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Abstract Currently the forest sector in Finland is looking towards the next gen-
eration’s forest resource information systems. Information used in forest planning is
currently collected by using an area-based approach (ABA) where airborne laser
scanning (ALS) data are used to generalize field-measured inventory attributes over
an entire inventory area. Inventories are typically updated at 10-year interval. Thus,
one of the key challenges is the age of the inventory information and the
cost-benefit trade-off between using the old data and obtaining new data. Prediction
of future forest resource information is possible through growth modelling. In this
paper, the error sources related to ALS-based forest inventory and the growth
models applied in forest planning to update the forest resource information were
examined. The error sources included (i) forest inventory, (ii) generation of theo-
retical stem distribution, and (iii) growth modelling. Error sources (ii) and (iii) stem
from the calculations used for forest planning, and were combined in the investi-
gations. Our research area, Evo, is located in southern Finland. In all, 34 forest
sample plots (300 m2) have been measured twice tree-by-tree. First measurements
have been carried out in 2007 and the second measurements in 2014 which leads to
7 year updating period. Respectively, ALS-based forest inventory data were
available for 2007. The results showed that prediction of theoretical stem distri-
bution and forest growth modelling affected only slightly to the quality of the
predicted stem volume in short-term information update when compared to forest
inventory error.
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1 Introduction

Accuracy of forest resource information has a decisive impact to decision making
concerning forest management and wood procurement. Forest inventory informa-
tion is used in decision support systems that are further used for making compu-
tations of the current state of the forest holding as well as future projections. Errors
in input data for the execution of long model chains increase in magnitude and
cause significant output errors, e.g. when forest management plans are updated (e.g.
Ojansuu et al. 2002; Haara and Korhonen 2004; Haara 2005; Vastaranta et al. 2010;
Holopainen et al. 2010a, b). The longer the reference period, the larger the output
errors; thus, inaccurate input data are especially problematic in forestry yield value
determination. In addition, inaccurate input data cause significant losses in forest
planning and forest silviculture as the timing of various treatments starts to differ
from the optimal timings (e.g. Eid 2000; Eid et al. 2004; Holopainen and Talvitie
2006; Holopainen et al. 2009).

Airborne laser scanning (ALS) has been generalized as a technique used for
forest inventory with an aim for collecting information for forest planning. The
applied method is known as area-based approach (ABA). In ABA, ALS data are
used to generalize field-measured forest inventory attributes over an entire inven-
tory area. ABA has provided accuracies ranging between 10 and 27 % for the mean
stem volume at stand- or plot-level (e.g. Næsset et al. 2004; White et al. 2013).
In ABA, forest inventory attributes, such as species-specific stem volume (V),
basal-area (G), Lorey’s height (Hg), basal-area weighted mean diameter (Dg), and
stem number (N) are predicted for grid cells covering the entire inventory area.
However, models used in forest-planning simulation (including attribute update)
require measured or estimated stem diameter distributions that are not directly
inventoried. Thus, stem diameter distributions are typically formed by
predicting/recovering parameters of some theoretical distribution function such as
the probability functions of beta, Weibull or Johnson SB distributions based on the
forest inventory attributes (Kilkki et al. 1989; Maltamo and Kangas 1998; Siipilehto
1999; Kangas and Maltamo 2000; Holopainen et al. 2010c). Then, forest growth
modelling is done at tree-level by using growth models for basal-area and height
(Hynynen et al. 2002). In this way, forest inventory attribute updating systems that
are based on tree-level models are subject to (1) inventory errors, (2) errors in the
predicted stem diameter distribution, and (3) errors in the growth modelling.

Our objective was to analyse the effects of these error sources on the short-term
forest inventory attribute update in boreal managed forest conditions. The analyses
of the error sources were partitioned into two parts. The first part dealt with the
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errors related to the forest inventory using ABA. The second part dealt with the
effect of stem distribution prediction error and growth modelling error. The overall
aim related to the study is to develop methods for updating grid-level forest
inventory attributes for forest management planning purposes.

