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Abstract Landslides in Slovakia are followed by great economic loss and threat to
human life. Therefore, implementation of landslides susceptibility models is
essential in urban planning. The main purpose of this study is to investigate the
possible applicability of Support Vector Machines (SVMs) in landslides suscepti-
bility prediction. We have built a classification problem with two classes, landslides
and stable areas, and applied SVMs algorithms in the districts Bytča, Kysucké Nové
Mesto and Žilina. A spatial database of landslides areas and geologically stable
areas from the State Geological Institute of Dionýz Štúr were used to fit SVMs
models. Four environmental input parameters, land use, lithology, aspect and slope
were used to train support vector machines models. During the training phase, the
primal objective was to find optimal sets of kernel parameters by grid search. The
linear, polynomial and radial basis function kernels were computed. Together 534
models were trained and tested with LIBLINEAR and LIBSVM libraries. Models
were evaluated by Accuracy parameter. Then the Receiver Operating Characteristic
(ROC) and landslides susceptibility maps were produced for the best model for
every kernel. The best predictive performance was gained by radial basis function
kernel. This kernel has also the best generalization ability. The results showed that
SVMs employed in the presented study gave promising results with more than 0.90
(the area under the ROC curve (AUC) prediction performance.
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1 Introduction

Floods, soil erosion and landslides are the most dangerous geohazards in Slovakia
and their activity is followed by great economic loss and threat to human life. Based
on the research of slope deformation occurrence 5.25 % of the total land area of the
Slovak Republic is affected by slope failures (Šimeková et al. 2014). According to
Ministry of Environment of the Slovak Republic 45 million Euro will be invested
into landslides prevention, identification, monitoring, registration and sanation in
the time period between the years 2014 and 2020. Therefore, implementation of
geological hazards models is essential in urban planning process for effective
prevention and protection in high risk areas. In recent time, a machine learning
became very popular phenomenon. Cheaper hardware allows wider ranges of
companies and institutions to store and examine large datasets. This environment is
very stimulating and new or upgraded machine learning techniques are developed
continuously. This study is focused on the Support Vector Machines (SVMs)
method and its usability in prediction modelling of landslides susceptibility in
geographical information systems (GIS), which was never used before by profes-
sionals in Slovakia.

The objective of this study is to test linear, polynomial and radial basis function
kernels and their inner parameters to find optimal model to create landslides sus-
ceptibility maps. For this purpose, we have built a classification problem with two
classes “landslides” and “stable areas”.

Further step is training the SVMs to compute probability that unobserved data
belong to landslides class. First, these models were validated by their accuracy.
Subsequently, for each kernel, the model with the best result was trained to predict
probability output and validated by the Receiver Operating Characteristic
(ROC) curve. Finally, landslides susceptibility maps were created.

There are number of different approaches to the numerical measurement of
landslide susceptibility evaluation in the current literature, including direct and
indirect heuristic approaches and deterministic, probabilistic and statistical
approaches (Pradhan et al. 2010). Statistical analysis models for landslide suscep-
tibility zonnation were developed in Italy, mainly by Carrara (1983) who later
modified his methodology to the GIS environment (Carrara et al. 1990) using
mainly the bivariate and mutlivariate statistical analysis. More recently, new
techniques have been used for landslide susceptibility mapping. New landslide
susceptibility assessment methods such as artificial neural networks (Lee 2004),
neuro-fuzzy (Vahidnia 2010) or (Hyun-Joo and Pradhan 2011), SVMs (Yao et al.
2008) and decision tree methods (Nefeslioglu et al. 2010) have been tried and their
performance have been assessed. In Slovakia, landslide susceptibility assessment
has experienced a significant step forward especially due to Pauditš (2005) and
Bednárik (2011) achievements in their work (Bednarik et al. 2014) using the
multivariate conditional analysis method and bivariate statistical analysis with
weighting.
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2 Study Area, Data and Materials

