternatives [65]. Early examples include Rutherford’s “telephone theory of neural
coding,” Troland’s temporal modulation theory of hearing, Wever’s temporal volley
theory, the Jeffress’ model for binaural localization, and Licklider’s duplex model for
pitch perception. There has likewise always been an alternative tradition for temporal
processing architectures as well [70–74]. We have discussed many of these various
neural coding schemes elsewhere [69, 75, 76].

5.2.1 Types of Temporal Codes

In simple temporal codes (Fig. 5a), one temporal parameter conveys one perceptual
distinction. For example, in the early auditory system, times between spikes (interspike
intervals) carry information about the periodicities of sounds. At these early auditory
stations, the neural code for pitch involves the mass statistics of interspike intervals
amongst whole populations of neurons [49, 69, 79]. The pitch that is heard corresponds
to the most common interspike intervals that are produced by the population. The
sensation of flutter-vibration has a similar basis in simple interspike interval patterns.
Binaural auditory localization in the horizontal plane utilizes sub-millisecond spike
timing differences produced by corresponding neurons in neural pathways that origi-
nate in the two ears. Analogous examples exist in nearly every sense modality [76].

Complex temporal pattern codes can be formed from combinations of simple
temporal-pattern primitives (Fig. 5a–c). Here different orthogonal types of temporal
patterns encode different independent primitive features. For example, for a musical
note-event, the different dimensions of pitch, loudness, duration, location, and tonal
qualities (timbral distinctions) would be conveyed via different types of temporal
patterns of spikes that were produced concurrently within some population of
auditory neurons (Fig. 5c). Combinations of specific temporal patterns present at
any given time form a feature-vector whose dimensions are determined by the
pattern types.
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Complex temporal codes can potentially be conveyed in single units or in the
pattern-statistics of spike time patterns in ensembles and populations. The various
patterns can be interleaved or embedded in other patterns of spikes (Fig. 5b),
permitting signal multiplexing (concurrent transmission of multiple types of signals
over the same neuronal transmission lines). A complex temporal coding scheme
that was proposed in the past for multiple cutaneous sensory qualities [78] provides
a concrete example of how such codes might be organized.5

A neural code must convey two types of information: the type of distinction the
signal conveys (e.g., pitch or color), and the attribute distinction itself (e.g., a particular
pitch or color). In channel codes, the identity of the channel (which neuron, as
determined by its place in the network, its interconnectivities) conveys informational
type, whereas patterns of channel activations convey different attribute values. For
channel-coding schemes, neural channel-identities maintained via specific intercon-
nections are absolutely critical for function. A neural firing rate is meaningless to the
rest of the system without the identity of the neuron that is firing. Connectionist
networks are completely dependent on the maintenance of highly regulated connec-
tivities (“synaptic weights”).

In contrast, because complex temporal codes embed the type of the signal in the
form of the message, highly specific interneural connectivities and signal trans-
mission paths are no longer essential for function. Temporal codes thus permit

Fig. 5 Temporal codes. Idealized spike trains illustrate different coding schemes. a Simple and
complex temporal pattern codes: top interspike interval code (e.g., for pitch or flutter-vibration);
middle multiplexing of two different interspike intervals related to different types of information;
bottom complex pulse pattern code. b Multiplexing of three complex temporal patterns associated
with different types of cutaneous sensation (after [76]); bottom spike train shows interleaving of
the different signals. c Hypothetical spike latency pattern scheme for encoding different attributes
of auditory events (pitch, loudness, timbre, duration). d Hypothetical universal scheme for
encoding event-patterns that includes event attributes and the relative timings of events