2 Materials and Methods

2.1 Study Area

The 5 by 5 km study area is located in Evo, southern Finland which belongs to the
southern boreal forest zone. It consists of approximately 2000 ha of mainly man-
aged boreal forest having an average stand size slightly less than 1 ha. The ele-
vation of the area varies from 125 to 185 m above sea level. Scots pine (Pinus
sylvestris L.) and Norway spruce [Picea abies (L.) H. Karst.] were the dominant
tree species in the study area contributing 49 and 28 % of the total stem volume,
respectively. The share of deciduous trees was 23 % of the total stem volume
(Fig. 1).

Fig. 1 Map of the study area containing the modelling (n = 246) and validation (n = 34) plots
used in the study
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2.2 Field Data from 2007 and 2014

Field measurements were undertaken in summer 2007 on 246 circular plots
(modelling plots) with 9.77 m radius. The modelling plots were selected based on
pre-stratification of existing stand inventory data (Kankare et al. 2013). All trees
having a diameter-at-breast-height (DBH) of over 5 cm were tallied and tree height,
DBH, and species were recorded. Tree heights were measured using Vertex cli-
nometers as DBH was measured with steel callipers. The stem volumes were cal-
culated with standard Finnish species-specific stem volume models (Laasasenaho
1982). The plot-level data were obtained by summing the tree data. From the
246 modelling plots, a further sample of 34 plots was selected in year 2014 to be
used as validation plots in this study. The validation plots were distributed over the
study area among the modelling plots to cover all the various site types, stand
development classes, and tree species. The unnatural changes to modelling plots,
such as clear-cuts or thinnings, limited the number of validation plots available. The
descriptive statistics of modelling plots (n = 246) and validation plots (n = 34) are
summarized in Table 1. The plot centres were measured with a Trimble’s GEOXM
2005 Global Positioning System (GPS) device (Trimble Navigation Ltd.,
Sunnyvale, CA, USA), and the locations were post-processed with local base sta-
tion data, resulting in an average error of app. 0.6 m.

The 34 validation plots were re-measured in 2014 with the exactly similar plot
set up as year 2007. Again all trees on the plot with DBH over 5 cm were measured
and DBH, tree height and species were recorded. The sample plots were located
based on the recorded coordinates for the plot centres from 2007 measurements.
The plot centres were even marked with signposts during the 2007 measurements
so that the exact plot centre could be found for re-measurements. The descriptive
statistics for sample plots measured on year 2014 are shown in Table 2.

Table 1 Field inventoried mean attributes of modelling plots (n = 246) and validation plots
(n = 34) from 2007

Field inventory 2007

V, m3/ha G, m2/ha N, /ha Dg, cm Hg, m

Modelling plots (n = 246)

Scots pine 70.6 (86.1) 7.9 (8.5) 282 (358) 23.2 (9.6) 17.7 (6)

Norway spruce 67.9 (95.9) 7.3 (8.6) 361 (344) 17.8 (10.2) 14 (7.4)

Deciduous 48.2 (56) 6 (6.4) 386 (422) 17.8 (9.2) 16.1 (5.5)

All 186.6 (110.4) 21.2 (9.5) 1029 (618)

Validation plots (n = 34)

Scots pine 110.8 (116.2) 12 (10.4) 359 (326) 25 (11.1) 18.6 (5.6)

Norway spruce 63.3 (119.6) 6.8 (10.3) 399 (456) 15.3 (10.3) 12.5 (7.7)

Deciduous 56.4 (78.2) 6.7 (8.2) 415 (541) 16.7 (8) 15.9 (5.2)

All 230.4 (125.5) 25.4 (9.5) 1173 (750)

Standard deviations are provided in the parenthesis. The validation plots were also included in
modelling plots
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2.3 Remote Sensing-Based Forest Inventory from 2007

The remote sensing data were collected in midsummer 2006. ALS was performed
using Optech ALTM3100C-EA system operating with a pulse rate of 100 kHz. Data
were acquired at a flight altitude of 1900 m resulting in an average pulse density of
1.3 pulses per square meter in non-overlapping areas and a footprint of 70 cm in
diameter. The system was configured to record up to four returns per pulse, i.e. first,
last, only, and intermediate. Reported positioning accuracy was 40 cm and 15 cm
for horizontal and vertical direction respectively. Same-date aerial photographs were
obtained with a digital camera and the photographs were orthorectified, resampled to
pixel size of 0.5 m and mosaicked to a single image covering the entire data.
Near-infrared (NIR), red (R) and green (G) bands were available.