The study area is located in north-west of Slovakia overlying the districts Bytča,
Kysucké Nové Mesto, Žilina, and covers a surface area of 300 km2 (20 km � 15
km). It lies between the S-JTSK coordinates of the y-axis 458,653.27–438,653.27 m
and coordinates of the x-axis 1,162,115.32–1,177,115.32 m (S-JTSK is a national
coordinate system in Slovakia, the corresponding coordinates of the study area in the
WGS 84 are: latitude N49°18′59″ to N49°10′03″ and longitude E18°31′02″ to E18°
48′28″). The mean annual rainfall in the area varies from 650 to 700 mm. The
prominent rainy season is during the months of June and July. The geomorphology
of the area is characterized by a rugged topography with the hills ranges varying
from 292 to 817 m a.s.l. The study area is largely formed by the Javorníky and
Súľov Montains and the Žilina basin. The land use in the area is dominated by forest
land and urban land. The high occurrence of landslides was mainly within Javorníky
mountains mapped in 1981 and 1982 (Baliak and Stríček 2012).

2.1 Landslide Conditioning Factors

Identification and mapping of a suitable set of instability factors having a rela-
tionship with slope failures require a priori knowledge of main causes of landslides
and it is a domain of geologists. These instability factors include surface and
bedrock lithology and structure, seismicity, slope steepness and morphology,
stream evolution, groundwater conditions, climate, vegetation cover, land use and
human activity (Pradhan 2013). The acquirement and availability of these thematic
data is often a difficult task. A grid based digital elevation model (DEM) was used
to acquire geomorphometric parameters. The DEM was provided by Geodetic and
Cartographic Institute Bratislava in the version “3.5”. In this study, the calculated
and extracted factors were converted to a spatial resolution of 10 � 10 m. This
mapping unit was small enough to capture the spatial characteristics of landslide
susceptibility and large enough to reduce computing complexity. Total four dif-
ferent input datasets are produced as the conditioning factors for occurrence of
landslides. Slope and aspect were extracted using the DEM. The slope configuration
plays an important role when considered in conjunction with a geological map. The
geological map of the Slovak republic at scale 1:50,000 in the shapefile format was
provided by State Geological Institute of Dionýz Štúr (Káčer et al. 2005). The last
conditioning factor land use is extracted from Corine Land Cover 2006 with a
spatial resolution 100 � 100 m.

In this study, geological and statistical evaluation of input conditional factors
according to landslide susceptibility was not performed. The results from this
evaluation are used to reclassify input parameters into the groups with similar
properties causing slope failures. Reclassified input parameters are then used in
further landslide susceptibility evaluation as in the case of bivariate and mutlivariate
statistical analysis. According to the properties of the Support Vector Machines
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method it is not necessary to reclassify input parameters and they can be used
directly in their untouched form. The only parameter that has to be reclassified is
aspect because it contains continues values and special coded value for the flat.
Values of aspect were reclassified into the categories N, NE, E, SE, S, SW, W, NW
and Flat.

Input parameters were used in the following form. Geological map contains 90
distinct classes, land use contains 18 distinct classes and aspect was passed with 9
classes in the study area. The last used conditioning factor slope was used in its
continuous form.

2.2 Landslide Inventory Map

The database includes vector and raster spatial datasets using the ArcGIS software
package. As a groundwork of digital layers (landslides and stable areas) serve the
data from the project of Atlas of Slope Stability Maps SR at 1:50,000 (Šimeková
et al. 2006), which was completed in 2006 by State Geological Institute of Dionýz
Štúr. Slope deformations were identified from archival materials or mapped in the
field. Data were provided in shapefile format. Landslides were extracted from
zos_zosuvy_sr.shp with value of attribute STUPAKT = A (activity level = active).
Stable areas were extracted from zos_8002_SR.shp. Subsequently, the landslide
vector map was transformed into a grid database with a cell size of 10 � 10 m. For
the study area, 72 landslides (in the range 13,464–241,044 m2) were extracted
using the inventory map. The landslide inventory map was especially helpful in
understanding the different conditioning factors that control slope movements.
Distribution of landslides and stable areas is shown in the Fig. 1.