5As far as we know, Emmers’ findings have not been replicated experimentally by others, so the
neuronal reality of this powerful, multidimensional coding scheme is unproven.
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“signals to be liberated from wires.” As long as the patterns can propagate to other
populations, the specific paths they take does not change the nature of the messages
sent. Thus this mode of neural communication enables broadcast modes of signal
distribution. Neuronal assemblies downstream can be selectively tuned such that
they respond to particular temporal patterns embedded in their inputs. Broadcast,
multiplexing, and selective tuning enable decentralized communications in which
tuned neural assemblies can respond only to those incoming signal patterns that are
relevant to their functional roles. Here a “neural assembly” is used in the
Hebb-Lashley sense of a functional organization of a set of neurons—a given
neuron may participate in many different neural assemblies that are organized
around different tasks [80]. Some codes may be restricted to local neuronal pop-
ulations (e.g., restricted cortical regions) that handle specific types of information,
whereas others may be propagated more globally, re-broadcast by the hippocampus,
and then consolidated into long term memory.

Finally, complex temporal codes can represent patterns of events that occur over
different time scales. If a sequence of musical notes is played, such as a motif or a
melody, a temporal code that can encode all of the attributes associated with the
individual events can also encode the timings of the events (Fig. 5e). Thus rhythmic
pattern and musical meter can be encoded on coarser timescales and the same
coding framework can handle different levels of musical organization.

5.2.2 Evidence for Temporal Codes

Temporal codes are found in a very wide range of sensory systems [66–69, 75–79].
Temporal codes in sensory systems have been found with sub-microsecond spike
timing precisions (electroception), microsecond precisions (bat and cetacean
echolocation), sub-millisecond precisions (auditory, somatoception, vision), and
still coarser (olfaction, gustation).

Generally speaking, auditory systems tend to have the highest frequencies of the
synchronization of spikes with stimuli. In the auditory systems of barn owls, who
use spike timing to localize their prey in the dark, spikes fire in time with the fine
structure of sounds up to periodicities of 10 kHz. In humans and cats, primary
auditory neurons phase lock up to roughly 5 kHz. Next, spike synchronizations to
electrical shocks delivered to the skin approach rates up to about 1 kHz. Visual
neurons lock to modulations in luminance up to roughly 100 Hz.

Temporal codes are found not only in sensory systems in which spikes follow
the fine time structure of the stimulus, such as hearing and touch, but also in sensory
systems such as vision, where eye movement transforms spatial luminance patterns
into correlated temporal patterns at the retina. Even in the chemical senses of smell
and taste, and in color vision, differences in the temporal response properties of
sensory receptors produce corresponding characteristic temporal patterns of
spiking.

In general, the most obvious temporal codes are found near sensory receptor
surfaces. In early stations of the auditory system, spike timing is most abundant and
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its functional role most obvious. However, as one proceeds up ascending sensory
pathways, stimulus-related timing information is mixed with other kinds of infor-
mation and in some cases smeared out such that stimulus-related fine timing
information above roughly 100 Hz becomes successively less apparent as one
proceeds to the cortical level [75]. In the auditory system, despite considerable
progress, cortical representations for basic auditory attributes such as pitch and
loudness are still poorly understood [81].

In lieu of strong coding hypotheses, it is difficult either to confirm or entirely rule
out prospective candidate codes at the cortical level. Thus the complex temporal
pattern-coding scheme outlined here is a very tentative hypothesis. If complex
temporal codes do exist in central circuits that subserve the representation of all
simple sensory attributes associated with events (e.g., the timing, duration, loud-
ness, pitch, and timbre of a single musical note), they may involve timing patterns
that are difficult to observe because they are distributed across neurons and/or not
rigidly synchronized either with the stimulus or each other.

Although temporal patterns associated with fine temporal structure above a few
hundred Hz are not abundant at the cortical level, temporal patterns of neuronal
response associated with the slower successions of onsets and offsets of discrete
sensory and motor events (periodicities <10 Hz) are very prominent. The precision
of the coding of these onsets, on the order of 100–200 μs, is maintained all the way
up the auditory pathway. Temporal patterns related to patterns of musical events,
flashing lights, electric shocks, and tactile pulses are widely observed in evoked
electrical and magnetic activity over large parts of the cerebral cortex [34, 46].

