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Abstract Despite the deployment of more efficient vehicle technologies, global
CO, emissions related to transportation have increased by 250 % between 1970 and
2010 due to a rise of vehicle ownership, traffic volumes and congestion. CO; is the
most common of the anthropogenic greenhouse gas emissions and is a main con-
tributor to climate change. Fine-scaled information on the spatial and temporal
distribution of traffic-related CO, emissions can support decision making processes
with regard to emission mitigation measures. For the purpose of providing such
information, commonly traffic emission models are applied. However, such models
are often restricted in their spatiotemporal resolution due to a lack of adequate input
data. A potential data source could be provided by the extended floating car data
(xFCD) approach, where vehicle operation parameters like fuel consumption are
read out on-trip via the vehicle’s onboard diagnostic system and get correlated with
vehicle positions and timestamps at short recording intervals. In this work, the
potential of fuel consumption recordings from xFCD for quantifying traffic-related
CO, emissions is evaluated. For this, an extensive database of GNSS-trajectories
from vehicles (FCD) and xFCD fuel consumption measurements were recorded in
the city of Salzburg, Austria. Using this input data, a set of averaged driving
patterns for road segments, 15-min intervals and weekdays was derived.
A similarity measurement algorithm was performed on these patterns, so that the
most representative vehicle speed profile with fuel consumption recordings could
be identified. The results indicate that the elaborated methodology can be applied
for calculating representative, plausible and consistent CO, emission factors from
xFCD fuel consumption recordings with high spatial and temporal resolution. This
shows the potential of the systematic usage of XFCD for the purpose of estimating
traffic related CO, emissions.
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1 Introduction and Objectives

In the year 2011, 600 million motorized passenger cars were traveling on the roads
worldwide and a further significant rise of vehicle ownership is expected in the
future, particularly in emerging countries such as China or India (Annema et al.
2011). Although this motorization has led to a significant rise of individual mobility
over the century (Dargay et al. 2007), it negatively effects the natural and built
environment as well as human health. The transportation sector contributes sig-
nificantly to the anthropogenic emission of carbon monoxide (CO), nitrogen oxides
(NO,), volatile organic compounds (VOC) and carbon dioxide (CO,). In most
motorized vehicles, fossil fuels are used as energy for propulsion due to their high
energy content. Emissions are formed as unwanted byproducts of the imperfect
combustion of hydrocarbons of fossil fuels (Van Wee et al. 2013).

While CO, is not directly harmful to human health, anthropogenic CO, emis-
sions are considered to be the major contributor to climate change (IPCC 2013).
CO, is a common greenhouse gas, which absorbs thermal radiation from the earth’s
surface and thus causes the heating of the atmosphere. Although advancements in
vehicle technology have led to the propagation of more fuel efficient and
low-emission vehicles, transportation is the major sector with the strongest con-
tinuing growth in CO, emissions. The correlation of improvements in energy
efficiency with increases of energy consumption is commonly described as
‘rebound-effect’, as the enhanced efficiency sets incentives for an intensified energy
consumption (Brookes 1990). In the case of transportation, this results in a rise in
vehicle ownership and a tendency to buy larger cars. Moreover, also continuing
traffic growth and resulting traffic congestions contribute to an intensified emission
of CO,, as vehicles need more energy for propulsion during stop-and-go driving
patterns (Capiello 2002). As a result, global CO, emissions caused by transport
have increased by 44 % between 1990 and 2008, with motorized road traffic being
responsible for 74 % CO, emissions from transport. In 2010, the transportation
sector released 14 % of anthropogenic GHG emissions (Kok et al. 2011).

The availability of fine-scaled information on emissions related to traffic could
support policy makers to set up effective emission mitigation measures. Knowing
the spatial distribution and temporal shift of emissions within a road network, it is
possible to efficiently target problematic areas and thus maximize impact and
minimize costs of operational efforts (Gurney et al. 2012). However, most current
emission models are applicable rather on a national or regional scale than on the
microscopic level of single roads. The exact localization of traffic emissions is
mainly limited due to the restricted availability of appropriate data at the local scale
(Gately et al. 2013; Smit et al. 2008).