Fig. 1 Location map of the study area showing landslides and stable areas from Atlas of Slope
Stability Maps SR at 1:50,000 (Šimeková et al. 2006) used in training and validation

376 L. Karell et al.



3 Learning with Support Vector Machines

Machine learning algorithms are widely used in cases where the mapping function
between input parameter(s) and output parameter(s) is complex, or even unknown.
Definition of machine learning can be as following: “A computer is said to learn
from experience E with respect to some test T and some performance measure P, if
its performance on T, as measured by P, improves with experience E” (Mitchell
1997).

SVMs were introduced in 1995 by prof. Vladimir Naumovich Vapnik (Vapnik
1995). Since then, SVMs and their variants and extensions (also called kernel-based
methods) have become one of the preeminent machine learning paradigms.
Nowadays, SVMs are routinely used in wide range of areas e.g. handwriting
recognition or bioinformatics.

3.1 Two-Class Support Vector Machines

In Two-Class SVMs the m-dimensional input x is mapped into l-dimensional (l � m)
feature space z. Then in the feature space z the optimal separating hyperplane is
found by solving the quadratic optimization problem. The optimal separating
hyperplane is a boundary that separates classes with maximal generalization ability
as shown in the Fig. 2.

Circles represent class 1 and squares are class −1. As shown in the picture
(Fig. 2), there is infinite number of separating hyperplanes which separates classes

Fig. 2 Optimal hyperplane
separating two classes with
maximum margin
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1 and −1. The separating hyperplane with maximal margin is called the optimal
separating hyperplane. In this case, the separating hyperplane is given by equation:

wTxþ b ¼ 0 ð1Þ

where w is m-dimensional vector, b is bias term and x is m-dimensional input.
SVMs will then predict class 1 every time when wTx + b > 0, and class 2 when

wTx + b < 0. Equation (1) can be converted to form:

yi wTxþ b
� � � 1 for every yi ¼ 1

� � 1 for every yi ¼ �1

�
ð2Þ

where y is sample label.
From Eq. (2) it is clear that we obtain exactly the same separating hyperplane,

even if all the data that satisfy the inequalities are deleted. The separating hyper-
plane is defined by the data that satisfy the equalities (2) and this data are called
support vectors. In the Fig. 2 the support vectors are marked with filled circles and
squares. Example above is linearly separable. Many times the problem can not be
separated linearly and we have to admit training errors. The influence of training
errors is regulated with error cost parameter C. Maximizing the margin is a problem
of constrained optimization, wich can be solved by Lagrange method. Final deci-
sion function is given by:

f xnewð Þ ¼ sign
X#SV

i¼1

aiyi xSVi ; xnew
� �þ b

 !

ð3Þ

where f(xnew) is decision function, #SV is number of support vectors, xSV is m-
dimensional support vector input and xnew is m-dimensional input of unobserved
data and a is Lagrange multiplier.

3.2 Kernel Trick

Very few problems are linearly separable in the input space, and therefore SVMs
does not have high generalization ability. To overcome linearly inseparable prob-
lems we map original input space into high-dimensional dot-product feature space.
To map m-dimensional input feature space into l-dimensional feature space we use
nonlinear vector function g(x) = (g1(x),…,gn(x))

T (Abe 2010). Using the
Hilbert-Schmidt theory, the final solution transforms to following:

f xnewð Þ ¼ sign
X#SV

i¼1

aiyiK xSVi ; xnew
� �þ b

 !