Musical rhythm is thus a prime candidate for temporal coding. Patterns of event
onsets are seen widely in averaged electrical and magnetic auditory evoked
potentials and also more recently even in single trial stimulus presentations. At
present, it is possible to determine which of two auditory streams a listener is
attending on the basis of the corresponding rhythmic pattern of neuronal response in
an EEG or MEG signal. Even beats that are expected, but not presented or heard, as
in a syncopated meter, produce observable responses at the times when the
acoustically sounded beat was expected to arrive [82–84]. Actively imagining a
rhythmic pattern facilitates the pattern in neuronal cortical populations such that it
can be observed in EEG recordings.

Rhythms in speech, though less regular and not as well defined as their coun-
terparts in music, likewise produce corresponding temporal patterns that reflect
acoustic contrasts [52, 85]. Recently rhythmic patterns of neuronal response
associated with different levels of sentential organization (e.g., syllables, words,
phrases, sentences) have been observed at the cortical level [86].

All of these phenomena argue for direct temporal coding of rhythm in music and
speech at all levels of auditory processing. Coarse rhythmic patterns (<10 Hz) are
supra-modal, with neural temporal responses that are very widely distributed across
cortical regions [46]. The ubiquity of these correlated neural response patterns may
explain how musical rhythm can provide a cross-modal temporal scaffold for
movement and memory [87].
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In the last decade, there has been a renewed interest in brain rhythms, and many
of these phenomena have been interpreted in terms of oscillatory dynamics of
neuronal populations [86, 87–89], rather than under the rubric of temporal codes
[49, 51, 90]. It is important to distinguish between evoked, exogenous rhythms that
reflect driving stimulus periodicities both from endogenous rhythms produced by
intrinsic dynamics of neuronal excitation and recovery and from induced rhythms
that are triggered or released by external stimulus events. The focus is usually on
entrainment and induced rhythms rather than stimulus-locked synchronization or
stimulus-related periodicities. Synchronization is often regarded as a passive
process, in contrast to “active modification of ongoing brain activity” in entrain-
ment [51]. Note, however, that for every observed oscillation, there is an associ-
ated temporal organization of spiking activity. Recent evidence points to
substantial functional roles for both evoked and induced rhythms in the grouping
and analysis of speech and musical events. Oscillatory dynamics of cortical neurons
may govern temporal processing windows for music and speech [89, 91, 92] in a
manner that limits the rate at which events and their various attributes can be
accurately represented. In terms of neural coding, the durations of these windows
may place constraints on how fast complex spike latency codes (such as the code of
Fig. 5c), which require different readout times for different attributes, can be pro-
duced and processed.

6 Neural Architectures for Temporal Processing

What kinds of neural architectures would be needed to utilize a temporal coding
framework such as the one outlined above?

6.1 Basic Plan of the Brain

The basic structural plan of animal brains [93] is well-conserved phylogenetically.
Despite its apparent neuroanatomical complexity, brains consist of a relatively
small number of component subsystems and neuro-computational architectures.
First and foremost, as neuroscientists have understood for more than a century now,
the brain is a network of recurrent pathways. These have variously been called
loops, neural circuits, re-entrant paths, and nets with circles.

The brain can thus be regarded as a network of neuronal circuits, i.e., large
numbers of interconnected neuronal loops that contain excitatory and inhibitory
neurons with local connections, and excitatory (and sometimes inhibitory) neurons
with longer range projections. Many different canonical neural circuits have this
recurrent organization (e.g., thalamocortical loops, cortico-cortico re-entrant path-
ways, and hippocampal loops). The systematic sets of recurrent pathways in the
hippocampus have been often regarded as computational substrates for an
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auto-associative memory mechanism. Different regions of the cerebral cortex are
reciprocally connected to neighboring ones by local connections and to more distant
cortical regions by white-matter long-range axonal tracts. However, closed cyclical
chains of excitatory neurons without inhibition create positive feedback loops that
quickly saturate. By regulating the amount of inhibition, the loop-gains of these
circuits can be modulated from their resting, slightly attenuating state, in which
incoming neuronal activity patterns die out, to states of attention.