ALS data were first classified into ground or non-ground points using the
TerraScan (TerraSolid, Helsinki, Finland) based on the method explained in
Axelsson (2000). A digital terrain model (DTM) was then calculated using clas-
sified ground points. Laser heights above ground (normalized height or canopy
height) were calculated by subtracting ground elevation from corresponding laser
measurements. The expected accuracy of the ALS-derived DTM varies in boreal
forest conditions by around 10–50 cm (Hyyppä et al. 2009). Canopy heights closed
to zero are the ground returns and those greater than 2 m are considered as vege-
tation returns. The data between them are considered as returns from ground
vegetation or bushes. Only the returns from vegetation were used for feature
extraction. Statistical metrics describing canopy structure were extracted for the
sample plots (radius 9.77 m) following suggestions by White et al. (2013). Also
several statistical and textural features were extracted from the aerial photographs,
such as the means and standard deviations of spectral values (Holopainen et al.
2008). The Haralick textural features (Haralick et al. 1973; Haralick 1979) were
derived from the spectral values.

Species specific basal area (G), basal area-weighted mean diameter (Dg),
Lorey’s height (Hg), stem volume (V), and number of stems per hectare (N) were
predicted by means of remote sensing metrics using random forest (RF, Breiman
2001) based k nearest-neighbor (NN) approach. Forest inventory attributes mea-
sured in the field were used as target observations, and plot-specific metrics derived

Table 2 Field inventoried mean attributes of validation plots (n = 34) from 2014

Field inventory 2014

V, m3/ha G, m2/ha N,/ha Dg, cm Hg, m

Scots pine 131.1 (115.1) 13.1 (10.5) 340 (317) 26.7 (10.6) 20.6 (4.8)

Norway spruce 75.4 (119.2) 7.9 (10.1) 458 (479) 17.2 (10.4) 14.4 (7.2)

Deciduous 63.4 (88.5) 7.1 (9) 433 (540) 16 (7) 16.5 (4.8)

All 270 (105.8) 28 (8.4) 1231 (814)

Standard deviations are provided in the parenthesis
n = 34 plots
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from remote sensing data sets were used as predictors. The RF approach was
applied in the search of nearest neighbors. In the RF method, several regression
trees are generated by drawing a replacement from two-thirds of the data for
training and one-third for testing for each tree. The samples that are not included in
training are called out-of-bag samples, and they can act as a testing set in the
approach. The measure of nearness in RF is defined based on the observational
probability of ending up in the same terminal node in classification. The R statistical
computing environment (R Core Team) and yaImpute library (Crookston and
Finley 2008) were applied in the predictions. In the present study, 1200 regression
trees were generated, and the square root of the number of predictor variables was
picked randomly at the nodes of each regression tree. The number of neighbors was
set to one to keep the original variance in the data (see, e.g. Hudak et al. 2008;
Franco-Lopez et al. 2001). Prior to the final modeling, RF was used to reduce the
number of predictor variables. The aim of the variable reduction was to build up
parsimonious models that are capable of accurate prediction. In the variable
selection, RF iterated 100 times per model and the best variables based on their
importance for each model were selected. Then, only the most important variables
based on the results were used for the final imputations. The used predictors were
the vegetation ratio from first and last pulses, the heights where 30 and 90 % of first
laser returns and 30 % of last returns had been received, mean height in the pixel
window, local homogeneity 90° of height, the average NIR and standard deviation
of NIR.

To improve the accuracy of the species specific estimates, the sample plots were
divided into four strata according to existing stand register information. The first
stratum included Scots pine dominated stands, the second stratum Norway spruce
dominated stands, the third stratum included stands dominated by deciduous trees
and the fourth stratum had stands with approximately equal share of pine and spruce
trees with a mixture of deciduous trees. The first stratum comprised 92 sample
plots, the second 56, the third 41 and the fourth 57 sample plots respectively. The
final imputations were carried out for each stratum separately.

