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Abstract An important function of emotion is that it allows one to respond more
effectively to threats in our environment. The response to threat is an important
aspect of emotional behavior given the direct biological impact it has on survival.
More specifically, survival is dependent upon the ability to avoid, escape, or defend
against a threat once it is encountered. Anticipatory processes supported by neural
circuitry that includes the prefrontal cortex and amygdala are critical for the
expression and regulation of the emotional response. Further, these anticipatory
processes appear to regulate the response to the threat itself. Healthy emotional
function is characterized by anticipatory processes that diminish the emotional
response to threat. In contrast, emotional dysfunction is characterized by anticipatory
processes that lead to an exaggerated threat response. Thus, anticipatory mechanisms
play an important role in both healthy and dysfunctional emotional behavior.
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A valuable function of emotion is that it motivates effective responses to important
events in our environment. For example, fear motivates defensive responses
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(e.g., fight or flight) and promotes rapid associative learning of warning cues and
the threats they predict, which is critical for survival. More specifically, the
knowledge that a threat is imminent allows one to execute preparatory behaviors in
anticipation of the impending threat. Thus, survival is promoted when threats can be
anticipated and effectively managed. However, maladaptive anticipatory and
threat-elicited responses appear to be linked to anxiety and stress-related disorders.
A key goal, then, in the study of emotion is to understand the relationship between
the anticipatory response and the response to the threat itself. Specifically, under-
standing how anticipatory functions influence threat-evoked behavior is important
for understanding emotion learning, expression, and regulation processes that
mediate anxiety and stress-related disorders.

1 Anticipatory Response

Pavlovian fear conditioning is a procedure that is frequently used to investigate
emotion learning, memory, expression, and regulation processes [1–5]. During
Pavlovian fear conditioning, an originally innocuous warning cue (i.e., a condi-
tioned stimulus; CS) is typically paired with an innately aversive threat (i.e., an
unconditioned stimulus; UCS) that produces a reflexive unconditioned response
(UCR). Repeated pairing of the warning cue (CS) and threat (UCS) then elicits an
anticipatory response (i.e., a conditioned response; CR) in anticipation of the threat.
Thus, CR expression during Pavlovian conditioning reflects anticipation of the
forthcoming threat. Skin conductance response (SCR), a measure of sweat gland
activity that reflects sympathetic activation of the autonomic nervous system
(ANS), is often used as an index of the peripheral emotional response in human fear
conditioning research [6–9]. An anticipatory SCR (i.e., the CR) to the CS (i.e., the
warning cue) occurs when one has learned the CS-UCS (i.e., cue-threat) contin-
gency and serves as an objective measure of associative learning. Previous
Pavlovian fear conditioning research has demonstrated that anticipation of threat
initiates preparatory responses that promote behavioral and physiological reactions
that minimize harm [10–14]. For example, conditioned hypoalgesia (decreased
sensitivity to painful stimuli) develops during fear conditioning, reducing the pain
produced by noxious stimuli [12, 15]. A similar process appears to diminish the
ANS response to the threat itself during fear conditioning [16–20]

2 Threat-Elicited Response

In contrast to the anticipatory response (CR), the response (UCR) elicited by an
aversive threat (UCS) is typically considered an innate and automatic reaction that
does not require learning. However, learning-related changes in the response to
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threat itself frequently develop during conditioning [10, 17, 20–25]. Specifically,
the predictability of threat (UCS) modulates the magnitude of the threat-elicited
response such that a diminished response is produced by predictable threat (UCS
that follows a CS) compared to unpredictable threat (UCS presented alone). Thus,
there is a conditioned reduction in the response to predictable versus unpredictable
threat (conditioned UCR diminution) [16, 19, 23, 25, 26]. These findings are
consistent with learning theory, which states:

1. Learning occurs when there is a discrepancy between expectations and
outcomes.

2. The CS gains discriminatory control over the UCR to the UCS.
3. The UCR is diminished by predictable compared to unpredictable threat [5, 27,

28].

Thus, an enhanced anticipatory response to the warning versus safety cue
demonstrates that the cue-threat association has been learned.

The anticipatory response (the CR to the CS+) appears to be essential for the
diminution of the response to the threat itself (UCS). Specifically, conditioned
diminution of the response to threat develops when the threat follows the warning
cue (CS+), but not when the threat follows the safety cue (CS−) or when the threat
is presented alone [16, 18, 19, 23, 25, 26]. Further, as the magnitude of the
anticipatory response increases, the magnitude of the response to predictable threat
decreases [23, 25]. However, a similar relationship is not observed when the threat
is unpredictable. That is, the anticipatory response does not vary with the response
to threat itself when threat unexpectedly follows a learned safety cue [23, 25].
These findings suggest that an anticipatory response specific to the warning cue is
necessary for conditioned diminution of the response to threat.

3 Neural Substrates of Anticipatory and Threat-Elicited
Responses

A neural network that includes the amygdala and prefrontal cortex (PFC) supports
anticipatory processes and appears to regulate the emotional response to threat. The
amygdala is a critical component of the neural circuit that mediates fear learning
and expression of conditioned fear [2, 7, 15, 17, 29–34]. The amygdala receives
information about the warning cue and the threat (CS and UCS), forms the
cue-threat association, and projects to other brain regions (such as the periaque-
ductal gray, hypothalamus, and ventral tegmental area) to control the peripheral
expression of emotion [15, 32, 35]. The conditioned emotional response mediated
by the amygdala appears to be regulated by projections from the PFC [1, 36]. This
PFC-amygdala circuitry is critical for the expression and regulation of conditioned
changes in the peripheral emotional response. Further, the PFC and amygdala
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appear to support processes that mediate the modulatory effect the anticipatory
response (CR) has on the response to threat itself (UCR).