With the proliferation of communication and information technologies and their
use in road transportation, new services came in use, which are commonly sum-
marized under the term ‘Intelligent Transport Systems’ (ITS) (Ezell 2010).
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Widespread examples of ITS applications are onboard navigation systems, which
determine a vehicle’s position in a road network based on GNSS coordinates.
GNSS (Global Navigation Satellite Systems) has become the primary technology
for the determination of a vehicle’s position. Satellites are sending signals to the
earth with information on the exact time the message was sent (every satellite is
equipped with at least 4 atomic clocks, the time is annotated in the Universal Time
Coordinated, UTC) and the satellite position. Through receiver devices, the geo-
graphic longitude and latitude as well as the altitude on a specific point on earth can
be determined with an accuracy between around 12 m and 1 mm (Zogg 2011).
GNSS devices are also used in the ‘Floating Car Data’ (FCD) approach, where
vehicles which participate in regular road traffic, serve as mobile sensors for the
collection of on-trip movement data. In this way, it is possible to determine a
vehicle’s speed and direction on the travelled road segment during a specific time.
This information is for example used for dynamic traffic management or for the
traffic-sensitive routing of navigation systems (Messelodi et al. 2009).

The concept of FCD, where usually only timestamps, coordinates and
GNSS-specific quality parameters are transmitted in a specific recording interval, is
further enhanced by the approach of ‘extended Floating Car Data’ (xFCD). Data
collected on-trip are extended by additional parameters, including for instance fuel
consumption or engine revolutions per minute. These parameters are sourced
directly from the vehicle electronics through reading out data from a vehicle’s
onboard diagnostic system (OBD) using standardized message protocols like
CAN-bus (Breitenberger et al. 2004). From fuel consumption, which is calculated
from the mass air flow (MAF) of the engine, on-trip CO, emissions can be
determined and related to the respective coordinates and timestamps of the
recording interval. This enables a microscopic localization of vehicle CO, emis-
sions both in space and time. The application of XxFCD in traffic emission modeling
could therefore potentially contribute to overcome current limitations due to
restricted availability and resolution of input data. Thus, the main objective of this
work is to develop, implement and evaluate a methodology to derive plausible and
consistent emission factors from onboard fuel consumption recordings of passenger
vehicles (xFCD) for the quantification of traffic induced CO, emissions on the level
of road segments and short time intervals.

2 Current State of Research

Li et al. (2010) developed a road segment centered vehicle emission model for the
estimation of greenhouse gases on highways in Beijing using FCD from more than
20,000 taxis as well as stationary detector data as primary inputs. Emission factors
were calculated based on vehicle specific power (VSP) and engine stress (ES) of the
vehicles. Through the use of FCD, spatiotemporal patterns of daily greenhouse
gases could be estimated in the road network of Beijing.
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Bert et al. (2007) conducted a study comparing results from CO, emission
calculations based on FCD and traffic sensor data. The study area was the road
network of the city center of Lausanne, Switzerland. CO, emission factors were
calculated based on driving state (accelerating, decelerating, idling and cruising)
and vehicle speed. The results showed a tendency that FCD-based emissions were
more similar to simulation results the higher the penetration rate of probe vehicle
was.

In a study by Yu et al. (2012), taxi emissions in the urban area of Shenzhen,
China, were observed based on FCD. Detailed taxi operation information is derived
from taxis equipped with GNSS receivers. The emission model comprehensive
modal emission model (CMEM) was used to calculate emissions from the taxi FCD
at each implemented speed and acceleration category. Through FCD, it was also
possible to relate amount of emissions to specific driving pattern (idling, cruising)
and to a specific time of day.

Several further studies focus on evaluating eco-driving and eco-routing recom-
mendations through onboard fuel consumption data (Jakobsen et al. 2013;
Marquette et al. 2012; Litzenberger et al. 2014). Crowd sourcing approaches
towards collecting fuel consumption and corresponding emission data were pursued
in the two projects ‘Fueoogle’ and ‘EnviroCar’. Vehicles participating in the data
collection process are equipped with Bluetooth adapters, which are connected to the
OBD-2 interface, reading out vehicle sensor data. These data then get transmitted to
a smartphone and to a central processing server. Further analyses are made using
these data, including a fuel-efficient routing application (Pham et al. 2009).