ð4Þ
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where K xSVi ; xnew
� �

is the kernel function or kernel.
Kernels allow us to map input space into high-dimensional (even

infinite-dimensional) feature space without explicit treatment of variables.
In this study we are using three types of kernels:

1. Linear kernel K(x1,x2) = <x1,x2>
2. Polynomial kernel K(x1,x2) = (c <x1,x2> + c0)

d

3. Radial basis function (RBF) K(x1,x2) = exp(−c||x1 − x2||
2)

where c is width of radial basis function, coefficent in a polynomial, d is degree of a
polynomial, c0 is additive constant in polynomial a C is influence of training errors.
Detailed information about SVMs definition can be found in Abe (2010), Hamel
(2009) or Cambell and Ying (2011).

4 Implementation of Support Vector Machines

In this study, the software LIBSVM v3.20 (Chang and Lin 2011) and LIBLINEAR
v1.96 (Fan at el. 2008), which are widely used SVMs libraries, were used to SVMs
analysis. Input environmental parameters were processed using ArcGIS. Then,
MATLAB was used to transform environmental parameters into the form suitable
for LIBSVM and LIBLINEAR analysis. Categorical data land use, lithology and
aspect were dummy coded. Finally, all input parameters were normalized into the
�1; 1h i range. Therefore, four input environmental parameters, namely aspect (9
categories), geology map (90 categories), land use (18 categories) and slope (one
continuous value), formed 118-dimensional input space. Landslides areas cover
35,191 pixels against 59,304 pixels covered by stable areas in the study area. These
pixel sets and values of the parameters on their locations formed experimental data
matrix of shape 94,495 � 118 with landslides or stable area pixels in the rows and
values of the input parameters in the columns. This data was then divided into
training set used to train SVMs models and validation set used to validate per-
formance of the models with ratio 50–50 %. This size of validation sample allows
to perform more complex ROC testing over more test data and is not causing
decrease of the predictive performance.

The optimal set of kernel parameters was gained by grid search. Unfortunately,
there is no way of how to determine the kernel parameters a priori and they must be
determined experimentally. The parameters were tested in the following grid:

• parameter C: 1, 3, 10, 30, 100, 300
• parameter c: 1/118 (0.01, 0.03, 0.1, 0.3, 1, 3, 10, 30, 100)
• parameter c0: 0, 10, 30, 100
• parameter d: 2, 3
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For linear kernel there is one special parameter in LIBLINEAR library which is
type of the solver. LIBLINEAR has implemented 8 types of solver [further infor-
mation in Fan at el. (2008)]. This parameter will be called S: 0, 1, 2, 3, 4, 5, 6, 7.

In this case study, together 534 models were trained and tested.

5 The Validation of the Landslide Susceptibility Maps

The outputs of the SVMs models after their spatialization, are generally presented
in the form of maps expressed quantitatively. Final landslides susceptibility maps
are usually divided into the five susceptibility levels. On the other hand, reclassi-
fication to discreet classes causes the information loss and so the final outputs were
left in the continuous form in order to produce smoother ROC curves. Primary
outputs from the SVMs algorithm are predicted class labels. The probability outputs
are available by transformation of sample distance to separating hyperplane, but this
process is computationally costly and cannot be performed for every model during
the best inner parameters search phase. The first models predictive performance was
measured by parameter “Accuracy” (ACC) (Metz 1978), which was gained over the
validation set (47,247 landslide grid cells that is not used in the training phase). The
results of the ten best models for each kernel are shown in Tables 1, 2 and 3. Then
each kernel (linear, polynomial and radial basis function) was retrained with the
optimal set of inner parameters to produce probabilistic outputs. Finally, these
outputs were used to validate models. The spatial effectiveness of models were
checked by ROC curve. The ROC curve is a useful method of representing the
quality of deterministic and probabilistic detection and forecast system (Swets
1988). The area under the ROC curve (AUC) characterizes the quality of a forecast
system by describing the system’s ability to anticipate correctly the occurrence or
non-occurrence of pre-defined “events”. The ROC curve plots the false positive rate
(FP rate) on the x-axis and the true positive rate (TP rate) on the y-axis. It shows the
trade-off between the two rates (Negnevitsky 2002). If the AUC is close to 1, the