For the most part, neuroscience has been more focused on the neuroanatomy of
connections, i.e., “the connectome,” than on temporal relations within and between
the various neuronal populations. However, for timing theories of brain function,
each connection between neural elements has not only a synaptic weight, but also
time delays associated with axonal and synaptic transmission. Each of these various
loops have characteristic time delays associated with them: short-delays for local
circuits and longer ones amongst more distant neuronal ensembles. The more
numerous unmyelinated axons, with their slow conduction velocities and long
conduction times, yield much longer transmission delays than myelinated axons. In
addition, there are delay processes that are inherent in the recovery dynamics of the
neuronal elements that can perform many of the same neural signal processing
functions as transmission delays.

6.2 Neural Time-Delay Architectures

Purely connectionist networks do not represent time explicitly, except as sequences of
changing spike rates. Time-delay networks, on the other hand, include time delays
between elements that allow them to interconvert temporal patterns and spatial acti-
vation patterns. Early time-delay neuro-computational architectures were proposed for
that utilized binaural time disparities for localizing sounds and monaural interspike
intervals for perceiving periodicity pitches (Jeffress and Licklider models, [52, 59]).

Time-delay networks use coincidence-detector elements with short time inte-
gration windows for handling temporal patterns of spikes, and rate-integrator ele-
ments with long time integration windows for converting spike coincidences to
average firing rates. This “coincidence counting” allows them to interface with
connectionist architectures. In effect, temporal codes are converted to rate-channel
codes. Time-delay architectures can be flexible in their ability to handle both
temporal and spatial information: by tuning delays, one can change synaptic effi-
cacies, and vice-versa.

6.3 Neural Timing Network Architectures

After many years of searching for alternatives to both connectionist rate-place and
time-delay neural network schemes, I proposed yet a third kind of neural network,

Temporal Memory Traces as Anticipatory Mechanisms 125



which I called neural timing nets. For the most part, early work on these networks
involved demonstrating the various time-domain operations that could be elegantly
carried out [94–96].

Temporal pattern codes allow simple form transformations (position shift
invariance), and time warping of patterns yields tempo-invariance of rhythms,
transposition invariance of pitch sequences, and magnification invariance of spatial
forms. Using these kinds of temporal representations, separation of independently
moving or changing forms can be effected. One can easily separate objects on the
basis of invariant relational patterns of elements within objects (fusion, grouping)
vs. the changing relations between elements of different, independently moving
objects (separation).

Neural timing networks consist of arrays of delays and coincidence elements that
operate on temporally-coded inputs and produce temporally coded outputs.
Essentially, everything is kept in the time domain, and neural signals can interact
with each other to sort out common temporal subpatterns. Whereas connectionist
and most time-delay architectures are “connection-centric” (all informational
function depends on particular synaptic connection weightings), neural timing
networks are “signal-centric” (action lies in interactions between signals: “signal
dynamics”).

The signal-centric nature of the networks (and networks processing based on signal
dynamics) sidesteps many of the problems of connectionist and time-delay network
architectures, in that precise and elaborate point-to-point connections are not needed for
such networks to function. It is enough to bring the various neural signals into the same
regions at approximately the same time. By operating on the temporal pattern statistics
of ensembles of neurons, as long as there are some points of interaction, it no longer
matters whether this or that neuron produced this or that output.