Based on literature review, it can be concluded that data from mobile sources
have already been used in several studies to support the estimation of traffic
emissions or evaluate driving patterns with regard to emissions. However, a sys-
tematic approach to utilize xFCD-based fuel consumption data to derive valid
emission factors for quantifying traffic emissions on the level of road segments and
in their temporal variation has not been undertaken so far (Krampe et al. 2013).

3 Data Sources

The collection of on-trip fuel consumption data from vehicle sensors (XFCD) was
conducted with a gasoline-driven BMW MINI Cooper R56. For reading out data
from vehicle sensors, the device tinxi® Bluetooth EOBD OBDII was used. It is a
low-cost vehicle diagnostics system, which is attached to the OBD-2 interface of a
vehicle. It reads out 15 different kinds of sensor data, including engine speed (rpm),
vehicle speed (km/h) and fuel consumption (1/100 km). Via Bluetooth, the device
was connected to a smartphone or a computer and reads out fuel consumption,
timestamps and coordinates on-trip at a transmission rate of 1 s. The data recording
process was conducted between November 2013 and October 2014 in the city of
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Extraction of on-trip measured engine speed, fuel consumption and vehicle speed
from a single vehicle track, MINI Cooper RS6
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Fig. 1 Extraction of on-trip measured vehicle sensor parameters, MINI Cooper R56, gasoline
fuelled

Salzburg and surroundings, resulting in 128 single vehicle trajectories recorded at
1 Hz, with overall 513 km of road covered. Figure 1 shows an exemplary extrac-
tion from a vehicle trajectory with recorded vehicle sensor parameters. In this case,
vehicle speed (km/h), engine speed (rpm) and fuel consumption (/100 km) are
depicted. It can be observed that a plausible, correlated behaviour exists between
these parameters: During a phase of deceleration, fuel consumption and engine
speed are low or decline. While vehicle speed rises, also the other parameters
incline. Also the effect of gear shifting is recognizable, with sharply falling engine
speed and fuel consumption despite increasing speed.

The following Fig. 2 shows a plot of vehicle speed in km/h and engine speed in
rpm. The colour gradient of the data points is based on fuel consumption in
1/100 km, with blue colour for O or no fuel consumption to red colour for the
highest measured values. It can be seen that data points with high fuel consumption
have a tendency to cumulate especially during high engine speeds, as it would be
expected. Also, the influence of gear shift behaviour and vehicle speed on engine
speed and thus on fuel consumption can be observed.

For the further quantification of CO, emissions, also cross-section traffic volume
counts from stationary road-side detectors, data on registered vehicles in Salzburg
from ‘Statistics Austria’ representing traffic composition as well as GNSS trajec-
tories from vehicles participating in regular traffic were used.
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Scatter plot of on-trip measured vehicle speed [km/h], engine speed [rpm]
and fuel consumption [I/100 km]from the recorded set of xFCD
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Fig. 2 Plot of vehicle speeds (km/h), engine speeds (rpm) and fuel consumption (1/100 km) of an
extract of the recorded set of xFCD

4 Methodology

Various factors have impact on the amount of fuel combusted on-trip by a vehicle.
Driving kinematics and the resulting driving patterns are among the most significant
factors (Alessandrini et al. 2012). Especially patterns with repeating phases of
acceleration and deceleration during low engine load cause higher fuel consump-
tions. Such patterns are for instance typical for urban driving or during limited
traffic flow quality. Various studies elaborating real world or laboratory fuel con-
sumption tests further show the influence of driving patterns on the amount of
combusted fuel. Fuel consumption values tend to be distinctively higher during
stop-and-go traffic, and the acceleration pattern has a much higher influence than
average speed values. Fuel consumption can increase by about 80 % during
stop-and-go traffic compared to free flow traffic conditions. This is due to the
dependence of fuel consumption on the effective motor pressure and the revolution
rate of a vehicle’s crankshaft (Treiber et al. 2007).