2.4 Simulation of Forest Growth

The forest attribute update calculations from 2007 to 2014 were carried out using
SIMO software (SIMO simulation framework, Rasinmäki et al. 2009). SIMO is a
common platform for various stand simulators including Finnish tree- and
stand-level simulators. The simulation logic is described in XML documents
(eXtensible Markup Language) and lends itself to be easily adapted for various
types of calculations. The non-spatial tree-level growth models found in SIMO are,
for the most part, the same as those found in the MELA2002 and MOTTI simu-
lators (Hynynen et al. 2002; Salminen et al. 2005). They include growth models for
all sites and tree species in Finland, including separate models for peatlands. The
tree-level simulator can be used to simulate the growth of either sample trees
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measured in the field or descriptive trees generated on the basis of a theoretical
diameter/height distribution. The simulation is performed at the single-tree level.
The statistics for the strata and stands are derived as the sums and means of the
simulated tree properties.

2.5 Evaluation of the Errors

The accuracy of the ABA and updated stem volumes estimates was evaluated by
calculating bias and root-mean-square error (RMSE) for three different alternatives
(Table 3):

BIAS ¼
Pn

i¼1 ðyi � ŷiÞ
n

BIAS% ¼ 100 � BIAS
�y

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Pn

i¼1 ðyi � ŷiÞ2
n

s

RMSE% ¼ 100 � RMSE
�y

where n is the number of plots, yi is the observed value (by tree-wise measurements
from 2014) for plot i, ŷi is updated attribute for plot i and �yi is the observed mean of
the species-specific—or total stem volume.

3 Results and Discussion

The results from the remote sensing data based prediction of forest inventory
attributes in year 2007 are presented in Table 4. For the validation plots (n = 34)
the empirical 95 % interval of total stem volume was between 42.4 and

Table 3 Principles used in the error analyses

Alternative Source of error Input data Reference data

1 Inventory error Species-specific stem
volumes derived from
ABA

Species-specific stem
volumes derived from
field measurements
from 2007

2 Prediction of theoretical
stem diameter
distribution and growth
modelling error

Species-specific stem
volumes derived from
field measurements
from 2007

Species-specific stem
volumes derived from
field measurements
from 2014

3 Combined errors Species-specific stem
volumes derived from
ABA

Species-specific stem
volumes derived from
field measurements
from 2014
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431.2 m3/ha. The species specific empirical 95 % intervals for stem volume were
for pine from 0 to 266.4 m3/ha, for spruce from 0 to 239.0 m3/ha and for deciduous
trees from 0.5 to 225.7 m3/ha, respectively.

The RMSE of forest inventory for total stem volume was 25.2 % as the bias was
8.5 % (Table 5). Species-specific RMSEs and biases varied from 80.0 to 134.3 %
and from −0.5 to 21.3 %, respectively. At the sample plot-level the range in
inventory error (difference) was from −83.6 to 167.4 m3/ha (Fig. 2). Based on
Hudak et al. (2008) and Franco-Lopez et al. (2001) increasing the number of
neighbors would improve the prediction accuracy. However, inventory RMSEs are
in line with the previous studies in the same study area (Holopainen et al. 2010a;
Yu et al. 2010; Vastaranta et al. 2011, 2012, 2013; Kankare et al. 2015).
Controversially, ABA inventory in this study included bias. Bias can be resulted

Table 4 Mean values for predicted forest inventory attributes using ABA

ABA predicted forest inventory attributes 2007

V, m3/ha G, m2/ha N, /ha Dg, cm Hg, m

Scots pine 104.4 (85) 11.5 (8.5) 367 (292) 22.5 (8.9) 17.8 (6.4)

Norway spruce 49.8 (76.9) 5.7 (7.3) 382 (361) 14.4 (8.4) 11.6 (6.4)

Deciduous 56.6 (67.5) 6.7 (6.9) 483 (512) 15.7 (6.5) 15.2 (5.8)

Total 210.9 (108.1) 23.8 (8.8) 1231 (685)

Standard deviations are provided in the parenthesis

Table 5 Effect of inventory error on predicted species-specific stem volumes as well as on the
total stem volume (V) on the validation plots