Table 1 The results of the
ten best models of linear
kernel

S C TP rate FP rate ACC Training time (s)

4 1 0.8045 0.0856 0.8734 32.0

4 3 0.8031 0.0847 0.8734 95.4

4 30 0.8051 0.0864 0.8731 838.6

4 10 0.7960 0.0811 0.8730 314.0

3 1 0.8094 0.0893 0.8729 10.7

4 100 0.8123 0.0912 0.8728 1937.5

3 3 0.7917 0.0796 0.8724 23.2

3 10 0.7706 0.0746 0.8676 39.1

7 1 0.8092 0.1023 0.8647 8.0

0 1 0.8076 0.1012 0.8647 4.3
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result of the validation is excellent. The predictor which is simply guessing will
score 0.5 (AUC), because probability of right guess from two classes is 50 %. The
results of the ROC for the best models are illustrated in the Fig. 3.

According to ROC testing, the best predictive performance was gained by
polynomial kernel followed by radial basis function kernel and linear kernel. Values
of AUC for each kernel point to very good prediction ability over validation set. On
the other hand, only numerical results of validation are not sufficient to measure
predictive performance. As we can see in the maps below (Figs. 4, 5), polynomial
and linear kernels failed to generalize predictive performance on areas where there
was no training data and their characteristics differ from the areas covered by the
training data significantly. The most problematic region for both linear and poly-
nomial kernel is region of city Žilina. This is caused by distribution of training data
in the study area which is not homogeneous. As we can see in the Fig. 1, the most
of the stable areas pixels and active landslisdes pixels that form training and val-
idation datasets are distributed in mountainous parts of the study area. The lack of
training data from areas with significantly different characteristics (e.g. from region

Table 2 The results of the ten best models of polynomial kernel

d c c0 C TP rate FP rate ACC Training time (s)

3 1/118 � 10 0 300 0.8801 0.0475 0.9255 2446.5

3 1/118 � 30 10 10 0.8794 0.0471 0.9254 3118.7

3 1/118 � 30 0 10 0.8790 0.0471 0.9253 2512.2

3 1/118 � 10 0 100 0.8820 0.0492 0.9251 1620.7

3 1/118 � 10 10 30 0.8923 0.0554 0.9251 5189.6

3 1/118 � 30 10 1 0.8825 0.0496 0.9251 1040.5

3 1/118 � 10 10 10 0.8864 0.0519 0.9250 1410.5

3 1/118 � 30 10 30 0.8834 0.0502 0.9250 2666.8

3 1/118 � 10 0 30 0.8801 0.0484 0.9249 901.1

3 1/118 � 30 10 300 0.8802 0.0485 0.9249 3164.7

Table 3 The results of the ten best models of radial basis function kernel

c C TP rate FP rate ACC Training time (s)

1/118 � 30 300 0.8826 0.0490 0.9255 311.2

1/118 � 30 100 0.8817 0.0487 0.9253 225.0

1/118 � 10 300 0.8817 0.0494 0.9249 218.0

1/118 � 30 30 0.8810 0.0492 0.9247 180.4

1/118 � 10 100 0.8791 0.0483 0.9246 183.6

1/118 � 100 10 0.8796 0.0489 0.9244 197.8

1/118 � 3 300 0.8791 0.0494 0.9239 158.3

1/118 � 10 30 0.8777 0.0486 0.9239 162.8

1/118 � 30 10 0.8785 0.0496 0.9236 155.2

1/118 � 100 3 0.8772 0.0494 0.9232 179.0
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of city Žilina) causes poor predictive performance of linear and polynomial kernels.
This shortage cannot be detected by means of statistical validation and outputs need
to be also visually validated.