Because of the obvious correlation between driving patterns, it is assumed that
through the definition of a representative driving pattern with fuel measurements for
a road segment and a time interval, also a representative emission factor can be
obtained. In this way, the dynamics of driving are incorporated as main determinant
for calculated emission factors. Here, the term ‘driving pattern’ describes the
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sequence of acceleration, deceleration as well as the resulting course of vehicle
velocity over time. A driving pattern on a road segment can also be regarded as time
series. A time series T =t1, ..., is defined as an ordered set of p real-valued
variables.

For determining the similarity of time series, usually statistical distance measures
are applied. Given two time series 71 and 72, the distance D(T'1, T2) between them
is calculated as a similarity function. Various distance measures haven been pro-
posed in literature, with the Euclidean distance being the most frequently used one.
The Euclidean distance aligns time series in point-to-point manner. In this way,
point i in time series X is compared with point in time series Y (Lin et al. 2009). The
Euclidean distance is easy to compute, is parameter-free and performs generally
well compared to more complex methods, especially for shorter time series data.
However, the accuracy of this approach diminishes in case local time shifting is
observed between sequences, as the points of the compared sequences are regarded
as fixed. For this reason, time series which might appear to have similar shapes but
are slightly shifted in terms of time, might have a high measured distance (Ding
et al. 2008). Such time shifts can be expected between driving patterns of different
vehicles, as phases of acceleration and deceleration, for example at highway ramps,
might set in at different points in time due to individual driving behaviors.

This limitation of the Euclidean distance approach for similarity measurement
can be overcome by applying a dynamic time warping (DTW) algorithm, which is
used especially in speech recognition (Miiller 2007). In DTW, a potential time shift
between two or more time series is considered by stretching or compressing locally
until the minimum distance between them is obtained. The similarity function is
then calculated by summing the heights of the aligned points of the compared time
series, resulting in a real number which quantifies their similarity. Formally, DTW
is computed as follows (Petitjean et al. 2012):

D(Ai_1,Bj-1)
D(A;,B)) = 8(a;, bj) +min D§Ai’BJ1§
D(A;_1,B;

where:

A; Sequence with {a_1, ..., a_i )
B; Sequence with (b_l, ..., b )
0 Distance between elements of the sequence.

In the developed approach, the similarity search is conducted between all xFCD
driving patterns on a road segment and a typical driving pattern, which is repre-
sentative for the road segment at the observed time interval. In order to define this
representative driving pattern, a single driving pattern out of all available driving
patterns for the specific spatio-temporal context is calculated. For this, the global
averaging strategy ‘DTW Barycenter Averaging’ (DBA) for multiple time series is
applied. The sequences are averaged all together, hence obliterating the effects of
order on the calculation outcomes. The DBA algorithm minimizes the sum of
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DTW-calculated squared distances of an average times series to the set of all
incorporated time series. It is computed as the sum of Euclidean distances between
a point and points of the sequences aligned to it according to the DTW calculation.
This partial sum is minimized for each point by calculating the barycenter of the
associated set of points. The average sequence is the result of the computation of a
barycenter for each data point in the sequence. The DBA is defined as follows
(Petitjean et al. 2011):

C, = barycenter(assoc(Cr))

X+ X

barycenter{X, ..., Xx}
x

Cr The average sequence with (C_l, .., C_T ) at iteration i
C/T The average sequence with (C_l"’, oo C_T"’) at iteration 1 + 1

assoc Association of each point of the average sequence to one or more points of
the set of sequences.