Feedforward timing nets (FFTNs) are arrays of coincidence detectors and delay
lines that cause temporally patterned signals to interact. Various correlation and
convolutional operations can be carried out, enabling multiplexing and demulit-
plexing of signal primitives. In FFTNs the spike train signals collide, interact,
interfere, and/or mutually amplify each other, essentially performing
correlation-like filtering signal processing operations in the time domain.

Compared to connectionist networks, the temporally coded representations and
signal processing operations are more iconic and analog in character and more
parallel in implementation. Template matching can be realized by injecting a
temporal pattern archetype into the network, which will serve to amplify any
incoming temporal pattern signals that have significant correlations with it.
Content-addressable search can likewise be realized by injecting temporal patterns
related to the features that one is interested in. Other neural signals circulating
within the network will interact with the search signal if and only if they have
feature-related temporal subpatterns in common. Essentially complex temporal
pattern signals can implement a vectorial representation in which the signals
themselves can sort out those dimensions that they have in common. The infor-
mational operations involve “pattern resonances” [97]. The processing scheme as it
currently stands is provisional and still in a rudimentary state of development.
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Nonetheless, it appears to be much more flexible than any connectionist scheme we
have seen to date.

7 Temporal Mechanisms for Short-Term Regenerative
Memory

Most high level accounts of brain function posit networks of recurrent pathways
(re-entrant loops, neural circuits) that support a dynamic, working short-term
memory coupled to a more permanent long-term memory mechanism that permits
storage and retrieval of relevant patterns (Fig. 2). Neuronal activity patterns that
have hedonic salience for the animal (i.e., are part of a string of events that leads to
significant reward or punishment) are rebroadcast by the hippocampal formation
such that the patterns are maintained in working memory and later consolidated and
fixed in long-term memory. This rebroadcast can replicate event sequences at
faster-than-real-time rates.

Conventionally, the nature of short-term memory is commonly assumed to
involve subsets of specific neurons in recurrent neural circuits that maintain higher
rates of activity, whereas long-term memory is thought to involve changes in the
effective connectivities between neurons at synapses (in neural network terms,
“synaptic weights”). Thus short-term memory is conceived in terms of a complex
reverberation pattern of neuronal activations, while long-term memory is thought to
entail more permanent synaptic changes.

In addition to feedforward timing nets, there also can be recurrent timing nets
(RTNs), in which there are arrays of delay loops that span a wide range of recur-
rence times. RTNs were initially conceived as models for pitch- and rhythm-based
grouping and separation mechanisms [94–96]. For both pitch and rhythm, repeating
waveforms and temporal event patterns respectively create strong temporal
expectancies and groupings. Our auditory systems easily separate concurrent
sounds with different fundamental frequencies (F0 s), such that we are able to hear
out different musical instruments and voices when they are mixed together. RTNs,
which act in a manner similar to adaptive comb filters, separate out the respective
temporal patterns of multiple speakers with different voice pitches and of multiple
musical instruments playing different notes.

Recurrent timing nets are perhaps the simplest kind of reverberating, temporal
memory that can be imagined (Fig. 6a). Here an incoming pattern is compared with
a delayed circulating pattern; and if the recurrence time of the delay loop is equal to
the repetition time of a repeating pattern, then the pattern is facilitated (builds up) in
that particular loop. If the difference between the circulating and the incoming
pattern is also computed, then the difference signal can be fed into the array. Each
delay loop creates an expectation of what the next incoming signal fragment will
be. (The expectation is a primitive anticipation in that the recent past is used to
predict the near future.) In the case of a repeating pattern of auditory events, each
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delay loop is making a temporal prediction about when the next event will occur.
And if the event-attributes (timing, loudness, pitch, timbre, duration, location) are
also encoded in time via a complex, multidimensional time code, then it creates
expectancies for those also.