The amygdala and dorsal regions of the PFC (dorsomedial and dorsolateral PFC)
show increased anticipatory activity to the warning cue (CR to the CS+) during fear
conditioning [7, 30, 31, 37–40]. These same brain regions show diminished
responses to predictable compared to unpredictable threat during fear conditioning
[17, 24, 25, 41], which closely mirrors the behavioral response to threat itself [17,
21–23, 41]. Further, the dorsolateral PFC demonstrates an inverse relationship
between anticipatory activity to the warning cue and the response to the threat
(Fig. 1), such that as anticipatory activity increases, threat-evoked activity
decreases [24, 25]. The anticipatory activity within the dorsolateral PFC appears to
be particularly important for regulating threat-related activity within other brain
regions such as the ventromedial PFC and the amygdala [25]. Further, our prior
work demonstrates greater dorsolateral PFC connectivity to the dorsomedial PFC,
ventromedial PFC, and amygdala during predictable compared to unpredictable
threat [42]. Thus, anticipatory dorsolateral PFC activity appears to regulate
threat-related responses, and may support healthy emotion regulation (Fig. 2).

Threat predictability and controllability appear to interact to influence the neural
response to threat. Specifically, ventromedial PFC and hippocampal activity varies
with the predictability and controllability of threats [43]. Activity within these brain
regions is diminished when threats are both predictable and controllable. In con-
trast, ventromedial PFC and hippocampal activity is enhanced when threats are
unpredictable and/or uncontrollable. Further, the stress-ameliorating effects
observed when one has control over a threat appear to be mediated by the ven-
tromedial PFC [44] and hippocampus [45]. For example, a prior encounter with a
controllable threat modifies the ventromedial PFC function that regulates amygdala
activity and controls the emotional response elicited by future threats [46–49].
These findings suggest that the ability to predict and control threat has an important
impact on ventromedial PFC and hippocampal function. Given that the

Fig. 1 Relationship between anticipatory and threat-related brain activity. Anticipatory activity
was inversely related to threat-related activity on predictable trials within dorsolateral prefrontal
cortex (PFC). In contrast, anticipatory activity did not modulate the response to unpredictable
threat. These findings suggest that anticipatory activity inhibits threat-related activity within the
dorsolateral PFC
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ventromedial PFC and hippocampus are important components of the neural circuit
that regulates emotion [45–47, 50–54], these brain structures may support processes
that mediate the stress resilience that develops when one can control an imminent
threat.

4 Understanding Internalizing Disorders

Neural circuitry that supports the cue-threat association may be important for
understanding internalizing disorders. For example, individuals with anxiety and
stress-related disorders display greater amygdala activity to warning cues compared
to healthy controls [55–57]. Further, anxious individuals tend to show greater
anticipatory activity to both warning and safety cues compared to healthy indi-
viduals [58]. This hyperarousal to warning cues persists even once the cue-threat
contingency changes [54, 59, 60]. Thus, enhanced anticipatory activity observed in
patient populations may fail to regulate the response to actual threats within the
environment. Specifically, individuals with anxiety and stress-related disorders may
show enhanced brain (amygdala) activity to predictable threat instead of the
diminished response typically observed in healthy individuals. The enhanced
threat-elicited response may be mediated, in part, by disruption of functional con-
nectivity of the PFC-amygdala network. In turn, hyperactivity within this neural
circuitry may mediate the hyperarousal associated with anxiety and stress-related
disorders.

Fig. 2 Neural circuit hypothesized to regulate the emotional response to threat. Anticipatory
dorsolateral PFC activity regulates threat-elicited activity within the PFC and amygdala (solid
lines). Connectivity between other regions of the PFC and amygdala (dotted lines) also appears to
influence emotion expression. In turn, the amygdala controls learning-related changes in the
peripheral emotional response. PFC prefrontal cortex; ANS autonomic nervous system; HPA
hypothalamic-pituitary-adrenal axis
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Disruption of PFC-amygdala circuitry may mediate the emotional disinhibition
that characterizes many anxiety and stress-related disorders. For example, the
hyperarousal associated with anxiety and stress may be due to insufficient top-down
regulatory control. In fact, anxiety and stress disorders are often associated with
hypoactivation of the ventromedial PFC [50, 54, 61, 62]. In turn, ventromedial PFC
hypoactivation may lead to hyperactivation of the amygdala [50, 54, 63–65]. Thus,
dysfunction of the PFC-amygdala circuit may mediate key symptoms of anxiety
and stress-related disorders [52, 66–68]. Prior work from our laboratory indicates
anticipatory processes regulate the emotional response to threat [20, 23, 25]. Thus,
anticipatory processes that typically support healthy regulatory functions may
instead disrupt emotion regulation and increase susceptibility to stress and anxiety.

5 Conclusion

Anticipation of threat is an important process that facilitates the healthy regulation
of the emotional response to threat. Associative learning of the cue-threat rela-
tionship supports anticipatory processes that mediate the conditioned diminution of
the response to threat. Conditioned diminution of the emotional response to threat
appears to be mediated by a PFC-amygdala network. Anticipatory processes sup-
ported by the dorsolateral PFC regulate the dorsomedial PFC, ventromedial PFC,
and amygdala response to threat. The ability to predict and control threats is a
critical aspect of emotional resilience [43, 69–73]. Evidence suggests that the
ventromedial PFC and hippocampus play an important role in the emotion regu-
lation process [51, 52, 68, 74–76]. Thus, these brain regions appear to mediate
functions that are important for stress resilience. Therefore, dysfunction of the
PFC-amygdala network may result in maladaptive anticipatory processes that dis-
rupt emotion regulation in the face of threat, and may be responsible for the
emotional dysfunction associated with anxiety and stress-related disorders.
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