As stated before, the xFCD vehicle trajectories are constituted by sequences of
points, which bear both spatial (latitude, longitude) and temporal (timestamp)
information. However, recorded values from single vehicle tracks can’t be simply
adopted as representative for the identified spatio-temporal dimension due to the
influence of individual driving behaviour. Thus, a broader set of vehicle trajectories
have to be aggregated spatio-temporally in order to decrease the impacts of indi-
vidual, non-representative patterns (Jackson et al. 2009). Another reason for the
aggregation of XFCD is the resulting smoothing effect, which further contributes to
reduce the influence of potentially erroneous data points (Lou et al. 2009). As basic
spatial aggregation unit, road segments of the digital OpenStreetMap road network
graph are used. To reference data points to the road segments, a ‘map-matching’
procedure is applied. Temporal similarity of XFCD is commonly determined by
grouping the data into daily time intervals (Krampe 2006). Accordingly, data points
of all incorporated vehicle trajectories, which were recorded at 1 Hz, are assigned to
15-min intervals based on the GNSS-timestamps, resulting in 96 daily intervals. All
calculations for deriving representative emission values were conducted based on
the described spatio-temporal reference units.

As emission factors from xFCD fuel consumption data are only representative
for the specific vehicles which conduct the recordings, further adjustment factors
have to be incorporated in order to make assumptions about the emission output of
an entire traffic system per observed spatio-temporal unit. The vehicle specific
emission factor from fuel consumption has to be transformed in such a way that it is
representative for the expected overall traffic composition on a road network. As no
thoroughly empirical on-site measurements of traffic composition were available,
data from the annual report of the year 2012 on automobile stocks per county and
make of car published by the national statistics authority is used. The calculated
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vehicle specific emission factor is correlated with the expected mix of passenger
vehicles in the traffic composition on a road network by applying a rule of three. For
this, standardized fuel consumption values from the measuring procedure deter-
mined in European Community regulation 715/2007 of the vehicle used for
recording XFCD and the assumed statistical average of the traffic composition of
passenger vehicles in Salzburg, Austria, is incorporated. Another utilized adjust-
ment factor is the absolute traffic volume, which are derived from detector mea-
surement at road cross sections.

5 Results

The developed methodology is applied and evaluated based on two case studies of
road stretches in Salzburg, Austria. The first case study represents an inner-urban
road stretch, while the second case study is conducted on an important artery road
to the inner-city of Salzburg. In this paper, the results of the second case study are
introduced.

The observed road stretch is a 1.68 km long part of the Alpenstralle between
Anif and the administrative city boundary of Salzburg, Austria (see Fig. 3). The
driving direction is northbound towards the city of Salzburg, with an allowed
driving speed of 70 km/h. The road side detector, which is situated near the exit of
the administrative limits of Anif, measures 5705 cars passing by on average on a
weekday, with peaks during morning and especially evening traffic. Unlike the road
in case study 1, the pattern of the average travel time shows a distinct peak during
morning traffic, with the highest travel times of 157 s in average between 07:30 and
08:15 am. It can be seen that the number of vehicles passing the detector cross
section declines during this morning peak, the traffic volume is less due to a
restricted traffic flow. Another peak can be observed during evening traffic between
04:00 and 05:15 pm, with an average travel time of 120 s. Unlike during the
morning peak, this does not lead to a significant decline of traffic volume. In the
daily average, the time to pass this road stretch is 84 s. It can be seen that during
night phases, low traffic volume and short travel times occur. Thus, the traffic
quality on the observed road stretch of the Alpenstralle varies highly in the course
of a weekday, which is assumed to have also impact on computed emissions. For
the studied road stretch, 5803 FCD vehicle trajectories recorded at 1 Hz with
information on acceleration and vehicle speed are available in the data basis, with
an average number of 60 trajectories per aggregated 15-min interval for weekdays.
The data basis of xFCD trajectories with fuel consumption recordings comprises 38
trips.

In Fig. 4, the daily course of predicted fuel consumption per calculation method
for a MINI Cooper R56 on the road stretch of case study 2 per 15-min intervals on
weekdays is depicted. A morning peak of fuel consumption can be observed, with
increasing values around 6:30 am. The maximum fuel consumption for traveling
over the road segment is predicted between 08:15-08:30 am, with 8.64 1/100 km.
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Case study 2: AlpenstraBe, Salzburg, northb d driving
direction

Daily course of the average traffic volumes and travel times,
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Fig. 3 Road segment of the inter-urban case study of Alpenstrafie, Salzburg, Austria
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This peak in fuel consumption corresponds to the highest travel time derived from
the FCD recordings. This indicates that the reduced traffic flow, which leads to
more dynamic driving patterns, causes increasing calculated fuel consumptions.
However, the smaller evening peak in travel time around 17:00 does not show any
effects on the curve of predicted fuel consumption values. The average daily fuel
consumption for traveling over the observed road stretch on weekdays is predicted
highest with 7.70 1/100 km by the developed methodology.