The RTN delays can be either monosynaptic (recurrent collaterals) or polysy-
naptic (delay paths through networks, Fig. 6b). The number of recurrent
monosynaptic 2-element paths in a fully connected network of N elements is on the
order of N2. The number of paths increases combinatorially with maximum
path-length M, roughly as MN. Although the brain is thought to be more like a
small world rather than a fully interconnected network [98], all neurons are thought
to be interconnected by at most three or four interneurons. The number of delay
paths is still astronomical, far greater than even the combinatorics of individual
synapses (because each synapse connecting two neurons has a delay associated
with it).

If the synapses are spike-timing dependent (inhibited/facilitated by recent spike
correlation history), then the repeating pattern will flow through those delay-paths
that have recurrence times equal to the pattern repetition time. Other paths with
other delays that are not in the pattern will be temporarily inhibited. In this manner,

Fig. 6 Recurrent timing nets (RTNs). a An array of delay loops and correlation-facilitated
coincidence detectors. A periodic pulse pattern fed into the network maximally facilitates itself in
the delay loop, whose recurrence time is equal to the duration of the repeated pulse pattern, not
unlike a time-domain implementation of a comb filter. Such a network stores temporal patterns in
the delay loops. Multiple periodic patterns sort themselves out in the different delay loops, which
then function as complex pulse pattern-oscillators. b Alternative implementation of a neural timing
net in a richly interconnected network of coincidence-facilitating elements. A pulse pattern is fed
into the leftmost, input layer and delay paths corresponding to the internal delay structure of the
stimulus are facilitated (gray arrows, black coincidence elements). The reverberating patterns are
regenerated within the network (synfire cycles)
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to whatever degree there is repetition, the recurring time structure of the rhythm
input will build up in the network. If there are only locally repeating patterns, say
ABCABCCABBCDEFAB, which has a maximum repeated pattern length of 2
(AB), then the network will revert to the probabilities of shorter sequences. This
becomes a neural implementation of a variable-order Markov chain that can adapt
to variable N-gram lengths. The system thus predicts specific, longer sequences
when those have been presented in the not-too-distant past, but in lieu of repeating
sequences reverts to Bayesian statistics.

Timing-dependent synapses support competition between signals and
winner-take-all dynamics (facilitation of one set of signals inhibits others), as well
as the possibility of regenerative, self-facilitating “synfire cycles.” These differ from
synfire chains [73, 99, 100] in that the temporal pattern statistics, rather than which
neurons are firing, encode particular attribute distinctions. The regenerative cycles
in effect would constitute a temporal echoic and working memory buffer that would
hold the temporal patterns (maintaining the statistics of the patterns) such that they
could be compared with incoming ones.

8 Temporal Mechanisms for Long-Term Memory

Lastly, a general theory of brain function needs to account for a second memory
mechanism by which permanent, stable long-term memories are laid down and their
contents retrieved. The nature of the storage mechanisms operant in brains,
Lashley’s “engram” [80], is a fundamental problem that is intimately related to the
neural coding problem. The competing theories of memory parallel those of neural
coding and neural architectures [34, 101].

As Lorente observed, “permanent circulation of impulses in neural chains”
cannot be the basis for long-term memory because these memory traces survive the
cessation of neuronal activity that occurs under anesthesia, deep shock, and
hibernation [102]. Like short-term memory, long-term memory is
content-addressable. Neuronal activity associated with any attribute can be used to
activate long-term memory traces that encode that attribute. Two alternative types
of temporal long-term memory mechanisms can be envisioned that could store and
retrieve events encoded via complex temporal spike patterns.

8.1 Formation of Time-Delay Networks for Recognizing
and Producing Temporal Patterns

The first possibility tunes up time-delay networks to produce the complex temporal
patterns that are to be stored. First the temporal patterns are repetitively presented to
neuronal populations such that synapses with offsetting time delays that produce
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spike-timing correlations within the local network are strengthened via
spike-timing-dependent plasticity (STDP). The result would be that the repetitive
complex patterns presented to the network would be assimilated in a manner similar
to what was observed under the electrical conditioning experiments discussed
earlier [58]. Subsequent activation of such a network might reproduce the con-
solidated delay pattern, thereby recreating the stored complex temporal pattern and
injecting it into the rest of the network such that it can interact with signals that are
currently circulating in regenerative short-term memory.