Error source

V V_pine V_spruce V_dec

Forest inventory error

RMSE, m3/ha 58.0 88.7 80.8 75.7

RMSE-% 25.2 % 80.0 % 127.6 % 134.3 %

Bias, m3/ha 19.6 6.4 13.5 −0.3

Bias-% 8.5 % 5.7 % 21.3 % −0.5 %

Growth modelling and prediction of theoretical stem diameter distribution error

RMSE, m3/ha 50.7 35.4 17.4 41.8

RMSE-% 18.8 % 27.0 % 23.1 % 65.9 %

Bias, m3/ha 18.1 7.8 6.8 3.5

Bias-% 6.7 % 5.9 % 9.0 % 5.5 %

Combined error of forest inventory, prediction of theoretical stem diameter distribution
and forest growth modelling

RMSE, m3/ha 66.3 86.3 82.4 67.4

RMSE-% 24.6 % 65.8 % 109.2 % 106.3 %

Bias, m3/ha 35.5 13.0 20.1 2.3

Bias-% 13.1 % 9.9 % 26.7 % 3.7 %
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from the rather limited number of validation plots (n = 34) as well as from slight
differences in forest inventory attributes measured from modelling plots used in
ABA compared to validation plots (see Table 1). For example, the mean stem
volume was 230.4 m3/ha in the validation plots ranging from 54.7 to 575.4 m3/ha
as the respective numbers from modelling plots were 186.6 m3/ha (mean), 0 m3/ha
(min) and 575.4 m3/ha (max). To avoid more bias number of nearest neighbors was
chosen to be 1.

Prediction of stem diameter distribution and growth modelling errors caused
6.7 % bias and 18.8 % RMSE to the updated stem volume. Species-specific
RMSEs and biases varied from 23.1 to 65.9 % and from 5.5 to 9.0 %, respectively.
The RMSEs are lower than the ones for the ABA forest inventory of year 2007.
Based on the previous studies (Vastaranta et al. 2010; Holopainen et al. 2010c) it
can be assumed that the majority of this error is caused by the growth modelling
and only a minor component from the generated stem distribution. Although, error
of predicting stem diameter distribution cannot be separated from the growth
modelling error in this study, it has been shown that its effect is marginal in this
kind of study design (e.g. Holopainen et al. 2010c). At the sample plot-level the
range in error of prediction of stem distribution and growth modelling error
(difference) was from −134.7 to 93.7 m3/ha (Fig. 3).

Fig. 2 Field measured stem volume (m3/ha) (2007) compared to stem volume estimate based on
ABA (2007)

Fig. 3 Field measured stem volume (m3/ha) (2014) compared to field measured stem volume
from 2007 updated to year 2014. The update was done by utilizing growth models
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Combined error of forest inventory, prediction of theoretical stem distribution
and forest growth modelling caused 13.1 % bias and 24.6 % RMSE to the updated
stem volume. Species-specific RMSEs and biases varied from 65.8 to 109.2 % and
from 3.7 to 26.7 %, respectively. At the sample plot-level the range in combined
errors was from −95.3 to 156.8 m3/ha (Fig. 4).

Compared to attribute update from error free data (errors of prediction of stem
distribution and growth modelling), it can be seen that biases are 5–15 % points
larger for total stem volume as well as for species specific stem volumes when all
the error sources are combined. Similarly, RMSE for total stem volume is roughly
10 % points larger. Species-specific errors increase more. Accuracy of the
species-specific stem volumes is ranging from 80.0 to 134.3 % with ABA (in-
ventory error) and thus it can be expected that these errors shift to outputs of the
update process.

4 Conclusion

The objective here was to analyse the effects of error sources on the short-term
forest inventory attribute update in boreal managed forest conditions. The analyses
of the error sources were partitioned into two parts. The first part dealt with the
errors related to the forest inventory using ABA. The second part dealt with the
effect of stem distribution prediction error and growth modelling error. The results
showed that prediction of theoretical stem distribution and forest growth modelling
affected only slightly to the quality of the predicted stem volume in short-term
information update. The results of our study confirm that the quality of the input
data is the most effective error source in short-term forest information update. Thus,
further studies are required especially for obtaining species-specific forest inventory
information more accurately.

Fig. 4 Field measured stem volume (m3/ha) (2014) compared to stem volume estimate based on
ABA from 2007 updated to year 2014. The update was done by utilizing growth models
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