For the evaluation of the driving pattern approach, the DTW-distances are uti-
lized. It gives the difference in km/h per recording (conducted in 1 Hz frequency) of
a matched driving pattern with fuel consumption to the representative driving
pattern on a road segment and 15-min interval. For the case study, the minimum
DTW-distance is derived at 14:30-14:45 (1.62 km/h per second), the maximum at
06:00-06:15 (4.80 km/h per second). For all 15-min intervals, the average distance
between a reference driving pattern and the matched fuel consumption pattern is
2.34 km/h per second. The obtained distance is considered to be tolerable and it is
assumed that for the observed road segment, the fuel consumption patterns do
adequately match the representative driving patterns.

Based on the derived emission factors from fuel consumption, the absolute CO,
emission values are calculated. This is done by introducing a traffic composition
adjustment factor for fuel consumption, so that the values from the vehicle used for
recording are adjusted according to the general traffic composition. Data on traffic
composition is derived from vehicle ownership statistics in Salzburg. Moreover, the
overall traffic volume is incorporated by using traffic volume data from a stationary
road side detector. The resulting predicted daily course of CO, emissions is
depicted in Fig. 5. As it can be expected, the extent of CO, emissions are highly

Estimated daily course of CO2 emissions in g from passenger cars per 15-minute intervals,
case study 2 - Alpenstralie , Salzburg, weekdays
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coupled with the traffic volume, which usually starts to increase steeply from 05:45
on and declines again around 19:30. The level of CO, emissions is estimated to be
between 50,100 and 67,300 g/15-min during daytime. The peak is predicted for
14:15-14:30 with 67,264.5 g of CO, emissions. Another peak can be observed
between 08:45-09:00, with 63,613.8 g of CO, emission. The overall daily amount
of CO, emitted on the observed 1.68 km long road stretch on regular weekdays is
predicted to be 3,713,806 g. From a typical vehicle traveling over this road stretch,
191 g/km of CO, are emitted on daily average.

6 Conclusion

Based on the evaluation of the developed methodology in the case studies, the
elaborated driving pattern approach is considered to have high potential for cal-
culating representative, plausible and consistent CO, emission factors from xFCD
fuel consumption recordings with a high spatial and temporal resolution. In general,
the obtained CO, emissions showed values within plausible ranges and are closely
correlated to the traffic flow quality in the respective interval, as it would be
expected. Moreover, the daily profile of estimated CO, emissions and the fluctu-
ations of values between subsequent 15-min intervals appeared to be reasonable.
However, to further determine the validity and feasibility of the developed
methodology, also additional case studies would have to be conducted, involving
larger and diverse vehicle fleets for the recording of fuel consumption data, as well
as a wider study area. A suitable framework for this could be a field operational test
(FOT).

Nevertheless, the potential of the systematic usage of xFCD for the purpose of
estimating traffic related CO, emissions could be shown. A better understanding of
the spatio-temporal occurrences of CO, emissions through the provision of
fine-scaled information based on mobile fuel consumption measurements can thus
be a valuable building block for implementing dynamic and more efficient
ecologically-orientated traffic management strategies. Besides the intended purpose
of quantifying traffic-related CO, emissions, the developed methodology could also
be used for evaluating the energy efficiency of road segments at specific times of the
day. Provided the development of respective software modules, this could con-
tribute to enhance existing in-vehicle ITS solutions, like eco-friendly routing
alternatives for navigation units or a more realistic calculation of kilometers left for
traveling using the current fuel level and the appointed route of a vehicle’s navi-
gation system.
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