This explanation has the merit of relying on the same kinds of synaptic changes
as connectionist theory. There is a great deal of accumulated biophysical evidence
of semi-permanent changes in synaptic efficacy with use, and this process could
involve those mechanisms. In effect, the neuronal assemblies become time-delay
networks that are configured from past experience. These can become activated by
incoming temporal patterns to facilitate channel activations (connectionist account)
and/or to emit temporal patterns (timing net account).

8.2 Polymer-Based Time-Space Molecular Memory
for Storing Temporal Patterns

A second possibility is that of a molecular memory that stores time patterns.
Molecular memory mechanisms have been discussed for some time [103], and
many are inspired by the power of the genetic nucleotide sequence code.
A temporal molecular memory is attractive because it does not depend on partic-
ular, highly specific synaptic connections. Theories of RNA-based molecular
memory (“memory RNA”) that were inspired by planaria memory transfer exper-
iments were popular in the early 1960s, but due to failures to clearly replicate the
basic transfer phenomena, this entire field was defunded at the NIH for a genera-
tion. In recent years, research on possible molecular memory mechanisms has been
revived [64].

Complex temporal patterns lend themselves to instructional “tape recorder”
memory mechanisms [33, 101, 104] that preserve temporal relations between
events. If the attributes of the events are also temporally coded (e.g., sensory
features of a particular place in a maze), then such temporal memory traces can
serve as universal memory mechanisms whose form need not be radically trans-
formed in the storage and retrieval process. I have previously proposed a mecha-
nism similar to the scheme in Fig. 7 [105].

One potential molecular mechanism is that time patterns of intracellular ionic
fluxes could be converted to spatial patterns of markers on polymers [106]. We
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know that there are polymerases that move down the length of polymers, pre-
sumably at a constant average speed, and that there are also mechanisms for
reversibly labeling the side chains of these polymers (e.g., methylation). Thus it is
conceivable that temporal patterns of ionic fluxes (e.g., related to local calcium
concentrations) could be laid down along the length of a polymer by a writing
enzyme (there are much higher concentrations of DNA methylase in the nervous
system than in other tissues). A second reading polymerase could scan the polymer
at the same (or even faster) rate than the writing enzyme, thereby reading out the
pattern. If all neural information related to relative event timings, attributes, and
resulting reward or punishment is stored, as conditioning studies suggest, then a
faster-than-real-time readout mechanism becomes a relatively simple means of
predicting the future hedonic consequences (reward or punishment) of a present
situation or course of action.

Fig. 7 Hypothetical scheme for long-term molecular storage of temporal patterns. a A sequence
of temporally correlated events (1–3) that lead to a reward event (4). b Internal spike patterns
produced by the internal events (e.g., encoding event-feature attributes). c Polymer (double lines)
consisting of a backbone chain plus side-chains that can be chemically modified (e.g. methylated).
A polymerase moves along the polymer backbone, adding a side-chain marker whenever the
neuron is depolarized (or ionic concentrations change). The polymerase moves at a constant speed
down the chain, thereby converting temporal pulse patterns to spatial patterns of markers on the
polymer. d A second type of polymerase that moves down the chain at a faster rate, triggering
ionic fluxes and generation of action potentials when a marked side chain is encountered. Such a
mechanism would enable faster-than-real time readout that could subserve anticipatory steering of
action
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9 Conclusions

A theory of brain function based on complex temporal pattern spike codes, neural
timing net architectures, and temporal memory mechanisms is outlined. Short-term
temporal pattern memory entails regeneration of complex temporal patterns of
spikes, whereas long-term temporal pattern memory could involve either tuning of
time-delay networks or a polymer-based time-space molecular mechanism.
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