After numerical and visual validation of the classification results, the radial basis
function kernel (Fig. 6) was chosen as the optimal kernel for landslides

Fig. 3 ROC plots for the susceptibility maps showing false positive rate (x-axis) vs. true positive
rate (y-axis) for the best model of each kernel

Fig. 4 The classification results of the study area produced by linear kernel
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susceptibility mapping, the model’s AUC validation result is 0.974 what is only
0.006 less than the best result gained by polynomial kernel in statistical testing.
Radial basis function kernel has also the best generalization ability from all kernels.
Another advantage of radial basis function kernel is that the kernel has only two
parameters to be set and the training time is also lower than training time of
polynomial kernel with four parameters to set.

Fig. 5 The classification results of the study area produced by polynomial kernel

Fig. 6 The classification results of the study area produced by radial basis function kernel
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6 Conclusion

This paper presents an applicability case study of the SVMs method in landslides
susceptibility mapping based on landslides recorded in districts Bytča, Kysucké
Nové Mesto and Žilina. We have applied the SVMs algorithm using the LIBSVM
and LIBLINEAR libraries and made a SVMs application work-flow that is as
following:

1. Data preparation. One of the advantages of the SVMs method is the fact that
there is no need to reclassify the input environmental parameters. The SVMs
method is capable of using the continuous parameters such as slope steepness in
the original form. The SVMs algorithm is designed for classification problems
based on hundreds of input parameters. Therefore, environmental input
parameters need not to be reclassified into the groups with similar properties,
which prevents information loss and can be passed into the computation in the
original form.

2. Inner parameters grid search. Support Vector Machines has various inner
parameters for every kernel that need to be set correctly in order to gain the best
predictive performance. Unfortunately, there is no way of choosing the
parameters values a priory and values of parameters have to be search by
training and testing with model’s accuracy.

3. Support Vector Machines retraining with the best set of parameters from grid
search with probability outputs enabled.

4. Statistical validation over validation dataset not used in grid search and final
model training.

5. Visual validation. Support Vector Machines algorithm is able to fit to area of
interest closely and is prone to training data distribution. If the area of interest
has parts with significantly different characteristics (e.g. mountainous forest and
urbanized land), it is very important to ensure that the training and validation
datasets are evenly distributed over all parts of study area. If this need is not met,
the predictive performance will be optimized only to characteristics bounded to
training data and predictions in other parts of region may not be reliable.

We have tested three types of kernels and their inner parameters. The results
were first validated numerically with ROC curves over the validation set, then we
produced the landslides susceptibility maps and validated them visually. From the
results, we can draw following conclusions:

(a) The results showed that the SVMs method employed in the present study gave
promising results with more than 0.90 (AUC) prediction performance.

(b) The best predictive performance 0.980 (AUC) was gained by polynomial
kernel, but this kernel failed to generalize predictive performance over all
study area. This type of kernel is prone to training data distribution. Another
disadvantage of this kernel is more kernel parameters to be set, which means
more combinations of kernel parameters to be tested in order to gain the best
predictive performance.
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(c) After the visual validation of the landslides susceptibility maps, the radial
basis function kernel was chosen as the optimal kernel for landslides sus-
ceptibility mapping. This kernel gained 0.974 (AUC) prediction performance.
Advantages of this kernel are:

– two parameters to be set, c and error cost parameter C, which results to less
combinations of kernel parameters to be set than in case of polynomial
kernel,

– very good generalization ability,
– low training time.

(d) Linear kernel scored the lowest prediction performance 0.926 (AUC). The
advantages of this kernel is very low training time. The disadvantage is poor
generalization ability caused by nature of linear kernel which is the simplest
that does not map input space into feature space. This kernel is very effective
when the problem is linearly separable or there is very large amount of input
parameters which form high-dimensional input space.

(e) Among disadvantages of the SVMs method belong computational cost and the
biggest disadvantages is hard interpretation of kernels and their parameters and
incapability of input parameters weights determination.

As we presented in this case study, the SVMs algorithm with radial basis
function kernel gives promising results in landslides susceptibility mapping. Next
we suggest further testing of the SVMs method by the professionals from geology
and detailed results testing from the lithology, slope, land use and other condi-
tioning factors points of view by the domain experts.
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